Science.gov

Sample records for chemical wastewater treatment

  1. Physical and chemical methods. [Of wastewater treatment

    SciTech Connect

    Peters, R.W.; Walker, T.J.; Ku, Y.; Berdanier, B.; Chang, T.K.; Freund, D.

    1983-06-01

    A literature review of physical and chemical methods of wastewater treatment is presented. Studies concerning innovative process control, mixing/agitation, fluid flow, fluidized beds, precipitation/crystallization; coagulation/flocculation/agglomeration; solid-liquid separation; adsorption; ion exchange; mass transfer separation processes; aeration; corrosion and corrosion control; oxidative processes; and membrane processes are reviewed. (JMT)

  2. WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...

  3. WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...

  4. Physical-chemical treatment of tar-sand processing wastewater

    SciTech Connect

    King, P.H.

    1982-07-01

    This final report for Phase I summarizes work done to determine the ability of several coagulants to contribute significantly in the treatment of selected tar sand wastewaters. The coagulation process must be considered as one possible step in a treatment scheme to reduce pollutants in these wastewaters and lead to a water quality acceptable for reuse or disposal. Two wastewaters were provided by the Laramie Energy Technology Center (LETC). The primary emphasis in this study was focused on a representative steam flooding wastewater designated in the report as TARSAND 1S. The coagulation study in which treatment of this wastewater was the prime goal is described in full detail in the thesis entitled Chemical Coagulation of Steam Flooding Tar Sand Wastewaters. This thesis, written by Mr. Omar Akad, is included as Appendix A in this report. A representative combustion wastewater, designated as TARSAND 2C, was also provided by LETC. This wastewater was characteristically low in suspended solids and after initial screening experiments were conducted, it was concluded that coagulation was relatively ineffective in the treatment of TARSAND 2C. Hence, efforts were concentrated on the parametric evaluation of coagulation of TARSAND 1S. The objectives for the research conducted under Phase I were: (1) to compare the effectiveness of lime, alum, ferric chloride and representative synthetic organic polymers in reducing suspended solids and total organic carbon (TOC) from TARSAND 1S wastewater; (2) to determine the effects of pH, coagulant aids, and mixing conditions on the coagulation process; (3) to determine the relative volume of sludge produced from each selected coagulation process.

  5. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    PubMed

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  6. Combined chemical-biological treatment of wastewater containing refractory pollutants.

    PubMed

    Jeworski, M; Heinzle, E

    2000-01-01

    Biological processes are usually most efficient for degrading pollutants occurring in wastewater. Refractory and toxic compounds contained limit their applicability. In such cases combinations with chemical oxidation processes may improve the overall efficiency and efficacy. Most suitable oxidation processes for combination with biological treatment are wet air oxidation, ozonation, hydrogen peroxide treatment and other advanced oxidation processes. Most effective are OH-radicals produced in all these oxidation processes. Chemical oxidation produces intermediates with usually improved biodegradability. Process combinations may be serial or with recycling between chemical oxidation and biological treatment. Design criteria, control of combined processes and recent applications are reviewed.

  7. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  8. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    PubMed

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  9. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    EPA Science Inventory

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  10. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    EPA Science Inventory

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  11. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    PubMed

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Physico-chemical treatment of wastewater from clusters of small scale cotton textile units.

    PubMed

    Pathe, P P; Biswas, A K; Rao, N N; Kaul, S N

    2005-03-01

    Small scale industries can not own individual wastewater treatment facility due to non-availability of land and skilled manpower for operation and maintenance of wastewater treatment plants. A centralized wastewater treatment facility for clusters of small scale industries is appropriate. This concept is gaining popularity in recent years. In India, various textile process operations are undertaken by individual small scale units. The wastewater generated at these units is conveyed to a common effluent treatment facility comprising of equalization, flocculation-clarification, activated sludge process, secondary clarification and finally discharge into inland surface water bodies. The wastewater from small scale cotton textile processing units was highly coloured and alkaline with average BOD and COD concentration of 205 and 790 mg l(-1), respectively. Due to the presence of several dyes, particularly reactive dyes, the biological treatment is often found less effective. Therefore, applicability of various physico-chemical treatment methods needs to be investigated in pursuit of an alternative to biological treatment of textile wastewater. A physico-chemical treatment scheme, involving chemical coagulation-sedimentation, dual media filtration, activated carbon adsorption followed by chemical oxidation was investigated in this paper. The quality of final treated wastewater in terms of BOD and COD was 18-24 and 230-240 mg l(-1), respectively through this scheme. A scheme of treatment comprising coagulation-sedimentation, dual media filtration, activated carbon, chemical oxidation may be considered as an alternative to biological treatment of textile wastewater.

  13. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m(3) was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m(3) for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  14. MANAGING ENDOCRINE DISRUPTING CHEMICALS USING EXISTING AND INNOVATIVE WASTEWATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Research has shown that wastewater (WW) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WW treatment (WWT) may include centralized wastewater treatment plants (WWTPs) or smaller on-site WWT technologies. EDCs found in WWT effluents (aqueou...

  15. MANAGING ENDOCRINE DISRUPTING CHEMICALS USING EXISTING AND INNOVATIVE WASTEWATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Research has shown that wastewater (WW) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WW treatment (WWT) may include centralized wastewater treatment plants (WWTPs) or smaller on-site WWT technologies. EDCs found in WWT effluents (aqueou...

  16. Removal Of Endocrine Disrupting Chemicals By A Constructed Wetland For On-Site Domestic Wastewater Treatment

    EPA Science Inventory

    Research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants (WWTPs). These WWTPs have been shown to ...

  17. Removal Of Endocrine Disrupting Chemicals By A Constructed Wetland For On-Site Domestic Wastewater Treatment

    EPA Science Inventory

    Research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants (WWTPs). These WWTPs have been shown to ...

  18. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    PubMed

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  19. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  20. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  1. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    NASA Astrophysics Data System (ADS)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  2. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    PubMed

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  3. Mathematical modeling of physical-chemical wastewater treatment plant

    SciTech Connect

    Torruellas, E.D.

    1987-01-01

    The scheme of treatment modeled includes processes such as coagulation, flocculation, sedimentation, sand filtration, adsorption on granular activated carbon, and surge storage. Sludge treatment processes such as gravity thickening, vacuum filter dewatering, and hauling and disposal were also simulated. The primary objective of this work is to demonstrate that an optimization scheme can be used to determine the minimum total cost of a complex physical-chemical treatment system with models representing the individual unit processes. A method for determining the minimum cost design of a physical-chemical treatment plant is presented. The method utilizes an existing search technique (Box complex algorithm) to optimize a non-linear cost function for the physical-chemical processes. Thus, the physical-chemical treatment plant design is formulated as an optimization problem with non-linear cost functions and realistic mathematical models for each of its constituent unit processes. The level of cost resolution adopted derives from a series of economic models developed which basically make a Present Worth Analysis of each unit within the system. The economic data are based mostly on updated cost information obtained from Environmental Protection Agency Technology Transfer Manuals. Among the benefits directly derived from this study are the following: optimum economic design and operation of a typical physical-chemical treatment plant, simplified and directly oriented pilot plant studies, and the cost savings associated with it. Also, the formulation of a relatively new design concept is developed which underlines the need of the simultaneous consideration of all the components of a physical-chemical treatment plant for the most economic design.

  4. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  5. Biological treatment of a high strength wastewater enhanced by chemical pretreatment

    SciTech Connect

    Menon, P.; Hung, Y.T.

    1995-12-31

    Biological treatment has been established to be one of the most economic means for the treatment of industrial wastewater. However inhibition of the biomass while treating wastewater containing significant concentration of toxics and heavy metals has been the deterrent for the application of this method. Reducing the toxicity by pretreatment could render the wastewater more amenable to biodegradation. In this research project, biodegradation of a high strength oily wastewater containing solvents and heavy metals was studied employing 9 activated sludge reactor experiments. Initial TOC of the wastewater was determined to be 8,500 mg/L. Enhancement of the biodegradation process by pretreating the wastewater was also studied. Pretreatment techniques employed were: (A) Coagulation using a 400 ppm solution of Ferric Chloride and (B) coagulation followed by chemical oxidation using hydrogen peroxide catalyzed by ferrous ions. A period of 24 hours was allowed as settling time during coagulation and as reaction time during chemical oxidation. 10 reactors containing varying concentrations of the wastewater were seeded with different dosages of Liquid Live Microorganisms (LLMO). Reaction time allowed for the biodegradation experiments was 48 hours. TOC removal by pretreatment alone was approximately 12% after coagulation and approximately 20% after coagulation and oxidation. Results are presented for the varying experimental conditions studied. TOC removal by biodegradation was observed to be significantly enhanced by pretreatment.

  6. [Chemical and ecotoxicological evaluation of sludge from city and industrial waste-water treatment].

    PubMed

    Fiore, Maria; Oliveri Conti, Gea; Cunsolo, Maria; Sciacca, Salvatore; Ferrante, Margherita

    2010-01-01

    The aim of this study was to evaluate the toxicity of sludge produced by wastewater treatment, by using both chemical and ecotoxicological evaluations. Samples of sludge from treatment of urban and industrial wastewater were analysed. Toxicity of sludge was evaluated by measuring Vibrio fischeri, polychlorobyphenyls, polycyclic aromatic hydrocarbons and metals. Results of chemical and ecotoxicological evaluations were found to be discordant. In all samples, contaminants were found to be below the accepted threshold levels; on the contrary, toxicological evaluations of sludge samples obtained from industrial wastewater found these samples to be toxic. These findings indicate that the evaluation of sludge to be used in agriculture should include an ecotoxicological evaluation, as suggested by the European Community in 1999. Furthermore, chemical evaluation of sludge should be performed by using a single method and the chosen method should have the most restrictive threshold levels of all methods currently in use in the EU.

  7. Final Feasibility Report on Chemical Treatment of Sodium Nitrite Wastewater

    DTIC Science & Technology

    1992-03-01

    hydroblasting waste - water. The removal of heavy metals was equally successful, an approach which resulted in reducing nearly all the ions to the discharge...wastewaters to nitrogen gas. In addition to sodium nitrite, the waste stream also includes various heavy metals in ionic form. The heavy metal ions, namely...cadmium, copper, nickel, chromium, lead, and zinc, are regulated by the EPA and several states as toxic wastes . When boiler nitrite wastewater is

  8. Toxicity identification and high-efficiency treatment of aging chemical industrial wastewater from the Hangu Reservoir, China.

    PubMed

    Li, Wei; Hua, Tao; Zhou, Qixing; Zhang, Shuguang; Rong, Weiying

    2011-01-01

    The Hangu Reservoir, located in Binhai New Area, Tianjin, China, receives mixed wastewater from a chemical industrial park. The aging chemical industrial wastewater is less biodegradable and contains complex hazardous substances, thus having an adverse effect on local ecological service function of the reservoir and on local economic and social development. In this study, key toxicants in the aging chemical industrial wastewater from the Hangu Reservoir were systematically identified by the toxicity identification evaluations (TIEs), and the treatment efficiency of the aging chemical industrial wastewater was examined and optimized by a municipal wastewater treatment process simulated in a laboratory. According to the TIE results using and wheat seeds as tested organisms, Cl, Cu, Pb, and Zn were identified as key toxicants in the aging chemical industrial wastewater, with concentrations of 7349.11, 0.01, 0.07, and 0.07 mg L, respectively, which were confirmed by subsequent spiking approaches. Based on the TIE results, the aging chemical industrial wastewater could be classified as high-salinity wastewater. The co-treatment of the aging chemical industrial wastewater and municipal wastewater may be an effective and low-cost method. The treatment efficiency of the mixed wastewater increased with an increase in the volume ratio of municipal wastewater to aging chemical industrial wastewater. When the volume ratio was 10:1, the best removal efficiencies of chemical oxygen demand, total N, and total P were up to 85.1, 89.3, and 96.5%, respectively, whereas the toxicity unit of the treated wastewater was reduced to 0.50.

  9. Integration of chemical and biological treatments for textile industry wastewater: a possible zero-discharge system.

    PubMed

    Lee, H H; Chen, G; Yue, P L

    2001-01-01

    Theoretical and experimental studies have established that integrated treatment systems (mostly chemical and biological) for various industrial wastewaters can achieve better quality of treatment and can be cost-effective. In the present study, the objective is to minimize the use of process water in the textile industry by an economical recycle and reuse scheme. The textile wastewater was first characterized in terms of COD, BOD5, salinity and color. In order to recycle such wastewater, the contaminants should be mineralized and/or removed according to the reusable textile water quality standards. Typical results show that this is achievable. An economic analysis has been conducted on the proposed integrated system. The economic analysis shows that the integrated system is economically more attractive than any of the single treatment technologies for achieving the same target of treatment. The information presented in this paper provides a feasible option for the reduction of effluent discharges in the textile industry.

  10. The treatment of organic bearing wastewater in the chemical industry using critical fluid extraction

    SciTech Connect

    McGovern, W.E. )

    1988-01-01

    Recent effluent limitations imposed by the EPA on a large sector of the U.S. chemical industry will mandate more stringent standards for wastewater treatment prior to discharge. As a result of these new regulations, cost-effective processes designed to remove priority pollutants and other non-biodegradable organics from industrial wastewater will be in significant demand. On November 5, 1987, the EPA published its final ruling: Effluent Limitations Guidelines Pre-Treatment Standards For The Organic Chemical, Plastics and Synthetic Fibers Industry, (OCPSF), which will significantly reduce the allowable discharge of priority pollutant organics to either navigable waters or municipal sewage treatment plants. According to EPA estimates, the quantity of priority pollutant organics discharged to surface waters and sewers will be reduced by over 96 percent at the end of a three year timetable already in effect under the new regulations. The cost of compliance will be high, with an average estimated capital expenditure of over one million dollars per facility. A nine million gallons-per-year commercial-scale treatment unit, utilizing liquid CO{sub 2} as an extraction solvent to separate organics from wastewater, has recently been leased to a commercial waste treatment company by CF Systems Corporation of Waltham, MA. This paper presents a process description of the first CF Systems organics extraction unit designed specifically for the treatment of organic bearing wastewater.

  11. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 204 citations and includes a subject term index and title list.)

  13. Wastewater treatment: Chemical industry. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 181 citations and includes a subject term index and title list.)

  14. [AOX Pollution in Wastewater Treatment Process of Dyeing and Dyestuff Chemical Industries].

    PubMed

    Shen, Yang-yang; Liu, Rui; Xu, Can-can; Shu, Xiao-ming; Xu, Jiang-jun; Lan, Ya-qiong; Chen, Lü-jun

    2015-09-01

    Selecting six large-scale dyeing factories and four large-scale dyestuff chemical factories in the well-developed Yangtze River Delta region, this study aimed to investigate the AOX pollution status in the raw wastewater as well as in the activated sludge treatment system. The components of AOX were characterized by GC-MS. Results showed that AOX concentration was low in wastewater from the six dyeing enterprises, ranging 0. 15-1. 62 mg.L-1 in the raw wastewater and 0. 06-1. 30 mg.L-1 in the biologically treated effluent. All the biologically treated effluent met the emission limits of 8 mg.L-1 in the Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry. Sludge in five factories with AOX was below 621 mg.kg-1, only one factory was with high AOX concentration of 3 280 mg.kg-1. By comparison, AOX concentration greatly varied between the wastewater from dyestuff chemical factories, was 1. 70 mg.L-1 to 78. 72 mg.L-1 in the raw wastewater and was 1. 88 mg.L-1 to 33. 11 mg.L-1 in the biologically treated effluent. AOX concentration in the activated sludge was as high as 960-2,297 mg.kg-1. Chlorobenzenes, chloronitrobenzenes, chloroanilines, chlorine nitroanilines and halophenols were typical TOX components detectable in the dyestuff chemical wastewater. Halophenols and chlorine nitroanilines could be efficiently removed. Single chloroanilines and single chloronitrobenzenes seemed to be easier removable than polychlorinated anilines and polychlorinated nitrobenzenes. Polychlorinated benzenes were also easily removal but the products chlorobenzene was hard to remove.

  15. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway.

    PubMed

    Venkatesh, G; Brattebø, Helge

    2011-01-01

    Wastewater treatment plants, while performing the important function of treating wastewater to meet the prescribed discharge standards, consume energy and a variety of chemicals. This paper analyses the consumption of energy and chemicals by wastewater treatment plants in Oslo over eight years, and their potential environmental impacts. Global warming and acidification were the dominant impacts for chemicals and energy, respectively. Avoided impacts due to usable by-products - sludge, ammonium nitrate and biogas - play a key role in shrinking the environmental footprint of the wastewater plants. The scope for decreasing this footprint by streamlining energy and chemicals consumption is limited, however, considering that over 70% of the impact is accounted for by the eutrophication potential (thanks to the nitrogen and phosphorus which is discharged to the sink) of the treated effluent wastewater.

  16. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment.

    PubMed

    Gutierrez, Oriol; Park, Donghee; Sharma, Keshab R; Yuan, Zhiguo

    2010-06-01

    Chemical phosphorus (P) removal during aerobic wastewater treatment induced by iron salt addition in sewer systems for sulfide control is investigated. Aerobic batch tests with activated sludge fed with wastewater containing iron sulfide precipitates showed that iron sulfide was rapidly reoxidised in aerobic conditions, resulting in phosphate precipitation. The amount of P removed was proportional to the amount of iron salts added, and for the sludge used, ratios of 0.44 and 0.37 mgP/mgFe were obtained for ferric and ferrous dosages, respectively. The hydraulic retention time (HRT) of iron sulfide in sewers was found to have a crucial impact on the settling of iron sulfide precipitates during primary settling, with a shorter HRT resulting in a higher concentration of iron sulfide in the primary effluent and thus enabling higher P removal. A mathematical model was developed to describe iron sulfide oxidation in aerated activated sludge and the subsequent iron phosphate precipitation. The model was used to optimise FeCl(3) dosing in a real wastewater collection and treatment system. Simulation studies revealed that, by moving FeCl(3) dosing from the WWTP, which is the current practice, to a sewer location upstream of the plant, both sulfide control and phosphate removal could be achieved with the current ferric salt consumption. This work highlights the importance of integrated management of sewer networks and wastewater treatment plants. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Impact of toxic chemicals on local wastewater treatment plant and the environment

    NASA Astrophysics Data System (ADS)

    Bennett, Gary F.

    1989-05-01

    Because toxic chemicals being discharged to sewers were simultaneously interfering with wastewater treatment processes of municipal, biological treatment plants and were passing through these plants to negatively impact the bodies of water to which these plants were discharging, the U.S. Environmental Protection Agency issued regulations governing industrial discharges to municipal sewers. These “Pretreatment Regulations” limit industrial discharges to municipal sewers of heavy metals, oil and grease, acids and bases, and toxic organic chemicals. This paper discusses the evolution of these regulations, the basis for them, the types of regulations (categorical and local), and the rationale for their promulgation based on the impacts of toxics chemicals on the treatment plant and receiving system. Finally, the expected results of these regulations in reducing industrial discharges of toxic chemicals is discussed.

  18. Olive oil mill wastewater treatment using a chemical and biological approach.

    PubMed

    Fiorentino, Antonio; Gentili, Alessandra; Isidori, Marina; Lavorgna, Margherita; Parrella, Alfredo; Temussi, Fabio

    2004-08-11

    Olive oil mill wastewaters (OMW) are recalcitrant to biodegradation for their toxicity due to high values of chemical oxygen demand (COD), biological oxygen demand (BOD), and phenolic compounds. In the present study OMW, collected in southern Italy, were subjected first to a chemical oxidative procedure with FeCl3 and then to a biological treatment. The latter was performed in a pilot plant where mixed commercial selected bacteria, suitable for polyphenols and lipid degradation, were inoculated. The effect of treatments was assessed through COD removal, reduction of total phenols, and decrease of toxicity using primary consumers of the aquatic food chain (the rotifer Brachionus calyciflorus and the crustacean Daphnia magna). The results showed that the chemical oxidation was efficacious in reducing all parameters analyzed. A further decrease was found by combining chemical and biological treatments.

  19. Treatment of cork process wastewater by a successive chemical-physical method.

    PubMed

    Beltrán de Heredia, Jesús; Domínguez, Joaquin R; López, Raquel

    2004-07-14

    In cork processing, the operation of boiling the raw cork generates large volumes of wastewater which are more often than not released directly into the environment untreated. Even when the wastewater is treated, this is usually by retention in evaporation ponds. This procedure, however, causes bad odors and may pollute surface water and groundwater. The present study evaluates a physicochemical method involving Fenton oxidation and coagulation/flocculation for the removal of chemical oxygen demand (COD), total polyphenols (TP), and aromatic compounds (A) from cork manufacturing process wastewater. The experimental variables studied were the dosages of iron salts (from 0.001 to 0.2 mol/L) and hydrogen peroxide (between 0.06 and 1 mol/L). The integrated Fenton-coagulation/flocculation process reduced the COD of the effluent by from 22% to 85%. The removal of total polyphenols ranged from 4% to 98%, and of aromatic compounds from 2% to 97%. A further two experiments were performed modifying the manner in which the reagents were added, splitting the reagent dose (of hydrogen peroxide and ferrous salt) into two and three fractions. Finally, an economic study was made of the chemical costs deriving from the application of this purification system. The cost of a treatment with an [H2O2](o)/COD(o) ratio of 1.8 g/g (splitting the reagent dose into three fractions) that yields a COD removal of 73% was estimated to be 11.5 euros/m(3) of wastewater.

  20. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents.

    PubMed

    Aerni, Hans-Rudolf; Kobler, Bernd; Rutishauser, Barbara V; Wettstein, Felix E; Fischer, René; Giger, Walter; Hungerbühler, Andreas; Marazuela, M Dolores; Peter, Armin; Schönenberger, René; Vögeli, A Christiane; Suter, Marc J-F; Eggen, Rik I L

    2004-02-01

    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51 ng L(-1), estradiol (E2) up to 6 ng L(-1), and ethinylestradiol (EE2) up to 2 ng L(-1) in the 90 samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at microg L(-1) concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R(2)=0.6).

  1. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes.

    PubMed

    Amor, Carlos; Lucas, Marco S; Pirra, António J; Peres, José A

    2012-01-01

    Concentrated fruit juice industries use a wide volume of water for washing and fruit processing, generating a large volume of wastewater. This work studied the combination of an aerobic biological process with a chemical coagulation/flocculation step to treat a high concentrated fruit juice wastewater. This wastewater presents a good biodegradability (BOD(5)/COD = 0.66) allowing a chemical oxygen demand (COD) removal above 90% in most reactors. The best results in aerobic biological treatment were obtained in reactors initially loaded with 2 g VSS L(-1) of biomass concentration and 20 g COD L(-1) of organic matter concentration. Three different kinetic models were evaluated (Monod, Haldane and Contois). The Haldane-inhibition model was the one that best fitted the COD biodegradation. AQUASIM software allowed calculate the following kinetic constants ranges for aerobic biodegradation: K (s): 6-20 g COD L(-1); v (max): 2.0-5.1 g COD g(-1) VSS day(-1) and K (i) values: 0.10-0.50 g COD L(-1). These constants corresponds to maximum removal rates (v*) between 0.11 and 0.26 g COD g(-1) VSS day(-1) for substrate concentrations (S*) from 0.77 to 3.16 g COD L(-1). A tertiary coagulation/flocculation process improved the efficiency of the biological pre-treatment. Ferric chloride was selected as best compromise to treat this wastewater. Optimal conditions were 0.44 g L(-1) of coagulant at pH = 5.5, achieving 94.4% and 99.6% on turbidity and COD removal, respectively.

  2. A novel chemical/biological combined technique for N, N-dimethylformamide wastewater treatment.

    PubMed

    Chen, Yingwen; Li, Bing; Qiu, Yu; Xu, Xiaoliang; Shen, Shubao

    2016-01-01

    N, N-Dimethylformamide (DMF) is a widely used organic solvent whose wastewater is difficult to biodegrade directly. In this paper, a novel chemical/biological combined technique consisting of alkaline hydrolysis stripping, activated sludge and a bio-trickling filter (BTF) was developed for DMF wastewater treatment. The main pollutant, DMF, was decomposed to dimethylamine and formate under alkaline conditions, and the dimethylamine was stripped out by the BTF. The pretreated wastewater was then degraded in an activated sludge process. The operation performances of alkaline hydrolysis, activated sludge and BTF processes were investigated separately. At the optimal conditions of an alkali dosage of 40 g/L, an air/liquid ratio of 3000:1 and 5 h in the air-stripping process, the removal of total organic carbon and DMF was found to be 58% and 96%, respectively. A chemical oxygen demand removal efficiency of 80-90% was obtained in the activated sludge process. The performance of BTF was excellent with a dimethylamine removal efficiency close to 90% even at a high loading of 16 g/d.

  3. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite.

    PubMed

    Sun, Liang; Li, Yan; Li, Aimin

    2015-10-28

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H₂O₂ and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD₅/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H₂O₂ did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H₂O₂ (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H₂O₂ facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite.

  4. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite

    PubMed Central

    Sun, Liang; Li, Yan; Li, Aimin

    2015-01-01

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H2O2 did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H2O2 (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H2O2 facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite. PMID:26516893

  5. High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    2000-02-01

    Many industrial wastewaters have both high organic pollution and sulfate (SO{sub 4}{sup {minus}2}) concentrations. Although biological conversion of organics to methane may be an economical chemical oxygen demand (COD) removal option, significant inhibition of methane production results from reduction of SO{sub 4}{sup {minus}2} to hydrogen sulfide (H{sub 2}S), which is inhibitory to methanogenic microorganisms. Therefore, sulfate-containing wastewater is often not amenable to conventional anaerobic treatment. Recently, limited aeration of recycle flow to hybrid and baffled reactors has been used to treat this wastewater and has been shown to reduce aqueous H{sub 2}S concentrations by causing production of uninhibitory sulfur (S{degree}) and thiosulfate (S{sub 2}O{sub 3}{sup {minus}2}) as well as gas stripping volatile H{sub 2}S. In this study, directly aerated methanogenic fluidized bed reactors (FBRs) achieved increased methane production compared to strictly anaerobic FBRs treating high-sulfate wastewater. Oxygen transfer satisfying up to 28% of the COD load resulted in maximum specific oxygen utilization rates of 0.20 mg oxygen/g volatile solids{center{underscore}dot}min, with significant, concomitant methane production. Under typically inhibitory SO{sub 4}{sup {minus}2} loading, higher aeration caused increased effluent SO{sub 4}{sup {minus}2}, increased H{sub 2}S mass in the offgas, and lower reactor H{sub 2}S concentration. As a result, COD removal increased from 25% for a strictly anaerobic FBR to 87% for an aerated FBR. In addition, aerated systems required significantly less alkalinity supplementation to maintain a pH value of 7, ostensibly because of stripping of acidic carbon dioxide. The potential pH increase associated with aeration also shifts sulfide speciation to less toxic disulfide. Direct, limited aeration of methanogenic FBRs is described as a method for increased COD removal when treating high-COD, high-sulfate wastewater.

  6. Integration of chemical and biological oxidation in a SBBR for tannery wastewater treatment.

    PubMed

    Di Iaconi, C; Bonemazzi, F; Lopez, A; Ramadori, R

    2004-01-01

    This paper reports the results of an investigation aimed at evaluating the laboratory-scale performance of an innovative process for treating tannery wastewater. In this process, biological degradation, carried out in a sequencing batch biofilm reactor (SBBR), is combined with chemical oxidation by ozone. Tannery wastewater treatment was carried out, at laboratory scale, on a real primary effluent coming from a centralised plant treating wastewater produced by a large tannery district in Northern Italy. SBBR performance both without and with ozonation, was assessed with very satisfactory results. In particular, in the latter instance the recorded COD, TKN and TSS average removals, (96%), (92%) and (98%) respectively, allowed the maximum allowable concentration values fixed by the Italian regulation in force to be achieved without any additional polishing step. During the investigation biofilm properties (biofilm concentration and biofilm density) and flow dynamics aspects (head loss, shear stress, bed porosity) were also studied. A major feature of the process is that, with or without ozonation, it was characterised by very low specific sludge production (0.05 kgVSS/kgCODremoved) and high biofilm density (i.e. 87-122 gVSS/Lsludge) both contributing to a rather high biofilm concentration (i.e. 31-44 gTSS/Lfilter).

  7. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    PubMed

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  8. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation.

    PubMed

    Velvizhi, G; Goud, R Kannaiah; Venkata Mohan, S

    2014-01-01

    Bioelectrochemical treatment system (BET) with anoxic anodic microenvironment was studied with chemical wastewater (CW) in comparison with anoxic treatment (AxT, sequencing batch reactor (SBR)) with same parent anaerobic consortia. BET system documented relatively higher treatment efficiency at higher organic load (5.0 kg COD/m(3)) accounting for COD removal efficiency of (90%) along with nitrate (48%), phosphate (51%), sulphates (68%), colour (63%) and turbidity (90%) removal, compared to AxT operation (COD, 47%; nitrate, 36%; phosphate, 32%; sulphate, 35%; colour, 45% and turbidity, 54%). The self-induced bio-potential developed due to the electrode assembly in BET resulted in effective treatment with simultaneous bioelectricity generation (631 mA/m(2)). AxT operation showed persistent reduction behaviour, while simultaneous redox behaviour was observed with BET indicating balanced electron transfer. BET operation illustrated higher wastewater toxicity reduction compared to the AxT system which documents the variation in bio-electrocatalytic behaviour of same consortia under different microenvironment.

  9. Wastewater Treatment Plants as Chemical Observatories to Forecast Ecological and Human Health Risks of Manmade Chemicals

    NASA Astrophysics Data System (ADS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants.

  10. Wastewater Treatment Plants as Chemical Observatories to Forecast Ecological and Human Health Risks of Manmade Chemicals

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants. PMID:24429544

  11. Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals.

    PubMed

    Venkatesan, Arjun K; Halden, Rolf U

    2014-01-16

    Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants.

