This training provides general concepts on chemical speciation, the SPECIATE database and browser, and how to use the Speciation Tool to create model ready speciation inputs for a photochemical air quality model.
This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.
A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS
Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...
Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy
The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...
Trace metal speciation in natural waters: Computational vs. analytical
Nordstrom, D. Kirk
1996-01-01
Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.Y.; Batchelor, B.
1999-03-01
Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.
2016-06-01
Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation information would be warranted. Furthermore, modelled tropospheric O3 was also sensitive to the choice of chemical mechanism and further evaluation of both of these sensitivities in more realistic chemical-transport models is needed.
Development of a database for chemical mechanism assignments for volatile organic emissions.
Carter, William P L
2015-10-01
The development of a database for making model species assignments when preparing total organic gas (TOG) emissions input for atmospheric models is described. This database currently has assignments of model species for 12 different gas-phase chemical mechanisms for over 1700 chemical compounds and covers over 3000 chemical categories used in five different anthropogenic TOG profile databases or output by two different biogenic emissions models. This involved developing a unified chemical classification system, assigning compounds to mixtures, assigning model species for the mechanisms to the compounds, and making assignments for unknown, unassigned, and nonvolatile mass. The comprehensiveness of the assignments, the contributions of various types of speciation categories to current profile and total emissions data, inconsistencies with existing undocumented model species assignments, and remaining speciation issues and areas of needed work are also discussed. The use of the system to prepare input for SMOKE, the Speciation Tool, and for biogenic models is described in the supplementary materials. The database, associated programs and files, and a users manual are available online at http://www.cert.ucr.edu/~carter/emitdb . Assigning air quality model species to the hundreds of emitted chemicals is a necessary link between emissions data and modeling effects of emissions on air quality. This is not easy and makes it difficult to implement new and more chemically detailed mechanisms in models. If done incorrectly, it is similar to errors in emissions speciation or the chemical mechanism used. Nevertheless, making such assignments is often an afterthought in chemical mechanism development and emissions processing, and existing assignments are usually undocumented and have errors and inconsistencies. This work is designed to address some of these problems.
Speciation of the trivalent f-elements Eu(III) and Cm(III) in digestive media.
Wilke, Claudia; Barkleit, Astrid; Stumpf, Thorsten; Ikeda-Ohno, Atsushi
2017-10-01
In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Vink, J P M; Meeussen, J C L
2007-08-01
The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).
Chemical Mass Balance (CMB) Model
The EPA-CMB Version 8.2 uses source profiles and speciated ambient data to quantify source contributions. Contributions are quantified from chemically distinct source-types rather than from individual emitters.
NASA Astrophysics Data System (ADS)
Meng, X.; Liu, Y.; Diner, D. J.; Garay, M. J.
2016-12-01
Ambient fine particle (PM2.5) has been positively associated with increased mortality and morbidity worldwide. Recent studies highlight the characteristics and differential toxicity of PM2.5 chemical components, which are important for identifying sources, developing targeted particulate matter (PM) control strategies, and protecting public health. Modelling with satellite retrieved data has been proved as the most cost-effective way to estimate ground PM2.5 levels; however, limited studies have predict PM2.5 chemical components with this method. In this study, the experimental MISR 4.4 km aerosol retrievals were used to predict ground-level particle sulfate, nitrite, organic carbon and element carbon concentrations in 16 counties of southern California. The PM2.5 chemical components concentrations were obtained from the National Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. A generalized additive model (GAM) was developed based on 16-years data (2000-2015) by combining the MISR aerosol retrievals, meteorological variables and geographical indicators together. Model performance was assessed by model fitted R2 and root-mean-square error (RMSE) and 10-fold cross validation. Spatial patterns of sulfate, nitrate, OC and EC concentrations were also examined with 2-D prediction surfaces. This is the first attempt to develop high-resolution spatial models to predict PM2.5 chemical component concentrations with MISR retrieved aerosol properties, which will provide valuable population exposure estimates for future studies on the characteristics and differential toxicity of PM2.5 speciation.
Cloutier-Hurteau, Benoît; Sauvé, Sébastien; Courchesne, François
2007-12-01
Metal speciation data calculated by modeling could give useful information regarding the fate of metals in the rhizospheric environment. However, no comparative study has evaluated the relative accuracy of speciation models in this microenvironment. Consequently, the present study evaluates the reliability of free Cu ion (Cu2+) activity modeled by WHAM 6 and MINEQL+ 4.5 for 18 bulk and 18 rhizospheric soil samples collected in two Canadian forested areas located near industrial facilities. The modeling of Cu speciation was performed on water extracts using pH, dissolved organic carbon (DOC), major ions, and total dissolved Al, Ca, Cu, Mg, and Zn concentrations as input data. Four scenarios representing the composition of dissolved organic substances using fulvic, humic, and acetic acids were derived from the literature and used in the modeling exercise. Different scenarios were used to contrast soil components (rhizosphere vs bulk) and soil pH levels (acidic vs neutral to alkaline). Reference Cu2+ activity values measured by an ion-selective electrode varied between 0.39 and 41 nM. The model MINEQL+ 4.5 provided good predictions of Cu2+ activities [root-mean-square residual (RMSR)= 0.37], while predictions from WHAM 6 were poor (RMSR = 1.74) because they overestimated Cu complexation with DOC. Modeling with WHAM 6 could be improved by adjusting the proportion of inert DOC and the composition of DOC (RMSR = 0.94), but it remained weaker than predictions with MINEQL+ 4.5. These results suggested that the discrepancies between speciation models were attributed to differences in the binding capacity of humic substances with Cu, where WHAM 6 appeared to be too aggressive. Therefore, we concluded that chemical interactions occurring between Cu and DOC were key factors for an accurate simulation of Cu speciation, especially in rhizospheric forest soils, where high variation of the DOC concentration and composition are observed.
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, Q.; Streets, D. G.; He, K. B.; Cheng, Y. F.; Emmons, L. K.; Huo, H.; Kang, S. C.; Lu, Z.; Shao, M.; Su, H.; Yu, X.; Zhang, Y.
2014-06-01
An accurate speciation mapping of non-methane volatile organic compounds (NMVOC) emissions has an important impact on the performance of chemical transport models (CTMs) in simulating ozone mixing ratios and secondary organic aerosols. Taking the INTEX-B Asian NMVOC emission inventory as the case, we developed an improved speciation framework to generate model-ready anthropogenic NMVOC emissions for various gas-phase chemical mechanisms commonly used in CTMs in this work, by using an explicit assignment approach and updated NMVOC profiles. NMVOC profiles were selected and aggregated from a wide range of new measurements and the SPECIATE database v.4.2. To reduce potential uncertainty from individual measurements, composite profiles were developed by grouping and averaging source profiles from the same category. The fractions of oxygenated volatile organic compounds (OVOC) were corrected during the compositing process for those profiles which used improper sampling and analyzing methods. Emissions of individual species were then lumped into species in different chemical mechanisms used in CTMs by applying mechanism-dependent species mapping tables, which overcomes the weakness of inaccurate mapping in previous studies. Emission estimates for individual NMVOC species differ between one and three orders of magnitude for some species when different sets of profiles are used, indicating that source profile is the most important source of uncertainties of individual species emissions. However, those differences are diminished in lumped species as a result of the lumping in the chemical mechanisms. Gridded emissions for eight chemical mechanisms at 30 min × 30 min resolution as well as the auxiliary data are available at http://mic.greenresource.cn/intex-b2006. The framework proposed in this work can be also used to develop speciated NMVOC emissions for other regions.
Strategies to predict metal mobility in surficial mining environments
Smith, Kathleen S.
2007-01-01
This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.
Metals, Health and the Environment – Emergence of Correlations Between Speciation and Effects
Williams, David R.
2004-01-01
Over the last half-century both the identification of the causes of diseases and the use of inorganic compounds to treat such conditions have been considerably enlightened through our emerging capabilities to identify the pivotal chemical species involved. The ‘duty of care’ placed upon scientists to protect the environment from manufactured chemicals and to limit their effects upon humans therefrom is best realised from a speciation knowledge database. This paper discusses categorising chemicals in terms of their persistence, bioaccumulation, and toxicities and uses speciation information to optimise desirable effects of chemicals in several applications such as the manufacture of pulp for paper and in the foliar nutrition of crops. Simultaneously, the chemical wasting side effects of industrial overdosing is easily avoided if speciation approaches are used. The move towards new environmentally friendly ligand agents is described and methods of finding substitute agents (often combinations of two or more chemicals) to replace nonbiodegradable EDTA. The geosphere migration of metals through the environment is discussed in terms of speciation. Future objectives discussed include improved means of communicating speciation-based recommendations to decision makers. PMID:18365083
Tait, Tara N; McGeer, James C; Smith, D Scott
2018-01-01
Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.
NASA Astrophysics Data System (ADS)
Sarkar, M.; Venkataraman, C.; Guttikunda, S.; Sadavarte, P.
2016-06-01
Non-methane volatile organic compounds (NMVOCs) are important precursors to reactions producing tropospheric ozone and secondary organic aerosols. The present work uses a detailed technology-linked NMVOC emission database for India, along with a standard mapping method to measured NMVOC profiles, to develop speciated NMVOC emissions, which are aggregated into multiple chemical mechanisms used in chemical transport models. The fully speciated NMVOC emissions inventory with 423 constituent species, was regrouped into model-ready reactivity classes of the RADM2, SAPRC99 and CB-IV chemical mechanisms, and spatially distributed at 25 × 25 km2 resolution, using source-specific spatial proxies. Emissions were considered from four major sectors, i.e. industry, transport, agriculture and residential and from non-combustion activities (use of solvents and paints). It was found that residential cooking with biomass fuels, followed by agricultural residue burning in fields and on-road transport, were largest contributors to the highest reactivity group of NMVOC emissions from India. The emissions were evaluated using WRF-CAMx simulations, using the SAPRC99 photochemical mechanism, over India for contrasting months of April, July and October 2010. Modelled columnar abundance of NO2, CO and O3 agreed well with satellite observations both in magnitude and spatial distribution, in the three contrasting months. Evaluation of monthly and spatial differences between model predictions and observations indicates the need for further refinement of the spatial distribution of NOX emissions, spatio-temporal distribution of agricultural residue burning emissions.
SPECIATION OF COMPLEX ORGANIC CONTAMINANTS IN WATER WITH RAMAN SPECTROSCOPY
Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize, tautomerize, and form various types of hydrates in water. However, conceptual models for predicting the fate of these chemicals in the environment ignore these ...
OPTIMIZATION OF MODERN DISPERSIVE RAMAN SPECTROMETERS FOR MOLECULAR SPECIATION OF ORGANICS IN WATER
Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize in water. However, models for understanding the behavior of these chemicals in the environment typically assume that they exist exclusively as neutral species --...
Arsenic Speciation in Groundwater: Role of Thioanions
The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...
Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Thomas B.
The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.
Chemical Speciation and Metallomics.
de Jesus, Jemmyson Romário; da Costa, Luana Ferreira; Lehmann, Eraldo Luiz; Galazzi, Rodrigo Moretto; Madrid, Katherine Chacón; Arruda, Marco Aurélio Zezzi
2018-01-01
Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.
Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...
Chemical Speciation - General Information
This page includes general information about the Chemical Speciation Network that is not covered on the main page. Commonly visited documents, including calendars, site lists, and historical files for the program are listed here
PM 2.5 CHEMICAL SPECIATION SAMPLER EVALUATION FIELD PROGRAM: RESULTS FROM THE FOUR CITY STUDY
The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national network relative to each other, to the Federal Referen...
METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK
The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, Q.; Streets, D. G.; He, K. B.; Cheng, Y. F.; Emmons, L. K.; Huo, H.; Kang, S. C.; Lu, Z.; Shao, M.; Su, H.; Yu, X.; Zhang, Y.
2013-12-01
An accurate speciation mapping of non-methane volatile organic compounds (NMVOC) emissions has an important impact on the performance of chemical transport models (CTMs) in simulating ozone mixing ratios and secondary organic aerosols. In this work, we developed an improved speciation framework to generate model-ready anthropogenic Asian NMVOC emissions for various gas-phase chemical mechanisms commonly used in CTMs by using an explicit assignment approach and updated NMVOC profiles, based on the total NMVOC emissions in the INTEX-B Asian inventory for the year 2006. NMVOC profiles were selected and aggregated from a wide range of new measurements and the SPECIATE database. To reduce potential uncertainty from individual measurements, composite profiles were developed by grouping and averaging source profiles from the same category. The fractions of oxygenated volatile organic compounds (OVOC) were corrected during the compositing process for those profiles which used improper sampling and analyzing methods. Emissions of individual species were then lumped into species in different chemical mechanisms used in CTMs by applying mechanism-dependent species mapping tables, which overcomes the weakness of inaccurate mapping in previous studies. Gridded emissions for eight chemical mechanisms are developed at 30 min × 30 min resolution using various spatial proxies and are provided through the website: http://mic.greenresource.cn/intex-b2006. Emission estimates for individual NMVOC species differ between one and three orders of magnitude for some species when different sets of profiles are used, indicating that source profile is the most important source of uncertainties of individual species emissions. However, those differences are diminished in lumped species as a result of the lumping in the chemical mechanisms.
Arsenic speciation and sorption in natural environments
Campbell, Kate M.; Nordstrom, D. Kirk
2014-01-01
Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.
Jathar, Shantanu H.; Gordon, Timothy D.; Hennigan, Christopher J.; Pye, Havala O. T.; Pouliot, George; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.
2014-01-01
Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466
Speciation of heavy metals in landfill leachate: a review.
Baun, Dorthe L; Christensen, Thomas H
2004-02-01
The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... results of speciation data analyses, air quality modeling studies, chemical tracer studies, emission... Demonstration 1. Pollutants Addressed 2. Emission Inventory Requirements 3. Modeling 4. Reasonably Available... modeling (40 CFR 51.1007) that is performed in accordance with EPA modeling guidance (EPA-454/B-07-002...
Beryllium chemical speciation in elemental human biological fluids.
Sutton, Mark; Burastero, Stephen R
2003-09-01
The understanding of beryllium chemistry in human body fluids is important for understanding the prevention and treatment of chronic beryllium disease. Thermodynamic modeling has traditionally been used to study environmental contaminant migration and rarely in the examination of metal (particularly beryllium) toxicology. In this work, a chemical thermodynamic speciation code (MINTEQA2) has been used to model and understand the chemistry of beryllium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, a number of airway surface fluids for patients with lung conditions, saliva, sweat, urine, bile, gastric juice, and pancreatic fluid. The results show that predicted beryllium solubility and speciation vary markedly between each simulated biological fluid. Formation of beryllium hydroxide and/or phosphate was observed in most of the modeled fluids, and results support the postulation that beryllium absorption in the gastrointestinal tract may be limited by the formation of beryllium phosphate solids. It is also postulated that beryllium is potentially 13% less soluble in the airway surface fluid of a patient with asthma when compared to a "normal" case. The results of this work, supported by experimental validation, can aid in the understanding of beryllium toxicology. Our results can potentially be applied to assessing the feasibility of biological monitoring or chelation treatment of beryllium body burden.
Jabłońska-Czapla, Magdalena
2015-01-01
Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Meeussen, J.; Sloot, H.
2010-03-31
The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciationmore » of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the materials are used. The test cases used in this demonstration are taken from Reference Cases for Use in the Cementitious Barriers Partnership (Langton et al. 2009). Before it is possible to model the release of substances from stabilized waste or radioactive grout through a cement barrier into the engineered soil barrier or natural soil, the relevant characteristics of such materials must be known. Additional chemical characteristics are needed for mechanistic modeling to be undertaken, not just the physical properties relevant for modeling of transport. The minimum required properties for modeling are given in Section 5.0, 'Modeling the chemical speciation of a material'.« less
Application Of Synchrotron Techniques To Investigate In-Situ Arsenic Speciation
The speciation, or chemical form of elements governs their fate, toxicity, mobility, and bioavailability in contaminated soils, sediments and water as well as food chain transfer mechanisms. To assess these chemical properties and to accurately gauge contaminant impact on human h...
Dissolved sulfides in the oxic water column of San Francisco Bay, California
Kuwabara, J.S.; Luther, G.W.
1993-01-01
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.
Sensitivity model study of regional mercury dispersion in the atmosphere
NASA Astrophysics Data System (ADS)
Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola
2017-01-01
Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat bogs, etc., is highlighted in this study.
NASA Astrophysics Data System (ADS)
María Yáñez-Serrano, Ana; Nölscher, Anke Christine; Bourtsoukidis, Efstratios; Gomes Alves, Eliane; Ganzeveld, Laurens; Bonn, Boris; Wolff, Stefan; Sa, Marta; Yamasoe, Marcia; Williams, Jonathan; Andreae, Meinrat O.; Kesselmeier, Jürgen
2018-03-01
Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.
Antipredator defenses predict diversification rates
Arbuckle, Kevin; Speed, Michael P.
2015-01-01
The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488
XAS Studies of Se Speciation in Selenite-Fed Rats
Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.
2014-01-01
The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824
Xu, Shuqing; Schlüter, Philipp M
2015-01-01
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl-acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.
SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS
Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...
The Development and Uses of EPA's SPECIATE Database
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...
The development of a site-specific water-quality standard for copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, R.M.
This dissertation proposes to determine, for one toxic chemical, copper, if the Federal water quality standard and the state interpretation of that standard are appropriate for the Duck River, some 50 miles south of Nashville, Tennessee. This involved conducting toxicity tests in Duck River water, and the use of the computer metal speciation program MINTEQA1 to predict instream impact. The speciation model chosen for the determination of chemical equilibria in this study was MINTEQA1. To test the validity of the MINTEQA1 speciation model, water chemistry from the Duck River was entered into the model. At the typical site pH ofmore » 7.8, 55.7% of the copper is bound as Cu(OH){sub 2}, 29.8% is bound as copper humate, and 12.7% is found as CuCO{sub 3}. Of extreme importance to the toxicity of copper in the site water is the complete absence of the most toxic species, ionic copper. The test species were the brook silversides minnow (Labidesthes sicculus), mosquitofish (Gambusia affinis), caddisfly larvae (Cheumatopsyche sp.), fathead minnow (Pimephales promelas), geniculate river snail (Lithasia geniculata), sunfish (Lepomis sp.), and the amphipod (Hyalella azeca). The test concentrations were confirmed by atomic absorption spectroscopy on selected concentrations. The caddisfly larvae was the single most tolerant species observed during this study, while the amphipod and snail were the two most sensitive species tested.« less
Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
Franco, Antonio; Fu, Wenjing; Trapp, Stefan
2009-03-01
The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A
2013-02-21
A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G
2016-01-01
Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.
Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D
2015-09-01
Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...
The relationship between mantle pH and the deep nitrogen cycle
NASA Astrophysics Data System (ADS)
Mikhail, Sami; Barry, Peter H.; Sverjensky, Dimitri A.
2017-07-01
Nitrogen is distributed throughout all terrestrial geological reservoirs (i.e., the crust, mantle, and core), which are in a constant state of disequilibrium due to metabolic factors at Earth's surface, chemical weathering, diffusion, and deep N fluxes imposed by plate tectonics. However, the behavior of nitrogen during subduction is the subject of ongoing debate. There is a general consensus that during the crystallization of minerals from melts, monatomic nitrogen behaves like argon (highly incompatible) and ammonium behaves like potassium and rubidium (which are relatively less incompatible). Therefore, the behavior of nitrogen is fundamentally underpinned by its chemical speciation. In aqueous fluids, the controlling factor which determines if nitrogen is molecular (N2) or ammonic (inclusive of both NH4+ and NH30) is oxygen fugacity, whereas pH designates if ammonic nitrogen is NH4+ or NH30. Therefore, to address the speciation of nitrogen at high pressures and temperatures, one must also consider pH at the respective pressure-temperature conditions. To accomplish this goal we have used the Deep Earth Water Model (DEW) to calculate the activities of aqueous nitrogen from 1-5 GPa and 600-1000 °C in equilibrium with a model eclogite-facies mineral assemblage of jadeite + kyanite + quartz/coesite (metasediment), jadeite + pyrope + talc + quartz/coesite (metamorphosed mafic rocks), and carbonaceous eclogite (metamorphosed mafic rocks + elemental carbon). We then compare these data with previously published data for the speciation of aqueous nitrogen across these respective P-T conditions in equilibrium with a model peridotite mineral assemblage (Mikhail and Sverjensky, 2014). In addition, we have carried out full aqueous speciation and solubility calculations for the more complex fluids in equilibrium with jadeite + pyrope + kyanite + diamond, and for fluids in equilibrium with forsterite + enstatite + pyrope + diamond. Our results show that the pH of the fluid is controlled by mineralogy for a given pressure and temperature, and that pH can vary by several units in the pressure-temperature range of 1-5 GPa and 600-1000 °C. Our data show that increasing temperature stabilizes molecular nitrogen and increasing pressure stabilizes ammonic nitrogen. Our model also predicts a stark difference for the dominance of ammonic vs. molecular and ammonium vs. ammonia for aqueous nitrogen in equilibrium with eclogite-facies and peridotite mineralogies, and as a function of the total dissolved nitrogen in the aqueous fluid where lower N concentrations favor aqueous ammonic nitrogen stabilization and higher N concentrations favor aqueous N2. Overall, we present thermodynamic evidence for nitrogen to be reconsidered as an extremely dynamic (chameleon) element whose speciation and therefore behavior is determined by a combination of temperature, pressure, oxygen fugacity, chemical activity, and pH. We show that altering the mineralogy in equilibrium with the fluid can lead to a pH shift of up to 4 units at 5 GPa and 1000 °C. Therefore, we conclude that pH imparts a strong control on nitrogen speciation, and thus N flux, and should be considered a significant factor in high temperature geochemical modeling in the future. Finally, our modelling demonstrates that pH plays an important role in controlling speciation, and thus mass transport, of Eh-pH sensitive elements at temperatures up to at least 1000 °C.
Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.
Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R
2014-05-01
Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.
Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.
2003-01-01
Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.
ERIC Educational Resources Information Center
Otto, William H.; Larive, Cynthia K.; Mason, Susan L.; Robinson, Janet B.; Heppert Joseph A.; Ellis, James D.
2005-01-01
An experiment to perform a simple initial investigation that illustrates concepts of speciation and equilibrium, using the instrument and chemical resources in the laboratory is presented. The investigation showed that the presence of multiple chemical species in a reaction mixture (phenol red solution) reflects the acid and base conditions…
Kozak, Lidia; Niedzielski, Przemyslaw
2017-08-01
The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.
A counterflow diffusion flame study of branched octane isomers
Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; ...
2012-09-25
Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed modelmore » reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.« less
Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.
Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger
2011-01-01
Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bi, S P; An, S Q; Yang, M; Chen, T
2001-05-01
This paper reports an investigation of the dynamics of aluminum (Al) speciation in the forest-well waters from study site 110 of the Rhode River watershed, a representative sub-unit of Chesapeake Bay. Seasonal changes of Al speciation are evaluated by a modified MINEQL computer model using chemical equilibrium calculation. It was found that Al-F and Al-Org complexes were the dominate forms, whereas toxic forms of Al3+ and Al-OH were not significant. This indicates that Al toxicity is not very serious in the Rhode River area due to the high concentrations of fluoride and organic materials, even though sometimes pH is very low (approximately 4). Increased H+ or some other associated factors may be responsible for the decline in fish and amphibian population on the watershed.
NetpathXL - An Excel Interface to the Program NETPATH
Parkhurst, David L.; Charlton, Scott R.
2008-01-01
NetpathXL is a revised version of NETPATH that runs under Windows? operating systems. NETPATH is a computer program that uses inverse geochemical modeling techniques to calculate net geochemical reactions that can account for changes in water composition between initial and final evolutionary waters in hydrologic systems. The inverse models also can account for the isotopic composition of waters and can be used to estimate radiocarbon ages of dissolved carbon in ground water. NETPATH relies on an auxiliary, database program, DB, to enter the chemical analyses and to perform speciation calculations that define total concentrations of elements, charge balance, and redox state of aqueous solutions that are then used in inverse modeling. Instead of DB, NetpathXL relies on Microsoft Excel? to enter the chemical analyses. The speciation calculation formerly included in DB is implemented within the program NetpathXL. A program DBXL can be used to translate files from the old DB format (.lon files) to NetpathXL spreadsheets, or to create new NetpathXL spreadsheets. Once users have a NetpathXL spreadsheet with the proper format, new spreadsheets can be generated by copying or saving NetpathXL spreadsheets. In addition, DBXL can convert NetpathXL spreadsheets to PHREEQC input files. New capabilities in PHREEQC (version 2.15) allow solution compositions to be written to a .lon file, and inverse models developed in PHREEQC to be written as NetpathXL .pat and model files. NetpathXL can open NetpathXL spreadsheets, NETPATH-format path files (.pat files), and NetpathXL-format path files (.pat files). Once the speciation calculations have been performed on a spreadsheet file or a .pat file has been opened, the NetpathXL calculation engine is identical to the original NETPATH. Development of models and viewing results in NetpathXL rely on keyboard entry as in NETPATH.
Ortega, Richard; Devès, Guillaume; Carmona, Asunción
2009-01-01
The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403
Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water
NASA Astrophysics Data System (ADS)
Saini-Eidukat, Bernhardt; Yahin, Andrew
1999-05-01
A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.
The importance of trace element speciation in biomedical science.
Templeton, Douglas M
2003-04-01
According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.
Lathouri, Maria; Korre, Anna
2015-12-15
Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.
Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P
2010-10-01
• Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
NASA Astrophysics Data System (ADS)
Kalashnikova, O.; Xu, F.; Ge, C.; Wang, J.; Garay, M. J.; Diner, D. J.
2014-12-01
Exposure to ambient particulate matter (PM) has been consistently linked to cardiovascular and respiratory health effects. Although PM is currently monitored by a network of surface stations, these are too sparsely distributed to provide the level of spatial detail needed to link different aerosol species to given health effects, and expansion to denser coverage is impractical and cost prohibitive. We present a methodology for combining Chemical Transport Model (CTM) aerosol type information and multiangular spectropolarimetric data to establish the signature of specific aerosol types in top-of-atmosphere measurements, and relate it to speciated surface PM2.5 loadings. In particular, we employ the WRF-Chem model run at the University of Nebraska, and remote sensing data from the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) to explore the feasibility of this approach. We demonstrate that the CTM does well in predicting the types of aerosols present at a given location and time, however large uncertainties currently exist in CTM estimates of the concentration of the various aerosol species (e.g., black carbon, sulfate, dust, etc.) leading to large uncertainties to model-derived speciated PM 2.5. In order to constrain CTM aerosol surface concentrations we use AirMSPI UV-VIS-NIR observations of intensity, and blue, red, and NIR observations of the Q and U Stokes parameters. We select specific scenes observed by AirMSPI and use WRF-Chem to generate an initial distribution of aerosol composition. The relevant optical properties for each aerosol species are used to calculate aerosol light scattering information. This is then used in a vector (polarized) 1-D radiative transfer model to determine at-instrument Stokes parameters for the specific AirMSPI viewing geometries. As a first step, a match is sought between the CTM-predicted radiances and the AirMSPI observations. Then, the total aerosol optical depth and fractions of various aerosol species are modified via optimization to produce a better match to the observations, and converted to PM2.5 speciated loadings using CTM aerosol vertical profiles. Finally, the results are compared to available ground-based and in situ data to validate this approach.
NASA Astrophysics Data System (ADS)
Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.
2014-06-01
Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms. Electronic supplementary information (ESI) available: Representative TEM and ESEM images of AuNPs and PS@Au particles. Optical extinction spectra of AuNPs and PS@Au suspensions. SERS spectra of unmodified PS@Au suspension before and after the addition of CH3Hg+. SERS spectra of PS@Au-MPY upon addition of several metal solutions. Detailed SERS study of the MPY response to high concentration of CH3Hg+. See DOI: 10.1039/c4nr01464b
THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES
The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...
First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight
NASA Astrophysics Data System (ADS)
de Foy, Benjamin; Tong, Yindong; Yin, Xiufeng; Zhang, Wei; Kang, Shichang; Zhang, Qianggong; Zhang, Guoshuai; Wang, Xuejun; Schauer, James J.
2016-06-01
Hourly speciated measurements of atmospheric mercury made in a remote, high-altitude site in the Tibetan Plateau revealed the first field observations of the reduction of reactive mercury in the presence of sunlight in the atmosphere. Measurements were collected over four winter months on the shore of Nam Co Lake in the inland Tibetan Plateau. The data was analyzed to identify sources and atmospheric transformations of the speciated mercury compounds. The absence of local anthropogenic sources provided a unique opportunity to examine chemical transformations of mercury. An optimization algorithm was used to determine the parameters of a chemical box model that would match the measured reactive mercury concentrations. This required the presence of a photolytic reduction reaction previously observed in laboratory studies and in power plant plumes. In addition, the model estimated the role of vertical mixing in diluting reactive gaseous mercury during the day, and the role of bromine chemistry in oxidizing gaseous elemental mercury to produce reactive gaseous mercury. This work provides further evidence of the need to add the photolytic reduction reaction of oxidized mercury into atmospheric transport models in order to better simulate mercury deposition.
Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun
2016-02-01
The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.
Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta
2017-12-15
The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.
Plummer, Niel; Jones, Blair F.; Truesdell, Alfred Hemingway
1976-01-01
WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1.) With but a few exceptions, the thermochemical data, speciation, coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF. (Woodard-USGS)
Particulate-phase mercury emissions from biomass burning ...
Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve
ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES
Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...
A PERSONAL PARTICLE SPECIATION SAMPLER
Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues expect to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The investigators believe the result will be a...
Self-consistent approach for neutral community models with speciation
NASA Astrophysics Data System (ADS)
Haegeman, Bart; Etienne, Rampal S.
2010-03-01
Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.
Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...
Koschinsky, A.; Hein, J.R.
2003-01-01
Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and speciations in oxic seawater vs. less-oxic fluids, especially for the redox-sensitive metals such as Mo and V. These environmental-related differences indicate that the methodology of chemical speciation used here in combination with spectroscopic methods may allow for the detection of changes in paleoceanographic conditions recorded during the several tens of millions of years of crust growth. ?? 2003 Elsevier Science B.V. All rights reserved.
Zhang, Xiaokai; Qin, Boqiang; Deng, Jianming; Wells, Mona
2017-10-01
As the world burden of environmental contamination increases, it is of the utmost importance to develop streamlined approaches to environmental risk assessment in order to prioritize mitigation measures. Whole-cell biosensors or bioreporters and speciation modeling have both become of increasing interest to determine the bioavailability of pollutants, as bioavailability is increasingly in use as an indicator of risk. Herein, we examine whether bioreporter results are able to reflect expectations based on chemical reactivity and speciation modeling, with the hope to extend the research into a wider framework of risk assessment. We study a specific test case concerning the bioavailability of lead (Pb) in aqueous environments containing Pb-complexing ligands. Ligands studied include ethylene diamine tetra-acetic acid (EDTA), meso-2,3 dimercaptosuccinic acid (DMSA), leucine, methionine, cysteine, glutathione, and humic acid (HA), and we also performed experiments using natural water samples from Lake Tai (Taihu), the third largest lake in China. We find that EDTA, DMSA, cysteine, glutathione, and HA amendment significantly reduced Pb bioavailability with increasing ligand concentration according to a log-sigmoid trend. Increasing dissolved organic carbon in Taihu water also had the same effect, whereas leucine and methionine had no notable effect on bioavailability at the concentrations tested. We find that bioreporter results are in accord with the reduction of aqueous Pb 2+ that we expect from the relative complexation affinities of the different ligands tested. For EDTA and HA, for which reasonably accurate ionization and complexation constants are known, speciation modeling is in agreement with bioreporter response to within the level of uncertainty recognised as reasonable by the United States Environmental Protection Agency for speciation-based risk assessment applications. These findings represent a first step toward using bioreporter technology to streamline the biological confirmation or validation of speciation modeling for use in environmental risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Rixiang; Zhang, Bei; Saad, Emily M.
Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique)more » and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.« less
Critical load analysis in hazard assessment of metals using a Unit World Model.
Gandhi, Nilima; Bhavsar, Satyendra P; Diamond, Miriam L
2011-09-01
A Unit World approach has been used extensively to rank chemicals for their hazards and to understand differences in chemical behavior. Whereas the fate and effects of an organic chemical in a Unit World Model (UWM) analysis vary systematically according to one variable (fraction of organic carbon), and the chemicals have a singular ranking regardless of environmental characteristics, metals can change their hazard ranking according to freshwater chemistry, notably pH and dissolved organic carbon (DOC). Consequently, developing a UWM approach for metals requires selecting a series of representative freshwater chemistries, based on an understanding of the sensitivity of model results to this chemistry. Here we analyze results from a UWM for metals with the goal of informing the selection of appropriate freshwater chemistries for a UWM. The UWM loosely couples the biotic ligand model (BLM) to a geochemical speciation model (Windermere Humic Adsorption Model [WHAM]) and then to the multi-species fate transport-speciation (Transpec) model. The UWM is applied to estimate the critical load (CL) of cationic metals Cd, Cu, Ni, Pb, and Zn, using three lake chemistries that vary in trophic status, pH, and other parameters. The model results indicated a difference of four orders of magnitude in particle-to-total dissolved partitioning (K(d)) that translated into minimal differences in fate because of the short water residence time used. However, a maximum 300-fold difference was calculated in Cu toxicity among the three chemistries and three aquatic organisms. Critical loads were lowest (greatest hazard) in the oligotrophic water chemistry and highest (least hazard) in the eutrophic water chemistry, despite the highest fraction of free metal ion as a function of total metal occurring in the mesotrophic system, where toxicity was ameliorated by competing cations. Water hardness, DOC, and pH had the greatest influence on CL, because of the influence of these factors on aquatic toxicity. Copyright © 2011 SETAC.
Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E
2014-09-02
During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.
Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.
2011-01-01
Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.
Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M
2015-09-01
Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Damasceno, Évila Pinheiro; de Figuerêdo, Lívia Pitombeira; Pimentel, Marcionília Fernandes; Loureiro, Susana; Costa-Lotufo, Letícia Veras
2017-08-01
Few studies have examined the toxicity of metal mixtures to marine organisms exposed to different salinities. The aim of the present study was to investigate the acute toxicity of zinc and nickel exposures singly and in combination to Artemia sp. under salinities of 10, 17, and 35 psu. The mixture concentrations were determined according to individual toxic units (TUs) to follow a fixed ratio design. Zinc was more toxic than nickel, and both their individual toxicities were higher at lower salinities. These changes in toxicity can be attributed to the Biotic Ligand Model (BLM) rather than to metal speciation. To analyze the mixture effect, the observed data were compared with the expected mixture effects predicted by the concentration addition (CA) model and by deviations for synergistic/antagonistic interactions and dose-level and dose-ratio dependencies. For a salinity of 35 psu, the mixture had no deviations; therefore, the effects were additive. After decreasing the salinity to 17 psu, the toxicity pattern changed to antagonism at low concentrations and synergism at higher equivalent LC 50 levels. For the lowest salinity tested (10 psu), antagonism was observed. The speciations of both metals were similar when in a mixture and when isolated, and changes in toxicity patterns are more related to the organism's physiology than metal speciation. Therefore, besides considering chemical interactions in real-world scenarios, where several chemicals can be present, the influence of abiotic factors, such as salinity, should also be considered. Copyright © 2017 Elsevier Inc. All rights reserved.
EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY
The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...
Chemical form specific exposure assessment for arsenic has long been identified as a source of uncertainty in estimating the risk associated with the aggregate exposure for a population. Some speciation based assessments document occurrence within an exposure route; however, the...
SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES
SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jared Matthew; Daum, Keith Alvin; Kalival, J. H.
2003-01-01
This initial study evaluates the use of ion mobility spectrometry (IMS) as a rapid test procedure for potential detection of adulterated perfumes and speciation of plant life. Sample types measured consist of five genuine perfumes, two species of sagebrush, and four species of flowers. Each sample type is treated as a separate classification problem. It is shown that discrimination using principal component analysis with K-nearest neighbors can distinguish one class from another. Discriminatory models generated using principal component regressions are not as effective. Results from this examination are encouraging and represent an initial phase demonstrating that perfumes and plants possessmore » characteristic chemical signatures that can be used for reliable identification.« less
This work reports the results of a regional receptor-based source apportionment analysis using the Positive Matrix Factorization (PMF) model on chemically speciated PM2.5 data from 36 urban and rural monitoring sites within the U.S. Pacific Northwest. The approach taken is to mo...
NASA Astrophysics Data System (ADS)
Shaw, Patrick
The Dust REgional Atmospheric Model (DREAM) predicts concentrations of mineral dust aerosols in time and space, but validation is challenging with current in situ particulate matter (PM) concentration measurements. Measured levels of ambient PM often contain anthropogenic components as well as windblown mineral dust. In this study, two approaches to model validation were performed with data from preexisting air quality monitoring networks: using hourly concentrations of total PM with aerodynamic diameter less than 2.5 μm (PM 2.5); and using a daily averaged speciation-derived soil component. Validation analyses were performed for point locations within the cities of El Paso (TX), Austin (TX), Phoenix (AZ), Salt Lake City (UT) and Bakersfield (CA) for most of 2006. Hourly modeled PM 2.5 did not validate at all with hourly observations among the sites (combined R < 0.00, N = 24,302 hourly values). Aerosol chemical speciation data distinguished between mineral (soil) dust from anthropogenic ambient PM. As expected, statistically significant improvements in correlation among all stations (combined R = 0.16, N = 343 daily values) were found when the soil component alone was used to validate DREAM. The validation biases that result from anthropogenic aerosols were also reduced using the soil component. This is seen in the reduction of the root mean square error between hourly in situ versus hourly modeled (RMSE hourly = 18.6 μg m -3) and 24-h in situ speciation values versus daily averaged observed (RMSE soil = 12.0 μg m -3). However, the lack of a total reduction in RMSE indicates there is still room for improvement in the model. While the soil component is the theoretical proxy of choice for a dust transport model, the current sparse and infrequent sampling is not ideal for routine hourly air quality forecast validation.
Batuk, Olga N; Conradson, Steven D; Aleksandrova, Olga N; Boukhalfa, Hakim; Burakov, Boris E; Clark, David L; Czerwinski, Ken R; Felmy, Andrew R; Lezama-Pacheco, Juan S; Kalmykov, Stepan N; Moore, Dean A; Myasoedov, Boris F; Reed, Donald T; Reilly, Dallas D; Roback, Robert C; Vlasova, Irina E; Webb, Samuel M; Wilkerson, Marianne P
2015-06-02
The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.
Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael
2016-11-01
Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.
Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps
The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...
Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René
2004-03-01
An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.
A complex speciation–richness relationship in a simple neutral model
Desjardins-Proulx, Philippe; Gravel, Dominique
2012-01-01
Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181
In North America, the dry component of total nitrogen and sulfur deposition remains uncertain due to a lack of measurements of sufficient chemical speciation and temporal extent to develop complete annual mass budgets or of sufficient process level detail to improve current air-s...
Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun
2015-06-02
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu
2017-01-01
Abstract Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. PMID:28482038
'Geo'chemical research: a key building block for nuclear waste disposal safety cases.
Altmann, Scott
2008-12-12
Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case supporting how radionuclide transfer is represented in the performance assessment model. The objective here is to illustrate how geochemical research contributes to this process and, above all, to identify a certain number of subjects which should be treated in priority.
The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...
Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.
1980-01-01
A computerized chemical model, WATEQ2, has resulted from extensive additions to and revision of the WATEQ model of Truesdell and Jones (Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Res. U. S. Geol, Survey, v. 2, p. 233-274). The model building effort has necessitated searching the literature and selecting thermochemical data pertinent to the reactions added to the model. This supplementary report manes available the details of the reactions added to the model together with the selected thermochemical data and their sources. Also listed are details of program operation and a brief description of the output of the model. Appendices-contain a glossary of identifiers used in the PL/1 computer code, the complete PL/1 listing, and sample output from three water analyses used as test cases.
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...
2016-02-02
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto
2013-01-01
A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.
Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion
NASA Astrophysics Data System (ADS)
Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves
2009-08-01
Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.
Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio
2014-08-15
The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on chemical speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater. Published by Elsevier Ltd.
Fate of heavy metals during municipal solid waste incineration.
Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D
2002-02-01
A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.
NASA Astrophysics Data System (ADS)
Liu, Feng; Hu, Jiwei; Qin, Fanxin; Jiang, Cuihong; Huang, Xianfei; Deng, Jiajun; Li, Cunxiong
2010-11-01
This paper reports an investigation on pollution and potential risk on elements of iron (Fe) and manganese (Mn) in sediments from Lake Aha, which is a drinking-water source for Guiyang City, the capital of Guizhou Province in southwestern China. In the present research, chemical speciation of Fe and Mn in sediments from the lake was studied based on the sequential extraction procedure developed by Tessier et al.. The results obtained from the study are as follows. The average values of total Fe were 47617 mg/kg and 70325 mg/kg in sediments from the lake in summer and winter respectively, and its speciation consisted mainly of residual and Fe-Mn oxides fractions. The amounts of total Fe and the distribution of its speciation in the sediments should be affected by effluents from a large quantity of deserted coal mines in the lake basin in summer and winter. The average values of total Mn were 7996 mg/kg and 1753 mg/kg in summer and winter respectively, and its speciation is primarily comprised of carbonate and Fe-Mn oxides fractions. The amounts of total Mn and its distribution in different fractions in the sediments were believed to be primarily influenced by effluents from those deserted coal mines in summer and by the condition of redox interface in winter.
Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.
Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G
2016-02-16
Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
Frequency-dependent selection predicts patterns of radiations and biodiversity.
Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano
2010-08-26
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range
NASA Astrophysics Data System (ADS)
Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina
2018-02-01
High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.
Tran, Lucy A P
2016-04-01
Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.
Chen, L-W Antony; Watson, John G; Chow, Judith C; DuBois, Dave W; Herschberger, Lisa
2011-11-01
Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter ≤2.5 μm (PM 2.5 ) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM 2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM 2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF factor profiles, and additional maps. [Box: see text].
New analytic results for speciation times in neutral models.
Gernhard, Tanja
2008-05-01
In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.
Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu
2017-09-01
Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Stokes, M.; Perron, J. T.
2017-12-01
Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.
Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX
NASA Astrophysics Data System (ADS)
Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.
2017-12-01
Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in models to estimate the chemical composition of BBOA emissions.
Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.
Brown, Judith D; O'Neill, Rachel J
2010-01-01
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
NASA Astrophysics Data System (ADS)
Renggli, C. J.; King, P. L.; Henley, R. W.; Norman, M. D.
2017-06-01
The transport of metals in volcanic gases on the Moon differs greatly from their transport on the Earth because metal speciation depends largely on gas composition, temperature, pressure and oxidation state. We present a new thermochemical model for the major and trace element composition of lunar volcanic gas during pyroclastic eruptions of picritic magmas calculated at 200-1500 °C and over 10-9-103 bar. Using published volatile component concentrations in picritic lunar glasses, we have calculated the speciation of major elements (H, O, C, Cl, S and F) in the coexisting volcanic gas as the eruption proceeds. The most abundant gases are CO, H2, H2S, COS and S2, with a transition from predominantly triatomic gases to diatomic gases with increasing temperatures and decreasing pressures. Hydrogen occurs as H2, H2S, H2S2, HCl, and HF, with H2 making up 0.5-0.8 mol fractions of the total H. Water (H2O) concentrations are at trace levels, which implies that H-species other than H2O need to be considered in lunar melts and estimates of the bulk lunar composition. The Cl and S contents of the gas control metal chloride gas species, and sulfide gas and precipitated solid species. We calculate the speciation of trace metals (Zn, Ga, Cu, Pb, Ni, Fe) in the gas phase, and also the pressure and temperature conditions at which solids form from the gas. During initial stages of the eruption, elemental gases are the dominant metal species. As the gas loses heat, chloride and sulfide species become more abundant. Our chemical speciation model is applied to a lunar pyroclastic eruption model with isentropic gas decompression. The relative abundances of the deposited metal-bearing solids with distance from the vent are predicted for slow cooling rates (<5 °C/s). Close to a volcanic vent we predict native metals are deposited, whereas metal sulfides dominate with increasing distance from the vent. Finally, the lunar gas speciation model is compared with the speciation of a H2O-, CO2- and Cl-rich volcanic gas from Erta Ale volcano (Ethiopia) as an analogy for more oxidized planetary eruptions. In the terrestrial Cl-rich gas the metals are predominantly transported as chlorides, as opposed to metallic vapors and sulfides in the lunar gas. Due to the presence of Cl-species, metal transport is more efficient in the volcanic gas from Erta Ale compared to the Moon.
Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.
1985-01-01
Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.
SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling
SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...
NASA Astrophysics Data System (ADS)
Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing
2018-03-01
Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.
van der Sloot, H A; Kosson, D S; van Zomeren, A
2017-05-01
In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point for comparing leachate data from other MSW landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nested-grid simulation of mercury over North America
NASA Astrophysics Data System (ADS)
Zhang, Y.; Jaeglé, L.; van Donkelaar, A.; Martin, R. V.; Holmes, C. D.; Amos, H. M.; Wang, Q.; Talbot, R.; Artz, R.; Brooks, S.; Luke, W.; Holsen, T. M.; Felton, D.; Miller, E. K.; Perry, K. D.; Schmeltz, D.; Steffen, A.; Tordon, R.; Weiss-Penzias, P.; Zsolway, R.
2012-01-01
We have developed a new high-resolution (1/2° latitude by 2/3° longitude) nested-grid mercury (Hg) simulation over North America employing the GEOS-Chem global chemical transport model. Emissions, chemistry, deposition, and meteorology are self-consistent between the global and nested domains. Compared to the global model (4° latitude by 5° longitude), the nested model shows improved skill at capturing the high spatial and temporal variability of Hg wet deposition over North America observed by the Mercury Deposition Network (MDN) in 2008-2009. The nested simulation resolves features such as land/ocean contrast and higher deposition due to orographic precipitation, and predicts more efficient convective rain scavenging of Hg over the southeast United States. However, the nested model overestimates Hg wet deposition over the Ohio River Valley region (ORV) by 27%. We modify anthropogenic emission speciation profiles in the US EPA National Emission Inventory (NEI) to account for the rapid in-plume reduction of reactive to elemental Hg (IPR simulation). This leads to a decrease in the model bias to +3% over the ORV region. Over the contiguous US, the correlation coefficient (r) between MDN observations and our IPR simulation increases from 0.63 to 0.78. The IPR nested simulation generally reproduces the seasonal cycle in surface concentrations of speciated Hg from the Atmospheric Mercury Network (AMNet) and Canadian Atmospheric Mercury Network (CAMNet). In the IPR simulation, annual mean reactive gaseous and particulate-bound Hg are within 80% and 10% of observations, respectively. In contrast, the simulation with unmodified anthropogenic Hg speciation profiles overestimates these observations by factors of 2 to 4. The nested model shows improved skill at capturing the horizontal variability of Hg observed over California during the ARCTAS aircraft campaign. We find that North American anthropogenic emissions account for 10-22% of Hg wet deposition flux over the US, depending on the anthropogenic emissions speciation profile assumed. The percent contribution can be as high as 60% near large point emission sources in ORV. The contribution for the dry deposition is 13-20%.
Sorbent control of trace metals in sewage sludge combustion and incineration
NASA Astrophysics Data System (ADS)
Naruse, I.; Yao, H.; Mkilaha, I. S. N.
2003-05-01
Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.
Accumulation route and chemical form of mercury in mushroom species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minagawa, K.; Sasaki, T.; Takizawa, Y.
1980-09-01
Some papers were published on several species of fungi having more accumulating abilities of mercury than other land plants and a relatively small part of mercury being present as methylmercury in most species (Stegnar et al. 1973, Stijve and Roschnik 1974). But, little information is available regarding the routes of mercury in fungi, and also no report on mercury speciation (chemical form and complexation) in them have been published, apart from methylmercury. In order to evaluate accurately their biological characteristics such as absorption, excretion, accumulation and toxicity (The Task Group on Metal Interaction 1978), the mercury speciation present in mushrooms,more » regardless of edible or nonedible, should be identified. In this report, we present (1) contents of total and methylmercury in mushrooms near the acetaldehyde factory which had the mounds of sludge containing mercury, (2) data or exposure experiment of mercury vapor to raw mushrooms (Shiitake) on the market, and (3) data on mercury speciation of mercury other than methylmercury.« less
The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.
Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L
2010-12-01
Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.; ...
2017-02-05
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien
2008-06-01
Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.
Cusnir, Ruslan; Steinmann, Philipp; Christl, Marcus; Bochud, François; Froidevaux, Pascal
2015-11-09
The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.
Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review.
Khan, Aysha Masood; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Ashraf, Muhammad Aqeel
2017-10-01
Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.
NASA Astrophysics Data System (ADS)
Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Giang, Amanda; Selin, Noelle E.; Zhong, Hui; Zhao, Yu; Olivier, Jos G. J.; Guizzardi, Diego; Crippa, Monica; Schaaf, Edwin; Dentener, Frank
2018-07-01
Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1° × 0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 ("EPA_power") uses factors from EPA's Information Collection Request (ICR); and scenario S3 ("Asia_filedM") factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg2+) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and the United States (9.9%). In 2010, the variations of reactive mercury emissions amongst the different scenarios are in the range of -19.3 t/yr (China+) to 4.4 t/yr (OECD_Europe). However, at the sector level, the variation could be different, e.g., for the iron and steel industry in China reaches 15.4 t/yr. Model evaluation at the global level shows a variation of approximately ±10% in wet deposition for the three emissions scenarios. An evaluation of the impact of mercury speciation within nested grid sensitivity simulations is performed for the United States and modelled wet deposition fluxes are compared with measurements. These studies show that using the S2 and S3 emissions of reactive mercury, can improve wet deposition estimates near sources.
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Adding to the Mercury Speciation Toolbox
NASA Astrophysics Data System (ADS)
Fitts, J. P.; Northrup, P. A.; Chidambaram, D.; Kalb, P. D.
2007-12-01
Mercury was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge, TN in the 1950s and 1960s. A large portion of the waste Hg entered the environment and continues to move throughout the sub-surface and surface waters in the area. Environmental management of Hg contamination within this complex hydrologic system, where Hg speciation and the mobile fraction have been found to vary widely, will require ongoing characterization and predictive modeling of Hg speciation. State-of-the-art spectroscopic tools that can directly probe Hg speciation in preserved aqueous and sediment samples with greater sensitivity, however, are required to determine rates and mechanisms of biogeochemical reactions. We will present the first results demonstrating the use of x-ray absorption spectroscopy (XAS) at the Hg M5 edge (2295 eV) to fingerprint Hg species. Heavy-metal M5 absorption edges can have very sharp features due to local electron transitions, and therefore, we are developing this edge as a tool for quantitative measurement of Hg species. In addition, sulfur speciation using the sulfur K absorption edge, which is at a similar energy (2472 eV), can be measured in the same scan as the Hg M5 edge. Potentially important organic and inorganic sulfur species (sulfide, disulfide, elemental sulfur, sulfite and sulfate) are readily differentiated, and thereby, provides an independent method for monitoring the redox state of the system along with changes in S-Hg bonding. We will also present x-ray microprobe 2-D concentration maps of Hg and other elements at the grain and pore scales to identify its microscopic distribution and chemical associations. When used in combination with established sequential extraction and direct spectroscopic methods, the addition of XAS at the Hg M5 edge should provide a significant advancement in the determination of Hg speciation in complex biogeochemical environments.
