Sample records for chemically defined artificial

  1. Technical Note: Artificial coral reef mesocosms for ocean acidification investigations

    NASA Astrophysics Data System (ADS)

    Leblud, J.; Moulin, L.; Batigny, A.; Dubois, P.; Grosjean, P.

    2014-11-01

    The design and evaluation of replicated artificial mesocosms are presented in the context of a thirteen month experiment on the effects of ocean acidification on tropical coral reefs. They are defined here as (semi)-closed (i.e. with or without water change from the reef) mesocosms in the laboratory with a more realistic physico-chemical environment than microcosms. Important physico-chemical parameters (i.e. pH, pO2, pCO2, total alkalinity, temperature, salinity, total alkaline earth metals and nutrients availability) were successfully monitored and controlled. Daily variations of irradiance and pH were applied to approach field conditions. Results highlighted that it was possible to maintain realistic physico-chemical parameters, including daily changes, into artificial mesocosms. On the other hand, the two identical artificial mesocosms evolved differently in terms of global community oxygen budgets although the initial biological communities and physico-chemical parameters were comparable. Artificial reef mesocosms seem to leave enough degrees of freedom to the enclosed community of living organisms to organize and change along possibly diverging pathways.

  2. United States National Strategy and Defense Policy Objectives After Chemical Disarmament

    DTIC Science & Technology

    1989-03-19

    toxins. Because the 1972 BWT Convention does not adequately define toxins, the Soviets have a good case for considering artificial toxins as chemical...commits all parties to negotiate "in good faith" toward "the recognized objective of effective prohibition of chemical weapons."𔃼 The discussions on...34 argue: "that the effectiveness of verification measures is enhanced by a high level of chemical defense. Good defense greatly raises the scale of

  3. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  4. Sequences Of Amino Acids For Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.

    1992-01-01

    Sequences of amino acids defined for use in making polypeptides one-third to one-sixth as large as parent human serum albumin molecule. Smaller, chemically stable peptides have diverse applications including service as artificial human serum and as active components of biosensors and chromatographic matrices. In applications involving production of artificial sera from new sequences, little or no concern about viral contaminants. Smaller genetically engineered polypeptides more easily expressed and produced in large quantities, making commercial isolation and production more feasible and profitable.

  5. Living technology: exploiting life's principles in technology.

    PubMed

    Bedau, Mark A; McCaskill, John S; Packard, Norman H; Rasmussen, Steen

    2010-01-01

    The concept of living technology-that is, technology that is based on the powerful core features of life-is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing robots, chemical protocells, and hybrid electronic-chemical systems. We define primary (secondary) living technology according as key material components and core systems are not (are) derived from living organisms. Primary living technology is currently emerging, distinctive, and potentially powerful, motivating this review. We trace living technology's connections with artificial life (soft, hard, and wet), synthetic biology (top-down and bottom-up), and the convergence of nano-, bio-, information, and cognitive (NBIC) technologies. We end with a brief look at the social and ethical questions generated by the prospect of living technology.

  6. Artificial cell mimics as simplified models for the study of cell biology.

    PubMed

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  7. Application criteria of enteral nutrition in patients with anorexia nervosa: correlation between clinical and psychological data in a "lifesaving" treatment.

    PubMed

    Paccagnella, Agostino; Mauri, Alessandra; Baruffi, Carla; Berto, Rita; Zago, Raffaella; Marcon, Maria Lisa; Pizzolato, Daniela; Fontana, Francesca; Rizzo, Lenio; Bisetto, Mario; Agostini, Silvana; Foscolo, Giancarlo

    2006-01-01

    Data and research increasingly point to multiple factors in the genesis of eating-behavior disorders, but the lack of a clear etiological definition prevents a unique therapeutic or prognostic approach from being defined. Therapeutic approaches, as well as scientific research, have separately analyzed the psychological aspects and the clinical-nutrition aspects without integrating the variables or correlating clinical and psychological data. This work has several goals because it aims at considering the problem from the 2 different perspectives. Psychological and clinical variables are analyzed both separately and together in order to assess (a) the minimal criteria to define a cure as "lifesaving" and submit a patient to artificial nutrition; (b) the kind of implementation artificial nutrition should follow; (c) which indicators of the efficacy of artificial nutrition must be taken into account; (d) the results in nutrition terms that may be obtained during the follow-up; (e) if artificial nutrition may be used as a therapeutic tool; (f) if there are any psychological effects after artificial nutrition; (g) if there are any effects due to the patients' age; and (h) the correlation between the psychological profile of a patient and the acceptance of the nutrition treatment. Several psychological and pharmacologic variables, together with clinical and anthropometric data and blood chemical values, were all considered. Besides defining minimal criteria for a "lifesaving" cure and proposing 2 ad hoc scales for the assessment of patients' subjective willingness toward feeding and for the objective measurement of feeding itself, clinical data and correlations with psychological data evidenced the importance of artificial nutrition and specifically of enteral nutrition as a therapeutic tool, allowing us to define the modalities of implementation of enteral nutrition. Results show that, because enteral nutrition did not deteriorate the psychological state of the patients, and was found to be accepted more positively than feeding orally in the most critical initial phase, it should be included in the therapy.

  8. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  9. An Investigation on the Role of Spike Latency in an Artificial Olfactory System

    PubMed Central

    Martinelli, Eugenio; Polese, Davide; Dini, Francesca; Paolesse, Roberto; Filippini, Daniel; Lundström, Ingemar; Di Natale, Corrado

    2011-01-01

    Experimental studies have shown that the reactions to external stimuli may appear only few hundreds of milliseconds after the physical interaction of the stimulus with the proper receptor. This behavior suggests that neurons transmit the largest meaningful part of their signal in the first spikes, and than that the spike latency is a good descriptor of the information content in biological neural networks. In this paper this property has been investigated in an artificial sensorial system where a single layer of spiking neurons is trained with the data generated by an artificial olfactory platform based on a large array of chemical sensors. The capability to discriminate between distinct chemicals and mixtures of them was studied with spiking neural networks endowed with and without lateral inhibitions and considering as output feature of the network both the spikes latency and the average firing rate. Results show that the average firing rate of the output spikes sequences shows the best separation among the experienced vapors, however the latency code is able in a shorter time to correctly discriminate all the tested volatile compounds. This behavior is qualitatively similar to those recently found in natural olfaction, and noteworthy it provides practical suggestions to tail the measurement conditions of artificial olfactory systems defining for each specific case a proper measurement time. PMID:22194721

  10. Alternatives to those artificial FD&C food colorants.

    PubMed

    Wrolstad, Ronald E; Culver, Catherine A

    2012-01-01

    Replacement of artificial food dyes with natural colorants is a current marketing trend, notwithstanding the fact that neither the United States nor the European Union (EU) has defined natural with respect to food colors. Consumer groups have concerns over the safety of synthetic colorants, and in addition, many of the naturally derived colorants provide health benefits. Food scientists frequently have the assignment of replacing artificial colorants with natural alternatives. This can be challenging, as naturally derived colorants are usually less stable, and all desired hues might, in fact, not be obtainable. In this review, the chemical and physical properties, limitations, and more suitable applications for those colorants that are legally available as substitutes for the synthetic colorants are summarized. Issues and challenges for certain foods are discussed, and in addition, colorants that may be available in the future are briefly described.

  11. Tailoring lumazine synthase assemblies for bionanotechnology.

    PubMed

    Azuma, Yusuke; Edwardson, Thomas G W; Hilvert, Donald

    2018-05-21

    Nanoscale compartments formed by hierarchical protein self-assembly are valuable platforms for nanotechnology development. The well-defined structure and broad chemical functionality of protein cages, as well as their amenability to genetic and chemical modification, have enabled their repurposing for diverse applications. In this review, we summarize progress in the engineering of the cage-forming enzyme lumazine synthase. This bacterial nanocompartment has proven to be a malleable scaffold. The natural protein has been diversified to afford a family of unique proteinaceous capsules that have been modified, evolved and assembled with other components to produce nanoreactors, artificial organelles, delivery vehicles and virus mimics.

  12. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

  13. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    NASA Astrophysics Data System (ADS)

    Chung, K. K.; Do, D. Q.

    2010-09-01

    In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.

  14. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    PubMed

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Artificial photosynthesis for sustainable fuel and chemical production.

    PubMed

    Kim, Dohyung; Sakimoto, Kelsey K; Hong, Dachao; Yang, Peidong

    2015-03-09

    The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photosynthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, concerning the use of renewable hydrogen as a feedstock for major chemical production, are outlined to shed light on the ultimate role of artificial photosynthesis in achieving sustainable chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Two-Way Chemical Communication between Artificial and Natural Cells

    PubMed Central

    2017-01-01

    Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells. PMID:28280778

  17. Automatic design and manufacture of robotic lifeforms.

    PubMed

    Lipson, H; Pollack, J B

    2000-08-31

    Biological life is in control of its own means of reproduction, which generally involves complex, autocatalysing chemical reactions. But this autonomy of design and manufacture has not yet been realized artificially. Robots are still laboriously designed and constructed by teams of human engineers, usually at considerable expense. Few robots are available because these costs must be absorbed through mass production, which is justified only for toys, weapons and industrial systems such as automatic teller machines. Here we report the results of a combined computational and experimental approach in which simple electromechanical systems are evolved through simulations from basic building blocks (bars, actuators and artificial neurons); the 'fittest' machines (defined by their locomotive ability) are then fabricated robotically using rapid manufacturing technology. We thus achieve autonomy of design and construction using evolution in a 'limited universe' physical simulation coupled to automatic fabrication.