  12. Treatment of composite chemical wastewater by aerobic GAC-biofilm sequencing batch reactor (SBGR).

    PubMed

    Rao, N Chandrasekhara; Mohan, S Venkata; Muralikrishna, P; Sarma, P N

    2005-09-30

    The performance of granular activated carbon (GAC)-biofilm configured sequencing batch reactor (SBGR) in aerobic environment was investigated for the treatment of composite chemical wastewater [low BOD/COD ratio ( approximately 0.3), high sulfate content (1.75 g/l) and high TDS concentration (11 g/l)]. Composite wastewater was a combined mixture of effluents from about 100 chemical based industries. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h (fill: 15 min; reaction (aeration with recirculation): 23 h; settle: 30 min; decant: 15 min) and the performance of the system was studied at organic loading rates (OLR) of 1.7 kg COD/cum-day, 3.5 kg COD/cum-day and 5.5 kg COD/cum-day. The reactor showed efficient performance with respect to substrate degradation rate and sustained its performance at higher operating OLR (5.5 kg COD/cum-day) and at low BOD/COD ratio. Substrate utilization was found to increase with increase in the operating OLR. Maximum non-cumulative substrate utilization of 1.837 kg COD/cum-h, 2.99 kg COD/cum-h and 3.821 kg COD/cum-h was observed after 15 h of the cycle operation for operating OLRs of 1.7 kg COD/cum-day, 3.5 kg COD/cum-day and 5.5 kg COD/cum-day, respectively. Sulfate removal efficiency of 11+/-2% was recorded in the SBGR due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm. Effective performance of the reactor may be attributed to sorption capacity of GAC as carrier material facilitating low toxicant concentration in the mixed liquor. The existing high flow rates around the GAC particle results in good mass transfer of the substrate from the bulk liquid. The long retention of biofilm on GAC increases the potential for the treatment of recalcitrant industrial wastewater. GAC configured biofilm configuration coupled with sequencing batch mode operation appears to be promising

  13. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  14. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  15. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies.

    PubMed

    Prasse, Carsten; Stalter, Daniel; Schulte-Oehlmann, Ulrike; Oehlmann, Jörg; Ternes, Thomas A

    2015-12-15

    The knowledge we have gained in recent years on the presence and effects of compounds discharged by wastewater treatment plants (WWTPs) brings us to a point where we must question the appropriateness of current water quality evaluation methodologies. An increasing number of anthropogenic chemicals is detected in treated wastewater and there is increasing evidence of adverse environmental effects related to WWTP discharges. It has thus become clear that new strategies are needed to assess overall quality of conventional and advanced treated wastewaters. There is an urgent need for multidisciplinary approaches combining expertise from engineering, analytical and environmental chemistry, (eco)toxicology, and microbiology. This review summarizes the current approaches used to assess treated wastewater quality from the chemical and ecotoxicological perspective. Discussed chemical approaches include target, non-target and suspect analysis, sum parameters, identification and monitoring of transformation products, computational modeling as well as effect directed analysis and toxicity identification evaluation. The discussed ecotoxicological methodologies encompass in vitro testing (cytotoxicity, genotoxicity, mutagenicity, endocrine disruption, adaptive stress response activation, toxicogenomics) and in vivo tests (single and multi species, biomonitoring). We critically discuss the benefits and limitations of the different methodologies reviewed. Additionally, we provide an overview of the current state of research regarding the chemical and ecotoxicological evaluation of conventional as well as the most widely used advanced wastewater treatment technologies, i.e., ozonation, advanced oxidation processes, chlorination, activated carbon, and membrane filtration. In particular, possible directions for future research activities in this area are provided.

  16. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  17. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process.

    PubMed

    Rodrigues, Carmen S D; Madeira, Luís M; Boaventura, Rui A R

    2013-01-01

    The coagulation/flocculation treatment using FeSO4 x 7H2O as a coagulant is evaluated in this work for the removal of organic compounds and colour from synthetic effluents simulating the cotton, acrylic and polyester dyeing wastewaters. The coagulant dose, temperature, pH, stirring speed and stirring time that maximized the removal of dissolved organic carbon (DOC) and colour for each effluent are determined for the coagulation process. The effect of the stirring speed, stirring time and the dose of flocculant (Magnafloc 155 or Superfloc C-573) on the flocculation stage is also evaluated for effluents pretreated by coagulation at the optimal conditions previously determined. The obtained results showed that the optimal operating conditions are different for each effluent, and the process (coagulation/flocculation) as a whole was efficient in terms of colour removal (-91% for cotton, -94% for acrylic effluents; polyester effluent is practically colourless). However, the DOC removal observed is not significant (33% for polyester, -45% for cotton and -28% for acrylic effluents). On the other hand, the remaining dissolved iron content is appropriate for further integrating the treatment with an iron-catalysed Fenton process, thus reducing the consumption of chemicals in the overall treatment.

  18. Treatment of wastewater containing acid rose red dye by biologically aerated filter after chemical oxidation.

    PubMed

    Wang, X; Gu, X; Zhou, X; Wang, W; Lin, D

    2007-08-01

    Combined processes of pre-chemical oxidation and biological aerated filter (BAF) were used to treat wastewater containing non-biodegradable acid rose red dye. Advance oxidation processes (AOPs) of ozone and Fenton reagent were applied for pre-chemical oxidation, which reduced the degree of color and organic matter simultaneously increasing the biodegradability of the wastewater. The majority of the organic matter was removed by BAF. When using ozone as pre-chemical oxidation, the operation is simpler. The combined processes of AOPs, including ozone and Fenton reagent, followed by BAF reduced the color and chemical oxygen demand (COD) to less than 20 degrees and 40 mg l(-1), respectively from the influent concentration of about 4000 degree color and 300 mg l(-1) COD. The effluent water quality could meet the required standard for grey water reuses.

  19. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  20. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  1. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  2. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    PubMed

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.

    PubMed

    Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev

    2007-04-02

    Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.

  4. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment.

    PubMed

    Wang, Shaobin; Li, Huiting; Xie, Sujuan; Liu, Shenglin; Xu, Longya

    2006-09-01

    Natural zeolite and synthetic zeolite, MCM-22, were employed as effective adsorbents for a basic dye, methylene blue, removal from wastewater. Two methods, Fenton oxidation and high temperature combustion, have been used for regeneration of used materials. It is found that MCM-22 exhibits equilibrium adsorption at 1.7 x 10(-4) mol g(-1), much higher than the adsorption of natural zeolite (5 x 10(-5) mol g(-1)) at initial dye concentration of 2.7 x 10(-5)M and 30 degrees C. Solution pH will affect the adsorption behaviour of MCM-22. Higher solution pH results in higher adsorption capacity. The regenerated adsorbents show different capacity depending on regeneration technique. Physical regeneration by high temperature combustion will be better than chemical regeneration using Fenton oxidation in producing effective adsorbents. Regeneration of MCM-22 by high temperature treatment can make the adsorbent exhibit comparable or superior adsorption capacity as compared to the fresh sample depending on the temperature and time. The optimal temperature and time will be 540 degrees C and 1h. The Fenton oxidation will recover 60% adsorption capacity. For natural zeolite, regeneration can not fully recover the adsorption capacity with the two techniques and the regenerated natural zeolites by the two techniques are similar, showing 60% adsorption capacity of fresh sample. Kinetic studies indicate that the adsorption follows pseudo-second-order kinetics.

  5. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  6. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  7. Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment.

    PubMed

    Kornboonraksa, Thipsuree; Lee, Hong Shin; Lee, Seung Hwan; Chiemchaisri, Chart

    2009-03-01

    This study was conducted to investigate the chemical precipitation (CP) and membrane bioreactor (MBR) hybrid process for the treatment of piggery wastewater. Average removal efficiencies for BOD, COD and turbidity in CP process were 64.3%, 77.3% and 96.4%, respectively. CP process had a moderate effect on NH(3)-N removal (40.4%) which improved up to 98.2% mainly due to nitrification and filtration processes in MBR. The average removal efficiencies of BOD, COD and turbidity in MBR were 99.5%, 99.4% and 99.8%, respectively. Monod equation was used to explain the microbial activities in terms of specific growth rate. The specific growth rate of bacteria in aeration tank (N-batch) and anoxic tank (D-batch) were 0.013 and 0.005d(-1) with a biomass yield of 0.78 and 0.43mg MLSS produced/mg COD utilized, respectively. Microorganisms from the N-batch and D-batch showed a low-level of nitrifying and moderate-level of denitrifying capabilities which were 1.08mg NH(3)-N/(g MLVSS.h) and 2.82mg NO(3)-N/(g MLVSS.h), respectively. Carbohydrates were the main component in extracellular polymeric substance (EPS) compounds that could be attached to the membrane surface easily and led to membrane biofouling. The increase of MLSS, EPS and sludge viscosity concentration, decrease of sludge floc size and incomplete chemical cleaning procedure resulted in the increase of membrane resistance. Total membrane resistance increased from 3.19x10(12)m(-1) to 5.43x10(14)m(-1).

  8. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    PubMed Central

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  9. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    PubMed

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  10. Wetlands for Wastewater Treatment.

    PubMed

    Martinez-Guerra, Edith; Jiang, Yi; Lee, Gordon; Kokabian, Bahareh; Fast, Sara; Truax, Dennis D; Martin, James L; Magbanua, Benjamin S; Gude, Veera Gnaneswar

    2015-10-01

    This paper provides a review of the treatment technologies, which utilize natural processes or passive components in wastewater treatment. In particular, this paper primarily focuses on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (single and multiple pollutants, and metals), and emerging pollutant removal (pharmaceuticals). A summary of studies involving the plant (vegetation) effects, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included.

  11. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into a municipal sewers are treated at wastewater treatment plants. These may contain both man-made and naturally occurring radionuclides which can accumulate in the treatment plant.

  12. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    PubMed

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DEMONSTRATION BULLETIN: PO*WW*ER™ WASTEWATER TREATMENT SYSTEMS - LAKES CHARLES TREATMENT CENTER - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The PO*WW*ER™ system developed by Chemical Waste Management, Inc. (CWM), reduces the volume of aqueous waste and catalytically oxidizes volatile contaminants. The PO*WW*ER™ system consists primarily of (1) an evaporator that reduces influent wastewater volume, (2) a catalytic o...

  14. DEMONSTRATION BULLETIN: PO*WW*ER™ WASTEWATER TREATMENT SYSTEMS - LAKES CHARLES TREATMENT CENTER - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The PO*WW*ER™ system developed by Chemical Waste Management, Inc. (CWM), reduces the volume of aqueous waste and catalytically oxidizes volatile contaminants. The PO*WW*ER™ system consists primarily of (1) an evaporator that reduces influent wastewater volume, (2) a catalytic o...

  15. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse.

    PubMed

    De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio

    2016-02-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli<1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores.

  16. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish.

    PubMed

    Perkins, Edward J; Habib, Tanwir; Escalon, Barbara L; Cavallin, Jenna E; Thomas, Linnea; Weberg, Matthew; Hughes, Megan N; Jensen, Kathleen M; Kahl, Michael D; Villeneuve, Daniel L; Ankley, Gerald T; Garcia-Reyero, Natàlia

    2017-08-01

    We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.

  17. Enhanced industrial wastewater treatment

    SciTech Connect

    Nachabe, A.H.; Durlak, E.

    1997-12-31

    The sodium sulfide/ferrous sulfate (SS/FS) process is a treatment technology for the reduction of hexavalent chromium and precipitation of heavy metals in industrial wastewater treatment plants (IWTP). When the ferrous ion, as ferrous sulfate, is mixed with sulfide, the hexavalent chromium is rapidly reduced to its trivalent state at a neutral pH and then precipitated. SS/FS technology can be used to replace the current hydroxide treatment chemistry in Navy IWTPs. This paper will present the results and lessons learned from full-scale implementation of SS/FS at Naval Undersea Warfare Center (NUWC) Keyport, Washington. The SS/FS treatment process reduced the chemical cost by fifty nine percent and sludge disposal cost by thirty one percent. On an annual basis total cost savings amounted to $31,950 or thirty four percent. The SS/FS treatment process lowered the amount of treatment chemicals used in the IWTP. Furthermore, metal sulfides tend to be two to three orders of magnitude less soluble than their corresponding metal hydroxides. This allows for cleaner effluent, which will help the facility meet environmental discharge requirements. Further benefits include the removal from the shop area of the high pressure sulfur dioxide cylinder (used in the hydroxide process), a faster and more reliable chrome reduction method, neutral pH operation that extends tank and equipment life, and less acid and caustic chemicals stored on the shop floor. As Navy activities respond to the ever increasing pressures to do more with less, the SS/FS process can help them meet the increasingly stringent standards.

  18. Multi-electrode bioelectrochemical system for the treatment of high total dissolved solids bearing chemical based wastewater.

    PubMed

    Velvizhi, G; Venkata Mohan, S

    2017-10-01

    Multi-electrode bioelectrochemical treatment system (ME-BET; membrane less) consisting of six electrode assemblies (E1-E6) was designed and fabricated for the treatment of complex chemical based wastewater with high salt concentration. The performance was compared with single electrode assembly BET reactor (SE-BET). Enhanced TDS and COD removal was observed in ME-BET (32%; 56%) compared to SE-BET (15%; 23%) as a result of in situ bio-potential from multi-electrodes through the oxidation of organic substrate in the wastewater. Inorganic pollutants viz., nitrates (28%; 8%), sulphates (25%; 9%) and phosphates (20%; 7%) removal was higher in ME-BET in comparison with SE-BET and this was also supported with bioelectrogenic activity (584; 160mW/m(3)). The study infers that designing of compact reactors with multiple electrodes in a single system enhances the anodic reactions and enable effective treatment of complex wastewaters with simultaneous power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical and mutagenic evaluation of sludge from a large wastewater treatment plant

    SciTech Connect

    Ottaviani, M.; Crebelli, R.; Fuselli, S.; La Rocca, C.; Baldassarri, L.T. )

    1993-08-01

    Digested sludges from a wastewater treatment plant were analyzed to assess their level of contamination by some organic (polychlorobiphenyls (PCBs) and chlorinated pesticides) and inorganic (heavy metals) micropollutants and their mutagenicity features. The heavy metal content in none of the samples exceeded the limits set out in EEC Directive 276/86; as far as PCBs are concerned, the sludges analyzed indicated a level of contamination up to two orders of magnitude higher than some Italian agricultural soils. Mutagenicity assays on either crude or fractionated sludge extracts using Salmonella typhimurium tester strains TA98 and TA100 gave negative results, thus suggesting the absence of genotoxic contaminants in the samples investigated.

  20. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  1. Bioelectrogenic role of anoxic microbial anode in the treatment of chemical wastewater: microbial dynamics with bioelectro-characterization.

    PubMed

    Velvizhi, G; Venkata Mohan, S

    2015-03-01

    A membrane-less anoxic bioelectrochemical treatment (AxBET) system was evaluated to study the influence of bioelectrogenic activity during the treatment of chemical wastewater (CW). Increment in power generation was observed with increase in substrate loading (61-204 mW/m(2)) indicating the ability of anodic bacteria in BET system to utilize the complex chemicals as the sole carbon source. Derivative analysis of voltammograms depicted by positive and negative peak potentials which relate to the extracellular electron transport sites (EETs) that presumably play a significant role in electron transfer. These self-driven redox mediators varied with respect to the substrate load. The microbial population was dominated by anaerobic microorganisms which are commonly involved in effluent treatment plants during the initial phase of operation. A gradual shift in the microbial community was observed towards enrichment of electrogenically active bacteria belonging to phyla viz., Firmicutes and Proteobacteria after prolonged operation. Shannon Index and principal component analysis correlated with the microbial profile studies. The feasibility of self-driven bioremediation of chemical wastewater in an AxBET system demonstrated bioelectricity production along with multipollutant removal simultaneously.

  2. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS(-1) in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day)(-1) (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  3. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included.

  4. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    PubMed

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  5. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater.

  6. Wastewater from the manufacture of rubber vulcanization accelerators: characterization, downstream monitoring and chemical treatment.

    PubMed

    Puig, A; Ormad, P; Roche, P; Sarasa, J; Gimeno, E; Ovelleiro, J L

    1996-05-10

    The content of wastewater resulting from the manufacture of rubber antioxidants and accelerators by a factory situated in the Ebro basin (Spain) has been determined using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The change in the pollutants was studied in the riverbed via two modules which continuously gathered pollutants on various solid supports (activated carbon and XAD-2 resins). These modules were located in Bocal Station, lying a further 100 km downstream from the factory, and from the Zaragoza water supply. Forty-six different compounds were identified at Bocal Station, the majority resulting from the production of rubber additives. Due to the immunity of different waste substances, and to the toxic nature of some, we studied their reaction when subjected to techniques of chemical oxidation using ozone.

  7. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  8. Combined biological and physico-chemical treatment of baker's yeast wastewater.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Starostina, E; Shcherbakov, S; Versprille, A

    2005-01-01

    The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (52-74%) from the raw and diluted cultivation medium from the first separation process of baker's yeasts (the average organic loading rates varied in the range 3.7-16 g COD/I/d). The aerobic-anoxic biofilter (19-23 degrees C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it had insufficient COD to fulfil the denitrification requirements. To balance COD/N ratio, some bypass of raw wastewater (approximately 10%) should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high.

  9. [Modern approaches to wastewater treatment].

    PubMed

    Ivan'ko, O M

    2013-01-01

    The present state and prospects of new methods for cleaning in the water and wastewater using membrane separation, are examples of application of this technology in the treatment of surface and subsurface natural waters, seawater desalination, wastewater treatment plants.

  10. Treatment of chemical cleaning wastewater and cost optimization by response surface methodology coupled nonlinear programming.

    PubMed

    Yang, Yang; Zhou, Zhen; Lu, Chenjie; Chen, Yunke; Ge, Honghua; Wang, Libing; Cheng, Cheng

    2017-08-01

    The real alkaline cleaning wastewater (ACW) was treated by a process consisting of neutralization, NaClO oxidation and aluminum sulfate (AS) coagulation, and a novel response surface methodology coupled nonlinear programming (RSM-NLP) approach was developed and used to optimize the oxidation-coagulation process under constraints of relevant discharge standards. Sulfuric acid neutralization effectively removed chemical oxygen demand (COD), surfactant alkylphenol ethoxylates (OP-10) and silicate at the optimum pH of 7.0, with efficiencies of 62.3%, >82.7% and 94.2%, respectively. Coagulation and adsorption by colloidal hydrated silica formed during neutralization were the major removal mechanisms. NaClO oxidation achieved almost complete removal of COD, but was ineffective for the removal of surfactant OP-10. AS coagulation followed by oxidation can efficiently remove OP-10 with the formation of Si-O-Al compounds. The optimum conditions for COD ≤100 mg/L were obtained at hypochlorite to COD molar ratio of 2.25, pH of 10.0 and AS dosage of 0.65 g Al/L, with minimum cost of 9.58 $/m(3) ACW. This study shows that the integrative RSM-NLP approach could effectively optimize the oxidation-coagulation process, and is attractive for techno-economic optimization of systems with multiple factors and threshold requirements for response variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  12. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  13. Microalgae and wastewater treatment.

    PubMed

    Abdel-Raouf, N; Al-Homaidan, A A; Ibraheem, I B M

    2012-07-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

  14. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  15. Disinfection. [Wastewater treatment

    SciTech Connect

    Haas, C.N.; McCreary, J.J.

    1982-06-01

    Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

  16. Tannery wastewater pre-treatment.

    PubMed

    Elsheikh, Mahmoud Abdel-Shafy

    2009-01-01

    Tannery wastewater is one of the most pollution sources. It can cause environmental problems related to its high organic matter, suspended solids and chromium. Chromium (III) salts are the most widely used chemicals for tanning processes, causing the tannery wastewater to be highly pollutant with chromium. The main objective of this study is to investigate the pre-treatment of an actual Egyptian tannery wastewater using two systems; the first electrolytic system and the second physico-chemical system. The performances of electrolytic system at current of 10, 20, 30 and 40 A were discussed. Poor removal efficiencies of chemical oxygen demand (COD), total suspended solids (TSS), chromium (III), ammonia (NH(4) (+) and sulfide (S(2-)) were obtained. In the second physico-chemical system, calcium hydroxide was used as a coagulant material for chromium precipitation and plain sedimentation was applied for reducing of COD, biochemical oxygen demand (BOD(5)) and TSS. The results demonstrate 98.8% removal of chromium, 31% removal of COD, 25.8% removal of BOD(5) and 51.2% removal of TSS.

  17. [Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters].

    PubMed

    Zhou, Lin-jun; Liu, Ji-ning; Shi, Li-li; Feng, Jie; Xu, Yan-hua

    2016-01-15

    Sewage treatment plant (STP) is a key transfer station for chemicals distributed into different environment compartment, and hence models of exposure prediction play a crucial role in the environmental risk assessment and pollution prevention of chemicals. A mass balance model namely Chinese Sewage treatment plant (C-STP(O)) was developed to predict the fate and exposure of chemicals in a conventional sewage treatment plant. The model was expressed as 9 mixed boxes by compartment of air, water, suspended solids, and settled solids. It was based on the minimum input data required on the notification in new chemicals, such as molecular weight, absorption coefficient, vapor pressure, water solubility, ready or inherent biodegradability. The environment conditions ( Temperature = 283 K, wind speed = 2 m x s(-1)) and the classic STP scenario parameters of China, especially the scenario parameters of water quality and sludge properties were adopted in C-STP( 0) model to reflect Chinese characteristics, these parameters were sewage flow of 35 000 m3 x d(-1), influent BOD5 of 0.15 g x L(-1), influent SS of 0.2 kg x m(-3), effluent SS of 0.02 kg x m(-3), BOD5 removal in aerator of 90% sludge density of 1.6 kg x L(3) and organic carbon content of 0.18-0.19. It adopted the fugacity express for mechanism of linear absorption, first-order degradation, Whitman two resistances. An overall interphase transfer constant which was the sum of surface volatilization and stripping was used to assess the volatilization in aerator. The most important and uncertain input value was the biodegradation rate constant, and determination of which required a tier test strategy from ready or inherent biodegradability data to simulate test in STP. An extrapolated criterion of US EPA to derive biodegradation rate constant using the results of ready and inherent biodegradability was compared with that of EU and was recommended. C-STP ( 0 ) was valid to predict the relative emission of volatilization

  18. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency

    PubMed Central

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R.; Arias-Salazar, Karla; Collins, Terrence J.; Jobling, Susan

    2016-01-01

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies. PMID:27684328

  19. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency.

    PubMed

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R; Arias-Salazar, Karla; Collins, Terrence J; Jobling, Susan

    2016-09-11

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies.

  20. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Soler, J; Alpendurada, M F; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2016-11-15

    This study focuses on the degradation of pharmaceuticals from a municipal wastewater after secondary treatment by applying various advanced oxidation processes (AOPs) and electrochemical AOPs (EAOPs) like UVC, H2O2/UVC, anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2), AO-H2O2/UVC and photoelectro-Fenton (PEF) using either UVC radiation (PEF-UVC) or UVA radiation (PEF-UVA). The municipal wastewater after secondary treatment was spiked with 5.0 mg L(-1) of trimethoprim (TMP) antibiotic. The efficiency of processes to remove TMP followed the order UVC < AO-H2O2 < PEF-UVA < AO ≈ PEF-UVC < AO-H2O2/UVC < PEF-UVA (pH = 2.8) < H2O2/UVC ≈ PEF-UVC (pH = 2.8), using neutral pH, except when identified. While the UVC radiation alone led to a very low TMP removal, the H2O2/UVC process promoted a very high TMP degradation due to the production of hydroxyl radicals (OH) by H2O2 cleavage. In the AO-H2O2/UVC process, the electrogeneration of H2O2 can avoid the risks associated with the transportation, storage and manipulation of this oxidant and, furthermore, OH at the anode surface are also formed. Nevertheless, low contents of H2O2 were detected mainly at the beginning of the reaction, leading to a lower initial reaction rate when compared with the H2O2/UVC system. In the PEF-UVC, the addition of iron at neutral pH led to the visible formation of insoluble iron oxides that can filter the light. At pH 2.8, the iron remained dissolved, thereby promoting the Fenton's reaction and increasing the organics removal. The UVA-driven processes showed limited efficiency when compared with those using UVC light. For all processes with H2O2 electrogeneration, the active chlorine species can be scavenged by the H2O2, diminishing the efficiency of the processes. This can explain the lower efficiency of AO-H2O2 when compared with AO. Moreover, the degradation of the MWWTP effluent spiked with 18 pharmaceuticals in μg L(-1) during AO process was assessed

  1. Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters.

    PubMed

    Berto, Josiani; Rochenbach, Gisele Canan; Barreiros, Marco Antonio B; Corrêa, Albertina X R; Peluso-Silva, Sandra; Radetski, Claudemir Marcos

    2009-05-01

    Hospital wastewater is considered a complex mixture populated with pathogenic microorganisms. The genetic constitution of these microorganisms can be changed through the direct and indirect effects of hospital wastewater constituents, leading to the appearance of antibiotic multi-resistant bacteria. To avoid environmental contamination hospital wastewaters must be treated. The objective of this study was to evaluate the efficiency of hospital wastewater treated by a combined process of biological degradation (septic tank) and the Fenton reaction. Thus, after septic tank biodegradation, batch Fenton reaction experiments were performed in a laboratory-scale reactor and the effectiveness of this sequential treatment was evaluated by a physico-chemical/microbiological time-course analysis of COD, BOD(5), and thermotolerant and total coliforms. The results showed that after 120min of Fenton treatment BOD(5) and COD values decreased by 90.6% and 91.0%, respectively. The BOD(5)/COD ratio changed from 0.46 to 0.48 after 120min of treatment. Bacterial removal efficiency reached 100%, while biotests carried out with Scenedesmus subspicatus and Daphnia magna showed a significant decrease in the ecotoxicity of hospital wastewater after the sequential treatment. The use of this combined system would ensure that neither multi-resistant bacteria nor ecotoxic substances are released to the environment through hospital wastewater discharge.

  2. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.

    PubMed

    Zheng, Xue-Jing; Blais, Jean-François; Mercier, Guy; Bergeron, Mario; Drogui, Patrick

    2007-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.

  3. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    PubMed

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  4. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  5. Removal and transformation of organic matters in domestic wastewater during lab-scale chemically enhanced primary treatment and a trickling filter treatment.

    PubMed

    Zhao, Qingliang; Zhong, Huiyuan; Wang, Kun; Wei, Liangliang; Liu, Jinli; Liu, Yu

    2013-01-01

    To find a simple and economical way for treating the domestic wastewater in small counties and towns, a process combining chemically enhanced primary treatment and a trickling filter (CEPT-TF, representing the physical and biological effects) was constructed and operated in laboratory conditions. The characteristic behaviors of dissolved organic matter in raw wastewater and effluents were examined during steady-state operation. Experimental results showed that the process of CEPT and TF in series was beneficial for the removal of hydrophobic and hydrophilic organics. Specially, the hydrophobic and aromatic materials could be preferentially removed in the CEPT unit, and the hydrophilic fraction in the TF. Structural changes of the organic fractions during the operation of the different units were also characterized via spectrum analysis.

  6. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods.

    PubMed

    Mantis, I; Voutsa, D; Samara, C

    2005-11-01

    Chemical analyses and toxicity testing were employed in conjunction to evaluate the environmental hazard from the wasted sludge generated during the biological treatment of urban and industrial wastewaters. Chemical analyses included determination of seven polychlorinated biphenyls (PCBs), 13 polycyclic aromatic hydrocarbons (PAHs), total organic carbon (TOC), and seven heavy metals (As, Cd, Cr, Cu, Pb, Mn, and Zn) in sludge and sludge leachates deriving from two standard leaching procedures: (a) the mild leaching test EN-12457-2 proposed by EC and (b) the relatively aggressive toxicity characteristic leaching procedure (TCLP) leaching test proposed by US EPA. Acute toxicity measurements were performed in aqueous sludge elutriates and leachates by using bioluminescence bacteria. The urban sludge was found to be more enriched with PAHs than the industrial sludge, however, at levels below the EU limits for sludge application. The total PCB content (Sigma7PCBs) in both sludges, particularly in the industrial sludge, exceeded the proposed European limit for sludge use as soil amendment. With regards to their heavy metal content, both sludges met the requirements for use in agriculture. The urban sludge exhibited high ecotoxicity, while the industrial sludge with almost two times lower toxicity was classified as not toxic to slightly toxic. The EN and the TCLP leaching procedures resulted in different sludge characterizations both from chemical and from ecotoxicological points of view. The EN procedure appeared to be more sensitive to the potential environmental risk from sludge disposal. The results of the study revealed the necessity for combining chemical with ecotoxicological criteria for integrated characterization of wasted sludge and the need for harmonization of the methods employed for waste classification.

  7. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater.

    PubMed

    Chen, Zhaobo; Ren, Nanqi; Wang, Aijie; Zhang, Zhen-Peng; Shi, Yue

    2008-07-01

    A pilot-scale test was conducted with a two-phase anaerobic digestion (TPAD) system and a subsequential membrane bioreactor (MBR) treating chemical synthesis-based pharmaceutical wastewater. The TPAD system comprised a continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket-anaerobic filter (UASBAF), working as the acidogenic and methanogenic phases, respectively. The wastewater was high in COD, varying daily between 5789 and 58,792 mg L(-1), with a wide range of pH from 4.3 to 7.2. The wastewater was pumped at a fixed flow rate of 1m(3)h(-1) through the CSTR, the UASBAF and the MBR in series, resulting in respective HRTs of 12, 55 and 5h. Almost all the COD was removed by the TPAD-MBR system, leaving a COD of around 40 mg L(-1) in the MBR effluent. The pH of the MBR effluent was found in a narrow range of 6.8-7.6, indicating that the MBR effluent can be directly discharged into natural waters. A model, built on the back propagation neural network (BPNN) theory and linear regression techniques, was developed for the simulation of TPAD-MBR system performance in the biodegradation of chemical synthesis-based pharmaceutical wastewater. The model well fitted the laboratory data, and was able to simulate the removal of COD.

  8. Fate of Organohalogens in U.S. Wastewater Treatment Plants and Estimated Chemical Releases to Soils Nationwide from Biosolids Recycling

    PubMed Central

    Heidler, Jochen; Halden, Rolf U.

    2009-01-01

    This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through U.S. treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 U.S. states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (± 95% confidence interval) of quantifiable compounds in influent ranged from 4.2 ± 0.8 µg L−1 for triclocarban to 0.03 ± 0.01 µg L−1 for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 ± 0.08 and 0.07 ± 0.04 µg L−1, respectively). Median aqueous-phase removal efficiencies (± 95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 ± 2%) > triclocarban (87 ± 7%) > dichlorocarbanilide (55 ± 20%) > fipronil (18 ± 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27,600 ± 9,600 and 15,800 ± 8,200 µg kg−1 for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 ± 70%) to triclocarban (87 ± 29%) to triclosan (28 ± 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258,000 ± 110,00 kg yr−1 (mean ± 95% confidence

  9. Wastewater treatment with acoustic separator

    NASA Astrophysics Data System (ADS)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  10. Floating treatment wetlands for domestic wastewater treatment.