NASA Astrophysics Data System (ADS)
Bulgariu, D.; Bulgariu, L.
2009-04-01
The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Andresen, B; Burastero, S R
2005-02-03
This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied atmore » LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.« less
Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity.
Rojas, Danny; Warsi, Omar M; Dávalos, Liliana M
2016-05-01
The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, M.F.; Hiemstra, T.; Riemsdijk, W. van
The need for qualitative and quantitative description of the chemical speciation of Al, in particular and other metal ions in general, is stressed by the increased mobilization of metal ions in water and soils due to acid rain deposition. In this paper we present new data of Al binding to two humic acids. These new data sets and the some previously published data will be analyzed with the NICA-Donnan model using one set of parameters to describe the Al binding to the different humic substances. Once the experimental data is described with the NICA-Donnan approach, we will show the effectmore » of Ca on Al binding and surface speciation as well as the effect of Al on the charge of the humic particles. The parameters derived from the laboratory experiments will be used to describe the variation of the field based Al partition coefficient.« less
Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Mrinal K.; Antonio, Mark R.
Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less
Speciation genetics: current status and evolving approaches
Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas
2010-01-01
The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277
Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien
2011-01-01
Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.
NASA Astrophysics Data System (ADS)
Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.
2014-11-01
Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.
Monte Carlo simulations of parapatric speciation
NASA Astrophysics Data System (ADS)
Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.
2006-06-01
Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan
2018-02-19
This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.
Visualizing speciation in artificial cichlid fish.
Clement, Ross
2006-01-01
The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.
Reactive solute transport in streams: 1. Development of an equilibrium- based model
Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.
1996-01-01
An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.
Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H
2014-03-30
The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu
2018-03-01
This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.
Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun
2018-06-01
A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.
von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B
2012-11-30
Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.
NASA Astrophysics Data System (ADS)
Isaure, M.; Sarret, G.; Verbruggen, N.
2010-12-01
Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.
Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions
NASA Astrophysics Data System (ADS)
Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.
2014-12-01
Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.
Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf
2012-01-30
The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert
2015-02-16
Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.
Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.
Beaulieu, Jeremy M; O'Meara, Brian C
2016-07-01
The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plumlee, G.S.; Goldhaber, M.B.; Rowan, E.L.
1995-01-01
Presents results of reaction path calculations using the chemical speciation and reaction path program SOLVEQ and CHILLER to model possible fluorite deposition mechanisms in the Illinois-Kentucky fluorspar district. The results indicate that the fluids responsible for Illinois-Kentucky fluorspar mineralization were most likely quite acidic (pH < 4) and rich in fluorine in order to produce the fluorite-rich, dolomite-poor mineral assemblages and extensive dissolution of host limestones. A possible source for the acid and fluorine may have been HF-rich gases which were expelled from alkalic magmas and then incorporated by migrating basinal brines. An analysis of the geologic setting of other fluorite deposits and districts worldwide suggests that involvement of magmatic gases is probable for many of these districts as well. -from Authors
Speciation in the Derrida-Higgs model with finite genomes and spatial populations
NASA Astrophysics Data System (ADS)
de Aguiar, Marcus A. M.
2017-02-01
The speciation model proposed by Derrida and Higgs demonstrated that a sexually reproducing population can split into different species in the absence of natural selection or any type of geographic isolation, provided that mating is assortative and the number of genes involved in the process is infinite. Here we revisit this model and simulate it for finite genomes, focusing on the question of how many genes it actually takes to trigger neutral sympatric speciation. We find that, for typical parameters used in the original model, it takes the order of 105 genes. We compare the results with a similar spatially explicit model where about 100 genes suffice for speciation. We show that when the number of genes is small the species that emerge are strongly segregated in space. For a larger number of genes, on the other hand, the spatial structure of the population is less important and the species distribution overlap considerably.
Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols
NASA Astrophysics Data System (ADS)
Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile
2010-05-01
In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).
Clément, Bernard; Lamonica, Dominique
2018-03-01
In the frame of a project which consists in modeling a laboratory microcosm under cadmium pressure, we initiated this study on the fate and effects of cadmium in the presence of either the microalga Pseudokirchneriella subcapitata or the duckweed Lemna minor, two organisms of the microcosm. For each organism, growth inhibition tests on a duration of 2-3 weeks were carried out with the objective of linking effects with total dissolved, ionic and internalized forms of cadmium. Numbers of organisms (algal cells or duckweed fronds) in 2-L beakers filled with synthetic nutritive medium containing EDTA were counted during the course of assays, while cadmium concentrations in the water and in the organisms were measured. Free cadmium fraction was calculated using PHREEQC, a computer program for chemical speciation. Results showed that cadmium toxicity to microalgae could be correlated to the free divalent fraction of this metal, limited by the presence of EDTA, and to its concentration in the organisms. Bioconcentration factors for our medium were suggested for P. subcapitata (111,000 on the basis of free cadmium concentration) and L. minor (17,812 on the basis of total dissolved concentration). No effect concentrations were roughly estimated around 400 µg/g for Pseudokirchneriella subcapitata and 200-300 µg/g for Lemna minor. This study is a first step towards a fate model based on chemical speciation for a better understanding of microcosm results.
NASA Astrophysics Data System (ADS)
Capps, S.; Paranjothi, G.; Pierce, G. E.; Milford, J. B.
2016-12-01
Increased oil and gas (O&G) development, particularly through the use of hydraulic fracturing, in the Denver-Julesburg Basin (DJB) in Colorado over the last decade has been identified as a source of emissions of air pollutants, which are now included in chemical transport modeling. As one effort to evaluate its impact, ambient concentrations of volatile organic compounds (VOCs) that serve as precursors to ozone formation were measured in an Ozone Precursor Study conducted by the Colorado Department of Public Health and Environment during 2013 and 2014. The study included 6 - 9 a.m. measurements of an extensive suite of ozone-precursor VOCs from a site in an area of intensive O&G development in Platteville, CO, and another site in downtown Denver, CO. To evaluate the influences of urban activity or O&G development on these ambient concentrations, we used the U.S. EPA's Positive Matrix Factorization (PMF) tool. A five-factor PMF solution was selected as providing the best fit to the dataset comprised of VOC measurements for both years and both sites. One PMF factor matches the VOC emissions speciation profile for the flashing gas composition for condensate tanks in the DJB that was developed by the Western Regional Air Partnership for use in chemical transport modeling in the region. The contribution of this factor to individual and total VOC concentrations and ozone production reactivity is evaluated for Platteville and Denver.
Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan
2016-05-01
This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.
Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies.
Hernández-Roldán, Juan L; Dapporto, Leonardo; Dincă, Vlad; Vicente, Juan C; Hornett, Emily A; Šíchová, Jindra; Lukhtanov, Vladimir A; Talavera, Gerard; Vila, Roger
2016-09-01
Discovering cryptic species in well-studied areas and taxonomic groups can have profound implications in understanding eco-evolutionary processes and in nature conservation because such groups often involve research models and act as flagship taxa for nature management. In this study, we use an array of techniques to study the butterflies in the Spialia sertorius species group (Lepidoptera, Hesperiidae). The integration of genetic, chemical, cytogenetic, morphological, ecological and microbiological data indicates that the sertorius species complex includes at least five species that differentiated during the last three million years. As a result, we propose the restitution of the species status for two taxa often treated as subspecies, Spialia ali (Oberthür, 1881) stat. rest. and Spialia therapne (Rambur, 1832) stat. rest., and describe a new cryptic species Spialia rosae Hernández-Roldán, Dapporto, Dincă, Vicente & Vila sp. nov. Spialia sertorius (Hoffmannsegg, 1804) and S. rosae are sympatric and synmorphic, but show constant differences in mitochondrial DNA, chemical profiles and ecology, suggesting that S. rosae represents a case of ecological speciation involving larval host plant and altitudinal shift, and apparently associated with Wolbachia infection. This study exemplifies how a multidisciplinary approach can reveal elusive cases of hidden diversity. © 2016 John Wiley & Sons Ltd.
Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment
NASA Astrophysics Data System (ADS)
Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar
2013-03-01
Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.
Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko
2015-11-17
The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.
Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata
2016-07-03
The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.
Parkhurst, D.L.
1995-01-01
PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings. A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is used to determine the thermodynamically stable set of phases in equilibrium with a solution. A more complete Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number of failures of the nunmrical method in PHREEQC relative to PHREEQE. This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calculations in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of the program's capabilities.
Refining the conditions for sympatric ecological speciation.
Débarre, F
2012-12-01
Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia
2017-06-01
The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.
Meier, Joana I; Sousa, Vitor C; Marques, David A; Selz, Oliver M; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole
2017-01-01
Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation. © 2016 John Wiley & Sons Ltd.
Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio
2017-06-01
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative tests of the role of dewlap size in Anolis lizard speciation
Harrison, Alexis; Mahler, D. Luke; Castañeda, María del Rosario; Glor, Richard E.; Herrel, Anthony; Stuart, Yoel E.; Losos, Jonathan B.
2016-01-01
Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait. PMID:28003450
NASA Astrophysics Data System (ADS)
Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao
2018-06-01
As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.
The reality and importance of founder speciation in evolution.
Templeton, Alan R
2008-05-01
A founder event occurs when a new population is established from a small number of individuals drawn from a large ancestral population. Mayr proposed that genetic drift in an isolated founder population could alter the selective forces in an epistatic system, an observation supported by recent studies. Carson argued that a period of relaxed selection could occur when a founder population is in an open ecological niche, allowing rapid population growth after the founder event. Selectable genetic variation can actually increase during this founder-flush phase due to recombination, enhanced survival of advantageous mutations, and the conversion of non-additive genetic variance into additive variance in an epistatic system, another empirically confirmed prediction. Templeton combined the theories of Mayr and Carson with population genetic models to predict the conditions under which founder events can contribute to speciation, and these predictions are strongly confirmed by the empirical literature. Much of the criticism of founder speciation is based upon equating founder speciation to an adaptive peak shift opposed by selection. However, Mayr, Carson and Templeton all modeled a positive interaction of selection and drift, and Templeton showed that founder speciation is incompatible with peak-shift conditions. Although rare, founder speciation can have a disproportionate importance in adaptive innovation and radiation, and examples are given to show that "rare" does not mean "unimportant" in evolution. Founder speciation also interacts with other speciation mechanisms such that a speciation event is not a one-dimensional process due to either selection alone or drift alone. (c) 2008 Wiley Periodicals, Inc.
Moran model as a dynamical process on networks and its implications for neutral speciation.
de Aguiar, Marcus A M; Bar-Yam, Yaneer
2011-09-01
In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.
Moran model as a dynamical process on networks and its implications for neutral speciation
NASA Astrophysics Data System (ADS)
de Aguiar, Marcus A. M.; Bar-Yam, Yaneer
2011-03-01
In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.
Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo
2016-04-01
The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies.
Farmer, J G; Johnson, L R
1990-01-01
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Zhenhao
2011-08-01
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.
A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes
Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.; ...
2017-09-11
Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less
A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.
Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less
Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...
Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V
2015-11-15
There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can be complemented with a rigorous description of aqueous phase and ion chemistry (pH, speciation, complexation). Copyright © 2015 Elsevier Ltd. All rights reserved.
Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F
2016-06-01
Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Islam, Akand; Sun, Alexander Y.; Yang, Changbing
2016-04-20
We study the convection and mixing of CO 2 in a brine aquifer, where the spread of dissolved CO 2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO 2 saturation volume of the storage formation. Our results suggestmore » that the density increase of resident species causes significant enhancement in CO 2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO 2 sequestration.« less
Islam, Akand; Sun, Alexander Y; Yang, Changbing
2016-04-20
We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.
NASA Astrophysics Data System (ADS)
Mork, M. W.; Kracht, O.
2012-04-01
When investigating stability relations in aquatic solutions or rock-water interactions, the number of dissolved species and mineral phases involved can be overwhelming. To facilitate an overview about equilibrium relationships and how chemical elements are distributed between different aqueous ions, complexes, and solids, predominance diagrams are a widely used tool in aquatic chemistry. In the simplest approach, the predominance field boundaries can be calculated based on a set of mass action equations and log K values for the reactions between different species. Example given, for the popular redox diagram (pe-pH diagram), half cell reactions according to Nernst's equation can be used (Garrels & Christ 1965). In such case, boundaries between different species are "equal-activity" lines. However, for boundaries between solids and dissolved species a specific concentration needs to be stipulated, and the same applies if other components than those displayed in the diagram are involved in the possible reactions. In such case, the predominance field boundaries depend on the actual concentration values chosen. An alternative approach can be the computation of predominance diagrams using the full speciation obtained from a geochemical speciation program, which then needs to be coupled with an external wrapper code for appropriate control and data pre- and post-processing. In this way, the distribution of different species can be based on the consideration of complete chemical analysis obtained from laboratory investigations. We present the results of a student semester-project that aimed to develop and test an external wrapper program for the computation of pe-pH diagrams based on modeling outputs obtained with PHREEQC (Parkhurst & Appelo 1999). We have chosen PHREEQC for this core task as a geochemical calculation module, because of its capabilities to simulate a wide range of equilibrium reactions between water and minerals. Due to the intended final users, a free and extensible simulation platform was considered important. The wrapper program was created in the R environment which is freely available under the GNU General Public License (R Development Core Team 2011). The wrapper reads in analytical data in the standard PHREEQC input file format and then iterates over a systematic selection of pe and pH values. These data are transferred to PHREEQC for the calculation of a corresponding set of hydrochemical speciations based on thermodynamic equilibrium. The results of the PHREEQC simulations are subsequently analyzed by a postprocessor function in order to derive a two-dimensional representation of the dominant aquatic species in the pe-pH plane. In this step, the most abundant species at each grid point is identified as the predominant one. To investigate the utility of the program, differences in the speciation of iron were calculated from chemical compositions of water samples from one of our current field sites (Gardermoen / Øvre Romerike aquifer in S-Norway).
NASA Astrophysics Data System (ADS)
Suciu, L. G.; Griffin, R. J.; Masiello, C. A.
2017-12-01
Wildfires and prescribed burning are important sources of particulate and gaseous pyrogenic organic carbon (PyOC) emissions to the atmosphere. These emissions impact atmospheric chemistry, air quality and climate, but the spatial and temporal variabilities of these impacts are poorly understood, primarily because small and fresh fire plumes are not well predicted by three-dimensional Eulerian chemical transport models due to their coarser grid size. Generally, this results in underestimation of downwind deposition of PyOC, hydroxyl radical reactivity, secondary organic aerosol formation and ozone (O3) production. However, such models are very good for simulation of multiple atmospheric processes that could affect the lifetimes of PyOC emissions over large spatiotemporal scales. Finer resolution models, such as Lagrangian reactive plumes models (or plume-in-grid), could be used to trace fresh emissions at the sub-grid level of the Eulerian model. Moreover, Lagrangian plume models need background chemistry predicted by the Eulerian models to accurately simulate the interactions of the plume material with the background air during plume aging. Therefore, by coupling the two models, the physico-chemical evolution of the biomass burning plumes can be tracked from local to regional scales. In this study, we focus on the physico-chemical changes of PyOC emissions from sub-grid to grid levels using an existing chemical mechanism. We hypothesize that finer scale Lagrangian-Eulerian simulations of several prescribed burns in the U.S. will allow more accurate downwind predictions (validated by airborne observations from smoke plumes) of PyOC emissions (i.e., submicron particulate matter, organic aerosols, refractory black carbon) as well as O3 and other trace gases. Simulation results could be used to optimize the implementation of additional PyOC speciation in the existing chemical mechanism.
Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J
2017-06-19
The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.
Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi
2013-09-01
This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.
NASA Astrophysics Data System (ADS)
Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.
2015-08-01
Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.
Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea
NASA Astrophysics Data System (ADS)
Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish
2016-03-01
The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.
Host shift and speciation in a coral-feeding nudibranch
Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G
2006-01-01
While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995
Genetic change and rates of cladogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avise, J.C.; Ayala, F.J.
1975-12-01
Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances inmore » speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn. (auth)« less
Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.
2012-01-01
Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.
Anagenesis, Cladogenesis, and Speciation on Islands.
Emerson, Brent C; Patiño, Jairo
2018-05-03
Anagenesis and cladogenesis are fundamental evolutionary concepts, but are increasingly being adopted as speciation models in the field of island biogeography. Here, we review the origin of the terms 'anagenetic' and 'cladogenetic' speciation, critique their utility, and finally suggest alternative terminology that better describes the geographical relationships of insular sister species. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandrasekhar, Anoop; Sander, Sylvia; Milnes, Angie; Boyd, Philip
2015-04-01
Iron plays a significant role in the ocean productivity as a micro nutrient that facilitates the growth of marine phytoplankton and microbes. The bioavailability of iron in the ocean depends on it speciation. Iron is bio available in its dissolved form and about 99.9% of dissolved iron in seawater is organically complexed with natural ligands. The competitive ligand equilibration - adsorptive cathodic stripping voltammetry (CLE-AdCSV) is the widely used technique to examine Fe speciation. The method has its own limitations. The analytical window employed in this technique has a distinct impact on Fe speciation results (Buck, Moffett et al. 2012). Recently, (Pizeta, Sander et al. in preparation) have shown that the accuracy of complexometric titrations improve if multiple analytical windows (MAW) are solved as a united dataset. Several programs are now available that enable this approach with the KMS (Kineteql.xls , Hudson 2014), which is based on an Excel application based on speciation calculation (Hudson, Rue et al. 2003, Sander, Hunter et al. 2011), being one of them. In the present work, the unified MAW data analysis method is applied to determine iron speciation by CLE-AdCSV with salicyl aldoxime (SA) (Abualhaija and van den Berg 2014) in real seawater samples from the Spring bloom FeCycle III voyage, which took place in an anticyclonic eddy in subtropical waters east of New Zealand in spring 2012. Two different analytical windows (5 and 15µM SA) were applied to samples from depth profiles taken during this cruise. The data obtained was analysed using the program KMS (Kineteql.xls). Most samples only returned one Fe-binding ligands class. Higher ligand concentrations were observed in the upper water column and the stability constants were above 22 (e.g. 22.25 ± 0.21 for station 63). Our results will be discussed in the context of microbial community distribution as well as other biogeochemical parameters. Abualhaija, M. M. and C. M. G. van den Berg (2014). "Chemical speciation of iron in seawater using catalytic cathodic stripping voltammetry with ligand competition against salicylaldoxime." Marine Chemistry 164(0): 60-74. Buck, K. N., J. Moffett, K. A. Barbeau, R. M. Bundy, Y. Kondo and J. Wu (2012). "The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques " Limnology and Oceanography: Methods 10: 496-515. Hudson, R. J. M., E. L. Rue and K. W. Bruland (2003). "Modeling Complexometric Titrations of Natural Water Samples." Environ. Sci. Tech. 37: 1553-1562. Pizeta, I., S. G. Sander, O. Baars, K. Buck, R. Bundy, G. Carrasco, P. Croot, C. Garnier, L. Gerringa, M. Gledhill, K. Hirose, D. R. Hudson, Y. Kondo-Jacquot, L. Laglera, D. Omanovic, M. Rijkenberg, B. Twining and M. Wells (in preparation). "Intercomparison of estimating metal binding ligand parameters from simulated titration data using different fitting approaches." for Limnology and Oceanography: Methods. Sander, S. G., K. A. Hunter, H. Harms and M. Wells (2011). "Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability." Environmental Science and Technology 45(15): 6388-6395.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; Knaeble, Alan R.; Marcus, Matthew A.; Lynch, Joshua K.; Toner, Brandy M.
2017-01-01
e of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (lXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s lXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells.
NASA Astrophysics Data System (ADS)
Isaure, Marie-Pierre; Laboudigue, Agnès; Manceau, Alain; Sarret, Géraldine; Tiffreau, Christophe; Trocellier, Patrick; Lamble, Géraldine; Hazemann, Jean-Louis; Chateigner, Daniel
2002-05-01
Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system. The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn 2SiO 4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn 2SiO 4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si. The second process likely occurs because dissolved Zn and Si are supersaturated with respect to Zn phyllosilicate. EXAFS spectroscopy, in combination with PCA and LSF, is shown to be a meaningful approach to quantitatively determining the speciation of trace elements in sediments and soils.
Sample preparation and storage can change arsenic speciation in human urine.
Feldmann, J; Lai, V W; Cullen, W R; Ma, M; Lu, X; Le, X C
1999-11-01
Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.
Zuo, Xiaojun; Fu, Dafang; Li, He
2012-11-01
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Speciation has a spatial scale that depends on levels of gene flow.
Kisel, Yael; Barraclough, Timothy G
2010-03-01
Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.
Speciation of selenium in stream insects using X-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering
2007-11-15
Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less
Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrahennadi, R.; Wayland, M.; Pickering, I.J.
2009-05-28
Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less
Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y
2014-10-01
We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.
Chromosome speciation: Humans, Drosophila, and mosquitoes
Ayala, Francisco J.; Coluzzi, Mario
2005-01-01
Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677
In Vitro Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp.
Chi, Haifeng; Zhang, Youchi; Williams, Paul N; Lin, Shanna; Hou, Yanwei; Cai, Chao
2018-05-09
Shrimp, a popular and readily consumed seafood, contains high concentrations of arsenic. However, few studies have focused on whether arsenic in the shrimp could be transformed during the cooking process and gastrointestinal digestion. In this study, a combined in vitro model [Unified Bioaccessibility Research Group of Europe (BARGE) Method-Simulator of Human Intestinal Microbial Ecosystem (UBM-SHIME)] was used to investigate arsenic bioaccessibility and its speciation in raw and cooked shrimps. The results showed that the cooking practices had little effect on the arsenic content and speciation. Bioaccessibility of arsenic in raw shrimp was at a high level, averaging 76.9 ± 4.28 and 86.7 ± 3.74% in gastric and small intestinal phases, respectively. Arsenic speciation was stable in all of the shrimp digestions, with nontoxic arsenobetaine (AsB) being the dominated speciation. The cooking practice significantly increased the bioaccessibility of arsenate ( p < 0.05) in shrimp digests, indicating the increase of the potential health risks.
Rumsey and Walker_AMT_2016_Figure 1.xlsx
Figure summarizes diurnal profiles of uncertainty in the chemical gradient and transfer velocity measurements from which fluxes are calculated. This dataset is associated with the following publication:Rumsey, I. Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 9(6): 2581-2592, (2016).
NASA Astrophysics Data System (ADS)
Rumsey, Ian C.; Walker, John T.
2016-06-01
The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. Flux uncertainty is dominated by uncertainty in the chemical concentrations gradients during the day but uncertainty in the chemical concentration gradients and transfer velocity are of the same order at night. Results show the instrument is sufficiently precise for flux gradient applications.
Quantitative traits and diversification.
FitzJohn, Richard G
2010-12-01
Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.
A multi-technique approach to assess chemical speciation of phosphate in soils
NASA Astrophysics Data System (ADS)
Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio
2017-04-01
Soil scientists see chemical characterization of phosphorus (e.g., chemical speciation) as a winning strategy to increase phosphorus use efficiency in agriculture, to understand the fate of applied P fertilizer in soils and to devise strategies to minimize P losses to the environment. Phosphorus (P) is majorly presented in soils as phosphate, bound to mineral components of soils such as Al-, Ca- and Fe-(hydr)oxides or associated with organic molecules, being thus generally referred to as organic phosphates. In addition, because of the turnover of P between plants and microbes, it delivers P back to soils as a mixture of species with high spatial and chemical heterogeneity, adding complexity to the determination of the P species contained in environmental samples. Therefore, due to the variety of forms that phosphate can present in soils, its precise chemical characterization can only be achieved using a set of analytical techniques. Although established methodologies (e. g., soil test P, sequential chemical fractionation, P isotherms) have been useful to subsidize information for the establishment of policies and guidelines for soil management and P fertilizers use, they have failed to provide detailed information on P chemistry and reactivity in soils in a more satisfactory manner, which are critical to predict P bioavailability to plants and loss potential to the environment. More recently, the association of wet chemistry analysis with spectroscopy and microscopy techniques has arguably represented the most successful means to chemically speciate phosphate in soils. This is because using qualitative (chemical speciation), quantitative (chemical fractionation) and spatial (microscopy) data allows for triangulation of information, thereby reducing bias and increasing validity of the results. The analysis framework that we propose in this study includes the use of (i) sequential chemical fractionation of soil P to determine the partitioning of P within the different P pools considered in the fractionation protocol, (ii) two synchrotron-based X-ray absorption spectroscopic techniques, XANES and EXAFS, for chemical characterization of the P forms and mineralogy of Fe-(hydr)oxides present in a sample, and (iii) Scanning Electron Microscopy and Energy-Dispersive spectroscopy, SEM/EDS, to provide complimentary information to corroborate and aid in the interpretation of our P XANES data. It was shown that the combination of techniques can assist us not only in the determination of the P chemical species present in a given material, but also to better understand the complex and dynamic processes to which P is subjected in soils. The association of spectroscopy (XANES and EXAFS) and microscopy (SEM/EDS) with wet chemistry data in this study was key to shift our understanding of the relationship between P and other soil mineral components from a macroscopic into a microscopic one. This represents a strong driving force to integrate the results of multi-analytical techniques into a more complete understanding of the systems under study. In addition, we provide a library of reference spectra for P K-edge XANES containing P sorbed to single and binary mixtures of mineral analogues intended to assist in the identification of P sorbed species commonly found in soils and sediments. Key-words: P K-edge XANES, Fe K-edge EXAFS, sequential chemical fractionation, soil phosphorus
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Kelly, S. D.; O'Loughlin, E. J.; Lai, B.; Maser, J.; Cai, Z.; Londer, Y.; Schiffer, M.; Nealson, K.