  18. Discrimination, Crypticity and Incipient Taxa in Entamoeba1

    PubMed Central

    Espinosa, Avelina; Paz-y-Miño-C, Guillermo

    2011-01-01

    Persistent difficulties in resolving clear lineages in diverging populations of prokaryotes or unicellular eukaryotes (protistan polyphyletic groups) are challenging the classical species concept. Although multiple integrated approaches would render holistic taxonomies, most phylogenetic studies are still based on single-gene or morphological traits. Such methodologies conceal natural lineages, which are considered ‘cryptic’. The concept of species is considered artificial and inadequate to define natural populations. Social organisms display differential behaviors toward kin than to non-related individuals. In ‘social’ microbes, kin discrimination has been used to help resolve crypticity. Aggregative behavior could be explored in a non-social protist to define phylogenetic varieties that are considered ‘cryptic’. Two Entamoeba invadens strains, VK-1:NS and IP-1 are considered close populations of the same ‘species’. This study demonstrates that VK-1:NS and IP-1 trophozoites aggregate only with alike members and discriminate individuals from different strains based on behavioral and chemical signals. Combined morphological, behavioral/chemical and ecological studies could improve Archamoebae phylogenies and define cryptic varieties. Evolutionary processes in which selection acted continuously and cumulatively on ancestors of Entamoeba populations gave rise to behavioral and chemical signals that allowed individuals to discriminate non-population members and gradually, to new lineages; alternative views that claim a ‘Designer’ or ‘Creator’ as responsible for protistan diversity are unfounded. PMID:22299709

  19. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    PubMed

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  20. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  1. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE PAGES

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...

    2017-09-28

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  2. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    PubMed

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Designing Artificial Enzymes by Intuition and Computation

    PubMed Central

    Nanda, Vikas; Koder, Ronald L.

    2012-01-01

    The rational design of artificial enzymes either by applying physio-chemical intuition of protein structure and function or with the aid of computation methods is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way, from simple α-helical peptide catalysts to proteins that facilitate multi-step chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes which could be used to improve the speed and selectivity of artificial catalysts. PMID:21124375

  4. Resilience scales of a dammed tropical river

    NASA Astrophysics Data System (ADS)

    Calamita, Elisa; Schmid, Martin; Wehrli, Bernhard

    2017-04-01

    Artificial river impoundments disrupt the seasonality and dynamics of thermal, chemical, morphological and ecological regimes in river systems. These alterations affect the aquatic ecosystems in space and time and specifically modify the seasonality and the longitudinal gradients of important biogeochemical processes. Resilience of river systems to anthropogenic stressors enables their recovery along the flow path; however little is known about the longitudinal distance that rivers need to partially restore their physical, chemical and biological integrity. In this study, the concept of a "resilience scale" will be explored for different water quality parameters downstream of Kariba dam, the largest artificial lake in the Zambezi basin (South-East Africa). The goal of this project is to develop a modelling framework to investigate and quantify the impact of large dams on downstream water quality in tropical context. In particular, we aim to assess the degree of reversibility of the main downstream alterations (temperature, oxygen, nutrients) and consequently the quantification of their longitudinal extent. Coupling in-situ measurements with hydraulic and hydrological parameters such as travel times, will allow us to define a physically-based parametrization of the different resilience scales for tropical rivers. The results will be used for improving future dam management at the local scale and assessing the ecological impact of planned dams at the catchment scale.

  5. An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.

  6. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation

    PubMed Central

    Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher

    2016-01-01

    Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. PMID:27901024

  7. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation.

    PubMed

    Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher

    2016-11-30

    Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.

  8. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredients are not food additives as defined in section 201(s) of the Federal Food, Drug, and Cosmetic Act; or if they are food additives as so defined, they are used in conformity with regulations established... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Frozen concentrate for artificially sweetened...

  9. Chemical signal activation of an organocatalyst enables control over soft material formation.

    PubMed

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  10. Emergence of life: Physical chemistry changes the paradigm.

    PubMed

    Spitzer, Jan; Pielak, Gary J; Poolman, Bert

    2015-06-10

    Origin of life research has been slow to advance not only because of its complex evolutionary nature (Franklin Harold: In Search of Cell History, 2014) but also because of the lack of agreement on fundamental concepts, including the question of 'what is life?'. To re-energize the research and define a new experimental paradigm, we advance four premises to better understand the physicochemical complexities of life's emergence: (1) Chemical and Darwinian (biological) evolutions are distinct, but become continuous with the appearance of heredity. (2) Earth's chemical evolution is driven by energies of cycling (diurnal) disequilibria and by energies of hydrothermal vents. (3) Earth's overall chemical complexity must be high at the origin of life for a subset of (complex) chemicals to phase separate and evolve into living states. (4) Macromolecular crowding in aqueous electrolytes under confined conditions enables evolution of molecular recognition and cellular self-organization. We discuss these premises in relation to current 'constructive' (non-evolutionary) paradigm of origins research - the process of complexification of chemical matter 'from the simple to the complex'. This paradigm artificially avoids planetary chemical complexity and the natural tendency of molecular compositions toward maximum disorder embodied in the second law of thermodynamics. Our four premises suggest an empirical program of experiments involving complex chemical compositions under cycling gradients of temperature, water activity and electromagnetic radiation.

  11. Artificial plasma experiments. Chemical release observations associated with the CRRES program

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.

    1994-01-01

    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.

  12. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    ERIC Educational Resources Information Center

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…

  13. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  14. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.

  15. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions

    NASA Astrophysics Data System (ADS)

    Kutikhin, Anton G.; Velikanova, Elena A.; Mukhamadiyarov, Rinat A.; Glushkova, Tatiana V.; Borisov, Vadim V.; Matveeva, Vera G.; Antonova, Larisa V.; Filip'Ev, Dmitriy E.; Golovkin, Alexey S.; Shishkova, Daria K.; Burago, Andrey Yu.; Frolov, Alexey V.; Dolgov, Viktor Yu.; Efimova, Olga S.; Popova, Anna N.; Malysheva, Valentina Yu.; Vladimirov, Alexandr A.; Sozinov, Sergey A.; Ismagilov, Zinfer R.; Russakov, Dmitriy M.; Lomzov, Alexander A.; Pyshnyi, Dmitriy V.; Gutakovsky, Anton K.; Zhivodkov, Yuriy A.; Demidov, Evgeniy A.; Peltek, Sergey E.; Dolganyuk, Viatcheslav F.; Babich, Olga O.; Grigoriev, Evgeniy V.; Brusina, Elena B.; Barbarash, Olga L.; Yuzhalin, Arseniy E.

    2016-06-01

    Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.

  16. Artificial Intelligence Methods: Challenge in Computer Based Polymer Design

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Pinteala, Mariana; Cartwright, Hugh

    2009-08-01

    This paper deals with the use of Artificial Intelligence Methods (AI) in the design of new molecules possessing desired physical, chemical and biological properties. This is an important and difficult problem in the chemical, material and pharmaceutical industries. Traditional methods involve a laborious and expensive trial-and-error procedure, but computer-assisted approaches offer many advantages in the automation of molecular design.

  17. The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities

    NASA Astrophysics Data System (ADS)

    Muzyka, Kamil

    2013-12-01

    On the verge of technological breakthroughs, which define and revolutionize our understanding of intelligence, cognition, and personhood, especially when speaking of artificial intelligences and mind uploads, one must consider the legal implications of granting personhood rights to artificial intelligences or emulated human entities

  18. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  19. Bioinspired Methodology for Artificial Olfaction

    PubMed Central

    Raman, Baranidharan; Hertz, Joshua L.; Benkstein, Kurt D.; Semancik, Steve

    2008-01-01

    Artificial olfaction is a potential tool for noninvasive chemical monitoring. Application of “electronic noses” typically involves recognition of “pretrained” chemicals, while long-term operation and generalization of training to allow chemical classification of “unknown” analytes remain challenges. The latter analytical capability is critically important, as it is unfeasible to pre-expose the sensor to every analyte it might encounter. Here, we demonstrate a biologically inspired approach where the recognition and generalization problems are decoupled and resolved in a hierarchical fashion. Analyte composition is refined in a progression from general (e.g., target is a hydrocarbon) to precise (e.g., target is ethane), using highly optimized response features for each step. We validate this approach using a MEMS-based chemiresistive microsensor array. We show that this approach, a unique departure from existing methodologies in artificial olfaction, allows the recognition module to better mitigate sensor-aging effects and to better classify unknowns, enhancing the utility of chemical sensors for real-world applications. PMID:18855409

  20. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  1. Superficial Punctate Keratitis

    MedlinePlus

    ... A viral infection A bacterial infection (including trachoma ) Dry eyes Strong chemicals splashed in the eye Exposure to ... lenses is temporarily discontinued. When the cause is dry eyes, ointments and artificial tears are effective. Artificial tears ...

  2. Kohonen and counterpropagation neural networks applied for mapping and interpretation of IR spectra.

    PubMed

    Novic, Marjana

    2008-01-01

    The principles of learning strategy of Kohonen and counterpropagation neural networks are introduced. The advantages of unsupervised learning are discussed. The self-organizing maps produced in both methods are suitable for a wide range of applications. Here, we present an example of Kohonen and counterpropagation neural networks used for mapping, interpretation, and simulation of infrared (IR) spectra. The artificial neural network models were trained for prediction of structural fragments of an unknown compound from its infrared spectrum. The training set contained over 3,200 IR spectra of diverse compounds of known chemical structure. The structure-spectra relationship was encompassed by the counterpropagation neural network, which assigned structural fragments to individual compounds within certain probability limits, assessed from the predictions of test compounds. The counterpropagation neural network model for prediction of fragments of chemical structure is reversible, which means that, for a given structural domain, limited to the training data set in the study, it can be used to simulate the IR spectrum of a chemical defined with a set of structural fragments.

  3. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  4. Extensive Chemical Modifications in the Primary Protein Structure of IgG1 Subvisible Particles Are Necessary for Breaking Immune Tolerance.