    PubMed

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  11. Land treatment field studies. Volume 5. Wastewater treatment sludge from batch organic chemical synthesis. Final report Sep 77-Feb 81

    SciTech Connect

    Berkowitz, J.B.; Bysshe, S.E.; Goodwin, B.E.; Harris, J.C.; Land, D.B.

    1983-07-01

    This report presents the results of field measurements and observations of a land treatment operation using a sludge generated from organic chemical manufacture. The sludge is applied to a turf farm which contains acidic soil; the sludge reduces the lime addition requirements for pH adjustment. The sub-soils are porous and the quality of the groundwater located at 20-30' below the ground surface is pristine.

  12. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhanced chemical oxygen demand removal and flux reduction in pulp and paper wastewater treatment using laccase-polymerized membrane filtration.

    PubMed

    Ko, Chun-Han; Fan, Chihhao

    2010-09-15

    The purpose of this present study is to investigate the removal efficiency of chemical oxygen demand (COD) from pulp and paper wastewater using laccase-polymerized membrane filtration process. The membranes with molecular weight cut-off (MWCO) of 5000 and 10,000, 30,000 and 54,000 were used in a cross-flow module to treat the pulp and paper wastewater containing high phenolic constituents and COD. With 2.98 IU/L of activated laccase applied at room temperature for 180 min, the contaminants in raw wastewater and second effluent were polymerized to form larger molecules with average molecular weight of 1300 and 900 Da (Dalton), respectively. With laccase polymerization prior to filtration, over 60% removals of COD by the four investigated membranes were observed, compared with low COD removal without laccase polymerization. Moreover, the addition of laccase resulted in 4-14% reduction of membrane permeability during the first 180 min filtration operation due to gel layer formation by the polymerization. No further flux decline was observed afterwards indicating the steady state was reached and the membranes could be used to remove the polymerized pollutants without significant fouling. The maximum apparent resistance occurrence for raw wastewater treated with laccase also supported the effectiveness for COD removal with laccase polymerization before membrane filtration. Additionally, pretreatment by inactivated laccase only caused further flux reduction without additional removal of COD.

  14. Wastewater treatment with microalgae

    SciTech Connect

    Oswald, W.J. )

    1992-01-01

    In locations where total solar energy inputs average 400 langeleys or more, microscopic algae, grown in properly designed ponds, can contribute significantly and economically to wastewater treatment. While growing, microalgae produce an abundance of oxygen for microbial and biochemical oxidation of organics and other reduced compounds and for odor control. Microalgae also accelerate the inactivation of disease bacteria and parasitic ova by increasing water temperature and pH. Microalgae remove significant amounts of nitrogen and phosphorus and adsorb most polyvalent metals, including those that are toxic. After growth in properly designed paddle wheel mixed high rate ponds, microalgae settle readily, leaving a supernatant free of most pollutants. Such effluents are suitable for irrigation of ornamental plants, crops not eaten raw, aquaculture, and grounwater recharge. The settled and concentrated microalgae may be used for fertilizer, for fermentation to methane, or, assuming no toxicity, for fish, bivalve, or animal feed.

  15. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  16. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  17. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  18. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  19. Deployable Wastewater Treatment Technology Evaluation

    DTIC Science & Technology

    2006-05-31

    AFRL/MLQD is expanding the Deployable Waste Disposal System to include bare base wastewater treatment. The goal of AFRL/MLQD is for the deployable... wastewater treatment system to be integrated into a waste treatment system that will treat both solid and aqueous waste. The US Army (TARDEC) and the... Air Force (AAC/WMO) have been involved in preliminary studies that provide extensive useful background information for this project. These studies show

  20. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  1. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival.

  2. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part II--mechanism.

    PubMed

    Newcombe, R L; Strawn, D G; Grant, T M; Childers, S E; Möller, G

    2008-03-01

    The removal mechanism of a hydrous ferric oxide (HFO) reactive filtration (RF) process with coupled chemically enhanced secondary treatment (RECYCLE) for phosphorus removal from municipal wastewater (HFO-RF-RECYCLE) was examined. A 0.95-ML/d (0.25-mgd) demonstration of HFO-RF-RECYCLE was performed at a municipal wastewater treatment plant equipped with oxidation ditches and secondary clarifiers. Influent to the plant averaged 6.0 mg/L phosphorus, with a 3-month tertiary effluent average of 0.011 mg/L phosphorus. In addition to aqueous geochemical modeling, experiments with surface charge, scanning electron microscopy, adsorptive capacity, thermal desorption, and most probable number of iron(III)-reducing bacteria were performed on samples from the system, to determine the major phosphorus-removal pathways. Results suggest that, in addition to filtration of particulate phosphorus, the low tertiary effluent total phosphorus result was achieved by adsorption.

  3. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    PubMed

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater.

  4. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  5. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    PubMed

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  6. Bioelectrochemical treatment of paper and pulp wastewater in comparison with anaerobic process: integrating chemical coagulation with simultaneous power production.

    PubMed

    Krishna, K Vamshi; Sarkar, Omprakash; Venkata Mohan, S

    2014-12-01

    The efficiency of a bioelectrochemical treatment system (BET) to treat complex paper and pulp wastewater at two different pH conditions (6 and 7) in comparison with conventional anaerobic treatment process (AnT) was evaluated. Among the operating conditions, BET showed good treatment efficiency at pH 7 in terms of COD (BET/AnT: 55%/51%), nitrates (33.5%/19.1%), phosphates (33%/19%) and sulfates (58%/41%) in removal. The effluent obtained from BET system was subjected to coagulation for further treatment which showed good COD removal (BET/AnT, 95%/69%) and color (100%/68%). Bioelectrochemical analysis revealed higher catalytic currents in BET than AnT specific to oxidation and reduction. Besides, derivative of cyclic voltammetric scans (DCV) also supported the involvement of various membrane bound electron transferring complexes like FAD(H) bound enzymes, ubiquinone, NADH(+)/H(+) bound enzymes, etc. Experimental results demonstrated that BET system can be a viable platform to treat complex wastewaters with simultaneous energy recovery in integrated approach.

  7. Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment.

    PubMed

    Pan, Zhi-hui; Tian, Jia-yu; Xu, Guo-ren; Li, Jun-jing; Li, Gui-bai

    2011-01-01

    Meso-macropore adsorbents were prepared from biological sludge, chemical sludge and hybrid sludge of biological and chemical sludges, by chemically activating with 18.0 M H(2)SO(4) in the mass ratio of 1:3, and then pyrolyzing at 550 °C for 1 h in anoxic atmosphere. The physical and chemical characteristics of the sludge-based adsorbents were examined in terms of surface physical morphology, specific surface area and pore size distribution, aluminum and iron contents, surface functional groups and crystal structure. Furthermore, the adsorption effect of these adsorbents on the organic substances in wastewater was also investigated. The results indicated that the adsorption capacities of the sludge-based adsorbents for UV(254) were lower than that of commercial activated carbon (AC), whereas the adsorption capacities of the adsorbents prepared from hybrid sludge (HA) and chemical sludge (CA) for soluble COD(Cr) (SCOD(Cr)) were comparable or even higher than that of the commercial AC. The reasons might be that the HA and CA possessed well-developed mesopore and macropore structure, as well as abundant acidic surface functional groups. However, the lowest adsorption efficiency was observed for the biological sludge-based adsorbent, which might be due to the lowest metal content and overabundance of surface acidic functional groups in this adsorbent.

  8. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part I--performance.

    PubMed

    Newcombe, R L; Rule, R A; Hart, B K; Möller, G

    2008-03-01

    This work examines the performance of a hydrous ferric oxide (HFO) reactive filtration (RF) process with coupled chemically enhanced secondary treatment (RECYCLE) for phosphorus removal from municipal wastewater (HFO-RF-RECYCLE). A 3-month, 0.95-ML/d (0.25-mgd) demonstration of HFO-RF-RECYCLE was performed at a municipal wastewater treatment plant equipped with oxidation ditches and secondary clarifiers. Influent to the plant averaged 6.0 mg/L phosphorus, with a tertiary effluent average of 0.011 mg/L phosphorus. Iron doses to the plant were low, at 5 mg/L. Inline recycling of HFO solution rejects to the plant influent resulted in a maximum 90.3%, dose-dependent reduction of phosphorus in the secondary effluent at 4.5 ML/d (1.2 mgd). Other results included reduction of total suspended solids and turbidity. A mass balance analysis was performed. We conclude that HFO-RF-RECYCLE may allow very low levels of phosphorus discharge from municipal wastewater treatment plants with a ferric-iron-based tertiary filtration process and residual recycling.

  9. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    EPA Science Inventory

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  10. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    EPA Science Inventory

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  11. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon.

  12. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    PubMed

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  13. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    USGS Publications Warehouse

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  14. Denitrifying bioreactor clogging potential during wastewater treatment.

    PubMed

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Wastewater treatment of pulp and paper industry: a review.

    PubMed

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  16. Which chemicals drive biological effects in wastewater and recycled water?

    PubMed

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring.

  17. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia.

    PubMed

    Venkata Mohan, S; Vijaya Bhaskar, Y; Sarma, P N

    2007-06-01

    Molecular hydrogen (H(2)) production with simultaneous wastewater treatment was studied in biofilm configured periodic discontinuous/sequencing batch reactor using chemical wastewater as substrate. Anaerobic mixed consortia was sequentially pretreated with repeated heat-shock (100 degrees C; 2 h) and acid (pH-3.0; 24 h) treatment procedures to selectively enrich the H(2) producing mixed consortia prior to inoculation of the reactor. The bioreactor was operated at mesophilic (room) temperature (28+/-2 degrees C) under acidophilic conditions with a total cycle period of 24 h consisting of FILL (15 min), REACT (23 h), SETTLE (30 min) and DECANT (15 min) phases. Reactor was initially operated with synthetic wastewater (SW) at OLR of 4.8 kg COD/m(3)-day and subsequently operated using composite chemical wastewater (CW) at OLR of 5.6 kg COD/m(3)-day by adjusting pH to 6.0 prior to feeding to inhibit the methanogenic activity. H(2) evolution rate differed significantly with the nature of wastewater used as substrate [SW--volumetric H(2) production rate--12.89 mmol H(2)/m(3)-min and specific H(2) production rate--0.0084 mmol H(2)/min-g COD(L) (0.026 mmol H(2)/min-g COD(R)); CW--volumetric H(2) production rate--6.076 mmol H(2)/m(3)-min and specific H(2) production rate--0.0089 mmol H(2)/min-g COD(L) (0.033 mmol H(2)/min-g COD(R))]. Relatively rapid progress towards higher H(2) yield (2 h) was observed with SW compared to the CW (10 h). Substrate (COD) reduction of 32.4% (substrate degradation rate (SDR)--1.55 kg COD/m(3)-day) and 26.7% (SDR-1.49 kg COD/m(3)-day) was observed with SW and CW, respectively. The system showed rapid stabilization tendency (SW--37 days; CW--40 days) with respect to H(2) generation and COD reduction. H(2) evolution showed relatively good correlation with VFA concentration in the case of SW (R(2)-0.961) compared to CW (R(2)-0.912). A surge in pH values from 5.87 to 4.23 (SW) and 5.93 to 4.62 (CW) was observed during the cycle operation. Integration

  18. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  19. Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery.

    PubMed

    Yu, Jui-Hsuan; Chou, Yi-Hsuan; Liang, Yang-Min; Li, Chi-Wang

    2015-01-01

    Chemical reduction was firstly employed to treat synthetic wastewaters of various compositions prepared to simulate the retentate stream of polyelectrolyte enhanced ultrafiltration (PEUF). With fixed Cu:polyethylenimine (PEI) monomer:dithionite molar ratio, increasing copper concentration increases copper removal efficiency. Under fixed Cu:dithionite molar ratio and fixed Cu concentration, increasing PEI monomer:copper molar ratio decreases copper removal efficiency. The formation of nano-sized copper particles, which readily pass through 0.45 μm filter used for sample pretreatment before residual copper analysis, might be the reason behind the decreasing copper removal efficiency observed. Particle size analysis shows that the size of copper particles, which are formed through reduction reaction, increases with decreasing pH value and increasing reaction time. As ultrafiltration is capable of removing these nano-sized particles, integration of chemical reduction and PEUF is proposed to simultaneously achieve regeneration of polyelectrolyte and recovery of copper in one process. Results show that the proposed process could achieve almost complete copper removal without being affected by reaction pH.

  20. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams and fish in the Great Lakes Region and Upper Mississippi River

    USDA-ARS?s Scientific Manuscript database

    Urban streams are an integral part of the municipal wastewater treatment process by providing a point of discharge for wastewater treatment plant (WWTP) effluents and additional attenuation through dilution and transformation processes. The receiving surface waters also are a conduit for contaminan...

  1. Riverview Estates Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number ND-0031143, the Riverview Estates Wastewater Treatment Facility is authorized to discharge from its wastewater treatment facility in designated locations as described in the permit.

  2. A novel approach for estimating the removal efficiencies of endocrine disrupting chemicals and heavy metals in wastewater treatment processes.

    PubMed

    Chiu, Jill M Y; Degger, Natalie; Leung, Jonathan Y S; Po, Beverly H K; Zheng, Gene J; Richardson, Bruce J; Lau, T C; Wu, Rudolf S S

    2016-11-15

    The wide occurrence of endocrine disrupting chemicals (EDCs) and heavy metals in coastal waters has drawn global concern, and thus their removal efficiencies in sewage treatment processes should be estimated. However, low concentrations coupled with high temporal fluctuations of these pollutants present a monitoring challenge. Using semi-permeable membrane devices (SPMDs) and Artificial Mussels (AMs), this study investigates a novel approach to evaluating the removal efficiency of five EDCs and six heavy metals in primary treatment, secondary treatment and chemically enhanced primary treatment (CEPT) processes. In general, the small difference between maximum and minimum values of individual EDCs and heavy metals measured from influents/effluents of the same sewage treatment plant suggests that passive sampling devices can smooth and integrate temporal fluctuations, and therefore have the potential to serve as cost-effective monitoring devices for the estimation of the removal efficiencies of EDCs and heavy metals in sewage treatment works. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Assessment of wastewater treatment plant effluent effects on fish reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  4. Assessment of wastewater treatment plant effluent effects on fish reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  5. Biosorption of copper (II) from chemical mechanical planarization wastewaters.

    PubMed

    Stanley, Leah C; Ogden, Kimberly L

    2003-11-01

    Copper Chemical Mechanical Planarization (Cu-CMP) is a critical step in integrated circuit (IC) device manufacturing. CMP and post-CMP cleaning processes are projected to account for 30-40% of the water consumed by IC manufacturers in 2003. CMP wastewater is expected to contain increasing amounts of copper as the industry switches from Al-CMP to Cu-CMP causing some IC manufacturers to run the risk of violating discharge regulations. There are a variety of treatment schemes currently available for the removal of heavy metals from CMP wastewater, however, many introduce additional chemicals to the wastewater, have large space requirements, or are expensive. This work explores the use of microorganisms for waste treatment. A Staphylococcus sp. of bacteria was isolated and studied to determine the feasibility for use in removing copper from Cu-CMP wastewater. A model Cu-CMP wastewater was developed and tested, as well as actual Cu-CMP wastes. Continuous-flow packed column experiments were performed to obtain adsorption data and show copper recovery from the waste. A predictive, empirical model was used to accurately describe Cu removal. Additionally, the immobilized cells were regenerated, allowing for the concentration and potential recovery of copper from the wastewater.

  6. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  7. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  8. Green Systems for Wastewater Treatment

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  9. Green Systems for Wastewater Treatment

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  10. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  11. Evaluating the treatment of a synthetic wastewater containing a pharmaceutical and personal care product chemical cocktail: compound removal efficiency and effects on juvenile rainbow trout.

    PubMed

    Osachoff, Heather L; Mohammadali, Mehrnoush; Skirrow, Rachel C; Hall, Eric R; Brown, Lorraine L Y; van Aggelen, Graham C; Kennedy, Christopher J; Helbing, Caren C

    2014-10-01

    Pharmaceutical and personal care products (PPCPs) can evade degradation in sewage treatment plants (STPs) and can be chronically discharged into the environment, causing concern for aquatic organisms, wildlife, and humans that may be exposed to these bioactive chemicals. The ability of a common STP process, conventional activated sludge (CAS), to remove PPCPs (caffeine, di(2-ethylhexyl)phthalate, estrone, 17α-ethinylestradiol, ibuprofen, naproxen, 4-nonylphenol, tonalide, triclocarban and triclosan) from a synthetic wastewater was evaluated in the present study. The removal of individual PPCPs by the laboratory-scale CAS treatment plant ranged from 40 to 99.6%. While the efficiency of removal for some compounds was high, remaining quantities have the potential to affect aquatic organisms even at low concentrations. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to influent recreated model wastewater with methanol (IM, solvent control) or with PPCP cocktail (IC), or CAS-treated effluent wastewater with methanol (EM, treated control) or with PPCP cocktail (EC). Alterations in hepatic gene expression (evaluated using a quantitative nuclease protection plex assay) and plasma vitellogenin (VTG) protein concentrations occurred in exposed fish. Although there was partial PPCP removal by CAS treatment, the 20% lower VTG transcript levels and 83% lower plasma VTG protein concentration found in EC-exposed fish compared to IC-exposed fish were not statistically significant. Thus, estrogenic activity found in the influent was retained in the effluent even though typical percent removal levels were achieved raising the issue that greater reduction in contaminant load is required to address hormone active agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. New urban wastewater treatment with autotrophic membrane bioreactor at low chemical oxygen demand/N substrate ratio.

    PubMed

    Yang, Y; Lesage, G; Barret, M; Bernet, N; Grasmick, A; Hamelin, J; Heran, M

    2014-01-01

    The potential for total nitrogen removal from municipal wastewater has been evaluated in an autotrophic membrane bioreactor running with a low chemical oxygen demand (COD)/N ratio to simulate its combination with an upstream physicochemical process that retains a large proportion of organic matter. The tests were conducted in a laboratory scale submerged membrane bioreactor loaded with a synthetic influent. Nitrogen loading rate was 0.16 kgN-NH4+.m(-3).d(-1) and sodium acetate was added as a carbon source. Results have shown that nitrogen elimination can reach 85% for a COD/N ratio of 5, with COD removal exceeding 97%. However, a COD/N ratio of 3.5 was found to be the limiting factor for successfully reaching the overall target value of 10 mgN.L(-1) in the effluent. Nevertheless, low COD/N ratios make it possible to work with low total suspended solid concentrations in the bioreactor, which greatly facilitates membrane fouling control by a simple aeration and backwashing strategy.

  13. Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania

    PubMed Central

    Popa, Paula; Timofti, Mihaela; Voiculescu, Mirela; Dragan, Silvia; Trif, Catalin; Georgescu, Lucian P.

    2012-01-01

    This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants. PMID:22919336

  14. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  15. Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: chemical, bacteriological, and ultrastructural analyses.

    PubMed Central

    Ridgway, H F; Kelly, A; Justice, C; Olson, B H

    1983-01-01

    Biofouling of reverse-osmosis membranes was investigated at an advanced wastewater treatment facility. Cellulose diacetate membranes operated for approximately 4,000 h became uniformly coated with a mucilaginous fouling layer. The fouling material was approximately 93% water by weight, and nearly 90% of the dehydrated residue was organic in composition. Calcium, phosphorous, sulfur, and chlorine were the major inorganic constituents detected. Protein and carbohydrate represented as much as 30 and 17%, respectively, of the dry weight of the biofilm. Bacteriological plate counts indicated up to 5.6 X 10(6) CFU/cm2 of membrane surface. Accumulation of [3H]glucose in the biofilm and measurement of ATP indicated that the fouling bacteria were metabolically active in situ. The genus Acinetobacter and the Flavobacterium-Moraxella group were the major generic groups associated with the feedwater surface of the membrane, whereas species of the generic groups Acinetobacter, Pseudomonas-Alcaligenes, and Bacillus-Lactobacillus predominated on the permeate water surface. Electron microscopy revealed that the biofilm on the feedwater surface of the membrane was 10 to 20 microns thick and was composed of several layers of compacted bacterial cells, many of which were partially or completely autolyzed. The bacteria were firmly attached to the membrane surface by an extensive network of extracellular polymeric fibrils. Polyester (Texlon) support fibers located on the permeate surface of the reverse osmosis membranes were sparsely colonized, suggesting bacterial regrowth in the product water collection system. Images PMID:6847180

  16. Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment.

    PubMed

    Kim, B; Gautier, M; Michel, P; Gourdon, R

    2013-01-01

    The use of vertical flow constructed wetlands (VFCWs) is well developed in France and other countries for the treatment of wastewaters from small communities. The patented Azoé® process has been developed by a French company, SCIRPE, in order to improve denitrification and phosphorus removal as compared to classical VFCWs. It includes a biological trickling filter pretreatment followed by two stages of partially flooded VFCW. The performances of partially flooded VFCW are well demonstrated for the removal of organic matter and nitrogen. The system is now being considered for phosphorus removal as well. In this article, sludge and granular materials sampled from the filters of a municipal plant where the Azoé® system has been operated for 8 years were analyzed in order to provide data that may contribute to a better understanding of the dynamics of phosphorus retention. Elemental analyses showed that phosphorus was predominantly captured in the sludge layer accumulated at the surface of the first stage. The progressive mineralization of the sludge over time was also clearly highlighted. The phosphate phases were mainly associated with iron and calcium. The transport of phosphorus via the migration of fine particles through the porous medium in the first stage was also observed.

  17. Sustainability of wastewater treatment technologies.

    PubMed

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of <5 million gallons per day (MGD) or 18.9 x 10(3) cubic meters (m(3)/day). The technologies evaluated were mechanical (i.e., activated sludge with secondary treatment), lagoon (facultative, anaerobic, and aerobic), and land treatment systems (e.g., slow rate irrigation, rapid infiltration, and overland flow). The economic indicators selected were capital, operation and management, and user costs because they determine the economic affordability of a particular technology to a community. Environmental indicators include energy use, because it indirectly measures resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology.

  18. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant.

    PubMed

    Zhao, Jian-Liang; Jiang, Yu-Xia; Yan, Bo; Wei, Chaohai; Zhang, Li-Juan; Ying, Guang-Guo

    2014-09-01

    Coking wastewater contributes approximately 5% of the total discharge volume of industrial wastewaters every year in China. The toxicity of coking wastewater to aquatic organisms is still unknown. The authors evaluated the toxicity of wastewater from different treatment stages in a coking wastewater treatment plant, South China, using 5 test species belonging to different trophic levels: luminous bacteria, green alga, a crustacean, duckweed, and zebrafish embryos. The raw influent displayed the highest toxicity to the test species, with toxic units ranging from 16.2 to 1176. The toxicity in the wastewater was then gradually removed by sequential primary treatment, biological fluidized-bed treatment, and secondary clarifier treatment. The toxic unit of the final effluent was reduced to 2.26 for the green alga (Pseudokirchneriella subcapitata) and to 0 for the other 4 organisms. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs) and qualitative scanning by gas chromatography-mass spectrometry showed the presence of a variety of pollutants in the coking wastewaters. Multivariate statistical analysis revealed that the toxicity in the coking wastewater was correlated to the chemical oxygen demand, total nitrogen, ammonia nitrogen, volatile phenols, sulfide, metals (Cr, As, Sb, Hg, Pb, and Ni), and ΣPAHs. Based on the results, it is required to set a safety emission limit value for the discharge of coking wastewater to protect aquatic organisms in the receiving water bodies.

  19. Cotton-textile wastewater management: investigating different treatment methods.

    PubMed

    Georgiou, D; Aivasidis, A

    2012-01-01

    The cotton-textile industry consumes significant amounts of water during manufacturing, creating high volumes of wastewater needing treatment. The organic-load concentration of cotton-textile wastewater is equivalent to a medium-strength municipal wastewater; the color of the water, however, remains a significant environmental issue. This research, in cooperation with a cotton-textile manufacturer, investigated different treatment methods and different combinations of methods to identify the most cost-effective approaches to treating textile wastewater. Although activated-sludge is economical, it can only be used as part of an integrated wastewater management system because it cannot decolorize wastewater. Coagulation/flocculation methods are able to decolorize cotton-wastewater; however, this process creates high amounts of wastewater solids, thus significantly increasing total treatment costs. Chemical oxidation is an environmentally friendly technique that can only be used as a polishing step because of high operating costs. Anaerobic digestion in a series of fixed-bed bioreactors with immobilized methanogens using acetic acid as a substrate and a pH-control agent followed by activated-sludge treatment was found to be the most cost-effective and environmentally safe cotton-textile wastewater management approach investigated.

  20. Wastewater treatment by immobilized cells

    SciTech Connect

    Tyagi, R.D.; Vembu, K.

    1990-01-01

    Immobilized cell processes for wastewater treatment have only recently been intensively studied and applied. Essential information on the feasibility of various immobilization methods has been reviewed and examined with special reference to wastewater treatment. Included are the suitability of various supports, techniques used for microbial attachment factors affecting affinity for the support, strength of fixation, nature of polymers, role of radical groups, properties of attached microorganisms, effects of carriers on settling properties of biomass, characteristics of biofilm on carriers, and changes in cell metabolism as a result of immobilization. The morphologies for identification of immobilized cells, the methods of identification of structure and composition of microbial aggregates, and analytical methods for the estimate of biomass in the presence of carriers are discussed. Applications of immobilized cells to toxic wasted, anaerobic and aerobic systems, and operational criteria for different wastes are specified. The results of immobilized microalgae and cyanobacteria for wastewater treatment are reported and their future prospects are highlighted. Various immobilized cell bioreactor configurations have been critically reviewed with respect to design and granulation process including the topics of: biomass retention, resistance to washout, diffusional resistances, response to toxic shocks, theoretical aspects of hydrodynamic characteristics, start-up and steady-state processes, selection of support particles, particle size and active biomass, head loss considerations, surface area, reactor liquid velocity, hydraulic retention time aerobic versus anaerobic systems, temperature and substrate concentration effects, metabolic interspecies transfer, stability, suspended solids and microbial film interactions, solids residence time requirements, and operational issues.

  1. Flue gas desulfurization wastewater treatment primer

    SciTech Connect

    Higgins, T.E.; Sandy, A.T.; Givens, S.W.

    2009-03-15

    Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

  2. Trace organics removal by advanced wastewater treatment

    SciTech Connect

    McCarty, P.L.; Reinhard, M.

    1980-07-01

    A statistical study was performed on data on trace organics removal at an advanced wastewater treatment plant in southern California. The log normal distribution was used for the statistical analysis. Among the substances investigated were: chemical oxygen demand, chloroethanes, chlorobenzenes, chloroethylenes, naphthalenes, xylenes, methylphthalates, butylphthalates, polychlorinated biphenyls, and lindane. Data for the period in which trickling filter effluent was the influent to the plant indicated removals of 90% or more, with small confidence intervals. During a period when activated sludge effluent was the plant influent, confidence intervals were wider; generally the quality of influent water improved but changes in advanced treatment effluent quality were variable.

  3. Biological treatment of a seafood processing wastewater

    SciTech Connect

    Mines, R.O. Jr.; Robertson, R.R. II

    1998-07-01

    The seafood industry in Tampa is a multi-million dollar-per-year industry which heavily impacts the environment with large volumes of wastewater containing high concentrations of suspended solids and nitrogen. A 10 liter per day, bench-scale, wastewater treatment facility was designed, constructed, and operated for approximately eight (8) months to collect treat ability data on a seafood-processing wastewater. The bench-scale reactor consisted of a single-sludge, extended aeration, modified Ludzack-Ettinger (MLE) process for biologically removing carbon, nitrogen, and phosphorus from the wastewater. Influent and effluent data collected on the system included: chemical oxygen demand (COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen (TN), pH, total phosphorus (TP), dissolved oxygen (DO), alkalinity, and temperature. All analyses were performed in accordance with Standard Methods (1992). Typical influent characteristics were: 900--4,000 mg/L COD, 45--110 mg/L TKN, 150--2,000 mg/L TSS, and 40--80 mg/L TP. Solids residence time (SRT) served as the primary control parameter with average STR's of 4.5, 6.4, 8.5, and 30.9 days observed during the study. The following biokinetic constants were determined from the data: a yield coefficient (Y) of 0.49 mg TSS/mg COD and an endogenous decay coefficient (k{sub e}) of 0.11 days{sup {minus}1}.

  4. Cheese whey wastewater: characterization and treatment.

    PubMed

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  5. Wastewater treatment using ferrous sulfate

    SciTech Connect

    Boetskaya, K.P.; Ioffe, E.M.

    1980-01-01

    Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

  6. Applications of nanotechnology in wastewater treatment--a review.

    PubMed

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  7. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  8. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  9. Performance indicators for wastewater treatment plants.

    PubMed

    Balmér, P; Hellström, D

    2012-01-01

    The Swedish Water & Wastewater Association has operated a web-based system, VASS, for the collection and compilation of key data from the Swedish water utilities since 2003. The VASS system will now be expanded to include data on operation of individual wastewater treatment plants (WWTP). The objective is to provide performance indicators (PIs) for performance and economy and the use of resources such as energy, chemicals and manpower. A set of PIs has been developed that also includes explanatory factors to compensate for differences in the condition of operation between plants. This paper discusses the data required for the calculation of PI but also for explanatory factors, quality checks and for plant operation context. The discussion is based on the experiences from a test round with the participation of 24 WWTP.

  10. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  11. Nitrous oxide emissions from wastewater treatment processes

    PubMed Central

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  12. Preparation of polyelectrolytes for wastewater treatment.

    PubMed

    Radoiu, Marilena T; Martin, Diana I; Calinescu, Ioan; Iovu, Horia

    2004-01-02

    Liquid-phase polymerisation of acrylamide-acrylic acid to form polyelectrolytes used in wastewater cleaning was examined using accelerated electron beam and microwave irradiation methods. Polymerisation was carried out in aqueous solutions at temperatures approximately 60 degrees C. Monomers total concentration was established at 40% (36% acrylamide and 4% acrylic acid). Only using the features of simultaneous radiation-induction and microwave heating can result in the formation of linear polymer chains with good water solubility and low residual monomer concentration. The flocculation capacity of the obtained polymers was tested using two wastewaters, one sampled from a slaughterhouse and the other from a vegetable oil plant. Quality indicators such as total suspended matters (TSM), chemical oxygen demand (COD), biological oxygen demand (BOD) and fat, oils and grease (FOG) were measured before and after the treatment with polymeric flocculants and compared with the results obtained in classical treatment with Al(2)(SO(4))(3). It was found that the combined treatment with polymers and Al(2)(SO(4))(3) increases the degree of purification of both wastewaters up to 99%.