2003-12-01
Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. Additionally, the metabolism and surface properties of bacteria can be quite different depending upon whether the bacteria exhibit a planktonic (free-floating) or biofilm (surface adhered) habit. The microenvironment at and adjacent to actively metabolizing cells also can be significantly different from the bulk environment. Thus, to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate, the spatial distribution and chemical speciation of contaminants and elements that are key to biological processes must be characterized at micron and submicron lengthscales for bacteria in both planktonic and adhered states. Hard x-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at the needed micron and submicron resolution. An important advantage of these techniques results from the large penetration depth of hard x-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. The objectives of the studies to be presented are (1) to determine the spatial distribution, concentration, and chemical speciation of metals at, in, and near bacteria and bacteria-geosurface interfaces, (2) to use this information to identify the metabolic processes occurring within the microbes, and (3) to identify the interactions occurring near these interfaces among the metals, mineral surfaces, and bacteria under a variety of conditions. We have used x-ray fluorescence microscopy to investigate the spatial distribution of 3d elements in Pseudomonas fluorescens cells in both planktonic and surface-adhered states. We have used x-ray fluorescence spectromicroscopy to investigate the chemical speciation and distribution of Cr that was introduced to these cells as Cr(VI). Additionally, we have used these techniques to identify the distribution of an over expressed cytochrome c7 in individual E. coli. Finally, we have used x-ray fluorescence microscopy to investigate Shewanella oneidensis MR-1 cells adhered to iron oxyhydroxide thin films. The zone plate used in these microscopy experiments produced a focused beam with a cross section (and hence spatial resolution) of 100-300 nanometers. Results from x-ray fluorescence imaging experiments indicate that the distribution of P, S, Cl, Ca, Fe, Ni, Cu, and Zn can define the location of the microbe. Additionally, quantitative elemental analysis of individual microbes identified significant changes in concentration of 3d transition elements depending on the age of the culture and the type of electron acceptor presented to the microbes. These results and a discussion of the use of this technique for identifying metabolic states of individual microbes within communities and the chemical speciation of metal contaminants at the mineral-microbe interface will be presented.
Why Nuclear Forensics Needs New Plasma Chemistry Data
NASA Astrophysics Data System (ADS)
Rose, T.; Armstrong, M.; Chernov, A.; Crowhurst, J.; Dai, Z.; Knight, K.; Koroglu, B.; Radousky, H.; Stavrou, E.; Weisz, D.; Zaug, J.; Azer, M.; Finko, M.; Curreli, D.
2016-10-01
The mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation are not adequately constrained. Current capabilities for assessing post-detonation scenarios often rely on empirical observations and approximations. Deeper insight into chemical condensation requires a coupled experimental, theoretical, and modeling approach. The behavior of uranium during plasma condensation is perplexing. Two independent methods are being developed to investigate gas phase uranium chemistry and speciation during plasma condensation: (1) laser-induced breakdown spectroscopy and (2) a unique steady-state ICP flow reactor. Both methods use laser absorption spectroscopy to obtain in situ data for vapor phase molecular species as they form. We are developing a kinetic model to describe the relative abundance of uranium species in the evolving plasma. Characterization of the uranium-oxygen system will be followed by other chemical components, including `carrier' materials such as silica. The goal is to develop a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored in part by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.
Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.
Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M
2010-02-15
Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.
Lead sequestration and species redistribution during soil organic matter decomposition
Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.
2008-01-01
The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.
Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J
2017-05-05
The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.
Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud
2015-09-03
Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.
COMPARISON OF DATA FROM THE STN AND IMPROVE NETWORKS
Two national chemical speciation-monitoring networks operate currently within the United States. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network operates primarily in rural areas collecting aerosol and optical data to better understand th...
Dynamic coupled metal transport-speciation model: application to assess a zinc-contaminated lake.
Bhavsar, Satyendra P; Diamond, Miriam L; Gandhi, Nilima; Nilsen, Joel
2004-10-01
A coupled metal transport and speciation/complexation model (TRANSPEC) has been developed to estimate the speciation and fate of multiple interconverting species in surface aquatic systems. Dynamic-TRANSPEC loosely, sequentially couples the speciation/complexation and fate modules that, for the unsteady state formulation, run alternatively at every time step. The speciation module first estimates species abundance using, in this version, MINEQL+ considering time-dependent changes in water and pore-water chemistry. The fate module is based on the quantitative water air sediment interaction (QWASI) model and fugacity/aquivalence formulation, with the option of using a pseudo-steady state solution to account for past discharges. Similarly to the QWASI model for organic contaminants, TRANSPEC assumes the instantaneous equilibrium distribution of metal species among dissolved, colloidal, and particulate phases based on ambient chemistry parameters that can be collected through conventional field methods. The model is illustrated with its application to Ross Lake (Manitoba, Canada) that has elevated Zn concentrations due to discharges over 70 years from a mining operation. Using measurements from field studies, the model reproduces year-round variations in Zn water concentrations. A 10-year projection for current conditions suggests decreasing Zn remobilization and export from the lake. Decreasing Zn loadings increases sediment-to-water transport but decreases water concentrations, and vice versa. Species distribution is affected by pH such that a decrease in pH increases metal export from the lake and vice versa.
Al Speciation in Silicate Melts: AlV a new Network Former?
NASA Astrophysics Data System (ADS)
Neuville, D. R.; Florian, P.; de Ligny, D.; Montouillout, V.; Massiot, D.
2009-05-01
The first human glasses were made 3500 BC. It was essentially sodo-lime silicate glass. To improve the chemical resistance, the thermal properties and increase the viscosity it is interesting to add aluminum in these silicates. But what is the speciation of the aluminum and how it varies according to the chemical composition and to the temperature? The aluminum appears essentially in four or five fold coordination in glasses and melts melted. The proportion of [5]Al varies according to the alkaline or to the earth-alkaline content and to the temperature. We shall present in a first part the influence of the network-modifier on the proportion of [5]Al and then we shall present some new results of absorption of high-temperature using NMR and XANES spectroscopy at the Al K-edge. Finally, from glass transition temperature measurements we propose to explain that [5]Al can be a new network former.
NASA Astrophysics Data System (ADS)
Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.
2018-02-01
This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).
The extinction differential induced virulence macroevolution
NASA Astrophysics Data System (ADS)
Zhang, Feng; Xu, Liufang; Wang, Jin
2014-04-01
We apply the potential-flux landscape theory to deal with the large fluctuation induced extinction phenomena. We quantify the most probable extinction pathway on the landscape and measure the extinction risk by the landscape topography. In this Letter, we investigate the disease extinction through an epidemic model described by a set of chemical reaction. We found the virulence-differential-dependent symbioses between mother and daughter pathogen species: mutualism and parasitism. The symbioses, whether mutualism or parasitism, benefit the higher virulence species. This implies that speciation towards lower virulence is an effective strategy for a pathogen species to reduce its extinction risk.
NASA Astrophysics Data System (ADS)
Maggi, F.; Riley, W. J.
2009-12-01
The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.
Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.
Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma
2017-12-01
Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Why abundant tropical tree species are phylogenetically old.
Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W
2013-10-01
Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.
Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies.
Potter, Sally; Bragg, Jason G; Blom, Mozes P K; Deakin, Janine E; Kirkpatrick, Mark; Eldridge, Mark D B; Moritz, Craig
2017-01-01
The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale . We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.
Phosphorous Speciation in WTR-treated Biosolids Using XANES
NASA Astrophysics Data System (ADS)
Zhang, T. Q.; Huff, D.; Lin, Z.-Q.
2009-04-01
The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.
Heavy metals and its chemical speciation in sewage sludge at different stages of processing.
Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa
2016-01-01
The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.
Lambert, Amaury; Stadler, Tanja
2013-12-01
Forward-in-time models of diversification (i.e., speciation and extinction) produce phylogenetic trees that grow "vertically" as time goes by. Pruning the extinct lineages out of such trees leads to natural models for reconstructed trees (i.e., phylogenies of extant species). Alternatively, reconstructed trees can be modelled by coalescent point processes (CPPs), where trees grow "horizontally" by the sequential addition of vertical edges. Each new edge starts at some random speciation time and ends at the present time; speciation times are drawn from the same distribution independently. CPPs lead to extremely fast computation of tree likelihoods and simulation of reconstructed trees. Their topology always follows the uniform distribution on ranked tree shapes (URT). We characterize which forward-in-time models lead to URT reconstructed trees and among these, which lead to CPP reconstructed trees. We show that for any "asymmetric" diversification model in which speciation rates only depend on time and extinction rates only depend on time and on a non-heritable trait (e.g., age), the reconstructed tree is CPP, even if extant species are incompletely sampled. If rates additionally depend on the number of species, the reconstructed tree is (only) URT (but not CPP). We characterize the common distribution of speciation times in the CPP description, and discuss incomplete species sampling as well as three special model cases in detail: (1) the extinction rate does not depend on a trait; (2) rates do not depend on time; (3) mass extinctions may happen additionally at certain points in the past. Copyright © 2013 Elsevier Inc. All rights reserved.
Dutton, Steven J.; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B.; Miller, Shelly L.; Hannigan, Michael P.
2012-01-01
Particulate matter less than 2.5 microns in diameter (PM2.5) has been linked with a wide range of adverse health effects. Determination of the sources of PM2.5 most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM2.5 speciation measurements. In this study, PM2.5 source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM2.5 measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF. Sensitivity of the PMF2 and ME2 models to the selection of speciated PM2.5 components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM2.5 emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers. PMID:22768005
Application of surface complexation models to anion adsorption by natural materials.
Goldberg, Sabine
2014-10-01
Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
A significant number of epidemiological studies have identified an increase in occurrence of adverse health effects associated with exposures to mobile source emissions. These adverse effects include asthma, other respiratory diseases, cardiovascular effects, cancer, development...
Organic nitrogen chemistry during low-grade metamorphism
Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.
2008-01-01
Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ??-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade. ?? 2007 Elsevier Ltd. All rights reserved.
A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae
Manoukis, Nicholas C.; Powell, Jeffrey R.; Touré, Mahamoudou B.; Sacko, Adama; Edillo, Frances E.; Coulibaly, Mamadou B.; Traoré, Sekou F.; Taylor, Charles E.; Besansky, Nora J.
2008-01-01
The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via “ecotypification,” a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019
NASA Astrophysics Data System (ADS)
Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng
2008-07-01
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.
Suedel, Burton C; Nicholson, Andrew; Day, Christopher H; Spicer, James
2006-10-01
When evaluating the risk chemicals may pose to mammals and birds in ecological risk assessments (ERAs), it is common practice to conservatively assume that all (100%) of a chemical in an environmental medium is bioavailable to receptors. This assumption often leads to overestimating ecological risk and may ultimately result in costly and unnecessary risk management actions. While effects of bioavailability and speciation of metals such as arsenic (As) and lead (Pb) have been considered in human health risk assessment, these effects are rarely taken into consideration when assessing risks to mammals and birds. An ERA was conducted at the former Col-Tex refinery site in Colorado City, Texas, USA, to characterize risks to select wildlife species from exposure to chromium (Cr) and Pb found in soils. The focus on these metals was based on results of a screening-level ERA that found that Cr and Pb were posing ecological risks at the site. Soils were analyzed for total Cr and Pb, trivalent Cr (CrIII), hexavalent Cr (CrVI), organic Pb, and the bioavailability and speciation of Pb. Results for Pb and Cr indicated that >94% of the Cr was present as the less toxic and immobile Cr(III) and that >99% of the Pb in soils was present as inorganic Pb. Lead bioaccessibility measured by in vitro testing ranged from 8% to 77.8%, depending on location of individual soil samples. Results demonstrated that Pb and Cr bioavailability and speciation information can raise soil cleanup concentrations while being protective of ecological receptors. The costs of performing the ERA were de minimus compared to the reduction in remediation costs at the site. The refined hazard estimates allowed informed decision making in the management and segregation of soils, allowing for effective risk management at the site.
Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish.
Lande, R; Seehausen, O; van Alphen, J J
2001-01-01
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.
Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent
2015-02-01
Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Biomass burning aerosols characterization from ground based and profiling measurements
NASA Astrophysics Data System (ADS)
Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona
2018-04-01
The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.
Uptake Kinetics and Trophic Transfer of Tungsten from Cabbage to a Herbivorous Animal Model
Lindsay, James H.; Kennedy, Alan J.; Seiter-Moser, Jennifer M.; ...
2017-10-20
This paper builds on previous studies on military-relevant tungsten (W) to more thoroughly explore environmental pathways and bioaccumulation kinetics during direct soil exposure versus trophic transfer and elucidate its relative accumulation and speciation in different snail organs. The modeled steady-state concentration and bioaccumulation factor (BAF) of W from soil into cabbage were 302 mg/kg and 0.55, respectively. Steady-state concentrations (34 mg/kg) and BAF values (0.05) obtained for the snail directly exposed to contaminated soil were lower than trophic transfer by consumption of W-contaminated cabbage (tissue concentration of 86 mg/kg; BAF of 0.36). Thus, consumption of contaminated food is the mostmore » important pathway for W mobility in this food chain. The highest concentrations of W compartmentalization were in the snail’s hepatopancreas based on wet chemistry and synchrotron-based investigations. Chemical speciation via inductively couple plasma mass spectrometry showed a higher degree of polytungstate partitioning in the hepatopancreas relative to the rest of the body. Based on synchrotron analysis, W was incorporated into the shell matrix during exposure, particularly during the regeneration of damaged shell. Finally, this offers the potential for application of the shell as a longer-term biomonitoring and forensics tool for historic exposure.« less
Uptake Kinetics and Trophic Transfer of Tungsten from Cabbage to a Herbivorous Animal Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, James H.; Kennedy, Alan J.; Seiter-Moser, Jennifer M.
This paper builds on previous studies on military-relevant tungsten (W) to more thoroughly explore environmental pathways and bioaccumulation kinetics during direct soil exposure versus trophic transfer and elucidate its relative accumulation and speciation in different snail organs. The modeled steady-state concentration and bioaccumulation factor (BAF) of W from soil into cabbage were 302 mg/kg and 0.55, respectively. Steady-state concentrations (34 mg/kg) and BAF values (0.05) obtained for the snail directly exposed to contaminated soil were lower than trophic transfer by consumption of W-contaminated cabbage (tissue concentration of 86 mg/kg; BAF of 0.36). Thus, consumption of contaminated food is the mostmore » important pathway for W mobility in this food chain. The highest concentrations of W compartmentalization were in the snail’s hepatopancreas based on wet chemistry and synchrotron-based investigations. Chemical speciation via inductively couple plasma mass spectrometry showed a higher degree of polytungstate partitioning in the hepatopancreas relative to the rest of the body. Based on synchrotron analysis, W was incorporated into the shell matrix during exposure, particularly during the regeneration of damaged shell. Finally, this offers the potential for application of the shell as a longer-term biomonitoring and forensics tool for historic exposure.« less
Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium
Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra
2012-01-01
Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649
Macro- and microscale investigation of selenium speciation in Blackfoot river, Idaho sediments.
Oram, Libbie L; Strawn, Daniel G; Marcus, Matthew A; Fakra, Sirine C; Möller, Gregory
2008-09-15
The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (micro-SXRF). We collected micro-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from micro-SXRF showed three defined species of Se were present in all four samples: Se(-II,O), Se(IV), and Se(VI). Se(-II,O) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments.
Arsenic Speciation of Terrestrial Invertebrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, M.M.; Koch, I.; Gordon, R.A.
2009-07-01
The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorptionmore » spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.« less
GEOSURF: a computer program for modeling adsorption on mineral surfaces from aqueous solution
NASA Astrophysics Data System (ADS)
Sahai, Nita; Sverjensky, Dimitri A.
1998-11-01
A new program, GEOSURF, has been developed for calculating aqueous and surface speciation consistent with the triple-layer model of surface complexation. GEOSURF is an extension of the original programs MINEQL, MICROQL and HYDRAQL. We present, here, the basic algorithm of GEOSURF along with a description of the new features implemented. GEOSURF is linked to internally consistent data bases for surface species (SURFK.DAT) and for aqueous species (AQSOL.DAT). SURFK.DAT contains properties of minerals such as site densities, and equilibrium constants for adsorption of aqueous protons and electrolyte ions on a variety of oxides and hydroxides. The Helgeson, Kirkham and Flowers version of the extended Debye-Huckel Equation for 1:1 electrolytes is implemented for calculating aqueous activity coefficients. This permits the calculation of speciation at ionic strengths greater than 0.5 M. The activity of water is computed explicitly from the osmotic coefficient of the solution, and the total amount of electrolyte cation (or anion) is adjusted to satisfy the electroneutrality condition. Finally, the use of standard symbols for chemical species rather than species identification numbers is included to facilitate use of the program. One of the main limitations of GEOSURF is that aqueous and surface speciation can only be calculated at fixed pH and at fixed concentration of total adsorbate. Thus, the program cannot perform reaction-path calculations: it cannot determine whether or not a solution is over- or under-saturated with respect to one or more solid phases. To check the proper running of GEOSURF, we have compared results generated by GEOSURF with those from two other programs, HYDRAQL and EQ3. The Davies equation and the "bdot" equation, respectively, are used in the latter two programs for calculating aqueous activity coefficients. An example of the model fit to experimental data for rutile in 0.001 M-2.0 M NaNO 3 is included.
Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo
2014-04-25
Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.
Florio, A M; Ingram, C M; Rakotondravony, H A; Louis, E E; Raxworthy, C J
2012-07-01
Species delimitation within recently evolved groups can be challenging because species may be difficult to distinguish morphologically. Following the General Lineage Concept, we apply a multiple evidence approach to assess species limits within the carpet chameleon Furcifer lateralis, which is endemic to Madagascar and exported in large numbers for the pet trade. Cryptic speciation within F. lateralis was considered likely because this species (1) has a vast distribution, (2) occupies exceptionally diverse habitats and (3) exhibits subtle regional differences in morphology. Phylogenetic trees reconstructed using nuclear and mitochondrial genes recovered three well-supported clades corresponding with geography. Morphological results based on canonical variates analysis show that these clades exhibit subtle differences in head casque morphology. Ecological niche modelling results found that these phylogenetic groups also occupy unique environmental space and exhibit patterns of regional endemism typical of other endemic reptiles. Combined, our findings provide diverse yet consistent evidence for the existence of three species. Consequently, we elevate the subspecies F. lateralis major to species rank and name a new species distributed in northern and western Madagascar. Initial ecological divergence, associated with speciation of F. lateralis in humid eastern habitat, fits the Ecographic Constraint model for species diversification in Madagascar. By contrast, the second speciation event provides some support for the Riverine Barrier model, with the Mangoky River possibly causing initial isolation between species. These findings thus support two contrasting models of speciation within closely related species and demonstrate the utility of applying a combined-evidence approach for detecting cryptic speciation. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.
2013-12-01
Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.
Feder, Jeffrey L.; Nosil, Patrik; Flaxman, Samuel M.
2014-01-01
Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow. PMID:25206365
Stankowski, Sean
2013-05-01
Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages. © 2013 Blackwell Publishing Ltd.
Speciation in birds: genes, geography, and sexual selection.
Edwards, Scott V; Kingan, Sarah B; Calkins, Jennifer D; Balakrishnan, Christopher N; Jennings, W Bryan; Swanson, Willie J; Sorenson, Michael D
2005-05-03
Molecular studies of speciation in birds over the last three decades have been dominated by a focus on the geography, ecology, and timing of speciation, a tradition traceable to Mayr's Systematics and the Origin of Species. However, in the recent years, interest in the behavioral and molecular mechanisms of speciation in birds has increased, building in part on the older traditions and observations from domesticated species. The result is that many of the same mechanisms proffered for model lineages such as Drosophila--mechanisms such as genetic incompatibilities, reinforcement, and sexual selection--are now being seriously entertained for birds, albeit with much lower resolution. The recent completion of a draft sequence of the chicken genome, and an abundance of single-nucleotide polymorphisms on the autosomes and sex chromosomes, will dramatically accelerate research on the molecular mechanisms of avian speciation over the next few years. The challenge for ornithologists is now to inform well studied examples of speciation in nature with increased molecular resolution-to clone speciation genes if they exist--and thereby evaluate the relative roles of extrinsic, intrinsic, deterministic, and stochastic causes for avian diversification.
NASA Astrophysics Data System (ADS)
Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.
2017-07-01
Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.
NASA Astrophysics Data System (ADS)
Magu, M. M.; Govender, P. P.; Ngila, J. C.
2016-04-01
Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.
COMPARISON OF INTEGRATED SAMPLERS FOR MASS AND COMPOSITION
The primary objective of EPA's Atlanta Supersites Project was to compare and evaluate a wide variety of samplers from time-integrated mass only monitors, to integrated and semi-continuous chemical speciation samplers, to single particle mass spectrometers. This paper will desc...
TOXICOLOGIC AND CHEMICAL EVALUATION OF ALTERNATIVE DISINFECTION TREATMENT SCENARIOS
More than 500 disinfecting byproducts have been identified. They result from the reaction of the disinfectants with the natural organic matter present in source waters. The concentrations and bromo/chloro speciation of these disinfection byproducts (DBPs) are influenced by source...
Simulating Biomass Fast Pyrolysis at the Single Particle Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciesielski, Peter; Wiggins, Gavin; Daw, C Stuart
2017-07-01
Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level ofmore » structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.« less
NASA Astrophysics Data System (ADS)
Jang, J. H.; Nemer, M.
2015-12-01
The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of conference.
NASA Astrophysics Data System (ADS)
Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal
2017-09-01
The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.
NASA Astrophysics Data System (ADS)
Prietzel, Jörg; Dümig, Alexander; Wu, Yanhong; Zhou, Jun; Klysubun, Wantana
2013-05-01
Phosphorus (P) is a crucial element for life on Earth, and the bioavailability of P in terrestrial ecosystems, which is dependent on the soil P stock and its speciation, may limit ecosystem productivity and succession. In our study, for the first time a direct speciation of soil P in two glacier foreland chronosequences has been conducted using synchrotron-based X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The chronosequences are located in the forefields of Hailuogou Glacier (Gongga Shan, China) and Damma Glacier (Swiss Alps). The age since deglaciation of the investigated soils ranges from 0 to 120 years at Hailuogou, and from 15 to >700 years at Damma. Differences in climate conditions (cooler at Damma, in contrast to Hailuogou precluding the establishment of forest in advanced ecosystem succession stages) and in the chemical composition of the parent material result in different soil contents of total P and Fe/Al oxyhydroxides, which are much smaller at Damma than at Hailuogou. Nevertheless, both chronosequences show similar trends of their topsoil P status with increasing soil age. Our study reveals a rapid change of topsoil P speciation in glacier retreat areas already during initial stages of pedogenesis: Initially dominating bedrock-derived apatite-P and Al-bound P is depleted; Fe-bound P and particularly organically-bound P is accumulated. Organic P strongly dominates in the topsoil of the mature soils outside the proglacial area of Damma Glacier (age 700-3000 years), and already 50 years after deglacation in the topsoil of the retreat area of Hailuogou Glacier. A key factor for the change in topsoil P speciation is the establishment of vegetation, resulting in soil organic matter (SOM) accumulation as well as accelerated soil acidification and apatite dissolution by organic acids, which are produced by SOM-degrading micro-organisms, mykorrhiza fungi, and plant roots. Particularly the succession of grassland to forest seems to accelerate the transformation of topsoil P from apatite-P into organic P. The conceptual model developed by Walker and Syers (1976) to explain long-term (millennial) changes of P speciation, availability, and turnover in soils and terrestrial ecosystems seems to be valid to describe short-term changes of P speciation and P availability in proglacial topsoils already within a century of initial soil formation. Because the apatite-depleted topsoil horizons in the young proglacial soils are shallow, the change of topsoil P speciation should not seriously affect P availability and the P acquisition strategy of adult trees, whose roots can easily access apatite-containing C horizons. In contrast, P acquisition strategies of fungi, micro-organisms and plants confined to the topsoil probably change from apatite dissolution to mineralization of organic P already within <3000 years in a proglacial ecosystem succession from bare soil to grassland (Damma Glacier Chronosequence) or even within <100 years in a proglacial ecosystem succession to forest (Hailuogou Glacier Chronosequence).
Computer simulations of sympatric speciation in a simple food web
NASA Astrophysics Data System (ADS)
Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss
2005-07-01
Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.
Mathematical Modeling of the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
USDA-ARS?s Scientific Manuscript database
Whereas soil test information on the fertility and chemistry of soils has been important to elaborate safe and sound agricultural practices, microscopic information can give a whole extra dimension to understand the chemical processes occurring in soils. The objective of this study was to evaluate t...