    PubMed

    Boll, Björn; Bessa, Juliana; Folzer, Emilien; Ríos Quiroz, Anacelia; Schmidt, Roland; Bulau, Patrick; Finkler, Christof; Mahler, Hanns-Christian; Huwyler, Jörg; Iglesias, Antonio; Koulov, Atanas V

    2017-04-03

    A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.

  5. Job Language Performance Requirements for MOS 11C Indirect Fire Infantryman.

    DTIC Science & Technology

    1982-10-01

    1009 *Apply artificial respiration to a chemical- agent casualty. 092-503-1004 Recognize and protect self against a chemical biological (CB) hazard...position (81-rm, 107-mm (4.2 in). 071-326-5704 Supervise/evaluate construction of a fighting position. .1 tS e~ SECURITY AND INTELLIGNECE ’PERCENTAGE...tackbone airway adam’s apple breastbone almost airtight finger-width any alongside oxygenated apply aloud arcs artificial as long as bulges assist

  6. Hierarchical Process Control of Chemical Vapor Infiltration.

    DTIC Science & Technology

    1995-05-31

    convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.

  7. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    PubMed

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  8. Using artificial neural networks to classify unknown volatile chemicals from the firings of insect olfactory sensory neurons.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J

    2011-01-01

    The olfactory system detects volatile chemical compounds, known as odour molecules or odorants. Such odorants have a diverse chemical structure which in turn interact with the receptors of the olfactory system. The insect olfactory system provides a unique opportunity to directly measure the firing rates that are generated by the individual olfactory sensory neurons (OSNs) which have been stimulated by odorants in order to use this data to inform their classification. In this work, we demonstrate that it is possible to use the firing rates from an array of OSNs of the vinegar fly, Drosophila melanogaster, to train an Artificial Neural Network (ANN), as a series of a Multi-Layer Perceptrons (MLPs), to differentiate between eight distinct chemical classes. We demonstrate that the MLPs when trained on 108 odorants, for both clean and 10% noise injected data, can reliably identify 87% of an unseen validation set of chemicals using noise injection. In addition, the noise injected MLPs provide a more accurate level of identification. This demonstrates that a 10% noise injected series of MLPs provides a robust method for classifying chemicals from the firing rates of OSNs and paves the way to a future realisation of an artificial olfactory biosensor.

  9. Making a global sensation: Vanilla flavor, synthetic chemistry, and the meanings of purity.

    PubMed

    Berenstein, Nadia

    2016-12-01

    How did vanilla, once a rare luxury, become a global sensation? Rather than taking the vanilla flavor of vanilla beans as a pre-existing natural fact, this essay argues that the sensory experience that came to be recognized as vanilla was a hybrid artifact produced by an expanding global trade in a diverse set of pleasurable substances, including cured beans from artificially pollinated vanilla orchids, synthetic vanillin, sugar, and a far-flung miscellany of other botanical and chemical materials. Global trade and large-scale production resulted not in the production of a homogenous, stable commodity, but in a range of local vanillas, heterogeneous mixtures with a range of qualities and virtues. As local commercial and regulatory interests competed to define the origins, and thus the market value, of authentic vanilla flavor, scientific experts were called upon to adjudicate these rival claims. In the United States, these debates played out in the context of the 1906 Pure Food and Drug Act, where efforts to define and chemically enforce a 'standard' vanilla extract, in contradistinction from adulterated, 'imitation' extracts, clashed with the interests of makers and users of both synthetic and 'genuine' vanilla flavorings. As regulatory chemists grappled with the growing variety of vanillas, they were required to determine the appropriate chemical components of genuine vanilla, and consequently to delimit the subjective sensory effects proper to the flavor. Nonetheless, the materials, experiences, and meanings popularly associated with vanilla flavor continued to exceed the limits prescribed by officials.

  10. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application. © 2012 American Chemical Society

  11. Spectroscopic Characterization of the Water Oxidation Intermediates in the Blue Dimer Ru-Based Catalyst for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor

    2012-02-01

    Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.

  12. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    NASA Astrophysics Data System (ADS)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  13. Methods for evaluating the biological impact of potentially toxic waste applied to soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1985-12-01

    The study was designed to evaluate two methods that can be used to estimate the biological impact of organics and inorganics that may be in wastes applied to land for treatment and disposal. The two methods were the contact test and the artificial soil test. The contact test is a 48 hr test using an adult worm, a small glass vial, and filter paper to which the test chemical or waste is applied. The test is designed to provide close contact between the worm and a chemical similar to the situation in soils. The method provides a rapid estimate ofmore » the relative toxicity of chemicals and industrial wastes. The artificial soil test uses a mixture of sand, kaolin, peat, and calcium carbonate as a representative soil. Different concentrations of the test material are added to the artificial soil, adult worms are added and worm survival is evaluated after two weeks. These studies have shown that: earthworms can distinguish between a wide variety of chemicals with a high degree of accuracy.« less

  14. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility.

    PubMed

    Wrobeln, Anna; Laudien, Julia; Groß-Heitfeld, Christoph; Linders, Jürgen; Mayer, Christian; Wilde, Benjamin; Knoll, Tanja; Naglav, Dominik; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    Until today, artificial oxygen carriers have not been reached satisfactory quality for routine clinical treatments. To bridge this gap, we designed albumin-derived perfluorocarbon-based nanoparticles as novel artificial oxygen carriers and evaluated their physico-chemical and pharmacological performance. Our albumin-derived perfluorocarbon-based nanoparticles (capsules), composed of an albumin shell and a perfluorodecalin core, were synthesized using ultrasonics. Their subsequent analysis by physico-chemical methods such as scanning electron-, laser scanning- and dark field microscopy as well as dynamic light scattering revealed spherically-shaped, nano-sized particles, that were colloidally stable when dispersed in 5% human serum albumin solution. Furthermore, they provided a remarkable maximum oxygen capacity, determined with a respirometer, reflecting a higher oxygen transport capacity than the competitor Perftoran®. Intravenous administration to healthy rats was well tolerated. Undesirable effects on either mean arterial blood pressure, hepatic microcirculation (determined by in vivo microscopy) or any deposit of capsules in organs, except the spleen, were not observed. Some minor, dose-dependent effects on tissue damage (release of cellular enzymes, alterations of spleen's micro-architecture) were detected. As our promising albumin-derived perfluorocarbon-based nanoparticles fulfilled decisive physico-chemical demands of an artificial oxygen carrier while lacking severe side-effects after in vivo administration they should be advanced to functionally focused in vivo testing conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Polymeric membrane materials for artificial organs.

    PubMed

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  16. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  17. Ecology, Microbial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, theymore » interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, theymore » interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.« less

  19. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms.

    PubMed

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir; Howell, Kate; Dunshea, Frank R

    2018-01-01

    Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam. The ANN method was able to create more accurate models (R 2  = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type. The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.

    PubMed

    Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth

    2018-06-13

    Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.

  1. Facile Method to Study Catalytic Oxygen Evolution Using a Dissolved Oxygen Optical Probe: An Undergraduate Chemistry Laboratory to Appreciate Artificial Photosynthesis

    ERIC Educational Resources Information Center

    Renderos, Genesis; Aquino, Tawanda; Gutierrez, Kristian; Badiei, Yosra M.

    2017-01-01

    Artificial photosynthesis (AP) is a synthetic chemical process that replicates natural photosynthesis to mass produce hydrogen as a clean fuel from sunlight-driven water splitting (2H[subscript 2]O [right arrow] O[subscript 2] + H[subscript 2]). In both natural and artificial photosynthesis, an oxygen-evolving catalyst (OEC) is needed to catalyze…

  2. Artificial enzymes with protein scaffolds: structural design and modification.

    PubMed

    Matsuo, Takashi; Hirota, Shun

    2014-10-15

    Recent development in biochemical experiment techniques and bioinformatics has enabled us to create a variety of artificial biocatalysts with protein scaffolds (namely 'artificial enzymes'). The construction methods of these catalysts include genetic mutation, chemical modification using synthetic molecules and/or a combination of these methods. Designed evolution strategy based on the structural information of host proteins has become more and more popular as an effective approach to construct artificial protein-based biocatalysts with desired reactivities. From the viewpoint of application of artificial enzymes for organic synthesis, recently constructed artificial enzymes mediating oxidation, reduction and C-C bond formation/cleavage are introduced in this review article. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Spectral measurements of ocean-dumped wastes tested in the marine upwelled spectral signature laboratory

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.

  4. Making Computers Smarter: A Look At the Controversial Field of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Defines artificial intelligence (AI) and discusses its history; the current state of the art, research, experimentation, and practical applications; and probable future developments. Key dates in the history of AI and eight references are provided. (MBR)

  5. An artificial diet containing plant pollen for the mealybug predator Cryptolaemus montrouzieri.

    PubMed

    Xie, Jiaqin; Wu, Hongsheng; Pang, Hong; De Clercq, Patrick

    2017-03-01

    The specialist predatory ladybird Cryptolaemus montrouzieri is an effective natural enemy of mealybugs and plays a key role in the biological control of these pests. However, its mass production is complicated by the dependence on parallel cultures of mealybugs or the need for Ephestia kuehniella eggs as an expensive factitious prey. Here we developed a pollen-based artificial food for the predator to lower its dependence on natural prey. We found that this artificial diet was an effective alternative food for larvae and adults of this predator. The artificial food supported the development and reproduction of the predator not only in the first generation (F0) but also in the next generation (F1). Although the developmental time and preoviposition period of C. montrouzieri on the artificial food were ca 1.5 days and 4 days longer than on the natural prey, the citrus mealybug Planococcus citri, respectively, its immature survival, fecundity and egg hatch were similar to those on mealybugs. In addition, adult C. montrouzieri maintained on natural or artificial food had a similar starvation resistance. Our results suggest that the pollen-based artificial diet can be used as an alternative food in the rearing of C. montrouzieri, and indicate its potential to support the mass production and wider application of this predator in biological control programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.