  13. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  14. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  15. Dissolved air flotation treatment of concentrated fish farming wastewaters.

    PubMed

    Jokela, P; Ihalainen, E; Helnänen, J; Viitasaari, M

    2001-01-01

    Fish farming wastewaters contain nutrients, phosphorus and nitrogen, which promote eutrophication in the typically shallow farming sites in Finland. Fish farming wastewater treatment is problematic because of large quantities of very dilute wastewater (200-600 m3/kg fish produced). In practice wastewater treatment is concentrated on suspended solids removal. Treatment can be done in two steps: concentration of the very dilute wastewater and subsequent treatment of the concentrated wastewater. Dissolved air flotation pilot trials were conducted using two types of concentrated wastewaters: settled solids from a sludge hopper of a cultivation basin and swirl separator concentrate. Two different pilot plants were used and performances compared. Both mechanical treatment and precipitation by ferric salts were applied. Depending on the influent quality, 70 to 90% phosphorus reductions were achieved without chemicals. Chemical precipitation and flotation produced 90% phosphorus reductions and effluent concentrations at the level of 0.05 mgP/l when 13 m3/(m2h) hydraulic loading was used.

  16. New treatment for uranium in wastewater

    SciTech Connect

    Potts, M.E. ); Hampshire, L.H. )

    1993-01-01

    The design of an advanced wastewater treatment facility at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio, focuses on minimizing discharge of uranium and other priority pollutant metals. The treatment facility will use chemical pretreatment to remove most dissolved and suspended solids, radionuclides, and priority pollutant metals. Ion exchange will be used to ensure that the concentration of uranium discharged to the environment is less than 1.0 [mu]g/L. Designers have evaluated a potassium ferrate (iron VI) treatment procedure for uranium removal, focusing not only on the treatment's efficiency in removing uranium, but also on the volume of contaminated solids that are generated. When performance levels for removal of uranium, volume of contaminated solids generated, and overall costs of treatment and waste removal are considered, potassium ferrate technology compares favorably with conventional treatments. 2 tabs.

  17. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Baoping; Wang, Qiuze; Dionysiou, Dionysois

    2015-05-01

    Increased pollution of ground and surface water and emerging new micropollutants from a wide variety of industrial, municipal, and agricultural sources has increased demand on the development of innovative new technologies and materials whereby challenges associated with the provision of safe potable water can be addressed. Heterogeneous photocatalysis using visible-light sensitized TiO2 photocatalysts has attracted a lot of attention as it can effectively remove dissolved organic compound in water without generating harmful by-products. On this note, recent progress on visible-light sensitive TiO2 synthesis via wet chemical N-doping method is reviewed. In a typical visible-light sensitive TiO2 preparation via wet chemical methods, the chemical (e.g., N-doping content and states) and morphological properties (e.g., particle size, surface area, and crystal phase) of TiO2 in as-prepared resultants are sensitively dependent on many experimental variables during the synthesis. This has also made it very difficult to provide a universal guidance at this stage with a certainty for each variable of N-doping preparation. Instead of one-factor-at-a-time style investigation, a statistically valid parameter optimization investigation for general optima of photocatalytic activity will be certainly useful. Optimization of the preparation technique is envisaged to be beneficial to many environmental applications, i.e., dissolved organic compounds removal in wastewater treatment.

  18. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment.

    PubMed

    Nakada, Norihide; Tanishima, Toshikatsu; Shinohara, Hiroyuki; Kiri, Kentaro; Takada, Hideshige

    2006-10-01

    We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.

  19. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  20. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  1. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  2. Comparative removal of toxic pollutants by six wastewater treatment processes

    SciTech Connect

    Hannah, S.A.; Austern, B.M.; Eralp, A.E.; Wise, R.H.

    1986-01-01

    Five pilot-scale wastewater treatment processes providing less than secondary treatment were evaluated for capability to remove priority pollutants from municipal wastewater. The selected processes were primary clarification plus filtration, chemical clarification, high rate trickling filter, aerated lagoon and facultative lagoon. A conventional activated sludge system was operated in parallel with the alternative processes to serve as a control. Wastewater feed was spiked with 21 organics dissolved in toluene. Removals of ambient levels of five metals were also determined. The control activated sludge provided the best removals of organics.

  3. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  4. Winery wastewater treatment by constructed wetlands and the use of treated wastewater for cash crop production.

    PubMed

    Mulidzi, A R

    2007-01-01

    A 45 m long, 4 m wide and 1 m deep wetland was constructed at Goudini in 2002 to treat distillery and winery effluent. After the plants were fully established, the wastewater with an average chemical oxygen demand (COD) of 14,000 mg/l was introduced to the wetland system at a rate of 4,050 litres per day. After treatment, wastewater at the outlet had an average COD of 500 mg/l, indicating more than 90% COD removal. After treatment, the wastewater was used to irrigate cash crops as part of poverty alleviation for farm workers. The experiment consisted of four treatment: clean irrigation water with fertilizer applied (B1); clean irrigation water without fertilizer applied (B2); wastewater irrigation with fertilizer applied (B3); and wastewater irrigation without fertilizer applied (B4). These were replicated seven times. Cabbage was cultivated as a cash crop. The results indicated that cabbage could be irrigated with winery wastewater treated by wetlands. The study found that there was significant difference between treatments that were fertilized compared with those that were not fertilized. The results indicated that wastewater irrigation improved the nutritional status of the soil.

  5. Insight into chemical phosphate recovery from municipal wastewater.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Li, Jixiang; Liu, Yi; Zhang, Xinbo; Jia, Hui

    2017-01-15

    Phosphate plays an irreplaceable role in the production of fertilizers. However, its finite availability may not be enough to satisfy increasing demands for the fertilizer production worldwide. In this scenario, phosphate recovery can effectively alleviate this problem. Municipal wastewater has received high priority to recover phosphate because its quantity is considerable. Therefore, phosphate recovery from municipal wastewater can bring many benefits such as relieving the burden of increasing production of fertilizers and reduction in occurrence of eutrophication caused by the excessive concentration of phosphate in the released effluent. The chemical processes are the most widely applied in phosphate recovery in municipal wastewater treatment because they are highly stable and efficient, and simple to operate. This paper compares chemical technologies for phosphate recovery from municipal wastewater. As phosphate in the influent is transferred to the liquid and sludge phases, a technical overview of chemical phosphate recovery in both phases is presented with reference to mechanism, efficiency and the main governing parameters. Moreover, an analysis on their applications at plant-scale is also presented. The properties of recovered phosphate and its impact on crops and plants are also assessed with a discussion on the economic feasibility of the technologies.

  6. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).

  7. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  8. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  9. A Technology of Wastewater Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  10. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  11. Wastewater Treatment: A Pilot Plant on the Move

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Reports that there are currently three companies that own mobile physical-chemical wastewater treatment vans that investigate such parameters as chemical coagulation, sedimentation, sand filtration and carbon adsorption. Information is provided regarding the potential of utilizing this type of facility and rental agreements. (MLB)

  12. Wastewater Treatment: A Pilot Plant on the Move

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Reports that there are currently three companies that own mobile physical-chemical wastewater treatment vans that investigate such parameters as chemical coagulation, sedimentation, sand filtration and carbon adsorption. Information is provided regarding the potential of utilizing this type of facility and rental agreements. (MLB)

  13. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  14. Levels and distributions of hexachlorobutadiene and three chlorobenzenes in biosolids from wastewater treatment plants and in soils within and surrounding a chemical plant in China.

    PubMed

    Zhang, Haiyan; Wang, Yawei; Sun, Cheng; Yu, Miao; Gao, Yan; Wang, Thanh; Liu, Jiyan; Jiang, Guibin

    2014-01-01

    Although hexachlorobutadiene (HCBD) was recently proposed as a candidate persistent organic pollutant (POP) under the Stockholm Convention, information about its environmental levels and distributions is still very limited. In this work, HCBD was determined in the sewage sludge from 37 wastewater treatment plants (WWTPs) in 23 cities and 17 soils near a chemical plant in China. Three chlorobenzenes (CBs) (1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, and hexachlorobenzene) were simultaneously studied to help better understand the environmental behavior of HCBD. Concentrations of HCBD in sludge samples ranged from <0.03 to 74.3 ng/g dry weight (dw) with a median value of 0.30 ng/g dw, which was lower than those of the three CBs. Levels of HCBD were not correlated with capacity of the WWTPs and total organic carbon. For soils, high level of HCBD was found in the sample within the plant, with a rapid decreasing concentration trend with the increase of distance from the plant. It was suspected that releasing as a byproduct during manufacturing of chlorinated chemicals was the primary source of HCBD in the studied location. Further risk assessment indicated that the environmental risk of HCBD to soil organisms and the health risk to employees were very low through soil exposure within the plant.

  15. A multi-perspective review of microbial fuel-cells for wastewater treatment: Bio-electro-chemical, microbiologic and modeling aspects

    NASA Astrophysics Data System (ADS)

    Capodaglio, Andrea G.; Molognoni, Daniele; Pons, Anna Vilajeliu

    2016-07-01

    Microbial Fuel Cells (MFCs) represent a still novel technology for the recovery of energy and resources through wastewater treatment. Although the technology is quite appealing, due its potential benefits, its practical application is still hampered by several drawbacks, such as systems instability (especially when attempting to scale-up reactors from laboratory prototype), internally competing microbial reactions, and limited power generation. This paper is an attempt to address several of the operational issues related to MFCs application to wastewater treatment, in particular when dealing with simultaneous organic matter and nitrogen pollution control. Reactor configuration, operational schemes, electrochemical and microbiological characterization, optimization methods and modelling strategies are reviewed and discussed with a multidisciplinary, multi-perspective approach. The conclusions drawn herein can be of practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment..

  16. A multi-perspective review of microbial fuel-cells for wastewater treatment: Bio-electro-chemical, microbiologic and modeling aspects

    SciTech Connect

    Capodaglio, Andrea G. Molognoni, Daniele; Pons, Anna Vilajeliu

    2016-07-25

    Microbial Fuel Cells (MFCs) represent a still novel technology for the recovery of energy and resources through wastewater treatment. Although the technology is quite appealing, due its potential benefits, its practical application is still hampered by several drawbacks, such as systems instability (especially when attempting to scale-up reactors from laboratory prototype), internally competing microbial reactions, and limited power generation. This paper is an attempt to address several of the operational issues related to MFCs application to wastewater treatment, in particular when dealing with simultaneous organic matter and nitrogen pollution control. Reactor configuration, operational schemes, electrochemical and microbiological characterization, optimization methods and modelling strategies are reviewed and discussed with a multidisciplinary, multi-perspective approach. The conclusions drawn herein can be of practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment..

  17. Parametric study of a dyeing wastewater treatment by modified sericite.

    PubMed

    Choi, Hee-Jeong; Kim, Kyu Han

    2016-10-01

    The aim of this study was to investigate color, suspended solids (SS), chemical oxygen demand (COD) and biological oxygen demand (BOD) removal using modified sericite with magnesium (Mg-Sericite) flocculants in dyeing wastewater. Mg-Sericite flocculants successfully removed >95% of color, SS. COD and BOD in dyeing wastewater at the following optimal conditions: Mg-Sericite dosage of 40 mg/L, pH of 11, Mg/Sericite ratio of 1.5, settling time of 20 min, mixing time of 10 min and mixing rate of 100 rpm. The bioflocculant, Mg-Sericite, can be a promising flocculants due to its high efficiency and low dose requirements in dyeing wastewater treatment. In addition, Mg-Sericite does not contaminate treated wastewater, which can be recycled to reduce not only the cost and the demand for water but also the extra operational costs for reusing wastewater.

  18. A combined approach for a better understanding of wastewater treatment plants operation: statistical analysis of monitoring database and sludge physico-chemical characterization.

    PubMed

    Avella, A C; Görner, T; Yvon, J; Chappe, P; Guinot-Thomas, P; de Donato, Ph

    2011-01-01

    Biological wastewater treatment plants (WWTP) are complex systems to assess. Many parameters are recorded daily in WWTP to monitor and control the treatment process, providing huge amounts of registered data. A combined approach of extracting information from the WWTP databases by statistical methods and from the sludge physico-chemical characterization was used here for a better understanding of the WWTP operation. The monitored parameters were analysed by multivariate statistical methods: Principal Components Analysis and multiple partial linear regression. The WWTP operational conditions determine the sludge characteristics. The bacterial activity of the sludge in terms of extra-cellular polymeric substances (EPS) production was assessed using size exclusion chromatography and the internal structure of sludge flocs was observed by confocal laser scanning microscopy. The diagnosis of three paper mill WWTP enabled the identification of an important EPS production, the presence of the nitrification process and the presence of PO(4)(3-) nutrient in WWTP-A. These three main characteristics of WWTP-A were related with a systematically good sludge settling. In WWTP-B and C with bad settling, the bacterial activity was weak. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Treatment of biomass gasification wastewaters using reverse osmosis

    SciTech Connect

    Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

    1981-09-01

    Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

  20. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents.

  1. An Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents

    PubMed Central

    Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.

    2006-01-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  2. An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents.

    PubMed

    Thorpe, Karen L; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R

    2006-04-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  3. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    PubMed

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  4. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Primer on Wastewater Treatment, July 1976 Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This general information pamphlet is concerned with the types of wastewater treatment systems, the need for further treatment, and advanced methods of treating waste. Current methods are described, illustrated and evaluated. Pollution problems from oxygen-demanding wastes, disease-causing agents, plant nutrients, synthetic chemicals, inorganic…

  6. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  7. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  8. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  10. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  11. Comparative removal of toxic pollutants by six wastewater treatment processes

    SciTech Connect

    Hannah, S.A.; Austern, B.M.; Eralp, A.E.; Wise, R.H.

    1986-01-01

    Five pilot-scale wastewater treatment processes that provided less than secondary treatment - primary clarification plus filtration, chemical clarification, high-rate trickling filter, aerated lagoon, and facultative lagoon - were evaluated for removal of priority pollutants from municipal wastewater. A conventional activated sludge system was operated in parallel as a control. Wastewater feed was spiked with 21 organics dissolved in toluene. Removal of ambient concentrations of live metals was also evaluated. The control typically removed 80 to 90% of volatiles and 85 to 95% of semivolatiles. The facultative lagoon was the best alternative process, followed by the aerated lagoon. Removals of a specific toxic pollutant depended on the properties of the chemical and its interactions with removal mechanisms used in each treatment process. 9 references, 2 tables.

  12. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  13. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  14. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively).

  15. Evaluating the polar organic chemical integrative sampler for the monitoring of beta-blockers and hormones in wastewater treatment plant effluents and receiving surface waters.

    PubMed

    Jacquet, Romain; Miège, Cécile; Bados, Philippe; Schiavone, Séverine; Coquery, Marina

    2012-02-01

    Wastewater treatment plants (WWTP) are known to be a source of surface water contamination by organic compounds such as pharmaceuticals. The objective of the present work was to study the suitability of the polar organic chemical integrative sampler (POCIS) to monitor beta-blockers and hormones in effluents and surface waters. Four sampling campaigns were carried out in French rivers (the Saône, the Ardières, the Bourbre, and the Seine) between November 2007 and September 2008. Passive samplers were exposed in surface waters, upstream and downstream of WWTP outflows, and in effluents. Exposures lasted for up to 24 d to study the uptake kinetics directly in situ, and repeatability was assessed by exposure of triplicates. A good agreement was found between POCIS and water samples. With the exception of atenolol, beta-blockers showed a linear uptake during at least three weeks, and their sampling rates could be determined in situ. These sampling rates were then used to calculate time-weighted average concentrations of beta-blockers in the Seine River with an overall good accuracy and repeatability. Such calculations could not be performed for hormones because of their variable occurrences and low concentrations in water and POCIS. Polar organic chemical integrative sampler therefore seems to be a suitable tool for monitoring beta-blockers in surface waters impacted by WWTP effluents. Longer exposure durations would be necessary to determine the suitability of POCIS for monitoring hormones. Finally, preliminary assays on the use of several deuterated compounds as performance reference compounds showed promising results for deuterated atenolol. Copyright © 2011 SETAC.

  16. Prioritization of contaminants of emerging concern in wastewater treatment plant discharges using chemical: Gene interactions in caged fish

    EPA Science Inventory

    We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two ...

  17. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  18. Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment.

    PubMed

    Wang, Yongqiang; Wang, Guozhong; Wang, Hongqiang; Liang, Changhao; Cai, Weiping; Zhang, Lide

    2010-03-15

    Micro/nanoscale magnesium silicate hollow spheres were synthesized by using silica colloidal spheres as a chemical template in one pot. The hollow spherical structure, consisting of well-separated nanoscale units, was microscale as a whole and could be easily handled in solution. The as-synthesized magnesium silicate hollow spheres with large specific surface area showed availability for the removal of organic and heavy-metal ions efficiently from waste water. Importantly, the micro/nanoscale magnesium silicate hollow spheres that had adsorbed organic pollutants could be regenerated by calcination and used repeatedly in pollutant removal. Magnesium silicate hollow spheres synthesized by a scaled-up chemical template method may have potential applications in removing cationic dyes and heavy-metal ions from waste water.

  19. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  20. Filtration treatment of dairy processing wastewater.

    PubMed

    Samkutty, Pushpa J; Gough, Ronald H

    2002-01-01

    The effectiveness of various filtration agents in the primary treatment of dairy processing wastewater was investigated in laboratory-scale studies. The filtration agents used were: zeolite, crushed coral, charcoal, sand and crushed coral and sand and glass beads. The effectiveness of the filtration media was determined by testing parameters such as chemical oxygen demand (COD), total solids (TS) and total suspended solids (TSS) before and after filtration of wastewater. Percent reduction of the different parameters as a result of filtration was calculated. Sand combined with crushed coral or glass beads was found to be the most effective filtering medium with an average reduction of 99% in TSS, 93% in COD and 51% in TS. Charcoal filtration resulted in an average 85% reduction in TSS, 83% reduction in COD and 46% reduction in TS. Filtration using crushed coral resulted in an average 83% reduction in TSS, 78% reduction in COD and 39% reduction in TS. Zeolite was the least effective of the four media; it resulted in an average reduction of 78% in TSS, 76% in COD and 30% in TS. The differences among mean values of COD, TSS and TS after the different treatments were analyzed statistically using analysis of variance (ANOVA). When differences among means were found to be statistically significant (p < 0.0001), each mean value was compared with every other mean value using Duncan's multiple range test and least significant difference (LSD) test. Comparison of the mean values indicated the following: No significant difference between means of zeolite and crushed coral treatment. Mean values of COD, TSS, and TS of charcoal treatment were significantly different from the other treatments. Sand combined with crushed coral or glass beads was the most effective filtration agent and the means were significantly different from the means of the other treatments.

  1. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  2. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants.

    PubMed

    Schmidt, Susan; Winter, Josef; Gallert, Claudia

    2012-10-01

    Antibiotics and other pharmaceuticals are contaminants of the environment because of their widespread use and incomplete removal by microorganisms during wastewater treatment. The influence of a mixture of ciprofloxacin (CIP), gentamicin (GM), sulfamethoxazole (SMZ)/trimethoprim (TMP), and vancomycin (VA), up to a final concentration of 40 mg/L, on the elimination of chemical oxygen demand (COD), nitrification, and survival of bacteria, as well as the elimination of the antibiotics, was assessed in a long-term study in laboratory treatment plants (LTPs). In the presence of 30 mg/L antibiotics, nitrification of artificial sewage by activated sludge ended at nitrite. Nitrate formation was almost completely inhibited. No nitrification at all was possible in the presence of 40 mg/L antibiotics. The nitrifiers were more sensitive to antibiotics than heterotrophic bacteria. COD elimination in antibiotic-stressed LTPs was not influenced by ≤20 mg/L antibiotics. Addition of 30 mg/L antibiotic mixture decreased COD removal efficiency for a period, but the LTPs recovered. Similar results were obtained with 40 mg/L antibiotic mixture. The total viable count of bacteria was not affected negatively by the antibiotics. It ranged from 2.2 × 10(6) to 8.2 × 10(6) colony-forming units per milliliter (CFU/mL) compared with the control at 1.4 × 10(6)-6.3 × 10(6) CFU/mL. Elimination of the four antibiotics during phases of 2.4-30 mg/L from the liquid was high for GM (70-90 %), much lower for VA, TMP, and CIP (0-50 %), and highly fluctuating for SMZ (0-95 %). The antibiotics were mainly adsorbed to the sludge and not biodegraded.

  3. Application of electron beam to treatment of wastewater from papermill

    NASA Astrophysics Data System (ADS)

    Shin, Hang-Sik; Kim, Yu-Ri; Han, BumSoo; Makarov, Igor E.; Ponomarev, Alexandr V.; Pikaev, Alexei K.

    2002-11-01

    Electron-beam treatment of wastewater from a papermill has been studied in combination with conventional methods (coagulation+flocculation and biological). It has been found that such combination (the required dose is about 1 kGy) allows one to decrease chemical oxygen demand and total organic carbon values of wastewater to the value below 25 ppm and, as a consequence, to increase the recirculation rate of wastewater from 20-30% up to 70-80%. The design of commercial plant equipped with three electron accelerators (total beam power 300 kW) for the purification of wastewater from a papermill in Cheongwon (Republic of Korea) has been developed. Its planned output is equal to 15,000 m 3/day.

  4. Treatment of coking wastewater by using manganese and magnesium ores.

    PubMed

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  5. Treatment of domestic wastewater by an hydroponic NFT system.

    PubMed

    Vaillant, Nathalie; Monnet, Fabien; Sallanon, Huguette; Coudret, Alain; Hitmi, Adnane

    2003-01-01

    The objectives in this work were to investigate a conceptual layout for an inexpensive and simple system that would treat primary municipal wastewater to discharge standards. A commercial hydroponic system was adapted for this study and the wastewater was used to irrigate Datura innoxia plants. Influent and effluent samples were collected once a month for six months and analysed to determine the various parameters relating to the water quality. The legal discharge levels for total suspended, biochemical oxygen demand and chemical oxygen demand were reached with the plant system after 24 h of wastewater treatment. Total nitrogen and total phosphorus reduction were also obtained. NH4(+)-N was reduced by 93% with nitrification proving to be the predominant removal process. Significant nitrification occurred when the BOD5 level dropped 45 mg/l. Similar results were obtained for six months although the sewage composition varied widely. D. innoxia develops and uses the wastewater as the unique nutritive source.

  6. Charlo Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022551, the Consolidated Charlo-Lake County Water & Sewer District is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to an unnamed swale that runs to Dublin Gulch.

  7. Woodcock Home Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030554, the Salish and Kootenai Housing Authority is authorized to discharge from its Woodcock Home Addition Wastewater Treatment Facility in Lake County, Montana, to a swale draining to Middle Crow Creek.

  8. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  9. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  10. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    PubMed

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China.

  11. Altering textile manufacture to minimize treatment needed for waste-water reclamation

    SciTech Connect

    Beja Neves, M.E.C.

    1989-01-01

    The research involved the uses of water and chemicals in the textile industry. A linear programming model was developed, capable of minimizing the cost of treatment needed for wastewater reclamation. This was accomplished through the selection of the optimum set of chemicals in respect to their removal from a wastewater by biodegradation, and by so doing, preventing the accumulation of inorganic dissolved solids in the reused wastewater, even with prolonged reuse. Different values were tested for the wastewater reclamation rate, and for the percentage of biodegradable materials used by the industry. The industrial processes themselves were considered as blocks, with different manufacturing objectives and using different kinds and quantities of chemicals. The cost of wastewater treatment was influenced by the nature of the chemicals and by the wastewater reclamation rate.

  12. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    PubMed

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  13. Dissolved and colloidal organic nitrogen removal from wastewater treatment plants effluents and reject waters using physical-chemical processes.

    PubMed

    Czerwionka, K; Makinia, J

    2014-01-01

    Four physical-chemical processes were compared in terms of the efficiencies of dissolved and colloidal organic nitrogen (DON and CON) removal from the secondary effluents (SE) and reject water from full-scale biological nutrient removal activated sludge systems. Adsorption on activated carbon was most efficient and allowed removal from the SE of up to 80% and 100% of DON and CON, respectively. High efficiencies of DON removal from SE (up to 55%) were also obtained when using coagulation with iron(III) chloride and calcium hydroxide at final pH = 11.0-11.5. The efficiency of DON removal from thickening waste activated sludge (TWAS) reject water, obtained using coagulation with iron(III) chloride, was comparable with the efficiency for the SE. The efficiency of this process with regard to the sludge digester liquors (SDL) was significantly higher, i.e., 65-70% for both DON and CON. The ion exchange process with strongly acidic cation exchange resin (without pH correction) resulted in a relatively small efficiency of DON removal (<15%), and negligible efficiency of CON removal (<10%). Furthermore, ultrafiltration (0.015 μm) of SE and TWAS reject water resulted in a relatively low efficiency of DON removal (10-13% and 10-20% respectively). Ultrafiltration was found to be more effective for DON removal from SDL (41-68%).

  14. Towards practical implementation of bioelectrochemical wastewater treatment.

    PubMed

    Rozendal, René A; Hamelers, Hubertus V M; Rabaey, Korneel; Keller, Jurg; Buisman, Cees J N

    2008-08-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laboratory BESs now approach levels that come close to the requirements for practical applications. However, full-scale implementation of bioelectrochemical wastewater treatment is not straightforward because certain microbiological, technological and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. Here, we identify these challenges, provide an overview of their implications for the feasibility of bioelectrochemical wastewater treatment and explore the opportunities for future BESs.

  15. Determination of the internal chemical energy of wastewater.

    PubMed

    Heidrich, E S; Curtis, T P; Dolfing, J

    2011-01-15

    The wastewater industry is facing a paradigm shift, learning to view domestic wastewater not as a waste stream which needs to be disposed of but as a resource from which to generate energy. The extent of that resource is a strategically important question. The only previous published measurement of the internal chemical energy of wastewater measured 6.3 kJ/L. It has long been assumed that the energy content in wastewater relates directly to chemical oxygen demand (COD). However there is no standard relationship between COD and energy content. In this study a new methodology of preparing samples for measuring the internal chemical energy in wastewater is developed, and an analysis is made between this and the COD measurements taken. The mixed wastewater examined, using freeze-drying of samples to minimize loss of volatiles, had 16.8 kJ/L, while the domestic wastewater tested had 7.6 kJ/L nearly 20% higher than previously estimated. The size of the resource that wastewater presents is clearly both complex and variable but is likely to be significantly greater than previously thought. A systematic evaluation of the energy contained in wastewaters is warranted.

  16. Primary chemical and physical characterization of acute toxic components in wastewaters

    SciTech Connect

    Svenson, A.; Linlin, Z.; Kaj, L. )

    1992-10-01

    A chemical and physical primary characterization work sheet was developed based on the Microtox test, a bacterial bioluminescence system used as a rapid estimate of acute aquatic toxic effects. Measurements of the variation in light reduction upon different pretreatments provided information about the chemical and physical properties of the main toxic component(s) in test wastewater samples. This primary characterization of a wastewater sample was performed within 1 day. Tests of pure toxic chemical compounds and wastewaters with known and unknown primary toxicants are presented. Outlines to the chemical analysis and identification of toxic components may be deduced from the primary characterization. The provisional characterization may also provide information on wastewater treatment techniques.

  17. Dissolved air flotation clarification of activated sludge and wastewaters from chemical industry.

    PubMed

    Jokelat, P; Immonen, J

    2003-01-01

    Wastewaters from separate chemical factories are treated together in an extended aeration activated sludge plant. The factories produce chemicals for paper industry (e.g. starch), latexes and animal feed. The components of the wastewaters include styrene, tertiary butanol and vinyl acetate. Activated sludge is clarified by sedimentation. During winter time, when the water temperature was 3-12 degrees C, the clarification deteriorated causing carry over of suspended solids containing COD. Enhancement of suspended solids and COD removals was studied in a dissolved air flotation jar test unit. Flotation trials were conducted for activated sludge, sedimentation treated final effluent (tertiary treatment) and separate wastewater fractions. The need for chemicals, flocculation and amount of recycle water were judged according to the achieved removals. Dissolved air flotation was found well suited for the clarification of activated sludge, but not technically and economically feasible for the clarification of the wastewater streams before the activated sludge treatment.

  18. Treatment of wastewater by natural systems.

    PubMed

    Ayaz, S C; Akça, L

    2001-01-01

    Experimental results from a pilot-scale constructed wetland (CW) treatment plant have been described. The study was conducted at two different systems: continuous and batch. In the continuous system, the treatment yields were monitored in different loading conditions in 1-year period. The pilot plant consists of two serially connected tanks settled up with fillers; Cyperus was used as treatment media and wastewater between the two tanks was recycled periodically. Chemical oxygen demand (COD) and suspended solid (SS) removal efficiencies were obtained as 90% and 95%, respectively. The effluent COD concentration at an average loading of 122 g COD/m2 day was satisfactory for the Turkish Water Pollution Control Regulation. This means that a 0.8 m2 of garden area per person is required. Other removal values for the same conditions were as follows: total Kjeldahl nitrogen (TKN) was 77%, total nitrogen (TN) was 61%, and PO4(3-) -P was 39%. The batch experimental systems consist of 12 pairs of serially connected tanks, with each pair having a surface area of 1 m2. Each set was filled with sewage once a day, and the wastewater between the paired tanks was recycled periodically by the pump. Each pair of tanks was filled with materials such as gravel, peat, and perlite. Seven of them were vegetated with Phragmites, Cyperus, Rush, Iris, Lolium, Canna, and Paspalum, while the other five were not seeded. The best performances were obtained by Iris for COD (% 94), by Canna for ammonia nitrogen (% 98), and by Iris for total nitrogen (% 90) and phosphorus (% 55) removal.

  19. TOXICITY REDUCTION EVALUATION (TRE) AT A MUNICIPAL WASTEWATER TREATMENT PLANT USING MUTAGENICITY AS AN END- POINT

    EPA Science Inventory

    Previous work revealed substantial levels of mutagenicity in effluents from certain municipal wastewater treatment plants. One of these treatment plants was selected for further study to track the effluent mutagenicity to its sources, to chemically characterize the mutagenicity, ...