Rumsey and Walker_AMT_2016_Figure 2.xlsx
Figure summarizes uncertainty (error) in hourly gradient flux measurements by individual analyte. Flux uncertainty is derived from estimates of uncertainty in chemical gradients and turbulent transfer velocity.This dataset is associated with the following publication:Rumsey, I. Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 9(6): 2581-2592, (2016).
NASA Astrophysics Data System (ADS)
Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.
2017-05-01
In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.
A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlosser, Paul M., E-mail: schlosser.paul@epa.gov; Sasso, Alan F.
Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function ofmore » Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.« less
Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.
Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung
2006-12-01
This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.
NASA Astrophysics Data System (ADS)
Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.
2017-01-01
The major sources of fine particulate matter (PM2.5) in New York City (NYC) were apportioned by applying positive matrix factorization (PMF) to two different sets of particle characteristics: mass concentrations using chemical speciation data and particle number concentrations (PNC) using number size distribution, continuously monitored gases, and PM2.5 data. Post-processing was applied to the PMF results to: (i) match with meteorological data, (ii) use wind data to detect the likely locations of the local sources, and (iii) use concentration weighted trajectory models to assess the strength of potential regional/transboundary sources. Nine sources of PM2.5 mass were apportioned and identified as: secondary ammonium sulfate, secondary ammonium nitrate, road traffic exhaust, crustal dust, fresh sea-salt, aged sea-salt, biomass burning, residual oil/domestic heating and zinc. The sources of PNC were investigated using hourly average number concentrations in six size bins, gaseous air pollutants, mass concentrations of PM2.5, particulate sulfate, OC, and EC. These data were divided into 3 periods indicative of different seasonal conditions. Five sources were resolved for each period: secondary particles, road traffic, NYC background pollution (traffic and oil heating largely in Manhattan), nucleation and O3-rich aerosol. Although traffic does not account for large amounts of PM2.5 mass, it was the main source of particles advected from heavily trafficked zones. The use of residual oil had limited impacts on PM2.5 mass but dominates PNC in cold periods.
Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2014-01-01
Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.
Sympatric speciation as a consequence of male pregnancy in seahorses
Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.
2003-01-01
The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712
Minimal effects of latitude on present-day speciation rates in New World birds
Rabosky, Daniel L.; Title, Pascal O.; Huang, Huateng
2015-01-01
The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades. PMID:26019156
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.; White, A. F.; Tokunaga, T.
1986-12-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narashimhan, T.N.; White, A.F.; Tokunaga, T.
1986-12-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. Inmore » the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.« less
AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS
CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...
PRINCIPLES OF SYNCHROTRON TECHNIQUES, POTENTIAL AND LIMITATIONS
Once environmental contaminants, such as arsenic, chromium, cadmium and lead, are detected, the problem becomes how to deal with them. For the past decade, researchers at the US EPA in Cincinnati have been employing synchrotron speciation methods to determine the exact chemical f...
Modeling the influence of organic acids on soil weathering
NASA Astrophysics Data System (ADS)
Lawrence, Corey; Harden, Jennifer; Maher, Kate
2014-08-01
Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.
Modeling the influence of organic acids on soil weathering
Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate
2014-01-01
Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.
2011-01-01
Background Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today. Results I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity. Conclusions Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction. Reviewer names Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti PMID:22152499
NASA Astrophysics Data System (ADS)
McNab, W. W.; Narasimhan, T. N.
1995-08-01
Dissolved organic contaminants such as petroleum hydrocarbon constituents are often observed to degrade in groundwater environments through biologically mediated transformation reactions into carbon dioxide, methane, or intermediate organic compounds. Such transformations are closely tied to local geochemical conditions. Favorable degradation pathways depend upon local redox conditions through thermodynamic constraints and the availability of appropriate mediating microbial populations. Conversely, the progress of the degradation reactions may affect the chemical composition of groundwater through changes in electron donor/acceptor speciation and pH, possibly inducing mineral precipitation/dissolution reactions. Transport of reactive organic and inorganic aqueous species through open systems may enhance the reaction process by mixing unlike waters and producing a state of general thermodynamic disequilibrium. In this study, field data from an aquifer contaminated by petroleum hydrocarbons have been analyzed using a mathematical model which dynamically couples equilibrium geochemistry of inorganic constituents, kinetically dominated sequential degradation of organic compounds, and advective-dispersive chemical transport. Simulation results indicate that coupled geochemical processes inferred from field data, such as organic biodegradation, iron reduction and dissolution, and methanogenesis, can be successfully modeled using a partial-redox-disequilibrium approach. The results of this study also suggest how the modeling approach can be used to study system sensitivity to various physical and chemical parameters, such as the effect of dispersion on the position of chemical fronts and the impact of alternative buffering mineral phases (e.g., goethite versus amorphous Fe(OH)3) on water chemistry.
Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz
2017-07-01
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Odnevall Wallinder, I; Hedberg, Y; Dromberg, P
2009-12-01
Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.
2014-07-01
Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.
A robust framework to predict mercury speciation in combustion flue gases.
Ticknor, Jonathan L; Hsu-Kim, Heileen; Deshusses, Marc A
2014-01-15
Mercury emissions from coal combustion have become a global concern as growing energy demands have increased the consumption of coal. The effective implementation of treatment technologies requires knowledge of mercury speciation in the flue gas, namely concentrations of elemental, oxidized and particulate mercury at the exit of the boiler. A model that can accurately predict mercury species in flue gas would be very useful in that context. Here, a Bayesian regularized artificial neural network (BRANN) that uses five coal properties and combustion temperature was developed to predict mercury speciation in flue gases before treatment technology implementation. The results of the model show that up to 97 percent of the variation in mercury species concentration is captured through the use of BRANNs. The BRANN model was used to conduct a parametric sensitivity which revealed that the coal chlorine content and coal calorific value were the most sensitive parameters, followed by the combustion temperature. The coal sulfur content was the least important parameter. The results demonstrate the applicability of BRANNs for predicting mercury concentration and speciation in combustion flue gas and provide a more efficient and effective technique when compared to other advanced non-mechanistic modeling strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Phylogenetic evidence for cladogenetic polyploidization in land plants.
Zhan, Shing H; Drori, Michal; Goldberg, Emma E; Otto, Sarah P; Mayrose, Itay
2016-07-01
Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation". Whether polyploidization is associated with the formation of new species (cladogenesis) or simply occurs over time within a lineage (anagenesis), however, has never been assessed systematically. We tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. © 2016 Botanical Society of America.
Approach for environmental baseline water sampling
Smith, K.S.
2011-01-01
Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.
Khatri, Bhavin S.; Goldstein, Richard A.
2015-01-01
Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759
Thermodynamic behavior of a phase transition in a model for sympatric speciation
NASA Astrophysics Data System (ADS)
Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.
2006-08-01
We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.
Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis
Feder, Jeffrey L.; Xie, Xianfa; Rull, Juan; Velez, Sebastian; Forbes, Andrew; Leung, Brian; Dambroski, Hattie; Filchak, Kenneth E.; Aluja, Martin
2005-01-01
The Rhagoletis pomonella sibling species complex is a model for sympatric speciation by means of host plant shifting. However, genetic variation aiding the sympatric radiation of the group in the United States may have geographic roots. Inversions on chromosomes 1-3 affecting diapause traits adapting flies to differences in host fruiting phenology appear to exist in the United States because of a series of secondary introgression events from Mexico. Here, we investigate whether these inverted regions of the genome may have subsequently evolved to become more recalcitrant to introgression relative to collinear regions, consistent with new models for chromosomal speciation. As predicted by the models, gene trees for six nuclear loci mapping to chromosomes other than 1-3 tended to have shallower node depths separating Mexican and U.S. haplotypes relative to an outgroup sequence than nine genes residing on chromosomes 1-3. We discuss the implications of secondary contact and differential introgression with respect to sympatric host race formation and speciation in Rhagoletis, reconciling some of the seemingly dichotomous views of Mayr, Dobzhansky, and Bush concerning modes of divergence. PMID:15851672
Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo
2013-06-01
The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M
2005-09-01
Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.
Chakraborty, Parthasarathi; Babu, P V Raghunadh
2015-06-15
Distribution and speciation of mercury (Hg) in the sediments from a tropical estuary (Godavari estuary) was influenced by the changing physico-chemical parameters of the overlying water column. The sediments from the upstream and downstream of the estuary were uncontaminated but the sediments from the middle of the estuary were contaminated by Hg. The concentrations of Hg became considerably less during the monsoon and post monsoon period. Total Hg concentrations and its speciation (at the middle of the estuary) were dependent on the salinity of the overlying water column. However, salinity had little or no effect on Hg association with organic phases in the sediments at downstream. Increasing pH of the overlying water column corresponded with an increase in the total Hg content in the sediments. Total organic carbon in the sediments played an important role in controlling Hg partitioning in the system. Uncomplexed Hg binding ligands were available in the sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej
2018-01-01
The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.
Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János
2015-04-01
The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.
Speciation: more likely through a genetic or through a learned habitat preference?
Beltman, J.B; Metz, J.A.J
2005-01-01
A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920
ARSENIC PARTITIONING TO IRON OXIDES AND SULFIDES: LOCAL ENVIRONMENT AND OXIDATION STATE
his document summarizes research activities conducted at the Advanced Photon Source at Argonne National Laboratory, Argonne, IL during FY2003. The analytical data collected using X-ray absorption spectroscopy was used to evaluated the chemical speciation of arsenic associated wi...
Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques
USDA-ARS?s Scientific Manuscript database
Serpentine soils are extensively studied because of their unique soil chemical properties and flora. They commonly have high magnesium-to-calcium ratios and elevated concentrations of trace metals including nickel, cobalt, and chromium. Several nickel hyperaccumulator plants are native to serpenti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Euan; Kempson, Ivan; Juhasz, Albert L.
The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations ofmore » {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.« less
Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie
2014-08-01
Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.
Forbes, Thomas P; Sisco, Edward
2014-08-05
We demonstrate the coupling of desorption electro-flow focusing ionization (DEFFI) with in-source collision induced dissociation (CID) for the mass spectrometric (MS) detection and imaging of explosive device components, including both inorganic and organic explosives and energetic materials. We utilize in-source CID to enhance ion collisions with atmospheric gas, thereby reducing adducts and minimizing organic contaminants. Optimization of the MS signal response as a function of in-source CID potential demonstrated contrasting trends for the detection of inorganic and organic explosive device components. DEFFI-MS and in-source CID enabled isotopic and molecular speciation of inorganic components, providing further physicochemical information. The developed system facilitated the direct detection and chemical mapping of trace analytes collected with Nomex swabs and spatially resolved distributions within artificial fingerprints from forensic lift tape. The results presented here provide the forensic and security sectors a powerful tool for the detection, chemical imaging, and inorganic speciation of explosives device signatures.
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Brian; Schlautman, Mark; Rao, Linfeng
The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gapsmore » still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in the unique system conditions which will be examined (i.e. elevated temperature and ionic strength) and the manner in which the surface complexation model will be developed in terms of specific surface species identified using XAS. These experiments will thus provide a fundamental understanding of the chemical and physical processes occurring at the solid-solution interface under expected repository conditions. Additionally, the focus on thermodynamic treatment of actinide ion interactions with minerals as proposed will provide information on the driving forces involved and contribute to the overall understanding of the high affinity many actinide ions have for oxide surfaces. The utility of this model will be demonstrated in this work through a series of advective and diffusive flow experiments.« less
Multispecies diffusion models: A study of uranyl species diffusion
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-01
Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.
Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.
Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J
2010-11-15
A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.
Chemical transport model simulations of organic aerosol in ...
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data
Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling
2018-02-01
Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.
Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Claret; C Tournassat; C Crouzet
This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc aremore » super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less
Ricklefs, Robert E; Bermingham, Eldredge
2004-08-01
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.
Complexation of copper by aquatic humic substances from different environments
McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.
1983-01-01
The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.
Heavy metals in marine fish meat and consumer health: a review.
Bosch, Adina C; O'Neill, Bernadette; Sigge, Gunnar O; Kerwath, Sven E; Hoffman, Louwrens C
2016-01-15
The numerous health benefits provided by fish consumption may be compromised by the presence of toxic metals and metalloids such as lead, cadmium, arsenic and mercury, which can have harmful effects on the human body if consumed in toxic quantities. The monitoring of metal concentrations in fish meat is therefore important to ensure compliance with food safety regulations and consequent consumer protection. The toxicity of these metals may be dependent on their chemical forms, which requires metal speciation processes for direct measurement of toxic metal species or the identification of prediction models in order to determine toxic metal forms from measured total metal concentrations. This review addresses various shortcomings in current knowledge and research on the accumulation of metal contaminants in commercially consumed marine fish globally and particularly in South Africa, affecting both the fishing industry as well as fish consumers. © 2015 Society of Chemical Industry.
Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium
NASA Astrophysics Data System (ADS)
Christl, Iso; Ruiz, Mercedes; Schmidt, J. R.; Pedersen, Joel A.
2017-04-01
Many organic micropollutants including antibiotics contain positively charged moieties and are present as organic cations or zwitterions at environmentally relevant pH conditions. In this study, we investigated the pH-, ionic strength-, and concentration-dependent binding of the two antibiotics clarithromycin and tetracycline to dissolved humic acid in the absence and presence of Ca2+. The investigated compounds strongly differ in their chemical speciation. Clarithromycin can be present as neutral and cationic species, only. But tetracycline can form cations, zwitterions as well as anions and is able to form various calcium complexes. The pH-dependence of binding to soil humic acid was observed to be strongly linked to the protonation behavior for both antibiotics. The presence of Ca2+ decreased clarithromycin binding to soil humic acid, but increased tetracycline binding with increasing Ca2+ concentration. The experimental observations were well described with the NICA-Donnan model considering the complete aqueous speciation of antibiotics and allowing for binding of cationic and zwitterionic species to soil humic acid. Our results indicate that clarithromycin is subject to competition with Ca2+ for binding to soil humic acid and that the electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid enhances tetracycline binding in presence of Ca2+ rather than the formation of ternary complexes, except at very low tetracycline concentrations. We conclude that for the description of ionizable organic micropollutant binding to dissolved natural organic matter, the complete speciation of both sorbate and sorbent has to be considered.
Implications for metal and volatile cycles from the pH of subduction zone fluids
NASA Astrophysics Data System (ADS)
Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.
2016-11-01
The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.
Polysulfide Speciation in the Bulk Electrolyte of a Lithium Sulfur Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBrayer, Josefine D.; Beechem, Thomas E.; Perdue, Brian R.
In situ Raman microscopy was used to study polysulfide speciation in the bulk ether electrolyte during the discharge and charge of a Li-S electrochemical cell to assess the complex interplay between chemical and electrochemical reactions in solution. During discharge, long chain polysulfides and the S 3 - radical appear in the electrolyte at 2.4 V indicating a rapid equilibrium of the dissociation reaction to form S 3 -. When charging, however, an increase in the concentration of all polysulfide species was observed. This highlights the importance of the electrolyte to sulfur ratio and suggests a loss in the useful sulfurmore » inventory from the cathode to the electrolyte.« less
Polysulfide Speciation in the Bulk Electrolyte of a Lithium Sulfur Battery
McBrayer, Josefine D.; Beechem, Thomas E.; Perdue, Brian R.; ...
2018-03-23
In situ Raman microscopy was used to study polysulfide speciation in the bulk ether electrolyte during the discharge and charge of a Li-S electrochemical cell to assess the complex interplay between chemical and electrochemical reactions in solution. During discharge, long chain polysulfides and the S 3 - radical appear in the electrolyte at 2.4 V indicating a rapid equilibrium of the dissociation reaction to form S 3 -. When charging, however, an increase in the concentration of all polysulfide species was observed. This highlights the importance of the electrolyte to sulfur ratio and suggests a loss in the useful sulfurmore » inventory from the cathode to the electrolyte.« less
XPS Investigation on Changes in UO 2 Speciation following Exposure to Humidity
Donald, Scott B.; Davisson, M. Lee; Nelson, Art J.
2016-04-27
High purity UO 2powder samples were subjected to accelerated aging under controlled conditions with relative humidity ranging from 34% to 98%. Characterization of the chemical speciation of the products was accomplished using X-ray photoelectron spectroscopy (XPS). A shift to higher uranium oxidation states was found to be directly correlated to increased relative humidity exposure. In addition, the relative abundance of O 2-, OH -, and H 2O was found to vary with exposure time. Therefore, it is expected that uranium oxide materials exposed to high relative humidity conditions during processing and storage would display a similar increase in average uraniummore » valence.« less
The Connecticut Department of Environmental Protection developed a Total Maximum Daily Load (TMDL) for copper toxicity in Steel Brook, Watertown /Oakville, CT in 1999. The analysis identified two major sources of copper to the waters of Steele Brook, but did not include extensiv...
Crustal materials are mainly emitted by anthropogenic and windblown fugitive dust, but also may potentially include some fly ash and industrial process emissions which are chemically similar to crustal emissions. Source apportionment studies have shown that anthropogenic fugitive...
Roccaro, Paolo; Chang, Hyun-shik; Vagliasindi, Federico G A; Korshin, Gregory V
2013-10-15
This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.
Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger
2014-01-01
This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.
Iron Mineralogy and Speciation in Clay-Sized Fractions of Chinese Desert Sediments
NASA Astrophysics Data System (ADS)
Lu, Wanyi; Zhao, Wancang; Balsam, William; Lu, Huayu; Liu, Pan; Lu, Zunli; Ji, Junfeng
2017-12-01
Iron released from Asian desert dust may be an important source of bioavailable iron for the North Pacific Ocean and thereby may stimulate primary productivity. However, the Fe species of the fine dusts from this source region are poorly characterized. Here we investigate iron species and mineralogy in the clay-sized fractions (<2 μm), the size fraction most prone to long-distance transport as dust. Samples were analyzed by sequential chemical extraction, X-ray diffraction, and diffuse reflectance spectrometry. Our results show that Fe dissolved from easily reducible iron phases (ferrihydrite and lepidocrocite) and reducible iron oxides (dominated by goethite) are 0.81 wt % and 2.39 wt %, respectively, and Fe dissolved from phyllosilicates extracted by boiling HCl (dominated by chlorite) is 3.15 wt %. Dusts originating from deserts in northwestern China, particularly the Taklimakan desert, are relatively enriched in easily reducible Fe phases, probably due to abundant Fe contained in fresh weathering products resulting from the rapid erosion associated with active uplift of mountains to the west. Data about Fe speciation and mineralogy in Asian dust sources will be useful for improving the quantification of soluble Fe supplied to the oceans, especially in dust models.
Konopka, Allan; Plymale, Andrew E; Carvajal, Denny A; Lin, Xueju; McKinley, James P
2013-11-01
Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA, are located in an oligotrophic environment and are periodically exposed to U(VI) concentrations that can range up to 10 μM in small sediment fractures. Assays of (3)H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 μM U(VI), they were inhibited by U(VI) <1 μM in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively charged species and particularly (UO2)3(OH)5 (+) rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 μM U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 μM.
Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L.; Thornton, Joel A.
2016-01-01
Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465
Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades
Reddy, M.M.; Aiken, G.R.
2001-01-01
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.
Edwards, Taylor; Tollis, Marc; Hsieh, PingHsun; Gutenkunst, Ryan N.; Liu, Zhen; Kusumi, Kenro; Culver, Melanie; Murphy, Robert W.
2016-01-01
Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA-seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best-fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Troy A
2011-08-01
This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less
Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan
2018-02-20
The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.
Chemically mediated species recognition in closely related Podarcis wall lizards.
Barbosa, Diana; Font, Enrique; Desfilis, Ester; Carretero, Miguel A
2006-07-01
In many animals, chemical signals play an important role in species recognition and may contribute to reproductive isolation and speciation. The Iberian lizards of the genus Podarcis, with up to nine currently recognized lineages that are often sympatric, are highly chemosensory and provide an excellent model for the study of chemically mediated species recognition in closely related taxa. In this study, we tested the ability of male and female lizards of two sister species with widely overlapping distribution ranges (Podarcis bocagei and P. hispanica type 1) to discriminate between conspecific and heterospecific mates by using only substrate-borne chemical cues. We scored the number of tongue flicks directed at the paper substrate by each individual in a terrarium previously occupied by a conspecific or a heterospecific lizard of the opposite sex. Results show that males of P. bocagei and P. hispanica type 1 are capable of discriminating chemically between conspecifics and heterospecifics of the opposite sex, but females are not. These results suggest that differences in female, but not male, chemical cues may underlie species recognition and contribute to reproductive isolation in these species. The apparent inability of females to discriminate conspecific from heterospecific males, which is not because of reduced baseline exploration rates, is discussed in the context of sexual selection theory and species discrimination.
Sympatric speciation by sexual selection alone is unlikely.
Arnegard, Matthew E; Kondrashov, Alexey S
2004-02-01
According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.
Escher, Beate I; Baumer, Andreas; Bittermann, Kai; Henneberger, Luise; König, Maria; Kühnert, Christin; Klüver, Nils
2017-03-22
The Microtox assay, a bioluminescence inhibition assay with the marine bacterium Aliivibrio fischeri, is one of the most popular bioassays for assessing the cytotoxicity of organic chemicals, mixtures and environmental samples. Most environmental chemicals act as baseline toxicants in this short-term screening assay, which is typically run with only 30 min of exposure duration. Numerous Quantitative Structure-Activity Relationships (QSARs) exist for the Microtox assay for nonpolar and polar narcosis. However, typical water pollutants, which have highly diverse structures covering a wide range of hydrophobicity and speciation from neutral to anionic and cationic, are often outside the applicability domain of these QSARs. To include all types of environmentally relevant organic pollutants we developed a general baseline toxicity QSAR using liposome-water distribution ratios as descriptors. Previous limitations in availability of experimental liposome-water partition constants were overcome by reliable prediction models based on polyparameter linear free energy relationships for neutral chemicals and the COSMOmic model for charged chemicals. With this QSAR and targeted mixture experiments we could demonstrate that ionisable chemicals fall in the applicability domain. Most investigated water pollutants acted as baseline toxicants in this bioassay, with the few outliers identified as uncouplers or reactive toxicants. The main limitation of the Microtox assay is that chemicals with a high melting point and/or high hydrophobicity were outside of the applicability domain because of their low water solubility. We quantitatively derived a solubility cut-off but also demonstrated with mixture experiments that chemicals inactive on their own can contribute to mixture toxicity, which is highly relevant for complex environmental mixtures, where these chemicals may be present at concentrations below the solubility cut-off.
The Origins of Tropical Rainforest Hyperdiversity.
Pennington, R Toby; Hughes, Mark; Moonlight, Peter W
2015-11-01
Traditional models for tropical species richness contrast rainforests as "museums" of old species or "cradles" of recent speciation. High plant species diversity in rainforests may be more likely to reflect high episodic evolutionary turnover of species--a scenario implicating high rates of both speciation and extinction through geological time.
Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming
2018-08-15
Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.
Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L
2012-08-20
Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.
Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M
2012-01-01
Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan
2013-01-14
The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as amore » result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.« less
INTRODUCTION AND OVERVIEW OF WORKSHOP ON MANAGING ARSENIC RISKS TO THE ENVIRONMENT
The purpose of this workshop will be to serve as a technical forum for the exchange of information on treating arsenic and arsenic compounds. The goals of the workshop are 1) to examine the chemical fundamentals related to arsenic chemistry, speciation, and analytical issues, 2) ...
Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that Silver nanoparticles undergo in differen...
This Symposium seeks to understand the direct effect of hypoxia on aquatic biota at the individual population, and the ecosystem levels. Another concern, however, is the indirect effect of varying oxygen levels on the thermodynamics and kinetics of biogeochemical processes and ...
CD SPECIATION ASSOCIATED WITH IRON OXIDES AND BIOSOLIDS
The environmental impact and potential hazards of metals in biosolids to plants, animals and the human food chain have been studied for decades. From this body of work, it has been concluded the addition of biosolids to the soil alters the chemical phases in the soil system beyon...
IN-SITU REMEDIATION OF CHROMIUM-CONTAMINATED SOILS AND SEDIMENTS USING SODIUM DITHIONITE
Soil cores were collected from beneath an old chrome plating shop at the USCG Support Center near Elizabeth City, NC in order to determine the extent of chromium contamination in the soils and ground water. Selective extractions were used to assess the chemical speciation and di...
The chemical form specific toxicity of arsenic has caused scientists to move toward species specific assessments with an emphasis on biological relevance of an exposure. For example, numerous studies on the occurrence of arsenic in rice have documented the exposure potential fro...
ARSENIC SPECIATION ANALYSIS IN GROUND WATER BY IC-HG-AFS
The determination of low levels of arsenic draws concern more than ever today, because of the possible legislative changes in the drinking water limit. The toxicity of arsenic depends upon its chemical form. Arsenite is the most toxic form, 25 to 50 times more toxic than arsena...
Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...
A speciation solver for cement paste modeling and the semismooth Newton method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georget, Fabien, E-mail: fabieng@princeton.edu; Prévost, Jean H., E-mail: prevost@princeton.edu; Vanderbei, Robert J., E-mail: rvdb@princeton.edu
2015-02-15
The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These conditions are extreme conditions with respect to the common assumptions made in speciation problem. Furthermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee of convergence. We propose a speciation solver based on a semismooth Newton method adapted to the thermodynamic modeling of cement paste. The strong theoretical properties associated with these methods offer practical advantages.more » Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient.« less
Microcolumn-based speciation analysis of thallium in soil and green cabbage.