    PubMed

    Ji, Xiaoyuan; Su, Zhiguo; Wang, Ping; Ma, Guanghui; Zhang, Songping

    2016-09-01

    Biocatalyzed artificial photosynthesis systems provide a promising strategy to store solar energy in a great variety of chemicals. However, the lack of direct interface between the light-capturing components and the oxidoreductase generally hinders the trafficking of the chemicals and photo-excited electrons into the active center of the redox biocatalysts. To address this problem, a completely integrated artificial photosynthesis system for enhanced electronic energy-transfer efficacy is reported by combining co-axial electrospinning/electrospray and layer-by-layer (LbL) self-assembly. The biocatalysis part including multiple oxidoreductases and coenzymes NAD(H) was in situ encapsulated inside the lumen polyelectrolyte-doped hollow nanofibers or microcapsules fabricated via co-axial electrospinning/electrospray; while the precise and spatial arrangement of the photocatalysis part, including electron mediator and photosensitizer for photo-regeneration of the coenzyme, was achieved by ion-exchange interaction-driven LbL self-assembly. The feasibility and advantages of this integrated artificial photosynthesis system is fully demonstrated by the catalyzed cascade reduction of CO2 to methanol by three dehydrogenases (formate, formaldehyde, and alcohol dehydrogenases), incorporating the photo-regeneration of NADH under visible-light irradiation. Compared to solution-based systems, the methanol yield increases from 35.6% to 90.6% using the integrated artificial photosynthesis. This work provides a novel platform for the efficient and sustained production of a broad range of chemicals and fuels from sunlight. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    EPA Science Inventory

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  8. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli

    PubMed Central

    El-Sagheer, Afaf H.; Sanzone, A. Pia; Gao, Rachel; Tavassoli, Ali; Brown, Tom

    2011-01-01

    A triazole mimic of a DNA phosphodiester linkage has been produced by templated chemical ligation of oligonucleotides functionalized with 5′-azide and 3′-alkyne. The individual azide and alkyne oligonucleotides were synthesized by standard phosphoramidite methods and assembled using a straightforward ligation procedure. This highly efficient chemical equivalent of enzymatic DNA ligation has been used to assemble a 300-mer from three 100-mer oligonucleotides, demonstrating the total chemical synthesis of very long oligonucleotides. The base sequences of the DNA strands containing this artificial linkage were copied during PCR with high fidelity and a gene containing the triazole linker was functional in Escherichia coli. PMID:21709264

  9. Careful! It Is H[subscript 2]O? Teachers' Conceptions of Chemicals

    ERIC Educational Resources Information Center

    Salloum, Sara L.; BouJaoude, Saouma

    2008-01-01

    A concept commonly used by both teachers and students is the term "chemical." Many students and teachers think of chemicals as artificial, poisonous, and dangerous. The purpose of the study was to investigate science teachers' ideas about "chemicals," along with their awareness of students' alternative conceptions and teaching practices that…

  10. Solar fuels production by artificial photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ager, Joel W., E-mail: JWAger@lbl.gov; Lee, Min-Hyung; Javey, Ali

    2013-12-10

    A practical method to use sunlight to generate storable chemical energy could dramatically change the landscape of global energy generation. One of the fundamental requirements of such an “artificial photosynthesis” scheme is a light capture and conversion approach capable of generating the required chemical potentials (e.g. >1.23 V for splitting water into H{sub 2} and O{sub 2}). An approach based on inorganic light absorbers coupled directly to oxidation and reduction catalysts is being developed in the Joint Center for Artificial Photosynthesis (JCAP). P-type III-V semiconductors with a high surface area can be used as high current density photocathodes. The longevitymore » under operation of these photocathodes can be improved by the use of conformal metal oxides deposited by atomic layer deposition.« less

  11. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  12. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  13. Artificial Intelligence and Expert Systems Research and Their Possible Impact on Information Science.

    ERIC Educational Resources Information Center

    Borko, Harold

    1985-01-01

    Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…

  14. Where the bugs are: analyzing distributions of bacterial phyla by descriptor keyword search in the nucleotide database.

    PubMed

    Squartini, Andrea

    2011-07-26

    The associations between bacteria and environment underlie their preferential interactions with given physical or chemical conditions. Microbial ecology aims at extracting conserved patterns of occurrence of bacterial taxa in relation to defined habitats and contexts. In the present report the NCBI nucleotide sequence database is used as dataset to extract information relative to the distribution of each of the 24 phyla of the bacteria superkingdom and of the Archaea. Over two and a half million records are filtered in their cross-association with each of 48 sets of keywords, defined to cover natural or artificial habitats, interactions with plant, animal or human hosts, and physical-chemical conditions. The results are processed showing: (a) how the different descriptors enrich or deplete the proportions at which the phyla occur in the total database; (b) in which order of abundance do the different keywords score for each phylum (preferred habitats or conditions), and to which extent are phyla clustered to few descriptors (specific) or spread across many (cosmopolitan); (c) which keywords individuate the communities ranking highest for diversity and evenness. A number of cues emerge from the results, contributing to sharpen the picture on the functional systematic diversity of prokaryotes. Suggestions are given for a future automated service dedicated to refining and updating such kind of analyses via public bioinformatic engines.

  15. Transmission of olfactory information for tele-medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-01-01

    While the inclusion of visual, aural, and tactile senses into virtual reality systems is widespread, the sense of smell has been largely ignored. We have developed a chemical vapor sensing system for the automated identification of chemical vapors (smells). Our prototype chemical vapor sensing system is composed of an array of tin-oxide vapor sensors coupled to an artificial neural net-work. The artificial neural network is used in the recognition of different smells and is constructed as a standard multilayer feed-forward network trained with the backpropagation algorithm. When a chemical sensor array is combined with an automated pattern identifier, it ismore » often referred to as an electronic or artificial nose. Applications of electronic noses include monitoring food and beverage odors, automated flavor control, analyzing fuel mixtures, and quantifying individual components in gas mixtures. Our prototype electronic nose has been used to identify odors from common household chemicals. An electronic nose will potentially be a key component in an olfactory input to a telepresent virtual reality system. The identified odor would be electronically transmitted from the electronic nose at one site to an odor generation system at another site. This combination would function as a mechanism for transmitting olfactory information for telepresence. This would have direct applicability in the area of telemedicine since the sense of smell is an important sense to the physician and surgeon. In this paper, our chemical sensing system (electronic nose) is presented along with a proposed method for regenerating the transmitted olfactory information.« less

  16. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  18. Control of Randomly Sampled Robotic Systems

    DTIC Science & Technology

    1989-05-01

    task is so cumbersome and complicated that we would not be able to do without lots of mistakes. To avoid this formidable business , a Lisp program is...Artificial Inteligence Laboratory, 1972. PumA26O.c Ned Mar 8 17:51:04 1989 1 #include <rnath.h> #define real float #define mm 6 #define G 9.83. #define M6

  19. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  20. Does artificial nutrition improve outcome of critical illness? An alternative viewpoint!

    PubMed

    Heyland, Daren K; Wischmeyer, Paul E

    2013-08-27

    Recent studies challenge the beneficial role of artificial nutrition provided to critically ill patients and point out the limitations of existing studies in this area. We take a differing view of the existing data and refute many of the arguments put forward by previous authors. We review the mechanistic, observational, and experimental data supporting a role for early enteral nutrition in the critically ill patient. We conclude without question that more, high-quality research is needed to better define the role of artificial nutrition in the critical care setting, but until then early and adequate delivery of enteral nutrition is a legitimate, evidence-based treatment recommendation and we see no evidence-based role for restricting enteral nutrition in critically ill patients. The role of early supplemental parenteral nutrition continues to be defined as new data emerge.

  1. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    NASA Astrophysics Data System (ADS)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  2. The Problem of Defining Intelligence.

    ERIC Educational Resources Information Center

    Lubar, David

    1981-01-01

    The major philosophical issues surrounding the concept of intelligence are reviewed with respect to the problems surrounding the process of defining and developing artificial intelligence (AI) in computers. Various current definitions and problems with these definitions are presented. (MP)

  3. Satellite DNA-based artificial chromosomes for use in gene therapy.

    PubMed

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  4. Photodegradation of Dicloran in Freshwater and Seawater.

    PubMed

    Vebrosky, Emily N; Saranjampour, Parichehr; Crosby, Donald G; Armbrust, Kevin L

    2018-03-21

    Dicloran appears to be a model pesticide for investigating photodegradation processes in surface waters. Photodegradation processes are particularly relevant to this compound as it is applied to crops grown in proximity to freshwater and marine ecosystems. The photodegradation of dicloran under simulated sunlight was measured in distilled water, artificial seawater, phosphate buffer, and filter-sterilized estuarine water to determine its half-life, degradation rate, and photodegradation products. The half-life was approximately 7.5 h in all media. There was no significant difference in the rate of degradation between distilled water and artificial seawater for dicloran. For the intermediate products, a higher concentration of 2-chloro-1,4-benzoquinone was measured in artificial seawater versus distilled water, while a slightly higher concentration of 1,4-benzoquinone was measured in distilled water versus artificial seawater. The detection of chloride and nitrate ions after 2 h of light exposure suggests photonucleophilic substitution contributes to the degradation process. Differences in product distributions between water types suggest that salinity impacts on chemical degradation may need to be addressed in chemical exposure assessments.

  5. Spectroscopy and multivariate analyses applications related to solid rocket nozzle bondline

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Hatcher, Richard; Benson, Brian; Workman, Gary L.