  20. TOXICITY REDUCTION EVALUATION (TRE) AT A MUNICIPAL WASTEWATER TREATMENT PLANT USING MUTAGENICITY AS AN END- POINT

    EPA Science Inventory

    Previous work revealed substantial levels of mutagenicity in effluents from certain municipal wastewater treatment plants. One of these treatment plants was selected for further study to track the effluent mutagenicity to its sources, to chemically characterize the mutagenicity, ...

  1. Treatment and reuse of coal conversion wastewaters

    SciTech Connect

    Luthy, R. G.

    1980-01-01

    This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption, and reverse osmosis. In addition, treatment studies are in progress to evaluate solvent extraction of gasification process wastewater to recover phenolics and to reduce wastewater loading of priority organic pollutants. Biological oxidation of coal gasification wastewater has shown excellent removal efficiencies of major and trace organic contaminants at moderate loadings, addition of powdered activated carbon provides lower effluent COD and color. Gasification process wastewater treated through biological oxidation, lime-soda softening and activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Solvent extraction is an effective means to reduce organic loadings to downstream processing units. In addition, preliminary results have shown that solvent extraction removes chromatographable organic contaminants to low levels.

  2. Assessment of endotoxin activity in wastewater treatment plants.

    PubMed

    Guizani, Mokhtar; Dhahbi, Mahmoud; Funamizu, Naoyuki

    2009-07-01

    Endotoxic material, commonly associated to biological reactions, is thought to be one of the most important constituents in water. This has become a very important topic because of the common interest in microbial products governed by the possible shift to water reuse for drinking purposes. In this light, this study was conducted to provide an assessment of endotoxic activity in reclaimed wastewater. A bacterial endotoxin test (LAL test) was applied to water samples from several wastewater treatment plants (WWTP) in Sapporo, Japan keeping in view the seasonal variation. Samples were taken from several points in WWTP (influent, effluent, return sludge, advanced treatment effluent). The findings of this study indicated that wastewater shows high endotoxin activity. The value of Endotoxin (Endo) to COD ratio in the effluent is usually higher than that of the influent. Moreover, it is found that wastewater contains initially endotoxic active material. Some of those chemicals are biodegradable and but most of them are non-biodegradable. Batch scale activated sludge studies were undertaken to understand the origin of endotoxic active material in the effluent. This study showed that those chemicals are mainly produced during biological reactions, more precisely during decay process. Moreover, raw wastewater (RWW) contains high amounts of organic matter having endotoxicity which remains in the effluent.

  3. Wastewater Treatment Evaluation, Mather AFB, CA

    DTIC Science & Technology

    1974-06-01

    Flov measurement. g. Poli.’ihing lagoons. h. Anaerobic Sludge Digestion. i. Sludge drying on sand beds. In this report, processes a... process . Solids (sludge) removed from the wastewater in the secondary clarifiers are pumped to the treatment facility influent channel upstream from...undetermined amount of wastewater to return, by gravity, to the recirculation pumps. The effluent from the two secondary clarifiers is combined at

  4. Oxidation pond for municipal wastewater treatment

    NASA Astrophysics Data System (ADS)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  5. Energy pattern analysis of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Singh, Pratima; Carliell-Marquet, Cynthia; Kansal, Arun

    2012-09-01

    Various forms of energy are used during a wastewater treatment process like electrical, manual, fuel, chemical etc. Most of the earlier studies have focused only on electrical energy intensity of large-scale centralized wastewater treatment plants (WWTPs). This paper presents a methodological framework for analysing manual, mechanical, chemical and electrical energy consumption in a small-scaled WWTP. The methodology has been demonstrated on a small-scale WWTP in an institutional area. Total energy intensity of the plant is 1.046 kWh/m3 of wastewater treated. Electrical energy is only about half of the total energy consumption. Manual energy also has a significant share, which means that the small-scale treatment plants offer significant employment opportunities in newly industrializing countries and replaces fossil fuel-based energy with renewable. There is a lack of sufficient data in the literature for comparison, and few studies have reported values that vary significantly due to the difference in scale, scope of the study and the choice of the treatment technologies. Replication of similar studies and generation of data in this area will offer directions for decision on choice of the scale of wastewater treatment process from the considerations of energy and climate change mitigation strategies.

  6. Bioreactors: Wastewater treatment. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations concerning the use of bioreactors for wastewater treatment. References to stirred tank, photobio, biofilm, oxidizing, composting, fluidized bed, porous membrane, and plate column reactors are presented. Applications in municipal, food processing, chemical, agricultural, mining, and oil-refining wastewater treatment are reviewed. (Contains 250 citations and includes a subject term index and title list.)

  7. Wastewater treatment with biomass carriers made from steelmaking by-product

    SciTech Connect

    Aritome, Kiyoshi; Miki, Osamu; Okuno, Yoshio

    1995-07-01

    It is economical to use microorganisms in wastewater treatment. In steelmaking, ammonia liquor from coke-oven plant, for example, is treated using microorganisms. To treat wastewater efficiently in biological processes, the following conditions are necessary: appropriate conditions for activities of microorganisms; proper concentration of microorganisms in reactor; effective contact of wastewater and microorganisms; and reliable separation of treated wastewater and microorganisms. Three types of biomass carriers made from granulated slag to satisfy these conditions have been developed. Research efforts have been under way to apply these carriers in reduction of COD (chemical oxygen demand) in wastewater. Developed biomass carriers can reduce the volume of COD oxidation reactor and promise easy operation compared with the conventional activated sludge processes. This result has been substantialized in sewage treatment facilities, factory wastewater treatment facilities and deodorization facilities. For the future, nitrate reduction in stainless pickling wastewater with fixed-bed biomass carriers will be also investigated.

  8. Assessment of electrochemical and chemical coagulation as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    PubMed

    Buzzini, A P; Motheo, A J; Pires, E C

    2005-01-01

    This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible.

  9. The Impact of Microbial Ecology and Chemical Profile on the Enhanced Biological Phosphorus Removal (EBPR) Process: A Case Study of Northern Wastewater Treatment Works, Johannesburg

    PubMed Central

    Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N. B.

    2014-01-01

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for

  10. The impact of microbial ecology and chemical profile on the enhanced biological phosphorus removal (EBPR) process: a case study of Northern Wastewater Treatment Works, Johannesburg.

    PubMed

    Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B

    2014-03-10

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for

  11. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco

    NASA Astrophysics Data System (ADS)

    Tahri, Loubna; Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed; Azmani, Amina; Sayah, Fouad

    2010-04-01

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co 60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  12. Treatment of the textile wastewater by combined electrocoagulation.

    PubMed

    Can, O T; Kobya, M; Demirbas, E; Bayramoglu, M

    2006-01-01

    Electrocoagulation (EC) due to some advantages over chemical coagulation is becoming a popular process to be used for wastewater treatment. The aim of this paper is to investigate the effect of initial addition of a chemical coagulant such as polyaluminum chloride (PAC) or alum on the COD removal efficiency of EC treatment of textile wastewaters. The two salts exhibited the same performance in chemical coagulation, but in the combined electrocoagulation (CEC), PAC was found to significantly enhance the COD removal rate and efficiency, depending on the amount of the total aluminum supplied, by initial addition and electrochemical generation. A comparative operating cost analysis was also given and it was found that with the same operating cost per mass of COD removed, CEC performance was 80%, in contrast to 23% with EC, in 5 min of operation.

  13. Treatment of coal gasification wastewaters: Final report

    SciTech Connect

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  14. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  15. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  16. Toxicity Tests for Ensuring Succesful Industrial Wastewater Treatment Plant Operation

    NASA Astrophysics Data System (ADS)

    Cěbere, B.; Faltiņa, E.; Zelčāns, N.; Kalniņa, D.

    2009-01-01

    Industrial wastewaters are complex and can be polluted by non-biodegradable end toxic organic compounds and are a serious threat to the environment. Chemical procedure alone cannot provide sufficient information. A complete evaluation of wastewaters should include ecotoxicological tests too, especially concerning the complex wastewaters. In the literature review the authors attempted to establish which is the more promising and suitable aquatic toxicology test for sewage treatment plant influent toxicity monitoring. A variety of types of organisms representing different trophic levels and many different species are used for aquatic toxicity testing. Toxicity characterization would be needed both for influents and effluents of wastewater treatment plant. For the purpose of screening biological wastewater treatment influent, toxicity to activated sludge microorganisms is important and toxicology tests here used are respirometry and bioluminescence toxicology tests. Respirometry toxicity tests are easy, fast and inexpensive compared to other approaches. Bioluminescence has been widely used, the most thoroughly investigated test system is the Microtox. The toxicity tests have also been compared by different authors. International, national and regional authorities use these tools to meet various regulatory and legislative requirements. Importance of biotesting has been emphasized also in EU legislation.

  17. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    SciTech Connect

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-10-06

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  18. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants.

    PubMed

    García-Delgado, M; Rodríguez-Cruz, M S; Lorenzo, L F; Arienzo, M; Sánchez-Martín, M J

    2007-08-15

    Sewage sludges obtained from seven wastewater treatment plants from the province of Salamanca, Spain, were periodically sampled to determine seasonal and time variation of their elemental composition over 2000 to 2002. The aim of this paper was to provide additional insight to evaluate the potential environmental impact following soil incorporation of these materials as amendments. Aqua regia extractable metals (pseudo total content) of Cd, Cr, Cu, Ni, Pb and Zn were determined and furthermore, the main chemical forms of metals within the sludge were evaluated using a five-step fractionation procedure. All the studied sludges displayed high fertility properties due to their richness of OC, P and K. Total mean concentrations of Cd, Cr, Cu, Ni, Pb and Zn in the sludges were within the regulation of the Spanish legislation. Using an multifactor analysis of variance, significant differences between Cr, Cu, Ni, Pb and Zn pseudo total contents (p<0.01) of sludges at different sites were found while the Cd content was statistically similar. Also significant differences were found between these pseudo total contents of heavy metals in samples collected along the time after three years (0.001

  19. Emergency Planning for Municipal Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  20. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment: the example of wastewater from fluorescent whitening agent production.

    PubMed

    Köhler, Annette; Hellweg, Stefanie; Escher, Beate I; Hungerbühler, Konrad

    2006-05-15

    Industrial wastewater treatment in the chemical industry aims at eliminating organic contaminants, as these pollutants may be persistent and ecotoxic. In a case study performed in collaboration with the chemical industry, we investigated the removal of a fluorescent whitening agent and its side products in the wastewater-treatment system. Adsorption to activated carbon and biological treatment were simulated in laboratory tests. Algae toxicity tests were performed to quantify the toxicity of the wastewater mixture and of single components. The contaminants identified accounted for up to 82% of the wastewater's total organic carbon (TOC). Adsorption to activated carbon eliminated the TOC and the single contaminants only slightly. Nevertheless, the toxicity of the wastewater decreased by 40%. In contrast, biological treatment reduced the TOC by up to 80%, and the whole effluent toxicity increased. These results indicate that new ecotoxic metabolites were formed during the biological treatment. They also illustrate that mere reduction of the TOC in the wastewater-treatment system is not sufficient for ensuring a reduction of environmental impact. Therefore, simultaneously conducting TOC measurements and toxicity tests, as demonstrated in the current work, is recommended.

  1. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  2. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  3. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel Rehim, F.

    2002-11-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD.

  4. Consortium of institutes for decentralized wastewater treatment

    SciTech Connect

    Loomis, G.W.

    1998-07-01

    The Consortium of Institutes for Decentralized Wastewater Treatment is a group of thirteen (and expanding) North American colleges and universities that formed with the goal of helping to protect public health and maintain a sustainable environment. To accomplish this goal, academicians work closely with private sector partners from industry, manufacturing, consulting, regulatory agencies, and citizen/community groups to transfer research-based information into education and training programs for decentralized wastewater treatment. This document will focus on the mission, organizational structure, and recent grant activities of the Consortium.

  5. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  6. FGD wastewater treatment still has a way to go

    SciTech Connect

    Higgins, T.; Givens, S.; Sandy, T.

    2008-01-15

    The power industry should jointly address questions about FGD water treatment and share the lessons it has learned so far. The article describes a scheme developed by CH2M Hill to treat FGD wastewater and remove heavy metals. The process desaturates the waste water of sulfates and removes the bulk of the insoluble suspended solids prior to tertiary treatment of heavy metals using a chemical/physical treatment process. Additional treatment could be provided (for example, anoxic biological treatment) for selenium, nitrates and organics. 2 figs.

  7. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  8. Tertiary filtration in small wastewater treatment plants.

    PubMed

    Naddeo, V; Belgiorno, V

    2007-01-01

    Tertiary filtration can be proposed in small wastewater treatment plants with impact on protected water bodies. Rotating disk filters may be adopted, in respect to conventional sand filters, when low availability of space and low investment costs are the prevailing conditions. The overall objective of this research was to evaluate the filtration efficiency of rotating disk filters; to compare effectiveness with traditional sand filters; to analyse thoroughly the importance of particle size distribution in wastewater tertiary filtration. In the experimental activity, conventional wastewater quality parameters were investigated and particle size distribution (PSD) was characterized to discuss the filter effectiveness. The effect of design and operation parameters of tertiary filters were discussed related to particle removal curves derived from particles counts. Analysis of particle size distribution can be very useful to help comprehension of filtration processes, design of filtration treatments and to decide the best measures to improve filter performance.

  9. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    PubMed

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology.

  10. Smithfield, Rhode Island Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Smithfield, R.I. Wastewater Treatment Plant was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  11. Massachusetts Maritime Academy Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Massachusetts Maritime Academy Wastewater Treatment Plant was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  12. Three-way principal component analysis as a tool to evaluate the chemical stability of metal bearing residues from wastewater treatment by the ferrite process.

    PubMed

    Pardo, Rafael; Vega, Marisol; Barrado, Enrique; Castrillejo, Yolanda; Sánchez, Isabel

    2013-11-15

    The chemical fractionation patterns of eight metals (Cd, Co, Cu, Cr, Mn, Ni, Pb and Zn) have been determined in 27 metal-bearing residues by using the BCR sequential extraction procedure. The residues were generated as by-products during the optimization of a semi-continuous reactor for metal removal from wastewater based on ferrite synthesis by co-precipitation. The three-dimensional X dataset (samples×metals×fractions) obtained by applying the BCR procedure has been analyzed by multivariate methods: matrix augmentation (MA-PCA) and three-way principal component analysis, 3-PCA (PARAFAC and Tucker3 models). MA-PCA and PARAFAC methods led to two-factor models giving a satisfactory but incomplete picture of the metal fractionation patterns, but the Tucker3 [2,1,2] model allowed to simultaneously describe both the 'pseudo-total' (acid-soluble) contents and the chemical fractionation by means of two non-null interactions g111 and g212 which explain 53.5% and 18.0% of the total variance, respectively. The A-mode loadings of the g212 interaction showed the close relationship between the magnetic character of the solid residues, i.e. the crystalline structure, and the chemical fractionation patterns of the metals resulting from the application of the BCR sequential extraction procedure.

  13. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  14. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  15. Feasibility for Application of Soil Bioengineering Techniques to Natural Wastewater Treatment Systems

    DTIC Science & Technology

    1992-12-01

    and management of natural wastewater treatment systems. Soil Bioengineering is an applied science that combines structural, biological , and ecological ...structural, biological , and ecological concepts to construct living structures for erosion, sediment, and flood control (Sotir and Gray, 1989). Using...physically, chemically, and biologically as the wastewater percolates vertically through the soil. Organics are degraded within the first few feet of

  16. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  17. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  18. Yellowtail Dam Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022993, the U.S. Bureau of Reclamation is authorized to discharge from its wastewater treatment facility located at the Yellowtail Dam Field Office in Big Horn County, Montana, to the Yellowtail Afterbay Reservoir/Bighorn River.

  19. Denitrifying bioreactor clogging potential during wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  20. Wastewater treatment as an energy production plant

    NASA Astrophysics Data System (ADS)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  1. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    PubMed

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  2. CFD for wastewater treatment: an overview.

    PubMed

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  3. Physical, chemical, and toxicological characterization of untreated and treated tar sand wastewaters

    SciTech Connect

    McTernan, W.F.; Hill, S.L.; Blanton, W.E.

    1985-04-01

    A study of the physical, chemical, and toxicological properties of untreated and treated tar sand wastewaters has been completed. One of the waters selected for this study, TS-1S wastewater, was generated during an in situ steam flood experiment conducted by the US Department of Energy. The other waters were generated during laboratory-scale extraction experiments that were designed to test high-pressure steam displacement and reverse combustion as processes for recovering oil from tar sand. One objective of this study was to evaluate the effectiveness of four treatment processes for reducing the contaminant load and toxicity of TS-1S wastewater. The treatment processes included: (1) ferric chloride coagulation, (2) ferric chloride coagulation plus activated carbon adsorption, (3) polymer-assisted flotation, and (4) polymer-assisted flotation plus activated carbon adsorption. According to the results of chemical analyses, the effluents generated by these treatment processes were very similar. However, polymer-assisted flotation plus activated carbon adsorption was most effective for reducing toxicity, whereas ferric chloride coagulation appeared to increase toxicity to at least one of the organisms tested. Thus, standard physicochemical analyses were not adequate indicators of the potential environmental hazards of TS-1S wastewater, as determined by toxicity testing. This study indicated that physical, chemical, and toxicological characterization is necessary to fully assess the potential environmental hazards of tar sand waters or any other chemically complex water. Another objective of this study was to expand the data base for tar sand wastewaters. 18 refs., 8 figs., 10 tabs.

  4. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.

    PubMed

    Venkata Mohan, S; Chandrasekhara Rao, N; Krishna Prasad, K; Murali Krishna, P; Sreenivas Rao, R; Sarma, P N

    2005-06-20

    low sulfate concentration (700 mg/L). The optimization resulted in enhanced anaerobic performance (56.7%) from a substrate degradation rate (SDR) of 1.99 to 3.13 Kg COD/m3 day. Considering the obtained optimum factors, further validation experiments were carried out, which showed enhanced process performance (3.04 Kg COD/m3-day from 1.99 Kg COD/m3 day) accounting for 52.13% improvement with the optimized process conditions. The proposed method facilitated a systematic mathematical approach to understand the complex multi-species manifested anaerobic process treating complex chemical wastewater by considering the uncontrollable factors.

  5. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.

    PubMed

    Linares Hernández, Ivonne; Barrera Díaz, Carlos; Valdés Cerecero, Mario; Almazán Sánchez, Perla Tatiana; Castañeda Juárez, Monserrat; Lugo Lugo, Violeta

    2017-02-01

    The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm(-2). Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am(-2). The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L(-1) TOC and 4300 mg L(-1) COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg(-1) TOC and 6.66 kWh kg(-1) COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.

  6. Industrial wastewater treatment by an advanced oxidation process.

    PubMed

    Gunukula, R V; Tittlebaum, M E

    2001-01-01

    The overall objective of this study was to evaluate an advanced oxidation process (AOP) used to treat oil and grease (O&G), total petroleum hydrocarbons (TPH), and chemical oxygen demand (COD) of industrial wastewaters generated during barge cleaning operations. This wastewater generally contains appreciable concentrations of O&G, TPH, COD, biochemical oxygen demand (BOD) and benzene, toluene, ethylbenzene and xylene (BTEX) compounds. A bench scale AOP test unit was designed and built for the treatment of the barge cleaning industrial wastewater. The AOP test unit was a 0.33 gpm mobile, modular unit consisting of two contact chambers, two counter current columns and two catalytic chambers. Six experiments were performed using the AOP unit to determine its effectiveness on the reduction of O&G, TPH, and COD. The wastewater was delivered to the AOP from a storage tank. The unit was run for a total of 120 minutes at various gas delivery rates of ozone for each treatment run. Influent and effluent samples were collected at 30 minutes intervals and analyzed for O&G, TPH, and COD. Significant reductions in O&G and TPH concentrations were observed. Oxygen alone indicated a 50% removal efficiency for O&G and TPH. The ozone treatment efficiency was 86% for O&G and TPH at a dosage rate of 12 SCFH and 82% for a dosage rate of 6 SCFH.

  7. The SIPIBEL project: treatment of hospital and urban wastewater in a conventional urban wastewater treatment plant.

    PubMed

    Chonova, Teofana; Lecomte, Vivien; Bertrand-Krajewski, Jean-Luc; Bouchez, Agnès; Labanowski, Jérôme; Dagot, Christophe; Lévi, Yves; Perrodin, Yves; Wiest, Laure; Gonzalez-Ospina, Adriana; Cournoyer, Benoit; Sebastian, Christel

    2017-07-07

    Hospital wastewater (HWW) receives increasing attention because of its specific composition and higher concentrations of some micropollutants. Better knowledge of HWW is needed in order to improve management strategies and to ensure the preservation of wastewater treatment efficiency and freshwater ecosystems. This context pushed forward the development of a pilot study site named Site Pilote de Bellecombe (SIPIBEL), which collects and treats HWW separately from urban wastewater, applying the same conventional treatment process. This particular configuration offers the opportunity for various scientific investigations. It enables to compare hospital and urban wastewater, the efficiency of the two parallel treatment lines, and the composition of the resulting hospital and urban treated effluents, as well as the evaluation of their effects on the environment. The study site takes into account environmental, economic, and social issues and promotes scientific and technical multidisciplinary actions. ᅟ.

  8. Biological approaches for treatment of distillery wastewater: a review.

    PubMed

    Pant, Deepak; Adholeya, Alok

    2007-09-01

    Effluent originating from distilleries known as spent wash leads to extensive soil and water pollution. Elimination of pollutants and colour from distillery effluent is becoming increasingly important from environmental and aesthetic point of view. Stillage, fermenter and condenser cooling water and fermenter wastewater are the primary polluting streams of a typical distillery. Due to the large volumes of effluent and presence of certain recalcitrant compounds, the treatment of this stream is rather challenging by conventional methods. Therefore, to supplement the existing treatments, a number of studies encompassing physico-chemical and biological treatments have been conducted. This review presents an account of the problem and the description of colour causing components in distillery wastewater and a detailed review of existing biological approaches. Further, the studies dealing with pure cultures such as bacterial, fungal, algal and plant based systems have also been incorporated. Also, the roles of microbial enzymes in the decolourization process have been discussed to develop a better understanding of the phenomenon.

  9. Solar enhanced wastewater treatment in waste stabilization ponds.

    PubMed

    Agunwamba, J C; Utsev, J T; Okonkwo, W I

    2009-05-01

    One of the most popular off-site wastewater treatment plants used in the tropics is the waste stabilization pond (WSP). Although it has several advantages, its use in urban areas is limited because of its large land area requirement. Hence, this research is aimed at investigating if a solar-enhanced WSP (SEWSP) can increase treatment efficiency and consequently reduce the land area requirement. The SEWSPs of varying sizes, made of a metallic tank with inlet and outlet valves and a solar reflector, were constructed to increase the incident sunlight intensity. Wastewater samples collected from the inlet and outlet of the SEWSPs were examined for physio-chemical and biological characteristics for a period of 2 months. The parameters examined were total suspended solids, dissolved oxygen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), coliform, and Escherichia coli. The efficiencies of the SEWSPs, with respect to these parameters, fluctuated with temperature variation, with the shallowest SEWSP giving the highest treatment efficiency. The research revealed that the cost of treating wastewater using SEWSPs was approximately 2 times lower than the conventional WSP for the same treatment efficiencies.

  10. Treatment of dairy wastewater by water hyacinth.

    PubMed

    Munavalli, G R; Saler, P S

    2009-01-01

    The present study addresses potential of water hyacinth for treating small-scale dairy wastewater to satisfy effluent standards for disposal into public sewers. The batch experiments were conducted on dairy wastewater using reactor with water hyacinth and without water hyacinth. The Chemical Oxygen Demand (COD) was varied from 507 mg/L to 4,672 mg/L and the maximum Hydraulic Retention Time (HRT) adopted was 8 days. The loss of water due to evapo-transpiration and evaporation was also measured. The water hyacinth system performed better when initial COD concentration was maintained less than 1,672 mg/L for six days HRT. The performance of water hyacinth system was more effective than reference by 30% to 45% for COD removal. However, water hyacinth had no significant impact in reducing Total Dissolved Solids (TDS). The evapo-transpiration loss was almost double than the evaporation loss. The first order reaction kinetics was applicable and reaction rate parameters were estimated for various organic strengths of wastewater. The reaction rate parameters for water hyacinth system were three times higher than a system without water hyacinth and also found to vary with initial COD values. Water hyacinth can be adopted to treat dairy wastewater from small-scale dairy effectively for disposal into public sewers.

  11. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    PubMed

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission.

  12. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology.

    PubMed

    Güven, Güray; Perendeci, Altunay; Tanyolaç, Abdurrahman

    2008-08-30

    Electrochemical treatment of deproteinated whey wastewater produced during cheese manufacture was studied as an alternative treatment method for the first time in literature. Through the preliminary batch runs, appropriate electrode material was determined as iron due to high removal efficiency of chemical oxygen demand (COD), and turbidity. The electrochemical treatment conditions were optimized through response surface methodology (RSM), where applied voltage was kept in the range, electrolyte concentration was minimized, waste concentration and COD removal percent were maximized at 25 degrees C. Optimum conditions at 25 degrees C were estimated through RSM as 11.29 V applied voltage, 100% waste concentration (containing 40 g/L lactose) and 19.87 g/L electrolyte concentration to achieve 29.27% COD removal. However, highest COD removal through the set of runs was found as 53.32% within 8h. These results reveal the applicability of electrochemical treatment to the deproteinated whey wastewater as an alternative advanced wastewater treatment method.

  13. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  14. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters.

    PubMed

    Verma, Akshaya Kumar; Dash, Rajesh Roshan; Bhunia, Puspendu

    2012-01-01

    Textile industry is one of the most chemically intensive industries on the earth and the major polluter of potable water. It generates huge quantities of complex chemical substances as a part of unused materials including dyes in the form of wastewater during various stages of textile processing. The direct discharge of this wastewater into environment affects its ecological status by causing various undesirable changes. As environmental protection becomes a global concern, industries are finding novel solutions for developing technologies that can diminish the environmental damage. However, colour removal from textile wastewater by means of cheaper and environmental friendly technologies is still a major challenge. In this manuscript, several options of decolourisation of textile wastewater by chemical means have been reviewed. Based on the present review, some novel pre-hydrolysed coagulants such as Polyaluminium chloride (PACl), Polyaluminium ferric chloride (PAFCl), Polyferrous sulphate (PFS) and Polyferric chloride (PFCl) have been found to be more effective and suggested for decolourisation of the textile wastewater. Moreover, use of natural coagulants for textile wastewater treatment has also been emphasised and encouraged as the viable alternative because of their eco-friendly nature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simulation of wastewater treatment plant within integrated urban wastewater models.

    PubMed

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  16. Union Township Wastewater Treatment Plant - Union Charter Township

    EPA Pesticide Factsheets

    EPA proposes to reissue a NPDES permit,treated wastewater discharges from the Union Township Wastewater Treatment Plant near Isabella Indian Reservation located in Union Charter Township, Michigan (Isabella County)

  17. Treatment of laundry wastewater by biological and electrocoagulation methods.

    PubMed

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  18. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    PubMed

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L(-1), phosphorus 430 mg L(-1) and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH4:PO4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  19. Biological treatment of winery wastewater: an overview.

    PubMed

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  20. [The wastewater treatment significance in the control sanitarian and epidemiological state of environment].

    PubMed

    Chojecka, Agnieszka; Jakimiak, Bozenna; Podgórska, Marta; Röhm-Rodowald, Ewa

    2009-01-01

    The municipal wastewater consist of organic, inorganic and biological contaminations. The most of human and animals pathogens are found in municipal wastewater responsible for water-borne and waterwashed diseases. Wastewater biological treatment is effective methods to reduce the transmission route of this pathogens. Different kind of methods (microfiltration/coagulation) and technology (aerobic/anaerobic stabilization) treated municipal wastewater, secondary effluent, primary and excess sludge are used to inactivation viruses, bacteria and protozoan. Chemical disinfection with CaO significantly affects inactivation of helminthes eggs during the hygienization of sludge. However the efficiency of pathogens disinfection particularly depend on contact time and concentration of disinfectants.

  1. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal.

    PubMed

    Fongsatitkul, P; Wareham, D G; Elefsiniotis, P; Charoensuk, P

    2011-12-01

    This study investigated the ability of an anaerobic/anoxic/oxic (A2/O) system to treat a slaughterhouse wastewater. The system employed two identical continuous-flow reactors (101 total liquid volume each) running in parallel with the main operational variable, being the internal recycle (IR) rate. The chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) performance was evaluated as the IR flowrate was increased from a Q of 151d(-1) to 4Q at a system hydraulic retention time of 16 h and a solids retention time of 10 d. The COD:TKN and COD:TP ratios were 8.2:1 and 54:1, which supported both nitrogen and phosphorus removal. For all IR multiples of Q, the COD removal was in excess of 90%. The TKN removal showed a modest improvement (a 4-5% increase, depending on the dissolved oxygen (DO)) as the IR doubled from Q to 2Q, but no further increase was observed at the 4Q IR rate. The TP removal reached its optimum (around 85%-89% (again depending on the DO)) at the 2Q rate.

  2. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  3. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  4. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  5. Removal of antimicrobials using advanced wastewater treatment.

    PubMed

    Senta, Ivan; Matošić, Marin; Jakopović, Helena Korajlija; Terzic, Senka; Curko, Josip; Mijatović, Ivan; Ahel, Marijan

    2011-08-15

    Removal of numerous classes of pharmaceuticals from the municipal and industrial wastewater, using conventional wastewater treatment, is incomplete and several studies suggested that improvement of this situation would require the application of advanced treatment techniques. This is particularly important for the treatment of industrial effluents, released from pharmaceutical industries, which can contain rather high concentrations of antimicrobials. The aim of this work was to evaluate membrane bioreactors (MBRs), nanofiltration, reverse osmosis and ozonation, as well as their combinations, for the removal of antimicrobials from a synthetic wastewater which simulated highly contaminated industrial effluents. The study was performed using a mixture of four important classes of antimicrobials, including sulfonamides (SA), fluoroquinolones (FQ), macrolides (MAC) and trimethoprim (TMP). Performance of two different types of MBRs, Kubota and Zenon, was evaluated under different regimes regarding hydraulic retention time, total organic load and total nitrogen load. It was shown that elimination of SA in MBR treatment was very efficient, while the elimination of MAC, FQ, and TMP was incomplete. A mass balance of these contaminants in MBR suggested that microbial transformation represented the main mechanism, while only a small percentage was eliminated from the aqueous phase by adsorption onto sludge particles. Nanofiltration and reverse osmosis achieved high elimination rates however produced highly contaminated concentrate. High removal was achieved using ozonation, but further research is needed to characterize formed ozonation products. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Bioaugmentation treatment of PV wafer manufacturing wastewater by microbial culture.