Jia, Yanlong; Xiao, Tangfu; Sun, Jialong; Yang, Fei; Baveye, Philippe C
2018-07-15
Thallium (Tl) is a toxic trace metal, whose geochemical behavior and biological effects are closely controlled by its chemical speciation in the environment. However, little tends to be known about this speciation of Tl in soil and plant systems that directly affect the safety of food supplies. In this context, the objective of the present study was to elaborate an efficient method to separate and detect Tl(I) and Tl(III) species for soil and plant samples. This method involves the selective adsorption of Tl(I) on microcolumns filled with immobilized oxine, in the presence of DTPA (diethylenetriaminepentaacetic acid), followed by DTPA-enhanced ultrasonic and heating-induced extraction, coupled with ICP-MS detection. The method was characterized by a LOD of 0.037 μg/L for Tl(I) and 0.18 μg/L for Tl(III) in 10 mL samples. With this method, a second objective of the research was to assess the speciation of Tl in pot and field soils and in green cabbage crops. Experimental results suggest that DTPA extracted Tl was mainly present as Tl(I) in soils (>95%). Tl in hyperaccumulator plant green cabbage was also mainly present as Tl(I) (>90%). With respect to Tl uptake in plants, this study provides direct evidence that green cabbage mainly takes up Tl(I) from soil, and transports it into the aboveground organs. In soils, Tl(III) is reduced to Tl(I) even at the surface where the chemical environment promotes oxidation. This observation is conducive to understanding the mechanisms of Tl isotope fractionation in the soil-plant system. Based on geochemical fraction studies, the reducible fraction was the main source of Tl getting accumulated by plants. These results indicate that the improved analytical method presented in this study offers an economical, simple, fast, and sensitive approach for the separation of Tl species present in soils at trace levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Couic, Ewan; Grimaldi, Michel; Alphonse, Vanessa; Balland-Bolou-Bi, Clarisse; Livet, Alexandre; Giusti-Miller, Stéphanie; Sarrazin, Max; Bousserrhine, Noureddine
2018-04-25
Several decades of gold mining extraction activities in the Amazonian rainforest have caused deforestation and pollution. While ecological rehabilitation is essential for restoring biodiversity and decreasing erosion on deforested lands, few studies note the behaviour or toxicity of trace elements during the rehabilitation process. Our original study focused on the potential use of microbial activity and Hg speciation and compared them with As, Cu, Zn and Cr speciation in assessing the chemical and biological quality of ecological restoration efforts. We sampled two sites in French Guyana 17 years after rehabilitation efforts began. The former site was actively regenerated (R) with the leguminous species Clitoria racemosa and Acacia mangium, and the second site was passively regenerated with spontaneous vegetation (Sv). We also sampled soil from a control site without a history of gold mining (F). We performed microcosm soil experiments for 30 days, where trace element speciation and enzyme activities (i.e., FDA, dehydrogenase, β-glucosidase, urease, alkaline and acid phosphatase) were estimated to characterise the behaviour of trace elements and the soil microbial activity. As bioindicators, the use of soil microbial carbon biomass and soil enzyme activities related to the carbon and phosphorus cycles seems to be relevant for assessing soil quality in rehabilitated and regenerated old mining sites. Our results showed that restoration with leguminous species had a positive effect on soil chemical quality and on soil microbial bioindicators, with activities that tended toward natural non-degraded soil (F). Active restoration processes also had a positive effect on Hg speciation by reducing its mobility. While in Sv we found more exchangeable and soluble mercury, in regenerated sites, Hg was mostly bound to organic matter. These results also suggested that enzyme activities and mercury cycles are sensitive to land restoration and must be considered when evaluating the efficiency of restoration processes.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; ...
2017-05-19
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
Farnfield, Hannah R; Marcilla, Andrea L; Ward, Neil I
2012-09-01
Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). Copyright © 2012 Elsevier B.V. All rights reserved.
Deakin, Janine E; Kruger-Andrzejewska, Maya
2016-09-01
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.
Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia
2014-11-01
To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.
Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens
2017-11-01
Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9 mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4 mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data. Second, techniques developed here shall be applied to the investigation of plants growing in soil in the future. The present work contributes to the basic understanding how plant induced effects on nutrient solution influence bioavailability of radionuclides and fosters the need for more detailed investigations of the complex uptake and accumulation processes of radionuclides into plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan
2014-01-01
The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285
The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.
2016-04-01
A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.
Role of demographic stochasticity in a speciation model with sexual reproduction
NASA Astrophysics Data System (ADS)
Lafuerza, Luis F.; McKane, Alan J.
2016-03-01
Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.
Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki
2013-09-15
To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gertler, Alan W.; Fujita, Eric M.; Pierson, William R.; Wittorff, David N.
Measurements of on-road emissions of non-methane hydrocarbons (NMHCs) were made in the Fort McHenry Tunnel (Baltimore) and Tuscarora Mountain Tunnel (Pennsylvania) during the summer of 1992. Measurements were made during 11 one-hour periods in the Fort McHenry Tunnel and during 11 one-hour periods in the Tuscarora Mountain Tunnel. The observed light-duty fleets were quite new, with a median model year of approximately 1989. Speciated NMHC values were obtained from analyses of canister and Tenax samples, and light-duty speciated emission factors were calculated for the two tunnels. Fuel samples were collected in the area around the tunnels for use in constructing headspace and liquid fuel profiles for the chemical mass balance (CMB) receptor model. Profiles of tailpipe emissions were obtained from the literature. The CMB was used to apportion tailpipe from non-tailpipe emissions. Non-tailpipe sources were found to constitute approximately 15% of the light-duty NMHC emissions. The Federal automotive emission-rate models, MOBILE4.1 and MOBILE5, underpredicted non-tailpipe emissions, assigning approximately 9% and 6.5%, respectively, to non-tailpipe sources. In terms of total absolute emissions, MOBILE5 predictions were approximately a factor of 2 greater than MOBILE4.1 predictions. Both MOBILE4.1 and MOBILE5 underestimated the NMHC emissions in the Fort McHenry Tunnel and overpredicted the NMHC emissions in the Tuscarora Mountain Tunnel. In all cases, the MOBILE models underestimated the absolute value of the non-tailpipe emissions. The ability of the MOBILE models to account for observed emissions when conditions are more variable than those studies in the Fort McHenry and Tuscarora Mountain tunnels is still an open question.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffat, Harry K.; Jove-Colon, Carlos F.
2009-06-01
In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species.more » The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.« less
Tromson, Clara; Bulle, Cécile; Deschênes, Louise
2017-03-01
In life cycle assessment (LCA), the potential terrestrial ecotoxicity effect of metals, calculated as the effect factor (EF), is usually extrapolated from aquatic ecotoxicological data using the equilibrium partitioning method (EqP) as it is more readily available than terrestrial data. However, when following the AMI recommendations (i.e. with at least enough species that represents three different phyla), there are not enough terrestrial data for which soil properties or metal speciation during ecotoxicological testing are specified to account for the influence of soil property variations on metal speciation when using this approach. Alternatively, the TBLM (Terrestrial Biotic Ligand Model) has been used to determine an EF that accounts for speciation, but is not available for metals; hence it cannot be consistently applied to metals in an LCA context. This paper proposes an approach to include metal speciation by regionalizing the EqP method for Cu, Ni and Zn with a geochemical speciation model (the Windermere Humic Aqueous Model 7.0), for 5213 soils selected from the Harmonized World Soil Database. Results obtained by this approach (EF EqP regionalized ) are compared to the EFs calculated with the conventional EqP method, to the EFs based on available terrestrial data and to the EFs calculated with the TBLM (EF TBLM regionalized ) when available. The spatial variability contribution of the EF to the overall spatial variability of the characterization factor (CF) has been analyzed. It was found that the EFs EqP regionalized show a significant spatial variability. The EFs calculated with the two non-regionalized methods (EqP and terrestrial data) fall within the range of the EFs EqP regionalized . The EFs TBLM regionalized cover a larger range of values than the EFs EqP regionalized but the two methods are not correlated. This paper highlights the importance of including speciation into the terrestrial EF and shows that using the regionalized EqP approach is not an acceptable proxy for terrestrial ecotoxicological data even if it can be applied to all metals. Copyright © 2016. Published by Elsevier B.V.
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure-topology-property correlations of sodium phosphosilicate glasses.
Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng
2015-08-14
In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.
Parapatric speciation in three islands: dynamics of geographical configuration of allele sharing
Iwasa, Yoh
2017-01-01
We studied the time to speciation by geographical isolation for a species living on three islands connected by rare migration. We assumed that incompatibility was controlled by a number of quantitative loci and that individuals differing in loci by more than a threshold did not mix genetically with each other. For each locus, we defined the geographical configuration (GC), which specifies islands with common alleles, and traced the stochastic transitions between different GCs. From these results, we calculated the changes in genetic distances. As a single migration event provides an opportunity for transitions in multiple loci, the GCs of different loci are correlated, which can be evaluated by constructing the stochastic differential equations of the number of loci with different GCs. Our model showed that the low number of incompatibility loci facilitates parapatric speciation and that migrants arriving as a group shorten the waiting time to speciation compared with the same number of migrants arriving individually. We also discuss how speciation rate changes with geographical structure. PMID:28386439
Pedrobom, Jorge Henrique; Eismann, Carlos Eduardo; Menegário, Amauri A; Galhardi, Juliana Aparecida; Luko, Karen Silva; Dourado, Thiago de Araujo; Kiang, Chang Hung
2017-02-01
The exchange membranes P81 and DE81 and Chelex-100 resin were used to perform in situ speciation of uranium in treated acid mine drainage at the Osamu Utsumi mining site, Poços de Caldas city, Southeast Brazil. To investigate possible chemical modifications in the samples during analysis, the three ligands were deployed in situ and in a laboratory (in lab). The results obtained in situ were also compared to a speciation performed using Visual MINTEQ software. Chelex-100 retained total labile U for a period of up to 48 h. The labile U fraction determined by Chelex 100 ranged from 107 ± 6% to 147 ± 44% in situ and from 115 ± 22% to 191 ± 5% in lab. DE81 retained anionic U species up to 8 h, with labile fractions ranging from 37 ± 2% to 76 ± 3% in situ and 34 ± 12% to 180 ± 17% in lab. P81 exhibited a lower efficiency in retaining U species, with concentrations ranging from 6± 2% to 19± 2% in situ and 3± 2% to 18± 2% in lab. The speciation obtained from MINTEQ suggests that the major U species were UO 2 OH + , UO 2 (OH) 3- , UO 2 (OH) 2(aq) , Ca 2 UO 2 (CO 3 ) 3(aq) , CaUO 2 (CO 3 ) 3 2- , UO 2 (CO 3 ) 2 2- , and UO 2 (CO 3 ) 3 4- . This result is in accordance with the results obtained in situ. Differences concerning speciation and the total and soluble U concentrations were observed between the deployments performed in situ and in the laboratory, indicating that U speciation must be performed in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
Stratospheric aircraft exhaust plume and wake chemistry studies
NASA Technical Reports Server (NTRS)
Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.
1992-01-01
This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.
A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anklamm, Lars, E-mail: anklamm@physik.tu-berlin.de; Schlesiger, Christopher; Malzer, Wolfgang
2014-05-15
We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the Kβ multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/ΔE = 2000 at 8 keV was achieved. Typical acquisition times range from 10 min for bulk material to hours formore » thin samples below 1 μm.« less
Theoretical Modeling of 99 Tc NMR Chemical Shifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.
Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchangemore » correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.« less
Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.
Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C
2008-03-15
Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.
Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico
2010-08-01
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.
Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota
2015-12-15
Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.
Rimondi, Valentina; Bardelli, Fabrizio; Benvenuti, Marco; Costagliola, Pilario; Gray, John E.; Lattanzi, Pierfranco
2014-01-01
A fundamental step to evaluate the biogeochemical and eco-toxicological significance of Hg dispersion in the environment is to determine speciation of Hg in solid matrices. In this study, several analytical techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), sequential chemical extractions (SCEs), and X-ray absorption spectroscopy (XANES) were used to identify Hg compounds and Hg speciation in samples collected from the Mt. Amiata Hg mining district, southern Tuscany, Italy. Different geological materials, such as mine waste calcine (retorted ore), soil, stream sediment, and stream water suspended particulate matter were analyzed. Results show that the samples were generally composed of highly insoluble Hg compounds such as sulphides (HgS, cinnabar and metacinnabar), and more soluble Hg halides such as those associated with the mosesite group. Other moderately soluble Hg compounds, HgCl2, HgO and Hg0, were also identified in stream sediments draining the mining area. The presence of these minerals suggests active and continuous runoff of soluble Hg compounds from calcines, where such Hg compounds form during retorting, or later in secondary processes. Specifically, we suggest that, due to the proximity of Hg mines to the urban center of Abbadia San Salvatore, the influence of other anthropogenic activities was a key factor for Hg speciation, resulting in the formation of unusual Hg-minerals such as mosesite.
Speciation of Mercury in Selected Areas of the Petroleum Value Chain.
Avellan, Astrid; Stegemeier, John P; Gai, Ke; Dale, James; Hsu-Kim, Heileen; Levard, Clément; O'Rear, Dennis; Hoelen, Thomas P; Lowry, Gregory V
2018-02-06
Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (β-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR) 2 accounted for ∼60% of the Hg, with ∼20% present as β-HgS and/or Hg(SR) 4 species. β-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.
Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.
Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki
2016-11-05
This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Zeng, Huawei; Botnen, James H; Johnson, Luann K
2008-01-01
Assessing the ability of a selenium (Se) sample to induce cellular glutathione peroxidase (GPx) activity in Se-deficient animals is the most commonly used method to determine Se bioavailability. Our goal is to establish a Se-deficient cell culture model with differential incorporation of Se chemical forms into GPx, which may complement the in vivo studies. In the present study, we developed a Se-deficient Caco-2 cell model with a serum gradual reduction method. It is well recognized that selenomethionine (SeMet) is the major nutritional source of Se; therefore, SeMet, selenite, or methylselenocysteine (SeMSC) was added to cell culture media with different concentrations and treatment time points. We found that selenite and SeMSC induced GPx more rapidly than SeMet. However, SeMet was better retained as it is incorporated into proteins in place of methionine; compared with 8-, 24-, or 48-h treatment, 72-h Se treatment was a more sensitive time point to measure the potential of GPx induction in all tested concentrations. Based on induction of GPx activity, the cellular bioavailability of Se from an extract of selenobroccoli after a simulated gastrointestinal digestion was comparable with that of SeMSC and SeMet. These in vitro data are, for the first time, consistent with previous published data regarding selenite and SeMet bioavailability in animal models and Se chemical speciation studies with broccoli. Thus, Se-deficient Caco-2 cell model with differential incorporation of chemical or food forms of Se into GPx provides a new tool to study the cellular mechanisms of Se bioavailability.
NASA Astrophysics Data System (ADS)
Lerotic, Mirna
Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. The high resolution imaging places a strong demand on the microscope stability and on the reproducibility of the scanned image field, and the volume of data necessitates the need for improved data analysis methods. This dissertation concerns two developments in extending the capability of soft x-ray transmission microscopes to carry out studies of chemical speciation at high spatial resolution. One development involves an improvement in x-ray microscope instrumentation: a new Stony Brook scanning transmission x-ray microscope which incorporates laser interferometer feedback in scanning stage positions. The interferometer is used to control the position between the sample and focusing optics, and thus improve the stability of the system. A second development concerns new analysis methods for the study of chemical speciation of complex specimens, such as those in biological and environmental science studies. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), where the specimen may be too complicated or provide at least some unknown spectral signatures, other approaches must be used. We describe here an approach that uses principal component analysis (similar to factor analysis) to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. Also, we describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.
USDA-ARS?s Scientific Manuscript database
Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...
The two predominate sources of arsenic exposure are water and dietary ingestion. Dietary sources can easily exceed drinking water exposures based on "total" arsenic measurements. This can be deceiving because arsenic's toxicity is strongly dependent on its chemical form and the...
Speciation and Trends of Organic Nitrogen in Southeastern U.S. Fine Particulate Matter (PM2.5)
Dissolved free amino acids (FAA; amino acids present in a dissolvable state) and combined AA (CAA; amino acids present in peptides, proteins, or humic complexes) in fine aerosols (PM) are investigated at a semi-urban site in the southeastern US. Detection of native (chemically un...
Rumsey and Walker_AMT_2016_Table 1
Table summarizes instrument analytical detection limits, including liquid and equivalent air concentrations.This dataset is associated with the following publication:Rumsey, I. Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 9(6): 2581-2592, (2016).
Speciation and Neutral Molecular Evolution in One-Dimensional Closed Population
NASA Astrophysics Data System (ADS)
Semovski, Sergei V.; Bukin, Yuri S.; Sherbakov, Dmitry Yu.
Models are presented suitable for a description of speciation processes arising due to reproductive isolation depending on genetic distance. The main attention is paid to the model of a one-dimensional closed population, which describes the evolution of littoral benthic organisms. In order to correspond the modeling results to the results obtained in the course of experimental phylogenetic studies, all individual-based models described here involve neutrally evolving and maternally inherited DNA sequence. Sub-samples of the resulting sequences were used for a posteriori phylogenetic inferences which then were compared to the "true" evolutionary histories.
Matrix Dissolution Techniques Applied to Extract and Quantify Precipitates from a Microalloyed Steel
NASA Astrophysics Data System (ADS)
Lu, Junfang; Wiskel, J. Barry; Omotoso, Oladipo; Henein, Hani; Ivey, Douglas G.
2011-07-01
Microalloyed steels possess good strength and toughness, as well as excellent weldability; these attributes are necessary for oil and gas pipelines in northern climates. These properties are attributed in part to the presence of nanosized carbide and carbonitride precipitates. To understand the strengthening mechanisms and to optimize the strengthening effects, it is necessary to quantify the size distribution, volume fraction, and chemical speciation of these precipitates. However, characterization techniques suitable for quantifying fine precipitates are limited because of their fine sizes, wide particle size distributions, and low volume fractions. In this article, two matrix dissolution techniques have been developed to extract precipitates from a Grade100 (yield strength of 690 MPa) microalloyed steel. Relatively large volumes of material can be analyzed, and statistically significant quantities of precipitates of different sizes are collected. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical speciation of these precipitates. Rietveld refinement of XRD patterns is used to quantify fully the relative amounts of the precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging in the TEM.
NASA Astrophysics Data System (ADS)
Legrand, M.; Preunkert, S.; May, B.; Guilhermet, J.; Hoffman, H.; Wagenbach, D.
2013-05-01
Dissolved organic carbon (DOC) and an extended array of organic compounds were investigated in an Alpine ice core covering the 1920-1988 time period. Based on this, a reconstruction was made of the long-term trends of water-soluble organic carbon (WSOC) aerosol in the European atmosphere. It is shown that light mono- and dicarboxylates, humic-like substances, and formaldehyde account together for more than half of the DOC content of ice. This extended chemical speciation of DOC is used to estimate the DOC fraction present in ice that is related to WSOC aerosol and its change over the past. It is suggested that after World War II, the WSOC levels have been enhanced by a factor of 2 and 3 in winter and summer, respectively. In summer, the fossil fuel contribution to the enhancement is estimated to be rather small, suggesting that it arises mainly from an increase in biogenic sources of WSOC.
Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan
2012-01-01
Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.
Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit
2017-03-01
Size classified (PM 10 and PM 2.5 ) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM 10 and PM 2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM 10 and PM 2.5 , for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM 10 and PM 2.5 ) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...
2015-04-01
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...
2017-10-31
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Research on chromium and arsenic speciation in atmospheric particulate matter: short review
NASA Astrophysics Data System (ADS)
Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila
2018-01-01
Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.
Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesterberg, Dean; McNulty, Ian; Thieme, Juergen
Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less
Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales
Hesterberg, Dean; McNulty, Ian; Thieme, Juergen
2017-07-27
Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less
Kao, Katy C.; Schwartz, Katja; Sherlock, Gavin
2010-01-01
The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation. PMID:20686707
Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.
1988-01-01
Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, T.J.
1992-09-14
EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less
Uranium(IV) adsorption by natural organic matter in anoxic sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bone, Sharon E.; Dynes, James J.; Cliff, John
Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less
Uranium(IV) adsorption by natural organic matter in anoxic sediments
Bone, Sharon E.; Dynes, James J.; Cliff, John; ...
2017-01-09
Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less
Pirie, M D; Oliver, E G H; Mugrabi de Kuppler, A; Gehrke, B; Le Maitre, N C; Kandziora, M; Bellstedt, D U
2016-09-17
The disproportionate species richness of the world's biodiversity hotspots could be explained by low extinction (the evolutionary "museum") and/or high speciation (the "hot-bed") models. We test these models using the largest of the species rich plant groups that characterise the botanically diverse Cape Floristic Region (CFR): the genus Erica L. We generate a novel phylogenetic hypothesis informed by nuclear and plastid DNA sequences of c. 60 % of the c. 800 Erica species (of which 690 are endemic to the CFR), and use this to estimate clade ages (using RELTIME; BEAST), net diversification rates (GEIGER), and shifts in rates of diversification in different areas (BAMM; MuSSE). The diversity of Erica species in the CFR is the result of a single radiation within the last c. 15 million years. Compared to ancestral lineages in the Palearctic, the rate of speciation accelerated across Africa and Madagascar, with a further burst of speciation within the CFR that also exceeds the net diversification rates of other Cape clades. Erica exemplifies the "hotbed" model of assemblage through recent speciation, implying that with the advent of the modern Cape a multitude of new niches opened and were successively occupied through local species diversification.
NASA Astrophysics Data System (ADS)
Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé
2015-04-01
The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM1 mass loading was dominated by secondary inorganic species and OOA. The seasonal variations of different identified factors will be discussed as well as the influence of ship emissions.
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.
2001-12-01
As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html
Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.
2006-01-01
The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.
Montoro Leal, P; Vereda Alonso, E; López Guerrero, M M; Cordero, M T Siles; Cano Pavón, J M; García de Torres, A
2018-07-01
Arsenic, one of the main environmental pollutants and potent natural poison, is a chemical element that is spread throughout the Earth's crust. It is well known that the toxicity of arsenic is highly dependent on its chemical forms. Generally, the inorganic species are more toxic than its organics forms, and As(III) is 60 times more toxic than As(V). In environmental waters, arsenic exists predominantly in two chemical forms: As(III) and As(V). In view of these facts, fast, sensitive, accurate and simple analytical methods for the speciation of inorganic arsenic in environmental waters are required. In this work, a new magnetic solid phase extraction with a hydride generation system was coupled on line with inductively coupled plasma mass spectrometry (MSPE-HG-ICP-MS). The new system was based on the retention of As(III) and As(V) in two knotted reactors filled with (Fe 3 O 4 ) magnetic nanoparticles functionalized with [1,5-bis (2-pyridyl) 3-sulfophenylmethylene] thiocarbonohydrazide (PSTH-MNPs). As(III) and total inorganic As were sequentially eluted in different reduction conditions. The concentration of As(V) was obtained by subtracting As(III) from total As. The system runs in a fully automated way and the method has proved to have a wide linear range and to be precise, sensitive and fast. The detection limits found were 2.7 and 3.2 ng/L for As(III) and total As, respectively; with relative standard deviations (RSDs) of 2.5% and 2.7% and a sample throughput of 14.4 h -1 . In order to validate the developed method, several certified reference samples of environmental waters including sea water, were analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the speciation analysis of inorganic arsenic in well-water and sea water. Copyright © 2018 Elsevier B.V. All rights reserved.
Gencarelli, Christian Natale; De Simone, Francesco; Hedgecock, Ian Michael; Sprovieri, Francesca; Pirrone, Nicola
2014-03-01
The emission, transport, deposition and eventual fate of mercury (Hg) in the Mediterranean area has been studied using a modified version of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem). This model version has been developed specifically with the aim to simulate the atmospheric processes determining atmospheric Hg emissions, concentrations and deposition online at high spatial resolution. For this purpose, the gas phase chemistry of Hg and a parametrised representation of atmospheric Hg aqueous chemistry have been added to the regional acid deposition model version 2 chemical mechanism in WRF/Chem. Anthropogenic mercury emissions from the Arctic Monitoring and Assessment Programme included in the emissions preprocessor, mercury evasion from the sea surface and Hg released from biomass burning have also been included. Dry and wet deposition processes for Hg have been implemented. The model has been tested for the whole of 2009 using measurements of total gaseous mercury from the European Monitoring and Evaluation Programme monitoring network. Speciated measurement data of atmospheric elemental Hg, gaseous oxidised Hg and Hg associated with particulate matter, from a Mediterranean oceanographic campaign (June 2009), has permitted the model's ability to simulate the atmospheric redox chemistry of Hg to be assessed. The model results highlight the importance of both the boundary conditions employed and the accuracy of the mercury speciation in the emission database. The model has permitted the reevaluation of the deposition to, and the emission from, the Mediterranean Sea. In light of the well-known high concentrations of methylmercury in a number of Mediterranean fish species, this information is important in establishing the mass balance of Hg for the Mediterranean Sea. The model results support the idea that the Mediterranean Sea is a net source of Hg to the atmosphere and suggest that the net flux is ≈30 Mg year(-1) of elemental Hg.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-01-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484
Danley, Patrick D; Mullen, Sean P; Liu, Fenglong; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L
2007-01-01
Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution. PMID:17459168
Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record
NASA Astrophysics Data System (ADS)
Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.
2017-01-01
Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various diversity partitions. Maintaining natural migration routes and population sizes among isolated regions are vital to preserving both extant biodiversity and biogeographic pathways requisite for future diversity generation.
Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation
Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine
2011-01-01
Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.
Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates.