    1991-01-01

    Chemical composition and molecular orientation define the properties of materials. Information related to chemical composition and molecular configuration is obtained by various forms of spectroscopy. Software algorithms developed for multivariate analyses, expert systems, and Artificial Intelligence (AI) are used to conduct repetitive operations. The techniques are believed to be of particular significance toward achieving TQM objectives. The objective was to obtain information related to the quality of the bondline in the solid rocket motor, SRM, nozzle. Hysol 934 NA, a room temperature curing epoxide resin, is used as the bonding agent. A good bond requires that the adhesive be placed on a properly prepared metal surface, the adhesives Part A and B be mixed in appropriate ratio from material within shelf life specifications. Spectroscopic data was obtained for surfaces prepared according to specifications, contaminated metal surfaces, samples of the epoxide adhesive at times that represent shelf aging from 3 months to 2 years, several mix ratio of A to B, and curing material. Temperature was found to be a significant factor. The study concentrated on pot life and mix ratio.

  6. Hierarchically engineered fibrous scaffolds for bone regeneration

    PubMed Central

    Sachot, Nadège; Castaño, Oscar; Mateos-Timoneda, Miguel A.; Engel, Elisabeth; Planell, Josep A.

    2013-01-01

    Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young's modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of various materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactions. PMID:23985738

  7. DNASynth: a software application to optimization of artificial gene synthesis

    NASA Astrophysics Data System (ADS)

    Muczyński, Jan; Nowak, Robert M.

    2017-08-01

    DNASynth is a client-server software application in which the client runs in a web browser. The aim of this program is to support and optimize process of artificial gene synthesizing using Ligase Chain Reaction. Thanks to LCR it is possible to obtain DNA strand coding defined by user peptide. The DNA sequence is calculated by optimization algorithm that consider optimal codon usage, minimal energy of secondary structures and minimal number of required LCR. Additionally absence of sequences characteristic for defined by user set of restriction enzymes is guaranteed. The presented software was tested on synthetic and real data.

  8. Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory.

    PubMed

    Netzeva, Tatiana I; Gallegos Saliner, Ana; Worth, Andrew P

    2006-05-01

    The aim of the present study was to illustrate that it is possible and relatively straightforward to compare the domain of applicability of a quantitative structure-activity relationship (QSAR) model in terms of its physicochemical descriptors with a large inventory of chemicals. A training set of 105 chemicals with data for relative estrogenic gene activation, obtained in a recombinant yeast assay, was used to develop the QSAR. A binary classification model for predicting active versus inactive chemicals was developed using classification tree analysis and two descriptors with a clear physicochemical meaning (octanol-water partition coefficient, or log Kow, and the number of hydrogen bond donors, or n(Hdon)). The model demonstrated a high overall accuracy (90.5%), with a sensitivity of 95.9% and a specificity of 78.1%. The robustness of the model was evaluated using the leave-many-out cross-validation technique, whereas the predictivity was assessed using an artificial external test set composed of 12 compounds. The domain of the QSAR training set was compared with the chemical space covered by the European Inventory of Existing Commercial Chemical Substances (EINECS), as incorporated in the CDB-EC software, in the log Kow / n(Hdon) plane. The results showed that the training set and, therefore, the applicability domain of the QSAR model covers a small part of the physicochemical domain of the inventory, even though a simple method for defining the applicability domain (ranges in the descriptor space) was used. However, a large number of compounds are located within the narrow descriptor window.

  9. Concepts, Structures, and Goals: Redefining Ill-Definedness

    ERIC Educational Resources Information Center

    Lynch, Collin; Ashley, Kevin D.; Pinkwart, Niels; Aleven, Vincent

    2009-01-01

    In this paper we consider prior definitions of the terms "ill-defined domain" and "ill-defined problem". We then present alternate definitions that better support research at the intersection of Artificial Intelligence and Education. In our view both problems and domains are ill-defined when essential concepts, relations, or criteria are un- or…

  10. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    PubMed

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  11. Predicting Final GPA of Graduate School Students: Comparing Artificial Neural Networking and Simultaneous Multiple Regression

    ERIC Educational Resources Information Center

    Anderson, Joan L.

    2006-01-01

    Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…

  12. Data Characterization Using Artificial-Star Tests: Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Deng, Licai; de Grijs, Richard; Liu, Qiang

    2011-01-01

    Traditional artificial-star tests are widely applied to photometry in crowded stellar fields. However, to obtain reliable binary fractions (and their uncertainties) of remote, dense, and rich star clusters, one needs to recover huge numbers of artificial stars. Hence, this will consume much computation time for data reduction of the images to which the artificial stars must be added. In this article, we present a new method applicable to data sets characterized by stable, well-defined, point-spread functions, in which we add artificial stars to the retrieved-data catalog instead of to the raw images. Taking the young Large Magellanic Cloud cluster NGC 1818 as an example, we compare results from both methods and show that they are equivalent, while our new method saves significant computational time.

  13. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.

    PubMed

    Boyd-Moss, Mitchell; Fox, Kate; Brandt, Milan; Nisbet, David; Williams, Richard

    2017-01-01

    The ability to fabricate artificial tissue constructs through the controlled organisation of cells, structures and signals within a biomimetic scaffold offers significant promise to the field of regenerative medicine, drug delivery and tissue engineering. Advances in additive manufacturing technologies have facilitated the printing of spatially defined cell-laden artificial tissue constructs capable of providing biomimetic spatiotemporal presentation of biological and physical cues to cells in a designed multicomponent structure. Despite significant progress in the field of bioprinting, a key challenge remains in developing and utilizing materials that can adequately recapitulate the complexities of the native extracellular matrix on a nanostructured, chemical level during the printing process. This gives rise to the need for suitable materials - particularly in establishing effective control over cell fate, tissue vascularization and innervation. Recently, significant interested has been invested into developing candidate materials using protein and peptide-derived biomaterials. The ability of these materials to form highly printable hydrogels which are reminiscent of the native ECM has seen significant use in a variety of regenative applications, including both organ bioprinting and non-organ bioprinting. Here, we discuss the emerging technologies for peptide-based bioprinting applications, highlighting bioink development and detailing bioprinter processors. Furthermore, this work presents application specific, peptide-based bioprinting approaches, and provides insight into current limitations and future perspectives of peptide-based bioprinting techniques.

  14. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    PubMed

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  15. Internet advertising of artificial tanning in Australia.

    PubMed

    Team, Victoria; Markovic, Milica

    2006-08-01

    Artificial tanning, defined as deliberate exposure to ultraviolet rays produced by artificial tanning devices, is a new and emerging public health issue in Australia and globally. Epidemiological research suggests that artificial tanning may contribute to the incidence of melanoma, nonmelanoma skin cancer as well as other health problems. Given that Australia has a high incidence of skin cancer, we have undertaken a study to explore how artificial tanning has been promoted to its users. The aim was to analyze the completeness and accuracy of information about artificial tanning. A content analysis of web sites of tanning salons and distributors of tanning equipment in Australia was conducted. A total of 22 web sites were analyzed. None of the solarium operators or distributors of equipment provided full information about the risks of artificial tanning. Fifty-nine percent of web advertisements had no information and 41% provided only partial information regarding the risks of artificial tanning. Pictures with the image of bronze-tanned bodies, predominantly women, were used by all web advertisers. In light of the success of sun-safety campaigns in Australia, the findings of future epidemiological research on the prevalence of artificial tanning and sociological and anthropological research on why people utilize artificial tanning should be a basis for developing effective targeted health promotion on the elimination of artificial tanning in the country.

  16. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    ERIC Educational Resources Information Center

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  17. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  18. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yu; Cao Jinxiang; Wang Jian

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ionmore » (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.« less

  19. Artificial Neural Network Prediction of Chemical-Disease Relationships using Readily Available Chemical Properties

    DTIC Science & Technology

    2014-03-27

    C15H13N3O4S Potassium Bromide 0119000100 BrK Potassium Permanganate 0158030400 MnO4K Prazosin 0383410801 C19H21N5O4 Propranolol-HCl 0259350302...chemicals and correctly match it to a single disease category. Potassium permanganate and ethylene glycol can both be correctly linked to disease group...chemical is linked to the same disease, the network is unable to predict the same disease for the multiple chemicals. Potassium permanganate and

  20. The chemical life(1).

    PubMed

    Hodges, Nathan

    2015-01-01

    You write this narrative autoethnography to open up a conversation about our chemical lives. You go through your day with chemical mindfulness, questioning taken-for-granted ideas about natural and artificial, healthy and unhealthy, dependency and addiction, trying to understand the chemical messages we consume through the experiences of everyday life. You reflect on how messages about chemicals influence and structure our lives and why some chemicals are celebrated and some are condemned. Using a second-person narrative voice, you show how the personal is relational and the chemical is cultural. You write because you seek a connection, a chemical bond.

  1. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers.