    PubMed

    Zhu, Xiaohua; Chen, Maoxia; He, Xin; Xiao, Zili; Zhou, Houzhen; Tan, Zhouliang

    2015-01-01

    The wastewater of silicon photovoltaic (PV) battery manufacturing contained polyethylene glycol (PEG) and detergents, which possessed the characteristics of high content of organics and low bioavailability, and then resulted in high treatment costs. To address the difficulties of existing treatment facilities in stably meeting discharge standards, eight tons of microbial culture (consisting of Bacillus sp. and Rhodococcus sp.) were added into the aerobic treatment unit. Subsequently, the effectiveness of the microbial culture in small-scale biological wastewater treatment was evaluated, and the operating conditions for engineering applications were optimized. The application study showed that the average chemical oxygen demand (COD) removal efficiency reached 95.0% when the pH value was 7, the gas-water ratio was 28:1, the reflux ratio was 50%, which indicated an increase of 51.2% contrasting with the situation without bioaugmentation. The volume load of the treatment facilities after augmentation increased by 127.9% and could tolerate the COD shock load reached 2,340 mg·L(-1). At last, the effluence met the class I standard of the Integrated Wastewater Discharge Standard (GB8978-1996).

  7. Forward Osmosis in Wastewater Treatment Processes.

    PubMed

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  8. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  9. Lagoons and oxidation ponds. [Wastewater treatment

    SciTech Connect

    George, D.B.

    1982-06-01

    A review of the literature on waste stabilization pond systems is presented. Factors such as wastewater temperature, and levels of heavy metals that affect the stability of the lagoons and oxidation ponds, and methods to upgrade stabilization pond effluent to meet state and federal effluent requirements are discussed. Model simulations utilized to predict the treatment efficiency of various waste stabilization pond geometries, and inlet and outlet configurations are reviewed. (KRM)

  10. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    PubMed

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  11. Applicability of an electrochemical Fenton-type process to actual wastewater treatment.

    PubMed

    Kishimoto, Naoyuki; Kitamura, Takuya; Nakamura, Yu

    2015-01-01

    The applicability of an electrochemical Fenton-type process (EF-HOCl-ReFe) to the treatment of three actual wastewaters, namely wastewater from an automobile factory (automobile wastewater), metal scrap-cleansing wastewater, and municipal wastewater, is discussed in this research. The EF-HOCl-ReFe successfully removed the chemical oxygen demand (COD) from automobile wastewater pre-treated by a coagulation process without any inhibition. The apparent current efficiency reached 86%, 46% of which was ascribed to the electrochemical Fenton-type mechanism. The metal scrap-cleansing wastewater had a yellow colour and high concentrations of COD (6550 mg/L) and Cl(-) (1560 mM). The EF-HOCl-ReFe could achieve almost complete COD removal and decolourization after 48 h of treatment, although a temporary intensification of colour was observed before the decolourization. The EF-HOCl-ReFe was also effective in the removal of 1,4-dioxane from municipal wastewater pre-treated by activated sludge and coagulation processes, which were unable to remove 1,4-dioxane. The 1,4-dioxane removal efficiency after 30 min of treatment reached 68.5%. Thus, the EF-HOCl-ReFe was applicable to the treatment of these actual wastewaters.

  12. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  13. Municipal-wastewater treatment using upflow-anaerobic filters.

    PubMed

    Manariotis, loannis D; Grigoropoulos, Sotirios G

    2006-03-01

    Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.

  14. Accumulation of contaminants in fish from wastewater treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Keefe, S.H.; Antweiler, R.C.; Taylor, H.E.; Wass, R.D.

    2006-01-01

    Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.

  15. Wastewater containing Cr(VI) treatment using solar tubular reactor.

    PubMed

    Machado, Tiele Caprioli; Lansarin, Marla Azário

    2016-10-01

    The hexavalent chromium, Cr(VI), which is generated in the electroplating process, is toxic to most organisms and potentially harmful to human health. The method generally used for remediation of wastewater containing Cr(VI) employs chemicals with high toxicity. This work proposes an alternative technology for the treatment of these wastewaters, based on photochemical reduction of Cr(VI) by alcohols under radiation, which is environmentally sustainable and economically viable. Initially, a batch reactor in laboratory scale was used to determine the best experimental conditions and its specific reaction rate was calculated. Based on these results, a tubular reactor (artificial radiation and sunlight) was designed and built in semi-pilot scale. Tests were carried out with real wastewater from an electroplating industry containing Cr(VI). Tests conducted under sunlight showed a higher total Cr(VI) reduction than the tests with artificial radiation. The remediation of Cr(VI) from wastewater was 86.7% after 6 h of reaction under sunlight, indicating the high efficiency of the developed process.

  16. Treatment of whey wastewater by supercritical water oxidation.

    PubMed

    Söğüt, Onur Ö; Kıpçak, Ekin; Akgün, Mesut

    2011-01-01

    Whey wastewater is a by-product of cheese industry, which causes environmental pollution problems due to its containment of heavy organic pollutants. Conventional methods such as biological treatment and physico-chemical treatment are insufficient or ineffective. In this paper, the treatment of cheese whey wastewater has been carried out by supercritical water oxidation, using hydrogen peroxide as oxidant. The reaction conditions ranged between temperatures of 400-650°C and residence times of 6-21 s under a pressure of 25 MPa. Treatment efficiencies based on TOC removal were obtained between 75.0% and 99.81%. An overall reaction rate model, which consists of the hydrothermal and the oxidation reactions, was determined for the hydrothermal decomposition of the wastewater with an activation energy of 50.022 (±1.7) kJmol(-1) and a pre-exponential factor of 107.72 (±4.1) s(-1). The oxidation reaction rate orders for the TOC and the oxidant were 1.2 (±0.4) and 0.4 (±0.1) respectively, with an activation energy of 20.337 (±0.9) kJmol(-1), and a pre-exponential factor of 1.86 (±0.5) mmol(-0.6)L(0.6)s(-1) in a 95% confidence level.

  17. Innovative approaches to water and wastewater treatment developed at CSIRO, Australia

    SciTech Connect

    Priestley, A.J.

    1996-12-31

    The CSIRO Division of Chemicals and Polymers in Melbourne, Australia, has a program of research targeted at the development of innovative approaches to water and wastewater treatment. The research covers both biological and physicochemical approaches and has resulted in a number of different approaches to wastewater treatment, one of which is described in this paper. The particular work described involves an accelerated coagulation/flocculation process based on the use of fine magnetic particles, which has been applied to both water and wastewater treatment. 9 refs., 2 figs., 1 tab.

  18. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    NASA Astrophysics Data System (ADS)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  19. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    NASA Astrophysics Data System (ADS)

    Kaboosi, Kami

    2016-05-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  20. Treatment of Aquaculture Wastewater Using Floating Vegetated Mats

    USDA-ARS?s Scientific Manuscript database

    Methods are needed for treating aquaculture wastewater. The goal is to improve wastewater quality sufficiently for it to be recycled to production ponds. One potential method for improving aquaculture wastewater is to use floating vegetation in treatment tanks. Alternatively, potential exists for ...

  1. Chemical procedures to detect carcinogenic compound in domestic wastewater

    NASA Astrophysics Data System (ADS)

    S, Abd Manan T.; A, Malakahmad

    2013-06-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  2. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  3. Training Centers for Onsite Wastewater Treatment

    EPA Pesticide Factsheets

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  4. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  5. Biological treatment of shrimp production wastewater.

    PubMed

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation.

  6. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario.

  7. Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs

    EPA Science Inventory

    Wastewater treatment is an important step within the water continuum as it reduces the risks associated with microorganisms as well as organic and inorganic compounds. From a chemical standpoint, treatment effectiveness is linked to carbon and nitrogen removal, although phosphate...

  8. Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs

    EPA Science Inventory

    Wastewater treatment is an important step within the water continuum as it reduces the risks associated with microorganisms as well as organic and inorganic compounds. From a chemical standpoint, treatment effectiveness is linked to carbon and nitrogen removal, although phosphate...

  9. Pilot-scale study of biomass reduction in wastewater treatment.

    PubMed

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  10. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  11. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  12. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  13. Treatment of biomass gasification wastewaters using liquid-liquid extraction

    SciTech Connect

    Bell, N.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) investigated liquid-liquid extraction as a treatment method for biomass gasification wastewaters (BGW). Distribution coefficients for chemical oxygen demand (COD) removal were determined for the following solvents: methylisobutyl ketone (MIBK), n-butyl acetate, n-butanol, MIBK/n-butyl acetate (50:50 vol), MIBK/n-butanol (50:50 vol), tri-butyl phosphate, tri-n-octyl phosphine oxide (TOPO)/MIBK (10:90 wt), TOPO/kerosene (10:90 wt), kerosene, and toluene. The best distribution coefficient of 1.3 was given by n-butanol. Chemical analysis of the wastewater by gas chromatography (GC) showed acetic acid and propionic acid concentrations of about 4000 mg/1. Methanol, ethanol, and acetone were identified in trace amounts. These five compounds accounted for 45% of the measured COD of 29,000 mg/1. Because of the presence of carboxylic acids, pH was expected to affect extraction of the wastewater. At low pH the acids should be in the acidic form, which increased extraction by MIBK. Extraction by n-butanol was increased at high pH, where the acids should be in the ionic form.

  14. Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach.

    PubMed

    Tigini, Valeria; Prigione, Valeria; Donelli, Ilaria; Anastasi, Antonella; Freddi, Giuliano; Giansanti, Pietro; Mangiavillano, Antonella; Varese, Giovanna Cristina

    2011-04-01

    The effect of pre-treatments on the composition of Cunninghamella elegans biomass and on its biosorption yields in the treatment of simulated textile wastewaters was investigated. The inactivated biomass was subjected to physical treatments, such as oven drying and lyophilisation, and chemical treatments using acid or alkali. The wastewater colour, COD and toxicity variations were evaluated. The lyophilisation sped up the biosorption process, whereas the chemical pre-treatment changed the affinity of biomass for different dyes. The alkali per-treated biomass achieved the highest COD reduction in the treatment of alkali wastewaters, probably because no release of alkali-soluble biomass components occurred under the alkaline pH conditions. Accordingly, only the acid pre-treated biomass decreased the COD of the acidic effluent. The ecotoxicity test showed significant toxicity reduction after biosorption treatments, indicating that decolourisation corresponds to an actual detoxification of the treated wastewaters. Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analyses of biomasses allowed highlighting their main chemical and physical properties and the changes induced by the different pre-treatments, as well as the effect of the chemical species adsorbed from wastewaters.

  15. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    PubMed

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  16. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  17. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    PubMed

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  18. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  19. Microwave discharge electrodeless lamps (MDELs). Part IX. A novel MDEL photoreactor for the photolytic and chemical oxidation treatment of contaminated wastewaters.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Shinomiya, Tomohiro; Serpone, Nick

    2015-12-01

    This article reports on the fabrication and enhanced performance of a novel microwave discharge electrodeless lamp (MDEL) consisting of a three layered cylindrical structure that was effective in the remediation of wastewater containing the 2,4-D herbicide and the near total sterilization of bacteria-contaminated pond water (E. coli and other microorganisms) through photolysis with the emitted vacuum-UV (185 nm) and UVC (254 nm) light from the MDEL and through chemical oxidation with reactive oxygen species (ROS) produced by the photolysis of dioxygen and air oxygen through one of the photoreactors. The flow rates of the 1.0 L contaminated waters were 0.6 and 1.2 L min(-1). The integrated UV/ROSO2 and UV/ROSair methods used to carry out the degradation of 2,4-D and sterilization processes were more effective than either the UV method alone or the ROSO2 and ROSair methods for short time periods (5 or 8 min). At a lower flow rate, 79% of 2,4-D was degraded by the UV/ROSO2 method and 55% by UV/ROSair after 8 min. At a faster flow rate of 1.2 L min(-1), degradation of 2,4-D in 1.0 L volume of water was 84% and 77% complete by the UV/ROSO2 and the UV/ROSair method, respectively, after 8 min of irradiation. The number of kills of E. coli bacteria was nearly quantitative (98 and 99%) by the UV/ROSO2 and UV/ROSair methods after treating the contaminated water for 5 min. The decrease of total viable microorganisms in pond water was 90% and 80% after 5 min of microwave irradiation at a flow rate of 1.2 L min(-1) by the integrated methods UV/ROSO2 and UV/ROSair, respectively. The rate of flow of oxygen gas through the photoreactor impacted the extent of degradation and the related dynamics of the 2,4-D herbicide.

  20. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes.

    PubMed

    Chahal, C; van den Akker, B; Young, F; Franco, C; Blackbeard, J; Monis, P

    2016-01-01

    Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  2. A Review on Advanced Treatment of Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  3. Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Günther, Annika; Dias, Diogo; Mendes, Benilde

    2014-06-15

    The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb(2+) were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation-flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid - S/L - ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation-flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation-flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb.

  4. Wastewater treatment with multilayer media of waste and natural indigenous materials.

    PubMed

    Rahman, Mohammad Arifur; Ahsan, Shamim; Kaneco, Satoshi; Katsumata, Hideyuki; Suzuki, Tohru; Ohta, Kiohisa

    2005-01-01

    Wastewater treatment using waste materials (refuse concrete, waste paper and charcoal) and natural indigenous rocks (andesite, limestone, granite and nitrolite) in the form of multilayer media was investigated. The removal of suspended solids (SS), phosphate ion, nitrate ion, ammonium ion, toxic metals and chemical oxygen demand (COD) were evaluated for the multilayer wastewater treatment system. Effective removal of heavy metals such as cadmium, chromium, mercury and lead was demonstrated. SS and phosphate ion were removed with relatively high efficiency and the COD after treatment was lessened using certain combinations of media. The present wastewater treatment system is simple, convenient and low cost. Therefore, this method can be applied in small scale plants for wastewater treatment in local and nonexclusive areas.

  5. The ecological filter system for treatment of decentralized wastewater.

    PubMed

    Zhong, Kun; Luo, Yi-Yong; Wu, Zheng-Song; He, Qiang; Hu, Xue-Bin; Jie, Qi-Wu; Li, Yan-Ting; Wang, Shao-Jie

    2016-10-01

    A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m(3)/(m(2)·d), carbon-nitrogen ratio was 10, and gas-water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4(+)-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4(+)-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic-anaerobic-aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.

  6. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  7. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  8. Optimal design of distributed wastewater treatment networks

    SciTech Connect

    Galan, B.; Grossmann, I.E.

    1998-10-01

    This paper deals with the optimum design of a distributed wastewater network where multicomponent streams are considered that are to be processed by units for reducing the concentration of several contaminants. The proposed model gives rise to a nonconvex nonlinear problem which often exhibits local minima and causes convergence difficulties. A search procedure is proposed in this paper that is based on the successive solution of a relaxed linear model and the original nonconvex nonlinear problem. Several examples are presented to illustrate that the proposed method often yields global or near global optimum solutions. The model is also extended for selecting different treatment technologies and for handling membrane separation modules.

  9. Effects of chemical agent injections on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse.

    PubMed

    Tang, Fang; Hu, Hong-Ying; Wu, Qian-Yuan; Tang, Xin; Sun, Ying-Xue; Shi, Xiao-Lei; Huang, Jing-Jing

    2013-09-15

    With combined microfiltration (MF)/ultrafiltration (UF) and reverse osmosis (RO) process being widely used in municipal wastewater reclamation, RO concentrate with high level genotoxicity is becoming a potential risk to water environment. In this study, wastewater genotoxicity in a MF-RO process for municipal wastewater reclamation and also the effects of chemical agent injections were evaluated by SOS/umu genotoxicity test. The genotoxicity of RO concentrate ranged 500-559 μg 4-NQO (4-nitroquinoline-1-oxide)/L and 12-22 μg 4-NQO/mg DOC, was much higher than that of RO influent. Further research suggested that Kathon biocide was a key chemical agent associated with the genotoxicity increase. Kathon biocide used in RO system was highly genotoxic in vitro and Kathon biocide retained in RO system could contribute to a higher genotoxicity of RO concentrate. Hence, treatments for biocides before discharging are necessary. Chlorination of secondary effluent could significantly decrease the genotoxicity and increasing chlorine dosage could be an efficacious method to decrease the genotoxicity of RO concentrate. According to the result of the experiment, the dosage of chlorine in dual-membrane process could be set to about 2.5 mg Cl₂/L. The effect of antiscalant (2-phosphomobutane-1,2,4-tricarboxylic acid) was also investigated; it turned out to have no effect on genotoxicity.

  10. Energy autonomy in the wastewater treatment process

    SciTech Connect

    Bernard, J.; DaVia, P.

    1980-03-01

    Wastewater treatment plants can recover a high percentage of their energy needs by using new techniques in anaerobic digestion through the production and utilization of methane gas. The Acheres Wastewater Treatment Plant outside Paris has a present design capacity of 1.5 x 10/sup 6/ m/sup 3//d (400 mgd) and produces over 70% of its energy needs using this process. Methane gas is used to drive a series of engines that produce compressed air for the biological process and drive generators that produce electricity for use in all phases of the treatment process, equipment, and buildings. Water that cools these engines is also used to maintain optimum sludge temperature during the digestion process. After World War II, a master plan was developed that projects the plant's expansion through five major phases to an ultimate design capacity of 2.7 x 10/sup 6/ m/sup 3//d (715 mgd). To date three phases are in operation, with a total design capacity of 1.5 x 10/sup 6/ m/sup 3//d (400 mgd). Phase IV (6.0 x 10/sup 5/ m/sup 3//d, 160 mgd) is under construction. The article reviews the sludge digestion process used in all three operating phases of the plant.

  11. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    PubMed

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  12. Towards energy neutral wastewater treatment: methodology and state of the art.

    PubMed

    Gao, Han; Scherson, Yaniv D; Wells, George F

    2014-05-01

    Conventional biological wastewater treatment processes are energy-intensive endeavors that yield little or no recovered resources and often require significant external chemical inputs. However, with embedded energy in both organic carbon and nutrients (N, P), wastewater has the potential for substantial energy recovery from a low-value (or no-value) feedstock. A paradigm shift is thus now underway that is transforming our understanding of necessary energy inputs, and potential energy or resource outputs, from wastewater treatment, and energy neutral or even energy positive treatment is increasingly emphasized in practice. As two energy sources in domestic wastewater, we argue that the most suitable way to maximize energy recovery from wastewater treatment is to separate carbon and nutrient (particularly N) removal processes. Innovative anaerobic treatment technologies and bioelectrochemical processes are now being developed as high efficiency methods for energy recovery from waste COD. Recently, energy savings or even generation from N removal has become a hotspot of research and development activity, and nitritation-anammox, the newly developed CANDO process, and microalgae cultivation are considered promising techniques. In this paper, we critically review these five emerging low energy or energy positive bioprocesses for sustainable wastewater treatment, with a particular focus on energy optimization in management of nitrogenous oxygen demand. Taken together, these technologies are now charting a path towards to a new paradigm of resource and energy recovery from wastewater.

  13. Comprehensive life cycle inventories of alternative wastewater treatment systems.

    PubMed

    Foley, Jeffrey; de Haas, David; Hartley, Ken; Lant, Paul

    2010-03-01

    Over recent decades, the environmental regulations on wastewater treatment plants (WWTP) have trended towards increasingly stringent nutrient removal requirements for the protection of local waterways. However, such regulations typically ignore other environmental impacts that might accompany apparent improvements to the WWTP. This paper quantitatively defines the life cycle inventory of resources consumed and emissions produced in ten different wastewater treatment scenarios (covering six process configurations and nine treatment standards). The inventory results indicate that infrastructure resources, operational energy, direct greenhouse gas (GHG) emissions and chemical consumption generally increase with increasing nitrogen removal, especially at discharge standards of total nitrogen <5 mgN L(-1). Similarly, infrastructure resources and chemical consumption increase sharply with increasing phosphorus removal, but operational energy and direct GHG emissions are largely unaffected. These trends represent a trade-off of negative environmental impacts against improved local receiving water quality. However, increased phosphorus removal in WWTPs also represents an opportunity for increased resource recovery and reuse via biosolids applied to agricultural land. This study highlights that where biosolids displace synthetic fertilisers, a negative environmental trade-off may also occur by increasing the heavy metals discharged to soil. Proper analysis of these positive and negative environmental trade-offs requires further life cycle impact assessment and an inherently subjective weighting of competing environmental costs and benefits.

  14. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2017-03-13

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  15. REMOVAL OF ORGANIC CHEMICALS FROM WASTEWATER BY SURFACTANT SEPARATION

    SciTech Connect

    Unknown

    2002-01-01

    This research presents a novel hybrid process for removing organic chemicals from contaminated water. The process uses surfactant to carry out two unit operations (1) Extraction; (2) Foam flotation. In the first step, surfactant is used to extract most of the amounts of organic contaminants in the stream. In the second step, foam flotation is used to further reduce organic contaminants and recover surfactant from the stream. The process combines the advantages of extraction and foam flotation, which allows the process not only to handle a wide range of organic contaminants, but also to effectively treat a wide range of the concentration of organic contaminants in the stream and reduce it to a very low level. Surfactant regeneration can be done by conventional methods. This process is simple and low cost. The wastes are recoverable. The objective of this research is to develop an environmentally innocuous process for the wastewater or reclaimed water treatment with the ability to handle a wide range of organic contaminants, also to effectively treat a wide range of the concentration of organic contaminants in contaminated water and reduce it to a very low level, finally, provides simpler, less energy cost and economically-practical process design. Another purpose is to promote the environmental concern in minority students and encourage minority students to become more involved in environmental engineering research.

  16. Cleveland electric employs efficient wastewater treatment system

    SciTech Connect

    Not Available

    1985-11-01

    This article describes the wastewater treatment systems developed by Cleveland Electric for the efficient, reliable treatment of coal pile runoff. The process employed uses a step-wise rather than the single stage neutralization technique for pH adjustment. Also, solid/liquid separation is accomplished in compact high-rate clarifiers and thickeners. Lime is added as a slurry rather than the more conventional dry feed, assuring rapid dissemination of lime in the reaction tank. The systems have met or exceeded all requirements and produced an effluent with a pH in the range of 6 to 9 and total suspended solids in the range of 20 mg per liter. The design of a coal pile runoff treatment system is described in depth.

  17. Wineries wastewater treatment by constructed wetlands: a review.

    PubMed

    Masi, F; Rochereau, J; Troesch, S; Ruiz, I; Soto, M

    2015-01-01

    The application of wetland systems for the treatment of wineries wastewater started in the early 1990s in the USA followed a few years later by France, Italy, Germany and Spain. Various studies demonstrated the efficiency of constructed wetlands (CWs) as a low cost, low maintenance and energy-saving technology for the treatment of wineries wastewater. Several of these experiences have also shown lessons to be learnt, such as some limits in the tolerance of the horizontal subsurface flow and vertical subsurface flow classic CWs to the strength of the wineries wastewater, especially in the first stage for the multistage systems. This paper is presenting an overview of all the reported experiences at worldwide level during the last 15 years, giving particular attention and provision of details to those systems that have proven to get reliable and constant performances in the long-term period and that have been designed and realized as optimized solutions for the application of CW technology to this particular kind of wastewater. The organic loading rates (OLRs) applied to the examined 13 CW systems ranged from about 30 up to about 5,000 gCOD/m² d (COD: chemical oxygen demand), with the 80th percentile of the reported values being below 297 gCOD/m² d and the median at 164 gCOD/m² d; the highest OLR values have in all cases been measured during the peak season (vintage) and often have been linked to lower surface removal rates (SRRs) in comparison to the other periods of the year. With such OLRs the SRRs have ranged from a minimum of 15 up to 4,700 gCOD/m² d, with the 80th percentile of the reported values being below 308 gCOD/m² d and the median at 112 gCOD/m² d.

  18. Olive mill wastewater treatment: an experimental study.

    PubMed

    Bettazzi, E; Morelli, M; Caffaz, S; Caretti, C; Azzari, E; Lubello, C

    2006-01-01

    Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.

  19. Evaluation of on-farm biological treatment processes for wastewaters from vegetable peeling.

    PubMed

    Lehtoa, M; Sipilä, I; Sorvala, S; Hellstedt, M; Kymäläinen, H R; Sjöberg, A M

    2009-01-01

    This study highlights the need for the development of simple, efficient, and cost-effective farm-scale applications to treat wastewater arising from vegetable-peeling operations. The aim was to evaluate two full-scale biological wastewater treatment systems, a sequencing batch reactor (SBR) and a biofilter, and a chemical wastewater treatment system on farms carrying out peeling of vegetables. The types, design criteria and parameters of the processes, as well as properties of the untreated and treated wastewaters were presented and evaluated. Seven-day biochemical oxygen demand (BOD7) entering the SBR was 3100 +/- 529 mg l(-1) (mean +/- standard deviation). The results showed that the SBR was very stable and effective in the treatment of carrot-processing wastewaters, the BOD7 for effluent being about 10 mg l(-1). The biofilter examined did not operate well because the pH too low: the reduction for BOD7 was 63% and, for COD, 58%. When wastewater from potato processing was treated with aluminium sulphate and conveyed to an artificial pond, removal of BOD7 was 67% and that of COD 69%. This method is only suitable for pre- or post-treatment of these wastewaters. Control of the treatment processes appeared to be essential for their proper functioning.

  20. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    PubMed

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.

  1. Evaluation of microalgae production coupled with wastewater treatment.

    PubMed

    De Francisci, Davide; Su, Yixi; Iital, Arvo; Angelidaki, Irini

    2017-04-05

    In the present study, the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat-panel photobioreactors. Nitrogen and phosphorus removals were found to be inversely proportional to the four dilution rates, while chemical oxygen demand removal was found to be 50% at all the tested conditions. The biomass obtained at the highest dilution rate was characterized for its content of lipids, proteins and pigments. The average yields of fatty acid methyl esters (FAMEs), protein, lutein, chlorophylls and β-carotene was 62.4, 388.2, 1.03, 11.82 and 0.44 mg per gram dry biomass, respectively. Economic analysis revealed that potentially more than 70% of revenue was from the production of pigments, that is, chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low market price of biodiesel, the revenue from the above was found to be the least profitable (1.4%). Even when combining all these different revenues, this cultivation strategy was found with the current prices to be uneconomical. Power consumption for artificial light was responsible for the 94.5% of the production costs.

  2. Electron harvest and treatment of amendment free municipal wastewater using microbial anodes: A case study

    NASA Astrophysics Data System (ADS)

    Rosa, Luis F. M.; Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2017-07-01

    Microbial electrochemical technologies (METs) and especially microbial fuel cells (MFCs) are considered to allow energy harvest from the fuel wastewater during its treatment. However, the majority of studies use either ;artificial; wastewater, amended wastewater, (i.e. with addition of chemicals), or pre-enriched microbial anodes. As these strategies might not be transferable to large scale, this study uses exclusively amendment free municipal wastewater as inoculum and sole carbon and energy source. It is shown that electrons can be harvested, at maximum current densities of 0.01 mA cm-2. In weekly cycles using batch systems (with 90 cm2 L-1 anode surface) only a minor fraction (<10%) of the available charge from COD-removal was turned into electricity by a highly diverse anodic microbial community. This performance is below those achieved by pre-enriched anodes or in amended wastewater studies, illustrating the need for more fundamental, application relevant studies.

  3. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater

    PubMed Central

    2017-01-01

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10–30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO2/IrO2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO2/IrO2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine). PMID:28538093

  4. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    PubMed

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO2/IrO2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO2/IrO2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  5. Bacterial communities involved in sulfur transformations in wastewater treatment plants.

    PubMed

    Meyer, Daniel Derrossi; de Andrade, Pedro Avelino Maia; Durrer, Ademir; Andreote, Fernando Dini; Corção, Gertrudes; Brandelli, Adriano

    2016-12-01

    The main sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB) in six wastewater treatment plants (WWTPs) located at southern Brazil were described based on high-throughput sequencing of the 16S rDNA. Specific taxa of SRB and SOB were correlated with some abiotic factors, such as the source of the wastewater, oxygen content, sample type, and physical chemical attributes of these WWTPs. When the 22 families of SRB and SOB were clustered together, the samples presented a striking distribution, demonstrating grouping patterns according to the sample type. For SOB, the most abundant families were Spirochaetaceae, Chromatiaceae, Helicobacteriaceae, Rhodospirillaceae, and Neisseriaceae, whereas, for SRB, were Syntrophaceae, Desulfobacteraceae, Nitrospiraceae, and Desulfovibriaceae. The structure and composition of the major families related to the sulfur cycle were also influenced by six chemical attributes (sulfur, potassium, zinc, manganese, phosphorus, and nitrogen). Sulfur was the chemical attribute that most influenced the variation of bacterial communities in the WWTPs (λ = 0.14, p = 0.008). The OTUs affiliated to Syntrophus showed the highest response to the increase of total sulfur. All these findings can contribute to improve the understanding in relation to the sulfur-oxidizing and sulfate-reducing communities in WWTPs aiming to reduce H2S emissions.

  6. Assessment of the toxicity of wastewater from the metalworking industry treated using a conventional physico-chemical process.

    PubMed

    Machado, Rodrigo Matuella; Monteggia, Luiz Olinto; Arenzon, Alexandre; Curia, Ana Cristina

    2016-06-01

    This article presents results from a toxicity reduction evaluation program intended to describe wastewater from the metalworking industry that was treated using a conventional physico-chemical process. The toxicity of the wastewater for the microcrustacean Daphnia magna was predominantly expressive. Alkaline cyanide wastewater generated from electroplating accounted for the largest number of samples with expressive toxicity. When the raw wastewater concentrations in the batches were repeated, inexpressive toxicity variations were observed more frequently among the coagulated-flocculated samples. At the coagulation-flocculation step, 22.2 % of the treatments had reduced acute toxicity, 30.6 % showed increased toxicity, and 47.2 % remained unchanged. The conductivity and total dissolved solids contents of the wastewater indicated the presence of salts with charges that were inappropriate for the survival of daphnid. The wastewaters treated by neutralization and coagulation-flocculation had average metallic compound contents that were greater than the reference toxic concentrations reported in other studies, suggesting that metals likely contributed to the toxic effects of the wastewater on freshwater microcrustaceans. Thus, alternative coagulants and flocculants should be assessed, and feasible doses should be determined to improve wastewater treatment. In addition, advanced treatment processes should be assessed for their abilities to remove dissolved toxic salts and ions.