Magesky, Adriano; Pelletier, Émilien
2018-01-01
Silver nanoparticles (AgNPs) incorporation in commercial products is increasing due to their remarkable physical and chemical properties and their low cost on the market. Silver has been known for a long time to be highly toxic to bacterial communities, aquatic organisms, and particularly to marine biota. Strong chloro-complexes dominate Ag speciation in seawater and facilitate its persistence in dissolved form. It has a great impact on marine organisms because low concentration of silver can lead to strong bioaccumulation, partly because the neutral silver chloro complex (AgCl 0 ) is highly bioavailable. Owing to the fact that estuaries and coastal areas are considered as the ultimate fate for AgNPs, the study of their toxic effects on marine invertebrates can reveal some environmental risks related to nanosilver exposure. In an attempt to reach this goal, many invertebrate taxa including mollusks, crustaceans, echinoderms and polychaetes have been used as biological models. The main findings related to AgNP toxicity and marine invertebrates are summarized hereafter. Some cellular mechanisms involving nano-internalization (cellular uptake, distribution and elimination), DNA damaging, antioxidant cellular defenses and protein expression are discussed. Physiological effects on early stage development, silver metabolic speciation, immune response, tissue damaging, anti-oxidant effects and nano-depuration are also described. Finally, we paid attention to some recent interesting findings using sea urchin developmental stages and their cells as models for nanotoxicity investigation. Cellular and physiological processes characterizing sea urchin development revealed new and multiple toxicity mechanisms of both soluble and nano forms of silver.
Safran, Rebecca J; Scordato, Elizabeth S C; Symes, Laurel B; Rodríguez, Rafael L; Mendelson, Tamra C
2013-11-01
Speciation by divergent natural selection is well supported. However, the role of sexual selection in speciation is less well understood due to disagreement about whether sexual selection is a mechanism of evolution separate from natural selection, as well as confusion about various models and tests of sexual selection. Here, we outline how sexual selection and natural selection are different mechanisms of evolutionary change, and suggest that this distinction is critical when analyzing the role of sexual selection in speciation. Furthermore, we clarify models of sexual selection with respect to their interaction with ecology and natural selection. In doing so, we outline a research agenda for testing hypotheses about the relative significance of divergent sexual and natural selection in the evolution of reproductive isolation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Speciation of platinum(IV) in nitric acid solutions.
Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey
2013-09-16
The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.
Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption.
Li, Tao; Wang, Yan; Mao, Huiting; Wang, Shuxiao; Talbot, Robert W; Zhou, Ying; Wang, Zhe; Nie, Xiaoling; Qie, Guanghao
2018-05-01
Cloud effects on heterogeneous reactions of atmospheric mercury (Hg) are poorly understood due to limited knowledge of cloudwater Hg chemistry. Here we quantified Hg species in cloudwater at the summit of Mt. Tai in northern China. Total mercury (THg) and methylmercury (MeHg) in cloudwater were on average 70.5 and 0.15 ng L -1 , respectively, and particulate Hg (PHg) contributed two-thirds of THg. Chemical equilibrium modeling simulations suggested that Hg complexes by dissolved organic matter (DOM) dominated dissolved Hg (DHg) speciation, which was highly pH dependent. Hg concentrations and speciation were altered by cloud processing, during which significant positive correlations of PHg and MeHg with cloud droplet number concentration ( N d ) were observed. Unlike direct contribution to PHg from cloud scavenging of aerosol particles, abiotic DHg methylation was the most likely source of MeHg. Hg adsorption coefficients K ad (5.9-362.7 L g -1 ) exhibited an inverse-power relationship with cloud residues content. Morphology analyses indicated that compared to mineral particles, fly ash particles could enhance Hg adsorption due to more abundant carbon binding sites on the surface. Severe particulate air pollution in northern China may bring substantial Hg into cloud droplets and impact atmospheric Hg geochemical cycling by aerosol-cloud interactions.
Tracking niche variation over millennial timescales in sympatric killer whale lineages
Foote, Andrew D.; Newton, Jason; Ávila-Arcos, María C.; Kampmann, Marie-Louise; Samaniego, Jose A.; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S.; Gilbert, M. Thomas P.
2013-01-01
Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish. PMID:23945688
Tracking niche variation over millennial timescales in sympatric killer whale lineages.
Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P
2013-10-07
Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.
Application of the WRF-Chem model for the simulation of air quality over Cyprus
NASA Astrophysics Data System (ADS)
Kushta, Jonilda; Proestos, Yiannis; Georgiou, George; Christoudias, Theodoros; Lelieveld, Jos
2017-04-01
The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Cyprus. Cyprus is an island country with complex topography, located in the eastern corner of East Mediterranean region, affected year-long by local, regional and long range transported pollution. An extensive sensitivity analysis of the model performance has been performed over the area of interest with three domains of respective grid spacing of 40, 8 and 2 km. Different configurations have been deployed regarding horizontal resolution, simulation timestep, boundary conditions, NOx emissions and speciation method of emitted NMVOCs (Non Methane Volatile Organic Compounds). The WRF-Chem model simulated hourly concentrations of air pollutants for a month-long period (July 2014) during which measurements are available over 13 stations (4 of which background stations, 1 industrial and 8 urban/traffic stations). The model was initialized with meteorological initial and boundary conditions (ICBC) using NCAR-NCEP's F Global Forecast System output (GFS) at a 1o x1o spatial resolution. The ICBC for the chemical species are derived from the MOZART global model results (2.5o x 2.5o). Both ICBCs datasets are updated every 6 hours. The emission inventory used in the study is the EDGAR-HTAP v2 dataset with a horizontal grid resolution of 0.1o × 0.1o, while an additional dataset with speciated NMVOCs (instead of summed volatile species) is also tested. The diurnal cycle of the atmospheric concentrations of ozone averaged over the island, exhibits a maximum of 114 μg/m3 when the boundary conditions are derived from MOZART and 94 μg/m3 when the boundary conditions are not included (local background and production), suggesting a constant inflow of ozone from long range transport of about 20 μg/m3. The contribution of pollution from regional sources is more pronounced at the western border due to the characteristic summer time north-northeasterly etesian flow that brings southward the pollution produced or accumulated over Eastern Europe, the Black sea and major upwind megacities (Istanbul, Athens etc). Ozone concentrations are overestimated in all stations indicating a possible overestimation of ozone from the global model (MOZART) that has also been discussed in other studies over neighbouring countries, or an excess of ozone production in the parent domain that includes all Eastern Mediterranean. Model results are influenced by the speciation of NMVOCs with the pre-speciated emission dataset resulting in lower ozone values by an average of 5 μg/m3. Lowering NOx emission brings ozone levels closer to observations; however this does not account for the overestimation of ozone since the respective comparison of NOx levels reveals strong underestimation of NOx (both NO and NO2) even before reducing them. Horizontal, vertical and temporal resolutions show smaller impact on changing the modelled patterns of ozone concentrations. The discrepancies between modelled and observed ozone over the main Cypriot urban areas point at the need for more detailed emission inventories, either in terms of spatial resolution and/or validation of absolute emitted values, and adjustments in the use of boundary conditions from global models.
The importance of ligand speciation in environmental research: a case study.
Sillanpää, M; Orama, M; Rämö, J; Oikari, A
2001-02-21
The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.
Dang, Duc Huy; Evans, R Douglas
2018-03-01
High resolution electrospray ionization mass spectrometry (ESI-HRMS) was used to study the speciation of molybdate in interaction with halides (Cl, F, Br). Desolvation during electrospray ionization induced alteration of aqueous species but method optimization successfully suppressed artefact compounds. At low Mo concentrations, chloro(oxo)molybdate and fluoro(oxo)molybdate species were found and in natural samples, MoO 3 Cl was detected for the first time, to the best of our knowledge. Apparent equilibrium constants for Cl substitution on molybdate were calculated for a range of pH values from 4.5 to 8.5. A minor alteration in speciation during the gas phase (conversion of doubly charged MoO 4 2- to HMoO 4 - ) did not allow investigation of the molybdate acid-base properties; however this could be determined by speciation modeling. This study provides further evidence that ESI-HRMS is a fast and suitable tool to Deceasedassess the speciation of inorganic compounds such as Mo. Copyright © 2017 Elsevier B.V. All rights reserved.
Runkel, Robert L.
2010-01-01
OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.
The US EPA bas established a national network at nearly 1100 sites to monitor PM2.5 mass for testing compliance with the PM2.5 National Ambient Air Quality Standards. The objective of the field evaluation is to determine the performance characteristics for the collection of the...
ERIC Educational Resources Information Center
Drossman, Howard
2007-01-01
Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…
Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku
2016-01-01
Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...
Student Presentations of Case Studies to Illustrate Core Concepts in Soil Biogeochemistry
ERIC Educational Resources Information Center
Duckworth, Owen W.; Harrington, James M.
2012-01-01
Soil biogeochemistry, a discipline that explores the chemical speciation and transformations of elements in soils and the relationships between soils and global biogeochemical cycles, is becoming a popular course offering because it unites themes from a number of other courses. In this article, we present a set of case studies that have been used…
This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...
Mulder, Willem H; Crawford, Forrest W
2015-01-07
Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.
Speciation and distribution of cadmium and lead in salinized horizons of antrosols
NASA Astrophysics Data System (ADS)
Bulgariu, D.; Bulgariu, L.; Astefanei, D.
2009-04-01
The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of soils have been estimated on the basis of Raman and FT-IR spectra, recorded for fractions obtained after each extraction step. These data were correlated with those obtained by chemical analysis and UV-VIS spectrometry, and were used for to establish the type and weight of Cd and Pb speciation forms in studied antrosol. Our studies have been show that in medium and inferior horizons of hortic antrosols, the heavy metals have a general accumulation tendency, preferential by binding on organic matter and organic-mineral complexes, components with higher abundance in such type of soils. The selectivity and complexation mechanisms are controlled by speciation forms of the two metals. This phenomenon has two important consequences, the strong fixation of heavy metals in hortic antrosol and significant modification of structure and conformation of organic macromolecules. A specific phenomenon of hortic antrosols is that the accumulation rate of heavy metals is higher than levigation rate, and the mobile forms of these have a higher biodisponibility, being relative easy assimilated by plants. The progressive salinization of superior horizons of soils from glass houses, determined a sever perturbation of equilibrium between Cd and Pb speciation forms. In consequence these will have an accentuated migration tendency in superior horizons, as complexes with inorganic ligands, with a high mobility and biodsiponibility. The accumulation of soluble salts in superior horizons, and the formation of frangipane horizon (horizon of geochemical segregation of hortic antrosols) modified the ionic strength from soil solution and the thermodynamic activity of cadmium and lead species. Under these conditions, the levigation rate of cadmium and lead is higher than the accumulation rate, which means that the migration of these metals in soil solution occurs fast and in high concentrations. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 an Project PNCDI 2-D5 no. 52141 / 08).
Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Le Poupon, C; Angeletti, B; Ouammou, A; Mounier, S
2015-01-01
An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salameh, Therese; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine
2014-05-01
NMVOCs, emitted from various sources, are of particular interest since they contribute to the formation of tropospheric ozone, PAN and secondary organic aerosols resulting in negative impacts on human health, climate and on the environment. To identify abatement measures, a profound knowledge of emission sources and their composition is a prerequisite. Air pollution in the Middle East region remains difficult to assess and understand because of a lack of ground-based measurements and the limited information on NMVOC chemical speciation and source apportionment. Based on a large database of NMVOC observations obtained in Beirut, the capital of Lebanon (a developing country in the Middle East region, located in Western Asia on the eastern shore of the Mediterranean Sea), the overall objective of this work is to apportion the sources of NMVOCs encountered in Lebanon. First, source profiles were determined with field measurements close to the main potential emitters namely the road transport, gasoline vapour, power generation and solvent uses. The results obtained are compared to other studies held in other regions and are used to assess the emission inventory developed for Lebanon. Secondly, two intensive field campaigns were held in a receptor site in Beirut during summer 2011 and winter 2012 in order to obtain a large time resolved dataset. The PMF analysis of this dataset was applied to apportion anthropogenic sources in this area. In both seasons, combustion (road transport and power generation) and gasoline evaporation, especially in winter, were the main sources contributing to the NMVOCs in Beirut. The results will support model implementation especially by completing the emission inventory established for the year 2010 by Waked et al. 2012 according to the EEA/EMEP guidelines because of the lack of Lebanon-specific emission factor.
Chromium fate in constructed wetlands treating tannery wastewaters.
Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel
2009-06-01
Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.
A Conversation with James J. Morgan
NASA Astrophysics Data System (ADS)
Morgan, James J.; Newman, Dianne K.
2015-05-01
In conversation with professor Dianne Newman, Caltech geobiologist, James "Jim" J. Morgan recalls his early days in Ireland and New York City, education in parochial and public schools, and introduction to science in Cardinal Hayes High School, Bronx. In 1950, Jim entered Manhattan College, where he elected study of civil engineering, in particular water quality. Donald O'Connor motivated Jim's future study of O2 in rivers at Michigan, where in his MS work he learned to model O2 dynamics of rivers. As an engineering instructor at Illinois, Jim worked on rivers polluted by synthetic detergents. He chose to focus on chemical studies, seeing it as crucial for the environment. Jim enrolled for PhD studies with Werner Stumm at Harvard, who mentored his research in chemistry of particle coagulation and oxidation processes of Mn(II) and (IV). In succeeding decades, until retirement in 2000, Jim's teaching and research centered on aquatic chemistry; major themes comprised rates of abiotic manganese oxidation on particle surfaces and flocculation of natural water particles, and chemical speciation proved the key.
NASA Astrophysics Data System (ADS)
Upadhyay, Abhishek; Dey, Sagnik; Goyal, Pramila
2017-04-01
Air quality of a region directly affects health of entire biotic and abiotic components of ecosystem. Exposure to particulate matter smaller than 2.5 µm (PM2.5) in atmosphere has been directly related to mortality and mobility in various studies. India is one of the aerosol hotspots globally with 0.8 million premature death attributed to exposure to ambient PM2.5. Robust long-term in-situ data of speciated PM2.5 is lacking in India. The problem cannot be resolved by utilizing satellite data as inferring composition is difficult. Therefore a modelling approach is required. We examine spatial and temporal distribution of PM2.5 and its constituent species with a regional and global inventory through chemical transport model (WRF-Chem) over India. The simulation is conducted with RADM2 chemistry and GOCART aerosol module for 8 years (2007-2014). Emissions are interpolated for domain from global anthropogenic emission inventory RETRO and EDGAR for species other than BC, OC and Sulfate. Results from GOCART global inventory are compared with results from a regional inventory for species OC, BC and Sulfate. Validation of CTM simulations against observations (ground based monitoring stations and satellite observations) demonstrates the capability of the CTM to represent space-time variation of aerosols in this region. For example, the build-up of aerosols over the eastern part of the Indo-Gangetic Basin (IGB) during winter (as observed by space-borne sensors) due to the meteorological influence is well captured by the CTM. A correlation of 0.51 and 0.52 has been observed between monitored and model simulated PM2.5 at the two big cities of India, New Delhi and Mumbai respectively. Distribution of PM2.5 is high in the Indo-Gangetic Basin (IGB) and distribution of OC and BC is also more in IGB region with both emission inventories. In the IGB region OC and BC contribute 8 - 20 % and 2.5 - 5 % to total PM2.5. Global and regional emission inventories are showing similar distribution pattern for OC, BC and Sulfate. GOCART emission inventory is underestimating BC and OC emission in comparison to IITB inventory by almost 50% over the IGB region. Better spatial resolution in the regional inventory may be the reason. WRF-Chem simulated OC and BC concentration is underestimated by 25% and 50% over the IGB region with GOCART inventory compare to regional inventory. In comparison to IGB region other parts of India has lower concentration and these reasons are showing comparatively less difference in concentration in both emission scenario. Vertical distribution of extinction coefficient showing that aerosol concentration is confined to lower levels in winter but it is geting elevated in summer. Our results provide a comprehensive picture of aerosol speciation over India and can be used for further climate and health impact studies.
Chemical Speciation of Chromium in Drilling Muds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo
2007-02-02
Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less
Microbial transformations of uranium in wastes and implication on its mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki,Y.; Nankawa, T.; Ozaki, T.
2008-09-14
Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanismsmore » of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.« less
Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander
2018-09-01
For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.
Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David
2011-01-01
Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar
2017-07-01
Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.
Omnivory in birds is a macroevolutionary sink
Burin, Gustavo; Kissling, W. Daniel; Guimarães, Paulo R.; Şekercioğlu, Çağan H.; Quental, Tiago B.
2016-01-01
Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750
Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P
2011-06-01
Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.
Chemistry of Marine Ligands and Siderophores
Vraspir, Julia M.; Butler, Alison
2011-01-01
Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented. PMID:21141029
Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie
2013-12-01
The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.
2016-12-01
Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore-fluid redox, not ancient water column chemistry. While our analyses and biological indicators suggest that the studied samples of the lower Belt Supergroup and New England were deposited in oxic water columns, iron speciation results imply anoxic/ferruginous conditions due to diagenetic alterations affecting the record.
NASA Astrophysics Data System (ADS)
Pokrovsky, Oleg S.; Schott, Jacques
2004-01-01
Dissolution and precipitation rates of brucite (Mg(OH) 2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10 -4 to 3 M), saturation index (-12 < log Ω < 0.4) and aqueous magnesium concentrations (10 -6 to 5·10 -4 M). Brucite surface charge and isoelectric point (pH IEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pH IEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m 2) and lack of dependence on ionic strength predicts the dominance of >MgOH 2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO - as pH increases to 10-12. Rates are proportional to the square of >MgOH 2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH 2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity: R=k Mg+ · {>MgOH 2+} 2 · (1-Ω 2) where kMg+ is the dissolution rate constant, {> i} is surface species concentration (mol/m 2), and Ω is the solution saturation index with respect to brucite. Measurements of nonsteady state brucite dissolution rates, in response to cycling the pH from 12 to 2 (pH-jump experiments), indicate the important role of surface hydroxylation — that leads to the formation of Mg oxo or -hydroxo complexes — in the formation of dissolution-active sites. Replacement of water molecules by these oxygen donor complexes in the Mg coordination sphere has a labilizing effect on the dynamics of the remaining water molecules and thus increases reaction rates.
Model for macroevolutionary dynamics.
Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E
2013-07-02
The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.
Bonnet-Lebrun, Anne-Sophie; Manica, Andrea; Eriksson, Anders; Rodrigues, Ana S L
2017-05-01
Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modeled communities-that is with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities-from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in preequilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under preequilibrium conditions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J
2010-02-15
Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
NASA Astrophysics Data System (ADS)
Nergui, T.; Lee, Y.; Chung, S. H.; Lamb, B. K.; Yokelson, R. J.; Barsanti, K.
2017-12-01
A number of chamber and field measurements have shown that atmospheric organic aerosols and their precursors produced from wildfires are significantly underestimated in the emission inventories used for air quality models for various applications such as regulatory strategy development, impact assessments of air pollutants, and air quality forecasting for public health. The AIRPACT real-time air quality forecasting system consistently underestimates surface level fine particulate matter (PM2.5) concentrations in the summer at both urban and rural locations in the Pacific Northwest, primarily result of errors in organic particulate matter. In this work, we implement updated chemical speciation and emission factors based on FLAME-IV (Fourth Fire Lab at Missoula Experiment) and other measurements in the Blue-Sky fire emission model and the SMOKE emission preprocessor; and modified parameters for the secondary organic aerosol (SOA) module in CMAQ chemical transport model of the AIRPACT modeling system. Simulation results from CMAQ version 5.2 which has a better treatment for anthropogenic SOA formation (as a base case) and modified parameterization used for fire emissions and chemistry in the model (fire-soa case) are evaluated against airborne measurements downwind of the Big Windy Complex Fire and the Colockum Tarps Fire, both of which occurred in the Pacific Northwest in summer 2013. Using the observed aerosol chemical composition and mass loadings for organics, nitrate, sulfate, ammonium, and chloride from aircraft measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), we assess how new knowledge gained from wildfire measurements improve model predictions for SOA and its contribution to the total mass of PM2.5 concentrations.
Hybrid Speciation in a Marine Mammal: The Clymene Dolphin (Stenella clymene)
Amaral, Ana R.; Lovewell, Gretchen; Coelho, Maria M.; Amato, George; Rosenbaum, Howard C.
2014-01-01
Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow. PMID:24421898
Hybrid speciation in a marine mammal: the clymene dolphin (Stenella clymene).
Amaral, Ana R; Lovewell, Gretchen; Coelho, Maria M; Amato, George; Rosenbaum, Howard C
2014-01-01
Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.
X exceptionalism in Caenorhabditis speciation.
Cutter, Asher D
2017-11-13
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.
Tsai, Yun-ni; Lin, Cheng-hsing; Hsu, I-hsiang; Sun, Yuh-chang
2014-01-02
We have developed an on-line sequential photocatalyst-assisted digestion and vaporization device (SPADVD), which operates through the nano-TiO2-catalyzed photo-oxidation and reduction of selenium (Se) species, for coupling between anion exchange chromatography (LC) and inductively coupled plasma mass spectrometry (ICP-MS) systems to provide a simple and sensitive hyphenated method for the speciation analysis of Se species without the need for conventional chemical digestion and vaporization techniques. Because our proposed on-line SPADVD allows both organic and inorganic Se species in the column effluent to be converted on-line into volatile Se products, which are then measured directly through ICP-MS, the complexity of the procedure and the probability of contamination arising from the use of additional chemicals are both low. Under the optimized conditions for SPADVD - using 1g of nano-TiO2 per liter, at pH 3, and illuminating for 80 s - we found that Se(IV), Se(VI), and selenomethionine (SeMet) were all converted quantitatively into volatile Se products. In addition, because the digestion and vaporization efficiencies of all the tested selenicals were improved when using our proposed on-line LC/SPADVD/ICP-MS system, the detection limits for Se(IV), Se(VI), and SeMet were all in the nanogram-per-liter range (based on 3σ). A series of validation experiments - analysis of neat and spiked extracted samples - indicated that our proposed methods could be applied satisfactorily to the speciation analysis of organic and inorganic Se species in the extracts of Se-enriched supplements. Copyright © 2013. Published by Elsevier B.V.
Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach.
Antunes, Paula M C; Kreager, Nancy J
2014-10-01
In the present study, predictive measures for Pb toxicity and Lemna minor were developed from bioassays with 7 surface waters having varied chemistries (0.5-12.5 mg/L dissolved organic carbon, pH of 5.4-8.3, and water hardness of 8-266 mg/L CaCO3 ). As expected based on water quality, 10%, 20%, and 50% inhibitory concentration (IC10, IC20, and IC50, respectively) values expressed as percent net root elongation (%NRE) varied widely (e.g., IC20s ranging from 306 nM to >6920 nM total dissolved Pb), with unbounded values limited by Pb solubility. In considering chemical speciation, %NRE variability was better explained when both Pb hydroxides and the free lead ion were defined as bioavailable (i.e., f{OH} ) and colloidal Fe(III)(OH)3 precipitates were permitted to form and sorb metals (using FeOx as the binding phase). Although cause and effect could not be established because of covariance with alkalinity (p = 0.08), water hardness correlated strongly (r(2) = 0.998, p < 0.0001) with the concentration of total Pb in true solution ([Pb]T_True solution ). Using these correlations as the basis for predictions (i.e., [Pb]T_True solution vs water hardness and %NRE vs f{OH} ), IC20 and IC50 values produced were within a factor of 2.9 times and 2.2 times those measured, respectively. The results provide much needed effect data for L. minor and highlight the importance of chemical speciation in Pb-based risk assessments for aquatic macrophytes. © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.
2017-12-01
Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.
Fate of metals before and after chemical extraction of incinerated sewage sludge ash.
Li, Jiang-Shan; Tsang, Daniel C W; Wang, Qi-Ming; Fang, Le; Xue, Qiang; Poon, Chi Sun
2017-11-01
Chemical extraction of incinerated sewage sludge ash (ISSA) can effectively recycle P, but it may change the speciation and mobility of the remaining metals. This study investigated the changes of the leaching potential and distribution of metals in the chemically extracted ISSA. Batch extraction experiments with different extractants, including inorganic acids, organic acids, and chelating agents, were conducted on the ISSA collected from a local sewage sludge incinerator. The extraction of Zn, Cu, Pb, Ni, Cd, Ba, Cr and As from the ISSA and the corresponding changes of the mobility and speciation were examined. The results showed that the metals in ISSA were naturally stable because large portions of metals were associated with the residual fraction. The inorganic (HNO 3 and H 2 SO 4 ) and organic acids (citric acid and oxalic acid) significantly co-dissolved the metals through acid dissolution, but the reduction in the total concentrations did not tally the leaching potential of the residual metals. The increase in the exchangeable fraction due to destabilization by the extractants significantly enhanced the mobility and leachability of the metals in the residual ISSA. Chelating agents (EDTA and EDTMP) only extracted a small quantity of metals and had a marginal effect on the fate of the residual metals, but they significantly reduced the Fe/Mn oxide-bound fraction. In comparison, the bioaccessibility of residual metals were reduced to varying extent. Therefore, the disposal or reuse of chemically extracted ISSA should be carefully evaluated in view of possible increase in mobility of residual metals in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Rapko, Brian M.; Anderson, Amity
2014-09-30
The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO 4 -. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and themore » development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO) 3Tc(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.« less
Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia)
NASA Astrophysics Data System (ADS)
van der Ent, Antony; Callahan, Damien L.; Noller, Barry N.; Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech J.; Barnabas, Alban; Harris, Hugh H.