    PubMed

    Bai, Gang; Zhang, Tiejun; Hou, Yuanyuan; Ding, Guoyu; Jiang, Min; Luo, Guoan

    2018-05-15

    The quality of traditional Chinese medicine (TCM) forms the foundation of its clinical efficacy. The standardization of TCM is the most important task of TCM modernization. In recent years, there has been great progress in the quality control of TCM. However, there are still many issues related to the current quality standards, and it is difficult to objectively evaluate and effectively control the quality of TCM. To face these challenge, we summarized the current quality marker (Q-marker) research based on its characteristics and benefits, and proposed a reasonable and intelligentized quality evaluation strategy for the development and application of Q-markers. Ultra-performance liquid chromatography-quadrupole/time-of-flight with partial least squares-discriminant analysis was suggested to screen the chemical markers from Chinese medicinal materials (CMM), and a bioactive-guided evaluation method was used to select the Q-markers. Near-infrared spectroscopy (NIRS), based on the distinctive wavenumber zones or points from the Q-markers, was developed for its determination. Then, artificial intelligence algorithms were used to clarify the complex relationship between the Q-markers and their integral functions. Internet and mobile communication technology helped us to perform remote analysis and determine the information feedback of test samples. The quality control research, evaluation, standard establishment and quality control of TCM must be based on the systematic analysis of Q-markers to study and describe the material basis of TCM efficacy, define the chemical markers in the plant body, and understand the process of herb drug acquisition, change and transmission laws affecting metabolism and exposure. Based on the advantages of chemometrics, new sensor technologies, including infrared spectroscopy, hyperspectral imaging, chemical imaging, electronic nose and electronic tongue, have become increasingly important in the quality evaluation of CMM. Inspired by the concept of Q-marker, the quantitation can be achieved with the help of artificial intelligence, and these subtle differences can be discovered, allowing the quantitative analysis by NIRS and providing a quick and easy detection method for CMM quality evaluations. The concept of Q-markers focused on unique CMM differences, dynamic changes and their transmission and traceability to establish an overall quality control and traceability system. Based on the basic attributes, an integration model and artificial intelligence research path was proposed, with the hope of providing new ideas and perspectives for the TCM quality management. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Physical and physiological factors influence behavioral responses of Cochliomyia macellaria (Diptera: Calliphoridae) to synthetic attractants

    USDA-ARS?s Scientific Manuscript database

    Volatile chemicals from waste artificial larval media as well as from bovine blood inoculated with bacteria isolated from screwworm-infested wounds attract gravid females of Cochliomyia hominivorax Coquerel and C. macellaria (F.). Chemicals previously identified from volatiles are dimethyl disulfide...

  3. Determining the Effect of pH on the Partitioning of Neutral, Cationic and Anionic Chemicals to Artificial Sebum: New Physicochemical Insight and QSPR Model.

    PubMed

    Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping

    2018-05-14

    Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.

  4. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing.

    PubMed

    Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves

    2010-12-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.

  5. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    NASA Astrophysics Data System (ADS)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  6. Synthetic biology with artificially expanded genetic information systems. From personalized medicine to extraterrestrial life.

    PubMed

    Benner, Steven A; Hutter, Daniel; Sismour, A Michael

    2003-01-01

    Over 15 years ago, the Benner group noticed that the DNA alphabet need not be limited to the four standard nucleotides known in natural DNA. Rather, twelve nucleobases forming six base pairs joined by mutually exclusive hydrogen bonding patterns are possible within the geometry of the Watson-Crick pair (Fig. 1). Synthesis and studies on these compounds have brought us to the threshold of a synthetic biology, an artificial chemical system that does basic processes needed for life (in particular, Darwinian evolution), but with unnatural chemical structures. At the same time, the artificial genetic information systems (AEGIS) that we have developed have been used in FDA-approved commercial tests for managing HIV and hepatitis C infections in individual patients, and in a tool that seeks the virus for severe acute respiratory syndrome (SARS). AEGIS also supports the next generation of robotic probes to search for genetic molecules on Mars, Europa, and elsewhere where NASA probes will travel.

  7. Chemical composition of groundwater/drinking water and oncological disease mortality in Slovak Republic.

    PubMed

    Rapant, S; Cvečková, V; Fajčíková, K; Dietzová, Z; Stehlíková, B

    2017-02-01

    This study deals with the analysis of relationship between chemical composition of the groundwater/drinking water and the data on mortality from oncological diseases (MOD) in the Slovak Republic. Primary data consist of the Slovak national database of groundwater analyses (20,339 chemical analyses, 34 chemical elements/compounds) and data on MOD (17 health indicators) collected for the 10-year period (1994-2003). The chemical and health data were unified in the same form and expressed as the mean values for each of 2883 municipalities within the Slovak Republic. Pearson and Spearman correlation as well as artificial neural network (ANN) methods were used for analysis of the relationship between chemical composition of groundwater/drinking water and MOD. The most significant chemical elements having influence on MOD were identified together with their limit values (limit and optimal contents). Based on the results of calculations, made through the neural networks, the following eight chemical elements/parameters in the groundwater were defined as the most significant for MOD: Ca + Mg (mmol l -1 ), Ca, Mg, TDS, Cl, HCO 3 , SO 4 and NO 3 . The results document the highest relationship between MOD and groundwater contents of Ca + Mg (mmol l -1 ), Ca and Mg. We observe increased MOD with low (deficit) contents of these three parameters of groundwater/drinking water. The following limit values were set for the most significant groundwater chemicals/parameters: Ca + Mg 1.73-5.85 mmol l -1 , Ca 60.5-196.8 mg l -1 and Mg 25.6-35.8 mg l -1 . At these concentration ranges, the mortality for oncological diseases in the Slovak Republic is at the lowest levels. These limit values are about twice higher in comparison with the current Slovak valid guideline values for the drinking water.

  8. An application of artificial intelligence to the interpretation of mass spectra.

    NASA Technical Reports Server (NTRS)

    Buchanan, B. G.; Duffield, A. M.; Robertson, A. V.

    1971-01-01

    Description of the DENDRAL (Dendritic Algorithm) project, the objectives of which were to base the computer program on an alogorithm that generates an exhaustive, nonredundant list of all the structural isomers of a given chemical composition, and to devise a computer program that would perform an organic structure determination, given a molecular formula and a mass spectrum. This program is called 'Heuristic DENDRAL' and it operates by using the known structure/spectrum correlations to constrain the DENDRAL isomer generator to produce a single isomer for that composition. The collaboration of chemists and computer scientists has produced a tool of some practical utility from the chemical viewpoint, and an interesting program from the viewpoint of artificial intelligence.

  9. Magnetic Anisotropy and Chemical Order of Artificially Synthesized L10-Ordered FeNi Films on Au-Cu-Ni Buffer Layers

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mizuguchi, Masaki; Koganezawa, Tomoyuki; Osaka, Keiichi; Kotsugi, Masato; Takanashi, Koki

    2012-01-01

    L10-FeNi films were grown by alternate monatomic layer deposition on Au-Cu-Ni buffer layers at several substrate temperatures (Ts), and the relation between the uniaxial magnetic anisotropy energy (Ku) and the long-range chemical order parameter (S) was investigated. A large Ku of (7.0 ±0.2) ×106 erg/cm3 and S of 0.48 ±0.05 were obtained. The value of Ku was larger than those reported previously for artificially synthesized FeNi films. It was first found that both Ku and S increased with Ts, and Ku was roughly proportional to S.

  10. Artificial hairy surfaces with a nearly perfect hydrophobic response.

    PubMed

    Hsu, Shu-Hau; Sigmund, Wolfgang M

    2010-02-02

    A nearly perfect hydrophobic interface by dint of mimicking hairs of arthropods was achieved for the first time. These Gamma-shape artificial hairs were made via a membrane casting technique on polypropylene substrates. This extreme hydrophobicity merely arises from microstructure modification, and no further chemical treatments are needed. The ultralow adhesion to water droplets was evaluated through video assessment, and it is believed to be attributed to the mechanical response of the artificial hairs. The principle of this fabrication technique is accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces.

  11. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    PubMed

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  13. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  14. The effects of artificial ageing on the leaching behaviour of heavy metals in stabilized/solidified industrial sludge.

    PubMed

    Keskes, M; Choura, M; Rouis, J

    2009-12-01

    The use of a hydraulic binder for the treatment of mineral-based industrial wastes, containing heavy metals, by the chemical fixation and solidification (CFS) technique has raised serious questions regarding the prediction of the behaviour of these pollutants in the obtained solid matrix. It seems necessary, for this reason, to study the behaviour of these metals in response to leaching in order to evaluate their chemical speciation within the solidified sludge over the medium and long-terms. Within the framework of the current research, we applied the CFS technique to metallic hydroxide sludge, produced by the electrotyping surface treatment industry, by using Portland artificial cement (PAC). Compaction at the paste phase of this treated sludge resulted in up to 35% enhancement of the retention of pollutants, mainly trivalent chromium, in a cementing matrix, as compared with the classical technique that uses a simple vibration of sludge at the paste phase. The implemented process led to an improvement in the compactness of the sludge, and thus assured a better retention of heavy metals in response to the leaching of this treated sludge. The evaluation of the chemical properties of the materials obtained after an artificial ageing process using humidity variation cycles and thermal chocks also revealed a significant improvement in the retention capacity of heavy metals in the solidified sludge, which was mainly favoured by the development of carbonation. In fact, the release of the heavy metals from the above mentioned treated sludge was reduced by 58% for zinc and 51% for trivalent chromium after the artificial ageing process.

  15. Microstencils to generate defined, multi-species patterns of bacteria

    DOE PAGES

    Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.; ...

    2015-11-12

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less

  16. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  17. Microstencils to generate defined, multi-species patterns of bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less

  18. Engineering artificial cells by combining HeLa-based cell-free expression and ultra-thin double emulsion template

    PubMed Central

    Ho, Kwun Yin; Murray, Victoria L.; Liu, Allen P.

    2015-01-01

    Generation of artificial cells provides the bridge needed to cover the gap between studying the complexity of biological processes in whole cells and studying these same processes in an in vitro reconstituted system. Artificial cells are defined as the encapsulation of biologically active material in a biological or synthetic membrane. Here, we describe a robust and general method to produce artificial cells for the purpose of mimicking one or more behaviors of a cell. A microfluidic double emulsion system is used to encapsulate a mammalian cell free expression system that is able to express membrane proteins into the bilayer or soluble proteins inside the vesicles. The development of a robust platform that allows the assembly of artificial cells is valuable in understanding subcellular functions and emergent behaviors in a more cell-like environment as well as for creating novel signaling pathways to achieve specific cellular behaviors. PMID:25997354

  19. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.

    PubMed

    Elani, Yuval

    2016-06-15

    The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved. © 2016 The Author(s).