  7. ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL - REVISED FEBRUARY 2002

    EPA Science Inventory

    This update of the 1980 Design Manual: Onsite Wastewater Treatment and Disposal Systems was developed to provide supplemental and new information for wastewater treatment professionals in both the public and private sectors. This manual is not intended to replace the previous man...

  8. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    EPA Science Inventory

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  9. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    EPA Science Inventory

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  10. Trees are the solution to wastewater treatment for small communities

    Treesearch

    John G. Mexal; Walter H. Zachritz; T. W. Sammis

    2002-01-01

    The application of municipal wastewater to land for treatment and disposal, or "land farms," was one of the earliest forms of wastewater treatment technology. There has been renewed interest in using these systems in arid regions worldwide to supplement and reuse dwindling water resources. However, arid regions present complex challenges to the use of land...

  11. Instrumentation and Automation of Wastewater Collection and Treatment Systems.

    ERIC Educational Resources Information Center

    Roesler, Joseph F.; Cummins, Michael D.

    1978-01-01

    Presents a literature review of the use of instrumentation and automation of wastewater treatment systems, covering publications of 1976-77. This review includes automatic control systems and cost effectiveness of automation of wastewater treatment. A list of 115 references is also presented. (HM)

  12. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    ERIC Educational Resources Information Center

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  13. Instrumentation and Automation of Wastewater Collection and Treatment Systems.

    ERIC Educational Resources Information Center

    Roesler, Joseph F.; Cummins, Michael D.

    1978-01-01

    Presents a literature review of the use of instrumentation and automation of wastewater treatment systems, covering publications of 1976-77. This review includes automatic control systems and cost effectiveness of automation of wastewater treatment. A list of 115 references is also presented. (HM)

  14. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    ERIC Educational Resources Information Center

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  15. The flocculants applied in the oil refining plant wastewater treatment

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  16. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa.

  17. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  18. Performance assessment of aquatic macrophytes for treatment of municipal wastewater

    PubMed Central

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  19. Performance assessment of aquatic macrophytes for treatment of municipal wastewater.

    PubMed

    Shah, Mumtaz; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  20. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    PubMed

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  1. Assessment of the use of selected chemical and microbiological constituents as indicators of wastewater in curtain drains from home sewage-treatment systems in Medina County, Ohio

    USGS Publications Warehouse

    Dumouchelle, Denise H.

    2006-01-01

    Many home sewage-treatment systems (HSTS) in Ohio use curtain or perimeter drains to depress the level of the subsurface water in and around the systems. These drains could possibly intercept partially untreated wastewater and release potential pathogens to ground-water and surface-water bodies. The quality of water in curtain drains from two different HSTS designs in Medina County, Ohio, was investigated using several methods. Six evaporation-transpiration-absorption (ETA) and five leach-line (LL) systems were investigated by determining nutrient concentrations, chloride/bromide ratios (Cl/Br), Escherichia coli (E. coli ) concentrations, coliphage genotyping, and genetic fingerprinting of E. coli. Water samples were collected at 11 sites and included samples from curtain drains, septic tanks, and residential water wells. Nitrate concentrations in the curtain drains ranged from 0.03 to 3.53 mg/L (milligrams per liter), as N. Concentrations of chloride in 10 of the 11 curtain drains ranged from 5.5 to 21 mg/L; the chloride concentration in the eleventh curtain drain was 340 mg/L. Bromide concentrations in 11 curtain drains ranged from 0.01 to 0.22 mg/L. Cl/Br ratios ranged from 86 to 2,000. F-specific coliphage were not found in any curtain-drain samples. Concentrations of E. coli in the curtain drains ranged from 1 to 760 colonies per 100 milliliters. The curtain-drain water-quality data were evaluated to determine whether HSTS-derived water was present in the curtain drains. Nutrient concentrations were too low to be of use in the determination. The Cl/Br ratios appear promising. Coliphage was not detected in the curtain drains, so genotyping could not be attempted. E. coli concentrations in the curtain drains were all less than those from the corresponding HSTS; only one sample exceeded the Ohio secondary-contact water-quality standard. The genetic fingerprinting data were inconclusive because multiple links between unrelated sites were found. Although the

  2. Intrinsic kinetics for fixed bed bioreactor in hospital wastewater treatment.

    PubMed

    Farrokhi, Mehrdad; Mahdavianpour, Mostafa; Shirzad-Siboni, Mehdi; Naimi-Joubani, Mohammad; Jamali, Hamzeh Ali

    2016-10-01

    Variation in hospital wastewater (HWW) pollutants and differences with municipal wastewater (MWW), make the use of biokinetic coefficients obtained from activated sludge in the MWW treatment unprofitable for designing, modeling and evaluation of biological processes for HWW treatment. Since this study was conducted to evaluate the performance and biokinetic coefficients of a fixed bed bioreactor (FBBR) using rice husks as fixed media in HWW treatment, a new modified method was also proposed for biokinetic estimation in FBBR processes. For these purposes, five hydraulic retention times along with five sludge retention times were introduced to a pilot setup and the required data were attained. The performance process for chemical oxygen demand (COD) removal was significant (87.8-97.5%) in different conditions. The values of biokinetic coefficients k, Ks, Y and Kd were obtained as 2.42 (day(-1)), 55.5 (mgCOD/L), 0.2929 (mgBiomass/mgCOD) and 0.0164 (day(-1)), respectively. The rice husks with high surface area and high affinity for biomass accumulation on its surface are promising media for a green and environmentally friendly FBBR process. The kinetics parameters values are utilizable for modeling of FBBR using rice husks as fixed media in HWW treatment.

  3. Innovations in wastewater treatment: the moving bed biofilm process.

    PubMed

    Odegaard, Hallvard

    2006-01-01

    This paper describes the moving bed biofilm reactor (MBBR) and presents applications of wastewater treatment processes in which this reactor is used. The MBBR processes have been extensively used for BOD/COD-removal, as well as for nitrification and denitrification in municipal and industrial wastewater treatment. This paper focuses on the municipal applications. The most frequent process combinations are presented and discussed. Basic design data obtained through research, as well as data from practical operation of various plants, are presented. It is demonstrated that the MBBR may be used in an extremely compact high-rate process (<1 h total HRT) for secondary treatment. Most European plants require P-removal and performance data from plants combining MBBR and chemical precipitation is presented. Likewise, data from plants in Italy and Switzerland that are implementing nitrification in addition to secondary treatment are presented. The results from three Norwegian plants that are using the so-called combined denitrification MBBR process are discussed. Nitrification rates as high as 1.2 g NH4-N/m2 d at complete nitrification were demonstrated in practical operation at low temperatures (11 degrees C), while denitrification rates were as high as 3.5g NO3-Nequiv./m2.d. Depending on the extent of pretreatment, the total HRT of the MBBR for N-removal will be in the range of 3 to 5 h.

  4. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  5. Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.

    PubMed

    Coats, Erik R; Loge, Frank J; Wolcott, Michael P; Englund, Karl; McDonald, Armando G

    2007-11-01

    Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.

  6. Production integrated treatment of textile wastewater by closing raw material cycles.

    PubMed

    Krull, R

    2005-01-01

    A method for the in-house treatment of partial wastewater flows and the recycling of treated process water into the textile finishing process was developed in order to recycle effluents from textile finishing industry and feed them back into the production process. The method is based on a two-stage biological anaerobic-aerobic process to split colouring wastewater agents and to degrade organic substances contained in the water as well as a chemical stage to remove the remaining color of the water with the help of ozone. In the framework of a research and development project a demonstration plant for a treatment capacity of 1440 m3 per working day was installed and started in a textile finishing company. At the plant, a wastewater flow and a recycling flow are treated separately in two different treatment lanes. Approximately 40% of the total wastewater flows, i.e. 576 m3/d are treated in the wastewater lane, and a maximum of 60% of total wastewater, i.e. 864 m3/d are treated in the recycling lane. Thanks to the preliminary treatment of wastewater flows, which are discharged into the municipal sewage works, a reduction of average COD levels in the sewage works effluents could be achieved.

  7. Self-powered wastewater treatment for the enhanced operation of a facultative lagoon

    NASA Astrophysics Data System (ADS)

    Ewing, Timothy; Babauta, Jerome T.; Atci, Erhan; Tang, Nghia; Orellana, Josue; Heo, Deukhyoun; Beyenal, Haluk

    2014-12-01

    The goal of this study was to harness the redox gradients in facultative lagoons using a lagoon microbial fuel cell (LMFC) to enhance autonomously the delivery of oxygen to the lagoon through aeration and mixing by operating an air pump. To enhance the usability of the low power generated by the LMFC, a power management system (PMS) was used to harvest power continually while only operating the air pump intermittently. Here we demonstrate the LMFC as an alternative energy source for self-powered wastewater treatment systems by treating both artificial wastewater and dairy wastewater in large laboratory-scale simulated lagoons. For comparison, we also used a lagoon treatment system without self-aeration. We show that the integrated LMFC and PMS system was able to improve chemical oxygen demand (COD) removal time by 21% for artificial wastewater and by 54% for dairy wastewater. The LMFC-PMS wastewater treatment system operated for over a year and proved to be robust and provide a measure of sustainability. The LMFC-PMS combination offers an innovative and low-tech approach to increasing the capacity of lagoons for rural communities. We believe that the technology developed in this research is the first step towards providing sustainable self-powered wastewater treatment systems.

  8. Method and apparatus for treatment of wastewater

    SciTech Connect

    Bhattacharyya, A.

    1982-01-19

    A method is disclosed for removing ammonia from a wastewater containing free and fixed ammonia. The process comprises the steps of: distilling the wastewater to remove the free ammonia; treating the distilled wastewater with soda ash to decompose the fixed ammonia; and distilling the treated wastewater to remove the decomposed ammonia. An apparatus is disclosed for removing ammonia from a wastewater containing free and fixed ammonia comprising: an ammonia still for removing free and fixed ammonia; a source of soda ash solution; and means for feeding the soda ash solution from said soda ash source to the ammonia still to decompose the fixed ammonia.

  9. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays.

    PubMed

    Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan

    2011-05-01

    The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    EPA Science Inventory

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  11. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    EPA Science Inventory

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  12. [Treatment of drilling wastewater from oil field by using yeast].

    PubMed

    Wang, Yanming; Yang, Min; Zheng, Shaokui; Zhou, Xiangyu; Shen, Zhemin

    2002-09-01

    Two strains of yeast, namely Wickerhamiella domercqii and Candida boidinii, were acquired through screening from soil samples contaminated by drilling wastewater. A TOC removal of 40.5% was acquired when the mixture of the two yeast strains was used for drilling wastewater treatment, a little higher than that with activated sludge acclimated with wastewater (35.2%). Some organic compounds in the fraction of molecular weight above 60,000 were found to be biodegradable.

  13. An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium.

    PubMed

    Kim, In-Soo; Ekpeghere, Kaluibe; Ha, Shin-Young; Kim, Soo-Hyeon; Kim, Bong-Soo; Song, Bongkeun; Chun, Jongsik; Chang, Jae-Soo; Kim, Hong-Gi; Koh, Sung-Cheol

    2013-01-01

    A novel microbial consortium (BM-S-1) enriched from natural soils was successfully used to treat tannery wastewater from leather manufacturing industries in Korea on a pilot scale. The objective of this study was to determine whether augmentation with a novel microbial consortium BM-S-1could successfully treat the recalcitrant wastewater without chemical pre-treatment in a tannery wastewater treatment system. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were monitored for water quality. The microbial population dynamics were analyzed using pyrosequencing, and denitrifying bacteria were quantified using real-time PCR (RT-PCR). The removal efficiencies for COD, TN and TP were greater than 91%, 79%, and 90%, respectively. The dominant phyla in the buffering tank (B), primary aeration (PA), secondary aeration (SA) and sludge digestion tank (SD) were Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes and Deinococcus-Thermus. Cluster analysis based on the UniFrac distance of the species in the different stages showed that the PA is similar to the SA, whereas the B is similar to the SD. qPCR of the nosZ genes showed the highest abundance of denitrifiers in B, which was increased 734-fold compared to the influent (I). It was hypothesized that anaerobic denitrifiers and the diverse microbial community may play important roles in the biological treatment of tannery wastewater. This technology may also contribute to the full-scale treatment of industrial wastewater containing food processing wastewater and marine sediment with high organic content.

  14. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  15. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    SciTech Connect

    Cline, J.E.; Sullivan, P.F.; Lovejoy, M.A.; Collier, J.; Adams, C.D.

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  16. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  17. Integrated design of sewers and wastewater treatment plants.

    PubMed

    Vollertsen, J; Hvitved-Jacobsen, T; Ujang, Z; Talib, S A

    2002-01-01

    Sewer system design must be integrated with wastewater treatment plant design when moving towards a more sustainable urban wastewater management. This integration allows an optimization of the design of both systems to achieve a better and more cost-effective wastewater management. Hitherto integrated process design has not been an option because the tools to predict in-sewer wastewater transformations have been inadequate. In this study the WATS model--being a new and validated tool for in-sewer microbial process simulations--is presented and its application for integrated sewer and treatment plant design is exemplified. A case study on a Malaysian catchment illustrates this integration. The effects of centralization of wastewater treatment and the subsequently longer transport distances are addressed. The layout of the intercepting sewer is optimized to meet the requirements of different treatment scenarios.

  18. Crystallization techniques in wastewater treatment: An overview of applications.

    PubMed

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun

    2017-04-01

    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Increasing wastewater system performance--the importance of interactions between sewerage and wastewater treatment.

    PubMed

    Langeveld, J G; Clemens, F H L R; van der Graaf, J H J M

    2002-01-01

    The necessity to assess sewer systems and wastewater treatment plants (WWTPs) as integral parts of the wastewater system has been well known for several years and discussed in many conferences. Until recently, sewer systems and WWTPs were improved (or optimised) separately or independently, which resulted in suboptimal solutions. Nowadays, in The Netherlands as well as in other European countries, a trend can be recognised towards more integral solutions. Nevertheless, due to a lack of knowledge on the interactions between the sewer systems and the WWTPs the implementation of this way of thinking in practice takes a long time. This paper describes the results of two cases in which the interactions between sewerage and wastewater treatment are incorporated within the optimisation of a wastewater system. The first case illustrates the importance of taking the interactions into account, while the second case shows how to deal with the interactions within a wastewater system optimisation study. It is concluded that the combination of total wastewater system analysis, incorporating the interactions within the wastewater system, with efficient search algorithms is expected to be very valuable in future wastewater system optimisation studies.

  20. DEMONSTRATION BULLETIN: ZENOGEM™ WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    Zenon Environmental Systems (Zenon) has developed the ZenoGem™ process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

  1. DEMONSTRATION BULLETIN: ZENOGEM™ WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    Zenon Environmental Systems (Zenon) has developed the ZenoGem™ process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

  2. Modeling duckweed growth in wastewater treatment systems

    USGS Publications Warehouse

    Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M.

    2005-01-01

    Species of the genera Lemnaceae, or duckweeds, are floating aquatic plants that show great promise for both wastewater treatment and livestock feed production. Research conducted in the Southern High Plains of Texas has shown that Lemna obscura grew well in cattle feedlot runoff water and produced leaf tissue with a high protein content. A model or mathematical expression derived from duckweed growth data was used to fit data from experiments conducted in a greenhouse in Lubbock, Texas. The relationship between duckweed growth and the total nitrogen concentration in the mediium follows the Mitscherlich Function and is similar to that of other plants. Empirically derived model equations have successfully predicted the growth response of Lemna obscura.

  3. Agricultural use of municipal wastewater treatment plant ...

    EPA Pesticide Factsheets

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  4. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors.

    PubMed

    Van Den Hende, Sofie; Carré, Erwan; Cocaud, Elodie; Beelen, Veerle; Boon, Nico; Vervaeren, Han

    2014-06-01

    Microalgal bacterial flocs in sequencing batch reactors (MaB-floc SBRs) represent a novel approach to wastewater treatment. In this approach, mechanical aeration is replaced by photosynthetic aeration and MaB-floc settling separates the treated wastewater from the produced biomass. However, its technical potential for industrial wastewaters needs to be shown. Therefore, wastewaters of aquaculture, manure treatment, food-processing and chemical industry were treated in MaB-floc SBRs. This treatment resulted in significantly different nutrient removal rates and effluent qualities among wastewaters. A high MaB-floc production was obtained for all wastewaters, ranging from 0.14 to 0.26g total suspended solids Lreactor(-1)day(-1). A major advantage of MaB-flocs is the harvesting via a filter press with a large pore size of 200μm, resulting in MaB-floc recoveries of 79-99% and cakes containing 12-21% dry matter. These results may contribute to evolving MaB-floc SBRs as a valuable remediation strategy, especially for aquaculture and food-processing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Long term in-line sludge storage in wastewater treatment plants: the potential for phosphorus release.

    PubMed

    Johannessen, Erik; Eikum, Arild Schanke; Krogstad, Tore

    2012-12-01

    Phosphorus removal in on-site wastewater treatment plants is normally obtained by chemical precipitation. Aluminium-based chemicals are the favoured coagulants as they are not affected by redox potential. On-site wastewater treatment package plants do not have separate sludge treatment facilities, and sludge is normally collected on an annual basis. This can potentially increase the risk of phosphorus release into the water phase, subsequently reducing treatment efficiency. This study aimed to detect release of phosphorus as a result of chemical and biological processes. Variables in the study were time, aluminium dosage and pH. Wastewater sludge was monitored for 46 weeks to investigate the different mechanisms of phosphorus release and the longevity of the aluminium treatment involving varying aluminium dosages. Phosphorus compounds were analysed based on a modified Psenner sequential fractionation method. Both pH and aluminium dosage affect the longevity of the phosphorus retention of chemically precipitated wastewater sludge, where sufficient longevity is obtained with pH control and increased aluminium dosages. Chemical dosages similar to what is considered normal levels are sufficient to retain the phosphorus in the sludge for annual sludge collection intervals. Release of soluble phosphorus was attributed to microbial activity and crystallization of Al-hydroxide complexes.

  6. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    SciTech Connect

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  7. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant.

    PubMed

    Łuczkiewicz, A; Jankowska, K; Fudala-Książek, S; Olańczuk-Neyman, K

    2010-09-01

    Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 10(4) CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes

  8. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    PubMed

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2016-11-24

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD7) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  9. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis.

    PubMed

    Beier, S; Köster, S; Veltmann, K; Schröder, H; Pinnekamp, J

    2010-01-01

    Considerable concern exists regarding the appearance and effects of trace and ultra trace pollutants in the aquatic environment. In this context, it is necessary to identify relevant hot spot wastewater - such as hospital wastewater - and to implement specific wastewater treatment solutions. Membrane bioreactor (MBR) technology seems to be a suitable pre-treatment approach for the subsequent advanced treatment by high pressure membrane systems such as nanofiltration (NF) and reverse osmosis (RO). This paper is based upon investigations on the first full scale MBR for separate treatment of hospital wastewater in Germany. In this study an NF as well as an RO module for further treatment of the MBR filtrate were tested. The removal efficiencies were assessed using the following target compounds: bezafibrate, bisoprolol, carbamazepine, clarithromycin, ciprofloxacin, diclofenac, ibuprofen, metronidazole, moxifloxacin, telmisartan and tramadol. In summary, the results of this study confirmed that MBR technology followed by an advanced treatment for trace pollutant removal is an adequate approach for specific treatment of hot spot wastewater such as hospital wastewater. In particular, it was shown that - comparing the tested NF and RO - only (a two stage) RO is appropriate to remove pharmaceutical residues from hospital wastewater entirely. The recommended yield of the 2-stage RO is 70% which results in a retentate sidestream of 9%. Our investigations proved that RO is a very efficient treatment approach for elimination of trace pollutants.

  10. Method for wastewater treatment in fluidized bed biological reactors

    SciTech Connect

    Fan, L.; Wen, C.

    1981-03-03

    Wastewater is subjected to biological reaction in a bed containing the biological reaction bacteria on a particulate carrier wherein the lower portion of the bed is fluidized while the upper portion is maintained as a fixed bed. When the fixed bed portion becomes clogged with cellular material, the entire bed is fluidized and wash water is passed through the bed to remove excess cellular material. The method is applicable to advanced wastewater treatment, both secondary treatment for BOD removal, and tertiary treatment for nitrification and/or denitrification. The method is particularly advantageous for treatment of wastewater supplied at varying flow rates.

  11. Treatment of domestic wastewater using conventional and baffled septic tanks.

    PubMed

    Nasr, Fayza Aly; Mikhaeil, Basem

    2013-01-01

    The main theme of the study was a comparative study of domestic wastewater treatment using conventional and baffled septic tanks. The septic tanks were fed continuously with domestic wastewater at three different hydraulic retention times (HRTs). The HRTs chosen were 24, 48 and 72 h with corresponding organic loads of 0.321, 0.436 and 0.885 kg chemical oxygen demand (COD) per m3 per day, respectively. The performance of the septic tanks at the three HRTs gave satisfactory results. For the conventional septic tank, COD removal was 53.4%, 56% and 65.3%, at an HRT of 24, 48 and 72 h, respectively, with residual COD of 412, 380 and 334mg/l, respectively. At HRTs of 72, 48 and 24 h, the following percentages removals were realized for: biochemical oxygen demand (BOD), 68.4%, 57, 53.5%; total suspended solid (TSS), 65.3%, 58.3, 55%; phosphorus, 29.3%, 26.9, 25.6%; total Kjeldahl nitrogen 26.8%, 20.8, 17.7%, respectively. On the contrary, ammonia concentrations increased by 7.1%, 5.2 and 4.2% under the same conditions. Consequently, the results showed that the removal of fecal coliform at all HRTs was less than one log. The two baffled septic tanks exhibited superior results at HRTs of 72, 48 and 24 h. Comparing the treated domestic wastewater quality produced by the two types of septic tanks in terms of physico-chemical and biological characteristics, better results were obtained using the two baffles type.

  12. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

  13. Wastewater treatment plant modeling supported toxicity identification and evaluation of a tank truck cleaning effluent.

    PubMed

    De Schepper, W; Dries, J; Geuens, L; Blust, R

    2010-07-01

    The aim of this work is the Toxicity Identification Evaluation (TIE) of highly toxic tank truck cleaning wastewater effluent. Conventional TIE, using EDTA and activated carbon addition, revealed organic compounds as main source of toxicity. Additional toxicant characteristics could be derived from hydraulic wastewater treatment plant simulation being high intake frequency, low biodegradability and high acute toxicity ratio between Pseudokirchneriella subcapitata and Daphnia magna. The risk probability of compounds present in the influent wastewater was simulated using USEPA Estimation Program Interface (EPI) software. Compound toxicity, solubility and removal rate in a wastewater treatment plant were incorporated into one risk number indicative for the probability of a compound to cause toxicity in the effluent. The herbicide acetochlor was deducted from these TIE procedures as major toxicant and this was confirmed by chemical measurements, concentrations in the effluent samples ranged from 3.73+/-0.52 ppm to 7.8+/-2.1 ppm acetochlor equivalents.

  14. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  15. Constructed wetlands for saline wastewater treatment: A review

    USDA-ARS?s Scientific Manuscript database

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  16. Health Effects Associated with Wastewater Treatment and Disposal.

    ERIC Educational Resources Information Center

    Kowal, N. E.; Pahren, H. R.

    1978-01-01

    Presents a literature review of the potential health effects associated with: (1) wastewater treatment plants; (2) land application of municipal wastewater; and (3) use of renovated water. This review covers the publications of 1976-77. A list of 96 references is also presented. (HM)

  17. Health Effects Associated with Wastewater Treatment and Disposal.

    ERIC Educational Resources Information Center

    Kowal, N. E.; Pahren, H. R.

    1978-01-01

    Presents a literature review of the potential health effects associated with: (1) wastewater treatment plants; (2) land application of municipal wastewater; and (3) use of renovated water. This review covers the publications of 1976-77. A list of 96 references is also presented. (HM)

  18. Winery wastewater treatment using the land filter technique.

    PubMed

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation.

  19. Treatment of high-strength industrial wastewater by wet air oxidation--A case study

    SciTech Connect

    Lin, S.H.; Ho, S.J.

    1997-12-31

    Treatment of high concentration chemical wastewater obtained from a petrochemical company by wet air oxidation (WAO) is studied. Experiments were conducted to investigate the effects of the mixer speed, operating pressure, initial pH of wastewater and temperature on the pollutant (chemical oxygen demand or COD) removal. Both air and oxygen were tested to determine their respective effect on the COD removal. Results showed that over 50% of COD removal can be easily realized in an hour of WAO treatment. Also considered in the present study was the catalytic WAO treatment of the high concentration wastewater. Copper sulfate (CuSO{sub 4}), cobalt oxide (Co{sub 2}O{sub 3}) and zinc oxide (ZnO) were employed as the catalysts. The COD removal efficiency of the catalytic WAO process was found to vary significantly with the catalyst utilized with CuSO{sub 4} being the most effective.

  20. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected.

  1. Water footprint assessment for wastewater treatment: method, indicator, and application.

    PubMed

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  2. Toxicity Appraisal of Untreated Dyeing Industry Wastewater Based on Chemical Characterization and Short Term Bioassays.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Javeed, Aqeel; Anjum, Aftab Ahmad; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra; Khan, Abdul Muqeet; Altaf, Imran

    2016-04-01

    Characterizing wastewaters only on a chemical basis may be insufficient owing to their complex nature. The purpose of this study was to assess toxicity of textile dyeing wastewater based on analytical techniques and short term toxicity based bioassays. In this study, screening of the fractionated wastewater through GC-MS showed the presence of phenols, phthalic acid derivatives and chlorpyrifos. Metal analysis revealed that chromium, arsenic and mercury were present in amounts higher than the wastewater discharge limits. Textile dyeing wastewater was found to be highly mutagenic in the Ames test. DNA damage in sheep lymphocytes decreased linearly with an increase in the dilution of wastewater. MTT assay showed that 8.3 percent v/v wastewater decreased cell survival percentage to 50 %. It can be concluded from this study that short term toxicity tests such as Ames test, in vitro comet assay, and cytotoxicity assays may serve as useful indicators of wastewater pollution along with their organic and inorganic chemical characterizations.

  3. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam

    PubMed Central

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J.; Lundborg, Cecilia Stålsby

    2016-01-01

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital’s wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital’s wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001). PMID:27314366

  4. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    PubMed

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance.

  5. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2017-04-11

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD5, TSS, NH3-N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H2O2, 2-5 g/L for Fe(2+), and 13-36 for H2O2/Fe(2+) molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  6. Decision support for redesigning wastewater treatment technologies.

    PubMed

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  7. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    PubMed

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL(-1) as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL(-1) as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biological treatment of model dyes and textile wastewaters.

    PubMed

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multi-stage constructed wetland systems for municipal wastewater treatment.

    PubMed

    Masi, F; Caffaz, S; Ghrabi, A

    2013-01-01

    In the present paper the detailed design and performances of two municipal wastewater treatment plants, a four-stage constructed wetlands (CW) system located in the city of Dicomano (about 3,500 inhabitants) in Italy, and a three-stage CW system for the village of Chorfech (about 500 inhabitants) in Tunisia, are presented. The obtained results demonstrate that multi-stage CWs provide an excellent secondary treatment for wastewaters with variable operative conditions, reaching also an appropriate effluent quality for reuse. Dicomano CWs have shown good performances, on average 86% of removal for the Organic Load, 60% for Total Nitrogen (TN), 43% for Total Phosphorus (TP), 89% for Total Suspended Solids (TSS) and 76% for Ammonium (NH4(+)). Even the disinfection process has performed in a very satisfactory way, reaching up to 4-5 logs of reduction of the inlet pathogens concentration, with an Escherichia coli average concentration in the outlet often below 200 UFC/100 mL. The mean overall removal rates of the Chorfech CWs during the monitored period have been, respectively, equal to 97% for TSS and Biochemical Oxygen Demand (BOD5), 95% for Chemical Oxygen Demand (COD), 71% for TN and 82% for TP. The observed removal of E. coli by the CW system was in this case 2.5 log units.

  10. Bioreactors: Waste-water treatment. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of bioreactors for wastewater treatment. References are made to stirred tank, photobio, hollow, nonfluidized bed, biofilm, oxidizing, composting, fluidized bed, porous membrane, and plate column reactors employing chemical, microbiological, and physical technologies. Applications in municipal treatment, food processing, chemical, agricultural, mining, and oil refining industries are reviewed. (Contains a minimum of 167 citations and includes a subject term index and title list.)

  11. Bioreactors: Wastewater treatment. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of bioreactors for wastewater treatment. References are made to stirred tank, photobio, hollow, nonfluidized bed, biofilm, oxidizing, composting, fluidized bed, porous membrane, and plate column reactors employing chemical, microbiological, and physical technologies. Applications in municipal treatment, food processing, chemical, agricultural, mining, and oil refining industries are reviewed. (Contains 250 citations and includes a subject term index and title list.)

  12. Design and initial operation of Dofasco's CPCM wastewater treatment plant

    SciTech Connect

    Harschnitz, P.; Kowalchuk, W.; Ray, E.L.; Rynn, K.A. )

    1994-04-01

    A new coupled picking/cold mill (CPCM) was recently commissioned at Dofasco. The complex produces oily, particulate bearing and acidic wastewaters which must be managed in an environmentally sound manner. Segregation of these streams within the mill and a new wastewater treatment plant satisfy this requirement. The design of the wastewater treatment plant was based on meeting current and anticipated government regulations, incorporating Best Available Technology, maximize reuse/recycle and minimizing operating cost. The treatment plant was commissioned during 1992. Extensive training was provided for operations and maintenance personnel. While start-up took longer than expected and required a number of minor modifications, the plant has consistently met discharge criteria.

  13. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    PubMed

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L(-1)), rapid sand filter 97% (from 0.7 to 0.02 MP L(-1)), dissolved air flotation 95% (from 2.0 to 0.1 MP L(-1)) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L(-1)) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Environmental Technology Verification Report: Grouts for Wastewater Collection Systems, Avanti International AV-118 Acrylic Chemical Grout

    EPA Science Inventory

    Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to the infiltration of water from the surrounding environments. Wastewater facilities are not only wet, but also experience hydrostatic pressure conditions un...