2017-02-01
The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, Phyllanthus balgooyi, Phyllanthus securinegioides (Phyllanthaceae) and Rinorea bengalensis (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in Phyllanthus balgooyi) in all three species. However, the species differ in their leaves - in P. balgooyi the highest Ni concentration is in the phloem, but in P. securinegioides and R. bengalensis in the epidermis and in the spongy mesophyll (R. bengalensis). The chemical speciation of Ni2+ does not substantially differ between the species nor between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC-MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni2+ chemical speciation in hyperaccumulator plants.
NASA Astrophysics Data System (ADS)
Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea
2016-04-01
Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.
Ashraf, M A; Maah, M J; Yusoff, I
2012-01-01
This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.
Ashraf, M. A.; Maah, M. J.; Yusoff, I.
2012-01-01
This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As. PMID:22566758
Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara
2010-04-15
The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.
NASA Astrophysics Data System (ADS)
Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.
2015-07-01
Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.
Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
Meagher, Richard B; Heaton, Andrew C P
2005-12-01
Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the xylem up to leaves, and efficient xylem unloading aboveground. These systems can be enhanced for the movement of arsenic and mercury. (6) Aboveground control over the electrochemical state and chemical speciation of elemental pollutants will maximize their storage in leaves, stems, and vascular tissues. Our research suggests ionic Hg(II) and arsenite will be the best chemical species to trap aboveground. (7) Chemical sinks can increase the storage capacity for essential nutrients like iron, zinc, copper, sulfate, and phosphate. Organic acids and thiol-rich chelators are among the important chemical sinks that could trap maximal levels of mercury and arsenic aboveground. (8) Physical sinks such as subcellular vacuoles, epidermal trichome cells, and dead vascular elements have shown the evolutionary capacity to store large quantities of a few toxic pollutants aboveground in various native hyperaccumulators. Specific plant transporters may already recognize gluthione conjugates of Hg(II) or arsenite and pump them into vacuole.
When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout.
Cassata, W S; Prussin, S G; Knight, K B; Hutcheon, I D; Isselhardt, B H; Renne, P R
2014-11-01
Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptation of Selenastrum capricornutum (Chlorophyceae) to copper
Kuwabara, J.S.; Leland, H.V.
1986-01-01
Selenastrum capricornutum Printz, growing in a chemically defined medium, was used as a model for studying adaptation of algae to a toxic metal (copper) ion. Cells exhibited lag-phase adaptation to 0.8 ??M total Cu (10-12 M free ion concentration) after 20 generations of Cu exposure. Selenastrum adapted to the same concentration when Cu was gradually introduced over an 8-h period using a specially designed apparatus that provided a transient increase in exposure concentration. Cu adaptation was not attributable to media conditioning by algal exudates. Duration of lag phase was a more sensitive index of copper toxicity to Selenastrum that was growth rate or stationary-phase cell density under the experimental conditions used. Chemical speciation of the Cu dosing solution influenced the duration of lag phase even when media formulations were identical after dosing. Selenastrum initially exposed to Cu in a CuCl2 injection solution exhibited a lag phase of 3.9 d, but this was reduced to 1.5 d when a CuEDTA solution was used to achieve the same total Cu and EDTA concentrations. Physical and chemical processes that accelerated the rate of increase in cupric ion concentration generally increased the duration of lag phase. ?? 1986.
SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...
SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT
SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...
Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.
2005-12-01
Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.
NASA Astrophysics Data System (ADS)
Fujimori, Takashi; Takigami, Hidetaka; Takaoka, Masaki
2013-04-01
Heavy metals and toxic chlorinated aromatic compounds (aromatic-Cls) such as dioxins and polychlorinated biphenyls (PCBs) are found at high concentrations and persist in surface soil at wire burning sites (WBSs) in developing countries in which various wire cables are recycled to yield pure metals. Chlorine K-edge near-edge X-ray absorption fine structure (NEXAFS) is used to detect the specific chemical form of Cl and estimate its amount using a spectrum jump in the solid phase. Quantitative X-ray speciation of Cl was applied to study the mechanisms of aromatic-Cls formation in surface soil at WBSs in Southeast Asia. Relationships between aromatic-Cls and chlorides of heavy metals were evaluated because heavy metals are promoters of the thermochemical solid-phase formation of aromatic-Cls.
NASA Astrophysics Data System (ADS)
Kaise, Toshikazu
Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.
Sachet, Jean-Marie; Roques, Alain; Després, Laurence
2006-12-01
Phytophagous insects provide useful models for the study of ecological speciation. Much attention has been paid to host shifts, whereas situations where closely related lineages of insects use the same plant during different time periods have been relatively neglected in previous studies of insect diversification. Flies of the genus Strobilomyia are major pests of conifers in Eurasia and North America. They are specialized feeders in cones and seeds of Abies (fir), Larix (larch) ,and Picea (spruce). This close association is accompanied by a large number of sympatric Strobilomyia species coexisting within each tree genus. We constructed a molecular phylogeny with a 1320 base-pair fragment of mitochondrial DNA that demonstrated contrasting patterns of speciation in larch cone flies, as opposed to spruce and fir cone flies; this despite their comparable geographic distributions and similar resource quality of the host. Species diversity is the highest on larch, and speciation is primarily driven by within-host phenological shifts, followed by allopatric speciation during geographical expansion. By contrast, fewer species exploit spruce and fir, and within-host phenological shifts did not occur. This study illustrates within-host adaptive radiation through phenological shifts, a neglected mode of sympatric speciation.
Dranguet, P; Le Faucheur, S; Cosio, C; Slaveykova, V I
2017-01-25
Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r 2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r 2 = 0.95, p = 0.027), despite its extremely low concentrations (10 -25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the rRNA 16S gene. The present study suggests that non-extractable IHg concentrations in biofilms are a useful proxy of IHg bioavailable forms in waters whereas the hgcA and merA genes are good biomarkers of both biofilm IHg exposure and bioavailability.
Andújar, Carmelo; Pérez-González, Sergio; Arribas, Paula; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio
2017-11-01
Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species' habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below-ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species-rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil. A time-calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species-area-age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long-term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area- and age-dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna. © 2017 John Wiley & Sons Ltd.
Nolte, Tom M; Pinto-Gil, Kevin; Hendriks, A Jan; Ragas, Ad M J; Pastor, Manuel
2018-01-24
Microbial biomass and acclimation can affect the removal of organic chemicals in natural surface waters. In order to account for these effects and develop more robust models for biodegradation, we have compiled and curated removal data for un-acclimated (pristine) surface waters on which we developed quantitative structure-activity relationships (QSARs). Global analysis of the very heterogeneous dataset including neutral, anionic, cationic and zwitterionic chemicals (N = 233) using a random forest algorithm showed that useful predictions were possible (Q ext 2 = 0.4-0.5) though relatively large standard errors were associated (SDEP ∼0.7). Classification of the chemicals based on speciation state and metabolic pathway showed that biodegradation is influenced by the two, and that the dependence of biodegradation on chemical characteristics is non-linear. Class-specific QSAR analysis indicated that shape and charge distribution determine the biodegradation of neutral chemicals (R 2 ∼ 0.6), e.g. through membrane permeation or binding to P450 enzymes, whereas the average biodegradation of charged chemicals is 1 to 2 orders of magnitude lower, for which degradation depends more directly on cellular uptake (R 2 ∼ 0.6). Further analysis showed that specific chemical classes such as peptides and organic halogens are relatively less biodegradable in pristine surface waters, resulting in the need for the microbial consortia to acclimate. Additional literature data was used to verify an acclimation model (based on Monod-type kinetics) capable of extrapolating QSAR predictions to acclimating conditions such as in water treatment, downstream lakes and large rivers under μg L -1 to mg L -1 concentrations. The framework developed, despite being based on multiple assumptions, is promising and needs further validation using experimentation with more standardised and homogenised conditions as well as adequate characterization of the inoculum used.
NASA Astrophysics Data System (ADS)
Jahn, S.; Schmidt, C.
2008-12-01
Aqueous fluids play an essential role in mass and energy transfer in the lithosphere. Their presence has also a large effect on physical properties of rocks, e.g. the electrical conductivity. Many chemical and physical properties of aqueous fluids strongly depend on the speciation, but very little is known about this fundamental parameter at high pressures and temperatures, e.g. at subduction zone conditions. Here we use a combined approach of first-principles molecular dynamics simulation and Raman spectroscopy to study the molecular structure of aqueous 2~mol/kg MgSO4 fluids up to pressures of 3~GPa and temperatures of 750~°C. MgSO4-H2O is selected as a model system for sulfate bearing subduction zone fluids. The simulations are performed using Car-Parrinello dynamics, a system size of 120 water and four MgSO4 molecules with production runs of at least 10~ps at each P and T. Raman spectra were obtained in situ using a Bassett-type hydrothermal diamond anvil cell with external heating. Both simulation and spectroscopic data show a dynamic co-existence of various associated molecular species as well as dissociated Mg2+ and SO42- in the single phase fluid. Fitting the Raman signal in the frequency range of the ν1-SO42- stretching mode yields the P-T dependence of the relative proportions of different peaks. The latter can be assigned to species based on literature data and related to the species found in the simulation. The dominant associated species found in the P-T range of interest here are Mg-SO4 ion pairs with one (monodentate) and two (bidentate) binding sites. At the highest P and T, an additional peak is identified. At low pressures and high temperature (T>230~°C), kieserite, MgSO4·H2O, nucleated in the experiment. At the same conditions the simulations show a clustering of Mg, which is interpreted as a precursor of precipitation. In conclusion, the speciation of aqueous MgSO4 fluid shows a complex behavior at high P and T that cannot be extrapolated from ambient conditions. The combination of molecular modeling and in situ spectroscopic experiments is a promising approach towards quantitative understanding of geochemical processes in subduction zones.
Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille
2014-04-01
In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the health risks involved. Copyright © 2013 Elsevier B.V. All rights reserved.
Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon
2017-08-30
Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.
Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Elskens, Marc; Phrommavanh, Vannapha; Descostes, Michael
2016-03-24
The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 μm, 0.2 μm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool. Copyright © 2016 Elsevier B.V. All rights reserved.
Wesener, Thomas; Raupach, Michael J.; Decker, Peter
2011-01-01
To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological) phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalis n. sp. and A. jeekeli n. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast (A. cowani), the Ambohijanahary and Ambohitantely Mountains in the mid-west (A. sanguineus), and the Marojejy Mountain in the northeast (A. rubrodorsalis n. sp.). An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus - A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to disappear, which might limit the possible resolution of biogeographic analyses on Madagascar. PMID:22162998
Interaction of cadmium with phosphate on goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van
1997-08-01
Interactions between different ions are of importance in understanding chemical processes in natural systems. In this study simultaneous adsorption of phosphate and cadmium on goethite is studied in detail. The charge distribution (CD)-multisite complexation (MUSIC) model has been successful in describing extended data sets of cadmium adsorption and phosphate adsorption on goethite. In this study, the parameters of this model for these two data sets were combined to describe a new data set of simultaneous adsorption of cadmium and phosphate on goethite. Attention is focused on the surface speciation of cadmium. With the extra information that can be obtained frommore » the interaction experiments, the cadmium adsorption model is refined. For a perfect description of the data, the singly coordinated surface groups at the 110 face of goethite were assumed to form both monodentate and bidentate surface species with cadmium. The CD-MUSIC model is able to describe data sets of both simultaneous and single adsorption of cadmium and phosphate with the same parameters. The model calculations confirmed the idea that only singly coordinated surface groups are reactive for specific ion binding.« less
Lin, Lu-Xiu; Li, Shun-Xing; Zheng, Feng-Ying
2014-06-01
One of the causes of the high cost of pharmaceuticals and the major obstacles to rapidly assessing the bioavailability and risk of a chemical is the lack of experimental model systems. A new pre-treatment technology, in vitro bionic digestion was designed for metal analysis in Lianhua Qingwen capsule. The capsule was digested on 37 degrees C under the acidity of the stomach or intestine, and with the inorganic and organic compounds (including digestive enzymes) found in the stomach or intestine, and then the chyme was obtained. Being similar to the biomembrane between the gastrointestinal tract and blood vessels, monolayer liposome was used as biomembrane model Affinity-monolayer liposome metals (AMLMs) and water-soluble metals were used for metal speciation analysis in the capsule. Based on the concentration of AMLMs, the main absorption site of trace metals was proposed. The metal total contents or the concentration of AMLMs in the capsule were compared to the nutritional requirements, daily permissible dose and heavy metal total contents from the "import and export of medicinal plants and preparation of green industry state standards". The metal concentrations in the capsule were within the safety baseline levels for human consumption. After in vitro bionic digestion, most of trace metals were absorbed mainly in intestine. The concentration of As, Cd, Pb was 0.38, 0.07, 1.60 mg x kg(-1), respectively, far less than the permissible dose from the "import and export of medicinal plants and preparation of green industry state standards".
Origin and distribution of desert ants across the Gibraltar Straits.
Villalta, Irene; Amor, Fernando; Galarza, Juan A; Dupont, Simon; Ortega, Patrocinio; Hefetz, Abraham; Dahbi, Abdallah; Cerdá, Xim; Boulay, Raphaël
2018-01-01
The creation of geographic barriers has long been suspected to contribute to the formation of new species. We investigated the phylogeography of desert ants in the western Mediterranean basin in order to elucidate their mode of diversification. These insects which have a low dispersal capacity are recently becoming important model systems in evolutionary studies. We conducted an extensive sampling of species belonging to the Cataglyphis albicans group in the Iberian Peninsula (IP) and the northern Morocco (North Africa; NA). We then combined genetic, chemical and morphological analyses. The results suggest the existence of at least three and five clades in the IP and NA, respectively, whose delineation partially encompass current taxonomic classification. The three Iberian clades are monophyletic, but their origin in NA is uncertain (79% and 22% for Bayesian and Maximum Likelihood support, respectively). The estimation of divergence time suggests that a speciation process was initiated after the last reopening of the Gibraltar Straits ≈5.33 Ma. In the IP, the clades are parapatric and their formation may have been triggered by the fragmentation of a large population during the Pleistocene due to extended periods of glaciation. This scenario is supported by demographic analyses pointing at a recent expansion of Iberian populations that contrasts with the progressive contraction of the NA clades. Niche modeling reveals that this area, governed by favorable climatic conditions for desert ants, has recently increased in the IP and decreased in NA. Altogether, our data points at geoclimatic events as major determinants of species formation in desert ants, reinforcing the role of allopatric speciation. Copyright © 2017 Elsevier Inc. All rights reserved.
SPECIATE 4.2: speciation Database Development Documentation
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...
The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat
Puechmaille, Sébastien J.; Gouilh, Meriadeg Ar; Piyapan, Piyathip; Yokubol, Medhi; Mie, Khin Mie; Bates, Paul J.; Satasook, Chutamas; Nwe, Tin; Bu, Si Si Hla; Mackie, Iain J.; Petit, Eric J.; Teeling, Emma C.
2011-01-01
The sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world's smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence. Within the geographically continuous Thai population, we show that geographic distance has a primary role in limiting gene flow rather than echolocation divergence. In line with sensory-driven speciation models, we suggest that in C. thonglongyai, limited gene flow creates the suitable conditions that favour the evolution of sensory divergence via local adaptation. PMID:22146392
Ruiz-Sanchez, Eduardo; Specht, Chelsea D.
2014-01-01
The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub - all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species. PMID:24905911
Ruiz-Sanchez, Eduardo; Specht, Chelsea D
2014-01-01
The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub--all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species.
Matzke, Nicholas J
2014-11-01
Founder-event speciation, where a rare jump dispersal event founds a new genetically isolated lineage, has long been considered crucial by many historical biogeographers, but its importance is disputed within the vicariance school. Probabilistic modeling of geographic range evolution creates the potential to test different biogeographical models against data using standard statistical model choice procedures, as long as multiple models are available. I re-implement the Dispersal-Extinction-Cladogenesis (DEC) model of LAGRANGE in the R package BioGeoBEARS, and modify it to create a new model, DEC + J, which adds founder-event speciation, the importance of which is governed by a new free parameter, [Formula: see text]. The identifiability of DEC and DEC + J is tested on data sets simulated under a wide range of macroevolutionary models where geography evolves jointly with lineage birth/death events. The results confirm that DEC and DEC + J are identifiable even though these models ignore the fact that molecular phylogenies are missing many cladogenesis and extinction events. The simulations also indicate that DEC will have substantially increased errors in ancestral range estimation and parameter inference when the true model includes + J. DEC and DEC + J are compared on 13 empirical data sets drawn from studies of island clades. Likelihood-ratio tests indicate that all clades reject DEC, and AICc model weights show large to overwhelming support for DEC + J, for the first time verifying the importance of founder-event speciation in island clades via statistical model choice. Under DEC + J, ancestral nodes are usually estimated to have ranges occupying only one island, rather than the widespread ancestors often favored by DEC. These results indicate that the assumptions of historical biogeography models can have large impacts on inference and require testing and comparison with statistical methods. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plume and wake dynamics, mixing, and chemistry behind an HSCT aircraft
NASA Technical Reports Server (NTRS)
Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.
1991-01-01
The chemical evolution and mixing and vortical motion of a High Speed Civil Transport's engine exhausts must be analyzed in order to track the gas and its speciation as emissions are mixed to atmospheric scales. Attention is presently given to an analytic model of the wake dynamical processes which accounts for the roll-up of the trailing vorticity, its breakup due to the Crow instability, and the subsequent evolution and motion of the reconnected vorticity. The concentrated vorticity is noted to wrap up the buoyant exhaust and suppress its continued mixing and dilution. The species tracked encompass those which could be heterogeneously reactive on the surfaces of the condensed ice particles, and those capable of reacting with exhaust soot particle surfaces to form active contrail and/or cloud condensation nuclei.
Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion.
Solon, Kimberly; Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Volcke, Eveline I P; Tait, Stephan; Batstone, Damien; Gernaey, Krist V; Jeppsson, Ulf
2015-03-01
Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. A speciation sub-routine based on a multi-dimensional Newton-Raphson (NR) iteration method is developed to address algebraic interdependencies. The model also includes ion pairs that play an important role in wastewater treatment. The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance (up to 18% for effluent quality and 7% for operational cost) but that for pH prediction, activity corrections are more important than ion pairing effects. Both are likely to be required when precipitation is to be modelled. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ground based and airborne atmospheric measurements near bucharest
NASA Astrophysics Data System (ADS)
Nemuc, Anca; Boscornea, Andreea; Belegante, Livio; Vasilescu, Jeni; Vajaiac, Sorin; Ene, Dragos; Marmureanu, Luminita; Andrei, Simona
2018-04-01
This paper presents the results from a coordinated approach for atmospheric investigation, exploring synergies between different techniques. A wide range of instruments have been used during an intensive measurement period both from ground (lidar, sunphotometer, aethalometer and Aerosol Chemical Speciation Monitor) and airborne (aerodynamic particle sizer, the Picarro gas analyzer and the NO2 CAPS analyzer) in 2016 over Magurele, 6 km South West of Bucharest.
2013-01-01
Background The paper presents the evaluation of soil contamination with total, water-available, mobile, semi-mobile and non-mobile Hg fractions in the surroundings of a former chlor-alkali plant in connection with several chemical soil characteristics. Principal Component Analysis and Cluster Analysis were used to evaluate the chemical composition variability of soil and factors influencing the fate of Hg in such areas. The sequential extraction EPA 3200-Method and the determination technique based on capacitively coupled microplasma optical emission spectrometry were checked. Results A case study was conducted in the Turda town, Romania. The results revealed a high contamination with Hg in the area of the former chlor-alkali plant and waste landfills, where soils were categorized as hazardous waste. The weight of the Hg fractions decreased in the order semi-mobile > non-mobile > mobile > water leachable. Principal Component Analysis revealed 7 factors describing chemical composition variability of soil, of which 3 attributed to Hg species. Total Hg, semi-mobile, non-mobile and mobile fractions were observed to have a strong influence, while the water leachable fraction a weak influence. The two-dimensional plot of PCs highlighted 3 groups of sites according to the Hg contamination factor. The statistical approach has shown that the Hg fate in soil is dependent on pH, content of organic matter, Ca, Fe, Mn, Cu and SO42- rather than natural components, such as aluminosilicates. Cluster analysis of soil characteristics revealed 3 clusters, one of which including Hg species. Soil contamination with Cu as sulfate and Zn as nitrate was also observed. Conclusions The approach based on speciation and statistical interpretation of data developed in this study could be useful in the investigation of other chlor-alkali contaminated areas. According to the Bland and Altman test the 3-step sequential extraction scheme is suitable for Hg speciation in soil, while the used determination method of Hg is appropriate. PMID:24252185
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence.
Roux, Camille; Fraïsse, Christelle; Romiguier, Jonathan; Anciaux, Yoann; Galtier, Nicolas; Bierne, Nicolas
2016-12-01
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.
2017-12-01
One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Roy, D.M.; Mann, B.
1995-12-31
This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less
NASA Astrophysics Data System (ADS)
Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.
2015-12-01
Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.
Speciation of Mg in biogenic calcium carbonates
NASA Astrophysics Data System (ADS)
Farges, F.; Meibom, A.; Flank, A.-M.; Lagarde, P.; Janousch, M.; Stolarski, J.
2009-11-01
A selection of marine biominerals, mostly aragonitic coral skeletons were probed at the Mg K-edge by XANES spectroscopy coupled to μXRF methods and compared to an extensive set of relevant model compounds (silicates, carbonates, oxides and organic). Extensive methodologies are required to better describe the speciation of Mg in those minerals. A combination of ab-initio XANES calculations for defective clusters around Mg in aragonite together with wavelets analyzes of the XANES region are required to robustly interpret the spectra. When using those methodologies, the speciation of Mg ranges from a magnesite-type environment in some scleractinian corals to an organic-type environment. In all environments, the Mg-domains probed appear to be less than 1 nm in size.
Southeast Atmosphere Studies: learning from model-observation syntheses
NASA Astrophysics Data System (ADS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-02-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Southeast Atmosphere Studies: learning from model-observation syntheses
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
NASA Astrophysics Data System (ADS)
Jathar, Shantanu H.; Woody, Matthew; Pye, Havala O. T.; Baker, Kirk R.; Robinson, Allen L.
2017-03-01
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30-40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.
Southeast Atmosphere Studies: Learning from Model-Observation Syntheses
NASA Technical Reports Server (NTRS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu;
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles
NASA Astrophysics Data System (ADS)
Barrachin, M.; Dubourg, R.; Kissane, M. P.; Ozrin, V.
2009-03-01
Supported by results of calculations performed with two analytical tools (MFPR, which takes account of physical and chemical mechanisms in calculating the chemical forms and physical locations of fission products in UO2, and MEPHISTA, a thermodynamic database), this paper presents an investigation of some important aspects of the fuel microstructure and chemical evolutions of irradiated TRISO particles. The following main conclusions can be identified with respect to irradiated TRISO fuel: first, the relatively low oxygen potential within the fuel particles with respect to PWR fuel leads to chemical speciation that is not typical of PWR fuels, e.g., the relatively volatile behaviour of barium; secondly, the safety-critical fission-product caesium is released from the urania kernel but the buffer and pyrolytic-carbon coatings could form an important chemical barrier to further migration (i.e., formation of carbides). Finally, significant releases of fission gases from the urania kernel are expected even in nominal conditions.
NASA Astrophysics Data System (ADS)
Hauffe, Torsten; Albrecht, Christian; Wilke, Thomas
2016-05-01
The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the "metacommunity speciation model".The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes - environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.
NASA Astrophysics Data System (ADS)
De Simone, F.; Hedgecock, I. M.; Cinnirella, S.; Carbone, F.; Sprovieri, F.; Pirrone, N.
2017-12-01
The burning of vegetation is an environmental process that impacts the chemical composition of troposphere on a global scale, and has significant consequences on atmospheric pollution and climate. ENSO influences the alternating patterns of drier and wetter periods in almost all continents, therefore causing a rise in, and varying the timing of, fire activity in numerous regions and ecosystems (Le Page et al). A large amount of legacy Hg is currently buffered in different environmental compartments, including soil and vegetation, due to past and current anthropogenic processes and activities. Biomass Burning (BB) is a major source of atmospheric Hg, and a main driver in recycling this legacy Hg which is eventually re-deposited over land and oceans. Hg from BB is emitted mainly as Hg(0)(g), but a large fraction (up to 30% and more) is released as Hg bound to particulate matter, Hg(p), which is more likely to be deposited close to the fire activity (De Simone et al). Thus, speciation is one of the most important factors in determining the redistribution of Hg, and of the subsequent geographical distribution of its atmospheric deposition. Although the drivers controlling speciation remain uncertain, there is evidence that it depends on burn characteristics and fuel moisture content, which depends on the climatological characteristics of the regions where BB occurs (Obrist et al). The areas where atmospheric Hg is deposited depends ultimately on atmospheric transport, transformation and precipitation patterns, hence the fate of Hg emitted from BB is determined by a complex series of interacting processes and mechanisms, which begin with the release of Hg and continue until deposition. Many of these processes are influenced by ENSO. This modeling study analyses the deposition of Hg from BB using different satellite imagery based products, spanning a number of years, characterized by different ENSO regimes, to evaluate how it impacts BB, the speciation of emitted Hg, and ultimately the fate of Hg. The aim is to identify the key mechanism(s) involved in determining the final receptors of Hg recycled by BB changing climate. Le Page et al., https://doi.org/10.5194/acp-8-1911-2008, 2008 De Simone et al., https://doi.org/10.5194/acp-17-1881-2017, 2017 Obrist et al., https://doi.org/10.1021/es071279n