  20. Technology Survey for Enhancement of Chemical Biological Radiological and Nuclear Respiratory Protection

    DTIC Science & Technology

    2008-02-01

    goal to develop artificial skins for robots . Thermoelectric devices and miniature blowers and fans were reviewed for cooling applications. The ability of...including medical (e.g., drug delivery, implants), aerospace, textile, robotics (i.e., artificial muscles), and sensors. The technology survey to...implants. ILC Dover is developing a self - repairing space suit that incorporates a pressure sensitive gel (Shiga, 2006). The polymer gel is contained between

  1. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

    PubMed Central

    Shen, Yue-xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O.; Kang, You Jung; Majd, Sheereen; Butler, Peter J.; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-li; Kumar, Manish

    2015-01-01

    Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4∼40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. PMID:26216964

  2. A Comprehensive Study of Aeroelasticity in Flapping-Wing MAVs

    DTIC Science & Technology

    2012-08-31

    Microrobotics Lab. In previous research we have established the capability to create artificial insect wings with well defined mechanical properties. We have...assumptions on the aerodynamics. 15. SUBJECT TERMS      MAV, insect flight, microrobot 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...facilities and expertise of the Harvard Microrobotics Lab. In previous research we have established the capability to create artificial insect wings

  3. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  4. Interaction driven quantum Hall effect in artificially stacked graphene bilayers.

    PubMed

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-04-21

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.

  5. Chemical changes induced by pH manipulations of volcanic ash-influenced soils

    Treesearch

    Deborah Page-Dumroese; Dennis Ferguson; Paul McDaniel; Jodi Johnson-Maynard

    2007-01-01

    Data from volcanic ash-influenced soils indicates that soil pH may change by as much as 3 units during a year. The effects of these changes on soil chemical properties are not well understood. Our study examined soil chemical changes after artificially altering soil pH of ash-influenced soils in a laboratory. Soil from the surface (0-5 cm) and subsurface (10-15 cm)...

  6. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  7. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  8. Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities.

    PubMed

    Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander

    2017-06-01

    Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg -1 , As >19mgkg -1 ) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC 80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg -1 (339 - 528mgkg -1 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Physicochemical Characteristics of Artificial Rice from Composite Flour: Modified Cassava Starch, Canavalia ensiformis and Dioscorea esculenta

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Handayani, Noer Abyor; Kusumayanti, Heny

    2018-02-01

    Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year). Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta). This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption) were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content) of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.

  10. Military Physician and Advanced Practice Nurses’ Knowledge and Use of Modern Natural Family Planning

    DTIC Science & Technology

    1996-05-01

    NIT* to artificial birth control methods for cultural, personal, religious, or health reasons (Lethbridge, D. J., 1991). A health care provider well...Mormonism, Catholicism, and Orthodox Judaism are specific religious denominations that proscribe artificial means of birth control (Spector, 1991...she value the "natural", for example, and thus reject chemical methods of birth control ? Does she have certain religious beliefs that make some meUiods

  11. Artificial faces are harder to remember

    PubMed Central

    Balas, Benjamin; Pacella, Jonathan

    2015-01-01

    Observers interact with artificial faces in a range of different settings and in many cases must remember and identify computer-generated faces. In general, however, most adults have heavily biased experience favoring real faces over synthetic faces. It is well known that face recognition abilities are affected by experience such that faces belonging to “out-groups” defined by race or age are more poorly remembered and harder to discriminate from one another than faces belonging to the “in-group.” Here, we examine the extent to which artificial faces form an “out-group” in this sense when other perceptual categories are matched. We rendered synthetic faces using photographs of real human faces and compared performance in a memory task and a discrimination task across real and artificial versions of the same faces. We found that real faces were easier to remember, but only slightly more discriminable than artificial faces. Artificial faces were also equally susceptible to the well-known face inversion effect, suggesting that while these patterns are still processed by the human visual system in a face-like manner, artificial appearance does compromise the efficiency of face processing. PMID:26195852

  12. Identifying artificial selection signals in the chicken genome.

    PubMed

    Ma, Yunlong; Gu, Lantao; Yang, Liubin; Sun, Chenghao; Xie, Shengsong; Fang, Chengchi; Gong, Yangzhang; Li, Shijun

    2018-01-01

    Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH), Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.

  13. Artificial Surfaces in Phyllosphere Microbiology.

    PubMed

    Doan, Hung K; Leveau, Johan H J

    2015-08-01

    The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').

  14. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane

    NASA Astrophysics Data System (ADS)

    Steinberg-Yfrach, Gali; Rigaud, Jean-Louis; Durantini, Edgardo N.; Moore, Ana L.; Gust, Devens; Moore, Thomas A.

    1998-04-01

    Energy-transducing membranes of living organisms couple spontaneous to non-spontaneous processes through the intermediacy of protonmotive force (p.m.f.) - an imbalance in electrochemical potential of protons across the membrane. In most organisms, p.m.f. is generated by redox reactions that are either photochemically driven, such as those in photosynthetic reaction centres, or intrinsically spontaneous, such as those of oxidative phosphorylation in mitochondria. Transmembrane proteins (such as the cytochromes and complexes I, III and IV in the electron-transport chain in the inner mitochondrial membrane) couple the redox reactions to proton translocation, thereby conserving a fraction of the redox chemical potential as p.m.f. Many transducer proteins couple p.m.f. to the performance of biochemical work, such as biochemical synthesis and mechanical and transport processes. Recently, an artificial photosynthetic membrane was reported in which a photocyclic process was used to transport protons across a liposomal membrane, resulting in acidification of the liposome's internal volume. If significant p.m.f. is generated in this system, then incorporating an appropriate transducer into the liposomal bilayer should make it possible to drive a non-spontaneous chemical process. Here we report the incorporation of FOF1-ATP synthase into liposomes containing the components of the proton-pumping photocycle. Irradiation of this artificial membrane with visible light results in the uncoupler- and inhibitor-sensitive synthesis of adenosine triphosphate (ATP) against an ATP chemical potential of ~12kcalmol-1, with a quantum yield of more than 7%. This system mimics the process by which photosynthetic bacteria convert light energy into ATP chemical potential.

  15. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  16. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  17. Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.

    PubMed

    Kwon, O; Park, J

    2006-11-01

    This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement.

  18. Real-time sweat analysis via alternating current conductivity of artificial and human sweat

    NASA Astrophysics Data System (ADS)

    Liu, Gengchen; Alomari, Mahmoud; Sahin, Bunyamin; Snelgrove, Samuel E.; Edwards, Jeffrey; Mellinger, Axel; Kaya, Tolga

    2015-03-01

    Dehydration is one of the most profound physiological challenges that significantly affects athletes and soldiers if not detected early. Recently, a few groups have focused on dehydration detection using sweat as the main biomarker. Although there are some proposed devices, the electrical and chemical characteristics of sweat have yet to be incorporated into the validations. In this work, we have developed a simple test setup to analyze artificial sweat that is comprised the main components of human sweat. We provide theoretical and experimental details on the electrical and chemical behavior of the artificial sweat for various concentration values within a temperature range of 5 °C to 50 °C. We have also developed an efficient sweat collecting and detection system based on 3D printing. Human studies were conducted and this particular protocol has shown that dehydration starts to take effect as early as 40 min into the physical activity if there is no fluid intake during the exercise. We believe that our device will lead to developing viable real-time sweat analysis systems.

  19. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.

    PubMed

    Sant'Ana, Luiza D'O; Sousa, Juliana P L M; Salgueiro, Fernanda B; Lorenzon, Maria Cristina Affonso; Castro, Rosane N

    2012-01-01

    Various bioactive chemical constituents were quantified for 21 honey samples obtained at Rio de Janeiro and Minas Gerais, Brazil. To evaluate their antioxidant activity, 3 different methods were used: the ferric reducing antioxidant power, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, and the 2,2'-azinobis (3-ethylbenzothiazolin)-6-sulfonate (ABTS) assays. Correlations between the parameters were statistically significant (-0.6684 ≤ r ≤-0.8410, P < 0.05). Principal component analysis showed that honey samples from the same floral origins had more similar profiles, which made it possible to group the eucalyptus, morrão de candeia, and cambara honey samples in 3 distinct areas, while cluster analysis could separate the artificial honey from the floral honeys. This research might aid in the discrimination of honey floral origin, by using simple analytical methods in association with multivariate analysis, which could also show a great difference among floral honeys and artificial honey, indicating a possible way to help with the identification of artificial honeys. © 2011 Institute of Food Technologists®

  20. Determination of Corrosion Rate of Artificial Bone Made of Metal at Different pH Conditions using X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Sutikno; Handayani, L.; Edi, S. S.; Susilo; Elvira

    2018-03-01

    The purpose of this research is to observe the mechanism and the rate of corrosion of artificial bone made of metal by using x-ray radiography technique. Artificial bones can be made of metallic materials and composites which are biomaterials. The most commonly used metal for bone graft is stainless steel. The interaction between artificial bone and human tissue will have important medical impacts that need to be observed and examined. This interaction can be a mechanical or chemical interaction. X-ray radiography technique is selected because it uses non-destructive method. This method is done by x-ray radiation exposure on the observed body part. The bone density and bone fracture can be seen on the resulted radiographic film or image on the monitor screen.

  1. West Europe Report, Science and Technology.

    DTIC Science & Technology

    1986-02-12

    developing new materials and energy sources, additional discoveries in the fields of aerodynamics and thermal engineering, in building " artificial ...matter of perfecting a reliable and simple diagnostic material to permit diabetics to monitor their own sugar balance at regular intervals. They also...fine chemicals 11. Fine chemicals and active substances 12. Pharmaceutical specialties. Bulk products: antibiotics, active substances, sweeteners

  2. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    PubMed

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The dilemma of the symbols: analogies between philosophy, biology and artificial life.