  15. Environmental Technology Verification Report: Grouts for Wastewater Collection Systems, Avanti International AV-118 Acrylic Chemical Grout

    EPA Science Inventory

    Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to the infiltration of water from the surrounding environments. Wastewater facilities are not only wet, but also experience hydrostatic pressure conditions un...

  16. Ferrous and Sulfide Treatment of Electroplating Wastewater.

    DTIC Science & Technology

    chromium contaminants and the precipitation of heavy metal contaminants from contaminated electroplating wastewater. The wastewater is first adjusted...to a pH of from about 8 to 10 and then treated with sodium sulfide to provide sulfide ions to effect precipitation of heavy metal contaminants followed

  17. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  18. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  19. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater.

    PubMed

    Erable, Benjamin; Etcheverry, Luc; Bergel, Alain

    2011-03-01

    The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.

  20. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products.

  1. Wastewater cleanup: Put activated-sludge treatment to work

    SciTech Connect

    Scroggins, D.; Deiters, S.

    1995-11-01

    Strict wastewater treatment and discharge limits continue to challenge wastewater treatment systems. For industrial wastewater, the selected system must not only meet regulatory requirements, but must also be flexible enough to handle the variations in volume, flowrate and pollutant load that typify industrial effluent streams. At existing industrial sites, the selection of a wastewater treatment system is also impacted by constraints, such as limited space or the desire to minimize downtime or process interruptions. Meanwhile, for municipalities, wastewater treatment requirements are often made or complicated by the need to add a disinfection step to destroy waterborne pathogens in the discharge stream. Biological treatment processes, based on the use of activated sludge, have long been used to degrade organic contaminants in municipal and industrial wastewater. For years, the sequencing batch reactor (SBR) has been used to treat wastewater using activated sludge. However, in recent years, the variable depth reactor (VDR) has emerged as an alternative system, by addressing some of the shortcomings of the SBR.

  2. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants.

    PubMed

    Meerbergen, Ken; Van Geel, Maarten; Waud, Michael; Willems, Kris A; Dewil, Raf; Van Impe, Jan; Appels, Lise; Lievens, Bart

    2017-02-01

    It is assumed that microbial communities involved in the biological treatment of different wastewaters having a different chemical composition harbor different microbial populations which are specifically adapted to the environmental stresses encountered in these systems. Yet, little is known about the composition of these microbial communities. Therefore, the aim of this study was to assess the microbial community composition over two seasons (winter and summer) in activated sludge from well-operating textile wastewater treatment plants (WWTPs) in comparison with municipal WWTPs, and to explain observed differences by environmental variables. 454-pyrosequencing generated 160 archaeal and 1645 bacterial species-level Operational Taxonomic Units (OTUs), with lower observed richness in activated sludge from textile WWTPs compared to municipal WWTPs. The bacterial phyla Planctomycetes, Chloroflexi, Chlorobi, and Acidobacteria were more abundant in activated sludge samples from textile WWTPs, together with archaeal members of Thaumarchaeota. Nonmetric multidimensional scaling analysis of the microbial communities showed that microbial communities from textile and municipal WWTPs were significantly different, with a seasonal effect on archaea. Nitrifying and denitrifying bacteria as well as phosphate-accumulation bacteria were more abundant in municipal WWTPs, while sulfate-reducing bacteria were almost only detected in textile WWTPs. Additionally, microbial communities from textile WWTPs were more dissimilar than those of municipal WWTPs, possibly due to a wider diversity in environmental stresses to which microbial communities in textile WWTPs are subjected to. High salinity, high organic loads, and a higher water temperature were important potential variables driving the microbial community composition in textile WWTPs. This study provides a general view on the composition of microbial communities in activated sludge of textile WWTPs, and may provide novel insights

  3. Real Science, Real Scientists: Student's Experiments with Natural and Artificial Wastewater Treatment in the Classroom

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2006-01-01

    In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…

  4. Real Science, Real Scientists: Student's Experiments with Natural and Artificial Wastewater Treatment in the Classroom

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2006-01-01

    In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…

  5. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    PubMed

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  6. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Slimes and sludges, automotive coating, wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  7. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Slimes and sludges, automotive coating, wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  8. Jar Test. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    The jar test is used to determine the proper chemical dosage required for good coagulation and flocculation of water. The test is commonly used in potable water, secondary effluent prior to advanced wastewater treatment, secondary clarifier influent, and sludge conditioning practice. Designed for individuals who have completed National Pollutant…

  9. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.

    PubMed

    Liu, Hong; Ramnarayanan, Ramanathan; Logan, Bruce E

    2004-04-01

    Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.

  10. Pre-treatment of hospital wastewater by coagulation-flocculation and flotation.

    PubMed

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2009-04-01

    Coagulation-flocculation and flotation processes were evaluated for the pre-treatment of hospital wastewater, including the removal of 13 pharmaceutical and personal care products (PPCPs). Coagulation-flocculation assays were performed in a Jar-Test device and in a continuous pilot-scale plant. Raw hospital wastewater as well as the effluent from the continuous coagulation plant were treated in a flotation cell. Removal of total suspended solids (TSS) during pre-treatment was very effective, reaching an average removal efficiency of 92% in the combined coagulation-flotation process. Musk fragrances were eliminated to a high degree during batch coagulation-flocculation (tonalide: 83.4+/-14.3%; galaxolide: 79.2+/-9.9%; celestolide: 77.7+/-16.8%), presumably due to their strong lipophilic character which promotes the interaction of these compounds with the lipid fraction of solids. For diclofenac (DCF), naproxen (NPX) and ibuprofen (IBP) maximum removals of 46%, 42% and 23%, respectively, were obtained, while the rest of PPCPs were not affected by the physico-chemical treatment. Flotation of raw wastewater led to slightly worse results compared to coagulation-flocculation, although the combined action of both improved the overall efficiency of the process. The proposed pre-treatment strategy for hospital wastewater is useful for assimilating its conventional physico-chemical characteristics to that of municipal wastewater as well as for reducing the load of some PPCPs into the sewer system.

  11. UV/Tio2 photocatalytic reactor for real textile wastewaters treatment.

    PubMed

    da Motta, Maurício; Pereira, Raquel; Madalena Alves, M; Pereira, Luciana

    2014-01-01

    Textile dye wastewaters are characterized by strong colour, salts and other additives, high pH, temperature, chemical oxygen demand (COD) and biodegradable materials. Being aesthetically and environmentally unacceptable, these wastewaters need to be treated before their discharge. Anaerobic bioprocesses have been proposed as being environmentally friendly and relatively cheap; however, when applied to real effluent with a complex composition, they can fail. In this study, a photoreactor combining UV light and TiO2, immobilized in cellulosic fabric, was applied for the treatment of two industrial textile wastewaters. High colour and COD removal, and detoxification, were achieved for both wastewaters, at controlled pH of 5.5. Effluents showed very poor biodegradability due to their complex composition; thus, the proposed process is an efficient alternative.

  12. Identification, quantification and treatment of fecal odors released into the air at two wastewater treatment plants.

    PubMed

    Zhou, Yubin; Hallis, Samantha A; Vitko, Tadeo; Suffet, Irwin H Mel

    2016-09-15

    Odorous emissions from wastewater treatment plants (WWTPs) are an annoyance for neighboring communities. This article, for the first time, quantitatively reports on an evaluation of the presence of fecal odorants identified in air samples from two exemplary WWTPs by the odor profile method (OPM) and chemical analysis. The fecal odorants indole and skatole were identified by Gas Chromatography-Mass Spectrometry. The odor threshold concentration of skatole was determined to be 0.327 ng/L (60 pptV) in Teflon Bags by an expert panel. Skatole was found to be the primary chemical leading to fecal odor, due to its odor concentration to odor threshold concentration ratio that ranged from 2.8 to 22.5. The Weber-Fechner law was followed by pure skatole, but was not applicable when there was a mixture of fecal odorants and other odorant types present in WWTP air emission samples. This is probably caused by antagonism with other odorant types. Several existing odor control treatment methods for fecal odorants were evaluated at different wastewater treatment operations at two WWTPs by the OPM and chemical analysis for indole and skatole. Chemical scrubbing and biofiltration performed best in removing fecal odors among current control technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Yellowtail Visitor Center Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    NPDES permit MT-0029106 for United States Bureau of Reclamation discharge from its Yellowtail Visitor Center wastewater treatment facility into the Bighorn Lake/Bighorn River in Big Horn County, Montana.

  14. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.

  15. City of Polson Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0020559, the City of Polson is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to the Flathead River.

  16. PROCESS DESIGN MANUAL FOR LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The USEPA guidance on land treatment of municipal and industrial wastewater is updated for the first time since 1984. The significant new technilogical changes include phytoremediation, vadose zone monitoring, new design approaches to surface irrigation, center pivot irrigation,...

  17. TOXICITY REDUCTION EVALUATION PROTOCOL FOR MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This document presents a generalized protocol for conducting a Toxicity Reduction evaluation (TRE) at a municipal wastewater treatment plant (WWTP). This protocol is designed to provide guidance to municipalities in preparing TRE plans, evaluating the information generated durin...

  18. WHAT HAPPENS TO FLUOROTELOMER POLYMER PRODUCTS DURING WASTEWATER TREATMENT?

    EPA Science Inventory

    Fluorotelomer based polymers formulate numerous products relied upon by society. Despite their widespread use and high opportunity for down-the-drain disposal, the fate and stability of fluorotelomer polymer products in wastewater treatment systems remains unknown. To address thi...

  19. PROCESS DESIGN MANUAL FOR LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The USEPA guidance on land treatment of municipal and industrial wastewater is updated for the first time since 1984. The significant new technilogical changes include phytoremediation, vadose zone monitoring, new design approaches to surface irrigation, center pivot irrigation,...

  20. WHAT HAPPENS TO FLUOROTELOMER POLYMER PRODUCTS DURING WASTEWATER TREATMENT?

    EPA Science Inventory

    Fluorotelomer based polymers formulate numerous products relied upon by society. Despite their widespread use and high opportunity for down-the-drain disposal, the fate and stability of fluorotelomer polymer products in wastewater treatment systems remains unknown. To address thi...

  1. Mesa Verde National Park Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit number CO-0034398, the United States Department of the Interior, National Park Service, Mesa Verde National Park is authorized to discharge from the Mesa Verde National Park wastewater treatment plant, in Montezuma County, Colo.

  2. Fort Carson Sanitary Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit no. CO-0021181 the United States Department of the Army, Fort Carson, in authorized to discharge from its sanitary wastewater treatment facility in El Paso County, Colorado, to Clover Ditch, a tributary of Fountain Creek.

  3. St. Ignatius-Southside Wastewater Treatment Facility NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit MT-0029017, the Salish and Kootenai Housing Authority of the Confederated Salish and Kootenai Tribes is authorized to discharge from its wastewater treatment facility in Lake County, Montana to an unnamed tributary of Sabine Creek.

  4. Bacteriophages--potential for application in wastewater treatment processes.

    PubMed

    Withey, S; Cartmell, E; Avery, L M; Stephenson, T

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  5. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    NASA Technical Reports Server (NTRS)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  6. Cost of phosphate removal in municipal wastewater treatment plants

    NASA Technical Reports Server (NTRS)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  7. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems.

    PubMed

    Schaider, Laurel A; Rodgers, Kathryn M; Rudel, Ruthann A

    2017-07-05

    Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.

  8. [Ecological security of wastewater treatment processes: a review].

    PubMed

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  9. The carbon-sequestration potential of municipal wastewater treatment.

    PubMed

    Rosso, Diego; Stenstrom, Michael K

    2008-02-01

    The lack of proper wastewater treatment results in production of CO(2) and CH(4) without the opportunity for carbon sequestration and energy recovery, with deleterious effects for global warming. Without extending wastewater treatment to all urban areas worldwide, CO(2) and CH(4) emissions associated with wastewater discharges could reach the equivalent of 1.91 x 10(5) t(CO2)d(-1) in 2025, with even more dramatic impact in the short-term. The carbon sequestration benefits of wastewater treatment have enormous potential, which adds an energy conservation incentive to upgrading existing facilities to complete wastewater treatment. The potential greenhouse gases discharges which can be converted to a net equivalent CO(2) credit can be as large as 1.91 x 10(5) t(CO2)d(-1) in 2025 by 2025. Biomass sequestration and biogas conversion energy recovery are the two main strategies for carbon sequestration and emission offset, respectively. The greatest potential for improvement is outside Europe and North America, which have largely completed treatment plant construction. Europe and North America can partially offset their CO(2) emissions and receive benefits through the carbon emission trading system, as established by the Kyoto protocol, by extending existing technologies or subsidizing wastewater treatment plant construction in urban areas lacking treatment. This strategy can help mitigate global warming, in addition to providing a sustainable solution for extending the health, environmental, and humanitarian benefits of proper sanitation.

  10. Electro-coagulation treatment of oily wastewater with sludge analysis.

    PubMed

    Ibrahim, Dhorgham Skban; Sakthipriya, N; Balasubramanian, N

    2012-01-01

    Experiments were carried out in a batch reactor to treat the oily effluent by electro-coagulation. The influence of operating parameters such as applied current, type of electrode and electrolysis time on electro-coagulation efficiency has been critically examined. The maximum percentage removal of chemical oxygen demand (COD) was 94% under optimum experimental conditions of pH 6.7, current density 6 mA/cm², electrolysis time 40 min, and using mild steel as anode. The remaining sludge in the reactor was analyzed by energy disperse analysis of X-rays (EDAX) and scanning electron microscope (SEM) analysis. The analysis confirms that the oily pollutant was removed by electroflotation and adsorption of the oily particles of precipitate during the electro-coagulation process. Electro-coagulation can be used as an efficient treatment technique for oily wastewater.

  11. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling.

    PubMed

    Watkinson, A J; Murby, E J; Costanzo, S D

    2007-10-01

    Removal of 28 human and veterinary antibiotics was assessed in a conventional (activated sludge) and advanced (microfiltration/reverse osmosis) wastewater treatment plant (WWTP) in Brisbane, Australia. The dominant antibiotics detected in wastewater influents were cephalexin (med. 4.6 microg L(-1), freq. 100%), ciprofloxacin (med. 3.8 microg L(-1), freq. 100%), cefaclor (med. 0.5 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.36 microg L(-1), freq. 100%) and trimethoprim (med. 0.34 microg L(-1), freq. 100%). Results indicated that both treatment plants significantly reduced antibiotic concentrations with an average removal rate from the liquid phase of 92%. However, antibiotics were still detected in both effluents from the low-to-mid ng L(-1) range. Antibiotics detected in effluent from the activated sludge WWTP included ciprofloxacin (med. 0.6 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.27 microg L(-1), freq. 100%) lincomycin (med. 0.05 microg L(-1), freq. 100%) and trimethoprim (med. 0.05 microg L(-1), freq. 100%). Antibiotics identified in microfiltration/reverse osmosis product water included naladixic acid (med. 0.045 microg L(-1), freq. 100%), enrofloxacin (med. 0.01 microg L(-1), freq. 100%), roxithromycin (med. 0.01 microg L(-1), freq. 100%), norfloxacin (med. 0.005 microg L(-1), freq. 100%), oleandomycin (med. 0.005 microg L(-1), freq. 100%), trimethoprim (med. 0.005 microg L(-1), freq. 100%), tylosin (med. 0.001 microg L(-1), freq. 100%), and lincomycin (med. 0.001 microg L(-1), freq. 66%). Certain traditional parameters, including nitrate concentration, conductivity and turbidity of the effluent were assessed as predictors of total antibiotic concentration, however only conductivity demonstrated any correlation with total antibiotic concentration (p=0.018, r=0.7). There is currently a lack of information concerning the effects of these chemicals to critically assess potential risks for environmental discharge and water recycling.

  12. Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery.

    PubMed

    Huang, Li-Ying; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    A forward osmosis membrane bioreactor (OMBR) with a thin film composite membrane was seeded with flocculated sludge and aerobic granules to treat a synthetic wastewater with 1M NaCl as draw solution. The tested OMBR showed 96%, 43% and 100% removal of PO4(3-)-P, NH4(+)-N, and total organic carbon. Salinity was accumulated in OMBR principally owing to membrane rejection and salt leakage from draw solution. At high salinity level membrane fouling could be induced. Intermittent withdrawal and replenishment of supernatant from OMBR maintained its operation stability, while phosphorus in withdrawn supernatant was recovered by pH adjustment. The OMBR enriched phosphorus concentration from 156 mg/L in feed solution to 890-990 mg/L. At pH 8.5 with 2.65-2.71 g 3 M NaOH/g-P, 814-817 mg-P/L was recovered in the form of sodium hydrogen phosphite hydrate. The OMBR is a volatile wastewater treatment unit with capability for enrichment and recovery of phosphorus at reduced chemical costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  14. Tannery wastewater treatment by sequencing batch biofilm reactor.

    PubMed

    Di Iaconi, C; Lopez, A; Ramadori, R; Passino, R

    2003-07-15

    The paper reports the results of an investigation aimed to evaluate the performances of an innovative process for treating tannery wastewater. In such a process biological degradation, carried out in a sequencing batch biofilm reactor (SBBR), is combined with chemical oxidation by ozone. The treatment was carried out at laboratory scale on a real primary effluent coming from a centralized plant treating the wastewater of a large tannery district in Northern Italy. SBBR performances without and with ozonation were compared with very satisfactory results particularly in the latter instance when the recorded COD, TKN, and TSS average removals, (96%), (92%), and (98%), respectively, permitted to achieve the fixed limits enforced by Italian regulation without needing any additional polishing step. With or without ozonation, the process that resulted was characterized by a specific sludge production (0.1 kgVSS/kg CODremoved) significantly lower than the values featuring conventional biological systems (i.e., 0.3-0.5 VSS/kg CODremoved). Moreover, as in the reactor the biomass density results were very high, i.e., 98 gVSS/Lsludge, it was possible to achieve and maintain biomass concentration as high as 20 gVSS/L.

  15. Soil aquifer treatment of artificial wastewater under saturated conditions.

    PubMed

    Essandoh, H M K; Tizaoui, C; Mohamed, M H A; Amy, G; Brdjanovic, D

    2011-08-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L⁻¹-135 mg L⁻¹) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d⁻¹-1780 mg d⁻¹ applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.

  16. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review.

    PubMed

    Satyawali, Y; Balakrishnan, M

    2008-02-01

    Molasses-based distilleries are one of the most polluting industries generating large volumes of high strength wastewater. Different processes covering anaerobic, aerobic as well as physico-chemical methods have been employed to treat this effluent. Anaerobic treatment is the most attractive primary treatment due to over 80% BOD removal combined with energy recovery in the form of biogas. Further treatment to reduce residual organic load and color includes various: (i) biological methods employing different fungi, bacteria and algae, and (ii) physico-chemical methods such as adsorption, coagulation/precipitation, oxidation and membrane filtration. This work presents a review of the existing status and advances in biological and physico-chemical methods applied to the treatment of molasses-based distillery wastewater. Both laboratory and pilot/industrial studies have been considered. Furthermore, limitations in the existing processes have been summarized and potential areas for further investigations have been discussed.

  17. The use of mathematical models in teaching wastewater treatment engineering.

    PubMed

    Morgenroth, E; Arvin, E; Vanrolleghem, P

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.

  18. The fate and removal of triclosan during wastewater treatment.

    PubMed

    Thompson, A; Griffin, P; Stuetz, R; Cartmell, E

    2005-01-01

    This work examines the variation in removal efficiency of triclosan in wastewater treatment works in the United Kingdom between November 2003 and April 2004. Concentrations of triclosan were measured at set points within three different types of wastewater treatment works: rotating biological contactors, trickling filters, and activated sludge. Overall removal of triclosan through these plants ranged from 58 to 96% (rotating biological contactors), 86 to 97% (trickling filter), and 95 to 98% (activated sludge).

  19. Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment.

    PubMed

    Yan, Long; Wang, Yufei; Ma, Hongzhu; Han, Zhiping; Zhang, Qiang; Chen, Yashao

    2012-02-15

    In this study, several fly ash (FA)-based composite coagulants, leached by hydrochloric acid, were prepared to treat coal washing wastewater. The concentrations of Al(3+) and Fe(2+)/Fe(3+) in the leachates and coagulants were analyzed, and optimal experimental conditions, including coagulant dosage and initial pH, were determined using various analytical techniques (scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), X-ray fluorescence (XRF), particle-size analysis, zeta potential, pH and conductivity measurements). A suspended solids (SS) and chemical oxygen demand (COD) removal efficiency from the effluent treated by one of the coagulants reached 99.61% and 96.48%, respectively, at dosages of 10 g l(-1) (initial pH of 9, adjusted by CaO). This indicates that the coagulant was an effective agent for coal washing wastewater treatment, and that the leached Al(3+) and Fe(3+) and introduced Ca(2+) may have improved the coagulation process. Analysis of the dry sludge composition and slurry particle size distribution of the coal washing wastewater showed that charged colloidal particles and the fine particle distribution in the coal washing wastewater make the wastewater treatment a difficult process. Results from this study could provide a novel approach for the treatment of coal washing wastewater and coal fly ash utilization. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Energetic flexibility on wastewater treatment plants.

    PubMed

    Schäfer, M; Hobus, I; Schmitt, T G

    2017-09-01

    In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.

  1. Airborne coliphages from wastewater treatment facilities.

    PubMed Central

    Fannin, K F; Spendlove, J C; Cochran, K W; Gannon, J J

    1976-01-01

    The emission (from wastewater treatment plants) of airborne coliphages that form plaques on two strains of Escherichia coli was investigated. Two activated-sludge and two trickling-filter plants were studied. Field sampling procedures used large-volume air samplers with recirculation devices. Coliphages were enumerated by a most-probable-number (MPN) procedure. Temperature, relative humidity, windspeed, and presence of sunlight were monitored. Concurrent samples of sewage were taken during each air-sampling run. Average coliphage levels in the airborne emissions of trickling-filter beds and activated-sludge units were 2.84 X 10(-1) and 3.02 X 10(-1) MPN/m3, respectively, for all positive observations, and sewage liquor concentrations from the sources were 4.48 X 10(5) and 2.94 X 10(6) plaque-forming units/liter, respectively, depending upon the E. coli host used for assay. This work establishes minimal airborne-coliphage concentrations from the plants studied. The procedures employed will be useful in evaluating the animal virus levels in these emissions. PMID:1275492

  2. Solar powered wastewater treatment plant. Final report

    SciTech Connect

    Venhuizen, D.

    1981-11-06

    Enhancement of the ability of a hyacinth pond to provide secondary effluent was studied. Control of flow geometry was addressed, and the hyacinth pond's role as part of an overall treatment system was emphasized. The use of greenhouses over the ponds to protect the plants during the winter was evaluated. The thermal and structural performances of the greenhouses were analyzed. It was concluded that the plants could be kept alive and green with only a tarpaulin-like cover in the winter climate of Texas, but to keep the plants actively growing would require a tightly built greenhouse with good infiltration control. The third area of investigation was the potential of wind power for providing energy for wastewater aeration. Aeration methods amenable to the use of wind power as the prime mover were investigated and found to compare favorably with standard aeration methods. The wind distribution at the site was monitored to determine whether the wind could be relied upon as a source of aeration energy.

  3. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  4. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  5. Landfill leachate toxicity removal in combined treatment with municipal wastewater.

    PubMed

    Kalka, J

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5-10 L/d; HRT-1.4-1.6 d; MLSS 1.6-2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  6. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the

  7. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  8. A characterization of selected endocrine disruptor compounds in a Portuguese wastewater treatment plant.

    PubMed

    Maurício, R; Diniz, M; Petrovic, M; Amaral, L; Peres, I; Barceló, D; Santana, F

    2006-07-01

    Anthropogenic compounds that are able to disrupt the endocrine system of wildlife species are a major cause for concern and have led to a demand for new screening methods. The identification and quantification of endocrine disruptor compounds at wastewater treatment plant is of major interest to assess the endocrine activity of wastewater treatment plant discharges into the environment. This study consists of a preliminary survey of concentrations of previously selected endocrine disruptor compounds, undertaken to establish environmental concentrations and to support a biological program assay exposing freshwater fish to them. Selected endocrine disrupting chemicals (APEs, bisphenol A and 17 beta-estradiol) were measured in samples from a wastewater treatment plant located in Lisbon (Portugal), using recent commercial enzyme-linked immunosorbent assay kits and also LC-MS/MS. The results show that the wastewater treatment plant treatment process is efficient on the removal of target endocrine disruptor compounds. However, environmentally significant concentrations are still present in the treated effluent. The results also show that enzyme-linked immunosorbent assay kit is suitable for routine analysis of the selected compounds. The results are also useful since the wastewater treatment plant is located in a Mediterranean region, which results in an effluent with its own characteristics.

  9. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity.

    PubMed

    Wei, Xiao-xue; Zhang, Zi-yang; Fan, Qing-lan; Yuan, Xiao-ying; Guo, Dong-sheng

    2012-11-15

    This study investigated the change of hazardous materials in coking wastewater at different treatment stages (anaerobic, anaerobic/aerobic, anaerobic/aerobic/photo degradation, anaerobic/aerobic/ozone oxidation treatment) and the effects of them on the development of maize embryos and the activity of amylase and protease in maize seeds. Moreover the interaction of refractory organic matters in the wastewater at different treatment stages with amylase and protease also were determined in vitro. The results show that the biodegradable and the refractory organic compounds in the wastewater both can affect maize embryo development (germination inhibition rate is 19.3% for biodegradable organic compounds). As the treatment stage preceding, the inhibition effect of coking wastewater on the development of the maize embryo (for germination inhibition rates change from 49.3% to 24.6%) and on enzymatic activity (inhibition rates change from 63.9% to 22.4% for amylase) decreases gradually, but the photo-degradation treatment to anaerobic/aerobic effluent can increase its toxicity. The changes in the ability of the refractory organic compounds to bind with enzyme proteins, combined with the analysis of the organic components by GC/MS, show that in the process of coking wastewater treatment no new toxic chemicals were produced.

  10. Performance of Multilevel Contact Oxidation in the Treatment of Wastewater from Automobile Painting Industry

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang

    2017-01-01

    A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.

  11. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.

    PubMed

    Kim, Hee-Young; Seok, Hyun-Woo; Kwon, Hye-Ok; Choi, Sung-Deuk; Seok, Kwang-Seol; Oh, Jeong Eun

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑11PFAAs concentrations were detected in the influent and effluent from the paper (median: 411ng/L) and textile (median: 106ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49-66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0ng/g) and chemical (median: 81.5ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146ton/yr. The textile industry had the highest discharge load with 0.055ton/yr (PFOA: 0.039ton/yr, PFOS: 0.010ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A DNA-based assay for toxic chemicals in wastewater.

    PubMed

    Foreman, Amy L; Phillips, Leo; Kanellis, Vangelis G; Hammoudeh, Daoud; Naumann, Christoph; Wong, Henri; Chisari, Robert; Hibbert, D Brynn; Lee, Garry S H; Patra, Ronald; Julli, Moreno; Chapman, John; Cooke, A Roger; dos Remedios, Cristobal G

    2011-08-01

    Chemical toxicants, particularly metal ions, are a major contaminant in global waterways. Live-organism bioassays used to monitor chemical toxicants commonly involve measurements of activity or survival of a freshwater cladoceran (Ceriodaphnia dubia) or light emitted by the marine bacterium Vibrio fischeri, used in the commercial Microtox® bioassay. Here we describe a novel molecule-based assay system employing DNA as the chemical biosensor. Metals bind to DNA, causing structural changes that expel a bound (intercalated) fluorescent reporter dye. Analyses of test data using 48 wastewater samples potentially contaminated by metal ions show that the DNA-dye assay results correlate with those from C. dubia and Microtox bioassays. All three assays exhibit additive, antagonistic, and synergistic responses that cannot be predicted by knowing individual metal concentrations. Analyses of metals in these samples imply the presence of chemical toxicants other than metal ions. The DNA-dye assay is robust, has a 12-month shelf life, and is only slightly affected by sample pH in the range 4 to 9. The assay is completed in a matter of minutes, and its portability makes it well suited as a screening assay for use in the field. We conclude that the DNA-dye test is a surrogate bioassay suitable for screening chemical toxicity.

  13. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O2 generation, CO2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future

  14. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  15. Application of molecularly imprinted polymers in wastewater treatment: a review.

    PubMed

    Huang, Dan-Lian; Wang, Rong-Zhong; Liu, Yun-Guo; Zeng, Guang-Ming; Lai, Cui; Xu, Piao; Lu, Bing-An; Xu, Juan-Juan; Wang, Cong; Huang, Chao

    2015-01-01

    Molecularly imprinted polymers are synthetic polymers possessing specific cavities designed for target molecules. They are prepared by copolymerization of a cross-linking agent with the complex formed from a template and monomers that have functional groups specifically interacting with the template through covalent or noncovalent bonds. Subsequent removal of the imprint template leaves specific cavities whose shape, size, and functional groups are complementary to the template molecule. Because of their predetermined selectivity, molecularly imprinted polymers (MIPs) can be used as ideal materials in wastewater treatment. Especially, MIP-based composites offer a wide range of potentialities in wastewater treatment. This paper reviews the latest applications of MIPs in wastewater treatment, highlights the development of MIP-based composites in wastewater, and offers suggestions for future success in the field of MIPs.

  16. Sustainable operation of a biological wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  17. A methodology to evaluate water and wastewater treatment plant reliability.

    PubMed

    Eisenberg, D; Soller, J; Sakaji, R; Olivieri, A

    2001-01-01

    Evaluating the reliability of treatment processes and treatment facilities should be an important part of the planning and design process for water resource, wastewater treatment, and particularly wastewater reuse projects. With the recent developments in technology, particularly the development of membrane processes and alternative disinfection processes for water and wastewater treatment, there is an increasing need for a common methodology to evaluate the reliability of alternative processes and treatment facilities that utilize different combinations of those processes. To assess the reliability of a treatment facility, several aspects of treatment must be considered including a methodical evaluation of both mechanical reliability and plant performance. A straightforward method for conducting these types of analyses is described herein along with a description of applications of this methodology. A discussion is provided highlighting the value of such a methodology for both the water quality engineer and the risk manager.

  18. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    SciTech Connect

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  19. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  20. Carbon footprint of aerobic biological treatment of winery wastewater.

    PubMed

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.