    PubMed

    Spadaro, Salvatore

    2013-01-01

    This article analyzes some analogies going from Artificial Life questions about the symbol-matter connection to Artificial Intelligence questions about symbol-grounding. It focuses on the notion of the interpretability of syntax and how the symbols are integrated in a unity ("binding problem"). Utilizing the DNA code as a model, this paper discusses how syntactic features could be defined as high-grade characteristics of the non syntactic relations in a material-dynamic structure, by using an emergentist approach. This topic furnishes the ground for a confutation of J. Searle's statement that syntax is observer-relative, as he wrote in his book "Mind: A Brief Introduction". Moreover the evolving discussion also modifies the classic symbol-processing doctrine in the mind which Searle attacks as a strong AL argument, that life could be implemented in a computational mode. Lastly, this paper furnishes a new way of support for the autonomous systems thesis in Artificial Life and Artificial Intelligence, using, inter alia, the "adaptive resonance theory" (ART).

  4. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    NASA Astrophysics Data System (ADS)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  5. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  6. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  7. Fuel-powered artificial muscles.

    PubMed

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J; Kozlov, Mikhail E; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J; Ferraris, John P; Macdiarmid, Alan G; Baughman, Ray H

    2006-03-17

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  8. Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems

    PubMed Central

    2014-01-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  9. Metal and physico-chemical variations at a hydroelectric reservoir analyzed by Multivariate Analyses and Artificial Neural Networks: environmental management and policy/decision-making tools.

    PubMed

    Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M

    2013-01-01

    This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Intermittent hydrostatic pressure enhances growth factor-induced chondroinduction of human adipose-derived mesenchymal stem cells.

    PubMed

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Mahdian, Reza; Hemmati, Alireza

    2012-12-01

    Hydrostatic pressure (HP) plays an essential role in regulating function of chondrocytes and chondrogenic differentiation. The objective of this study was to examine effects of intermittent HP on chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs) in the presence or absence of chemical chondrogenic medium. Cells were isolated from abdominal fat tissue and confirmed for expression of ASC surface proteins and differentiation potential. Passage 3 pellets were treated with chemical (growth factor), mechanical (HP of 5 MPa and 0.5 Hz with duration of 4 h/day for 7 consecutive days), and combined chemical-mechanical stimuli. Using real-time polymerase chain reaction, the expression of Sox9, collagen II, and aggrecan as three major chondrogenic markers were quantified among three experimental groups and compared to those of stem cells and human cartilage tissue. In comparison to the chemical and mechanical groups, the chemical-mechanical group showed the highest expression for all three chondrogenic genes close to that of cartilage tissue. Results show the beneficial role of intermittent HP on chondrogenic differentiation of hASCs, and that this loading regime in combination with chondrogenic medium can be used in cartilage tissue engineering. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  12. Conducting polymer actuators: From basic concepts to proprioceptive systems

    NASA Astrophysics Data System (ADS)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the motor characteristics (rate and sense of the movement, relative position, and required energy) and the working variables (temperature, electrolyte concentration, mechanical conditions and driving current). By changing working conditions experimental results overlap theoretical predictions. The ensemble computer-generator-muscle-theoretical equation constitutes and describes artificial mechanical, thermal and chemical proprioception of the system. Proprioceptive tools and most intelligent zoomorphic or anthropomorphic soft robots can be envisaged.

  13. The use of chemical treatments for improved comminution of artificial stones.

    PubMed

    Heimbach, D; Kourambas, J; Zhong, P; Jacobs, J; Hesse, A; Mueller, S C; Delvecchio, F C; Cocks, F H; Preminger, G M

    2004-05-01

    The acoustic and mechanical properties of various stone compositions are significantly different and thus result in varying degrees of fragility. Consequently, results to shock wave lithotripsy (SWL) are influenced accordingly. We report the results of a study of fragility of various stone compositions, and the influence on each stone's baseline physical properties and fragility when exposed to various chemolytic solutions. Before SWL artificial stones of differing compositions were irrigated with various chemolytic solutions. Calcium oxalate monohydrate (COM) stones were treated with ethylenediaminetetraacetic acid (EDTA), stones composed of magnesium ammonium phosphate hydrogen were treated with hemiacidrin, and stones made of uric acid (UA) were treated with tromethamine. Synthetic urine served as a control for all stone groups. Using an ultrasound transmission technique, longitudinal wave propagation speed was measured in all groups of artificial stones. Stone density was also measured by using a pycnometer (based on Archimedes' principle). Based on these measurements transverse (shear) wave speed (assuming a constant Poisson's ratio), wave impedance and dynamic mechanical properties of the artificial stones were calculated. Moreover, the microhardness of these artificial stones was measured, and fragility testing using SWL with and without pretreatment with the previously mentioned chemolytic solutions, was performed. Wave speed, wave impedance, dynamic mechanical properties and microhardness of EDTA treated COM stones and tromethamine treated UA stones were found to decrease compared to untreated (synthetic urine) control groups. The suggestion that chemolytic pretreatment increases stone fragility was verified by the finding of increased stone comminution after SWL testing. Combining this medical pretreatment and SWL, the findings demonstrate a significant impact of various solvents on stone comminution, in particular EDTA treated COM stones, tromethamine treated UA stones and hemiacidrin treated magnesium ammonium phosphate hydrogen stones. These data suggest that by altering the chemical environment of the fluid surrounding the stones it is possible to increase the fragility of renal calculi in vitro. These results indicate that appropriate chemical treatments may provide a useful adjunctive modality for improving the efficacy of stone comminution during shock wave lithotripsy.

  14. A look inside 'black box' hydrograph separation models: A study at the hydrohill catchment

    USGS Publications Warehouse

    Kendall, C.; McDonnell, Jeffery J.; Gu, W.

    2001-01-01

    Runoff sources and dominant flowpaths are still poorly understood in most catchments; consequently, most hydrograph separations are essentially 'black box' models where only external information is used. The well-instrumented 490 m2 Hydrohill artificial grassland catchment located near Nanjing (China) was used to examine internal catchment processes. Since groundwater levels never reach the soil surface at this site, two physically distinct flowpaths can unambiguously be defined: surface and subsurface runoff. This study combines hydrometric, isotopic and geochemical approaches to investigating the relations between the chloride, silica, and oxygen isotopic compositions of subsurface waters and rainfall. During a 120 mm storm over a 24 h period in 1989, 55% of event water input infiltrated and added to soil water storage; the remainder ran off as infiltration-excess overland flow. Only about 3-5% of the pre-event water was displaced out of the catchment by in-storm rainfall. About 80% of the total flow was quickflow, and 10% of the total flow was pre-event water, mostly derived from saturated flow from deeper soils. Rain water with high ??18O values from the beginning of the storm appeared to be preferentially stored in shallow soils. Groundwater at the end of the storm shows a wide range of isotopic and chemical compositions, primarily reflecting the heterogeneous distribution of the new and mixed pore waters. High chloride and silica concentrations in quickflow runoff derived from event water indicate that these species are not suitable conservative tracers of either water sources or flowpaths in this catchment. Determining the proportion of event water alone does not constrain the possible hydrologic mechanisms sufficiently to distinguish subsurface and surface flowpaths uniquely, even in this highly controlled artificial catchment. We reconcile these findings with a perceptual model of stormflow sources and flowpaths that explicitly accounts for water, isotopic, and chemical mass balance. Copyright ?? 2001 John Wiley & Sons, Ltd.

  15. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    PubMed Central

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178

  16. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.

    PubMed

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

  17. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  18. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  19. Periodic Table of the Elements in the Perspective of Artificial Neural Networks

    ERIC Educational Resources Information Center

    Lemes, Mauricio R.; Dal Pino, Arnaldo

    2011-01-01

    Although several chemical elements were not known by end of the 19th century, Mendeleev came up with an astonishing achievement, the periodic table of elements. He was not only able to predict the existence of (then) new elements, but also to provide accurate estimates of their chemical and physical properties. This is a profound example of the…

  20. Biochemical stabilization of glucagon at alkaline pH.

    PubMed

    Caputo, Nicholas; Jackson, Melanie A; Castle, Jessica R; El Youssef, Joseph; Bakhtiani, Parkash A; Bergstrom, Colin P; Carroll, Julie M; Breen, Matthew E; Leonard, Gerald L; David, Larry L; Roberts, Charles T; Ward, W Kenneth

    2014-11-01

    For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas.

  1. Biochemical Stabilization of Glucagon at Alkaline pH

    PubMed Central

    Jackson, Melanie A.; Castle, Jessica R.; El Youssef, Joseph; Bakhtiani, Parkash A.; Bergstrom, Colin P.; Carroll, Julie M.; Breen, Matthew E.; Leonard, Gerald L.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Abstract Background: For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. Methods and Results: As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Conclusions: Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas. PMID:24968220

  2. Thermite Reaction to Produce Artificial Reefs

    NASA Astrophysics Data System (ADS)

    Trevino, Alexandro; Martirosyan, Karen; Kline, Richard

    The degradation of coral reefs is an ecological issue that has prompted new collaboration by different scientific communities that would assist in the regeneration of the reefs. Unfortunately, these processes can be inefficient and extremely expensive prompting a new scientific approach by using solid-state combustion synthesis to regenerate the reefs. In this report we aimed to consolidate a multi-composite material to produce artificial reefs by initiating thermite reaction based on aluminum and polytetrafluoroethylene (PTFE) with natural reefs. By Thermodynamic analysis and experimentation it was established that a range between .03-.07 number of moles of PTFE was sufficient to reach an adiabatic temperature of over 1900 K, a sustained reaction and a physically stable product was achieved. Reefs are primarily composed of carbonates but their exact chemical composition can vary. X-ray diffraction analysis was used to determine the chemical composition of the reef and revealed presence of oxides, carbonates, silicates. The dominant chemical compounds that were identified are, SiO2 -17%, MgSiO3-14.5%, CaCO3- 11.4%, Ca(Si3O4). Using our thermite reaction we aimed to achieve optimal physical, chemical, and biological properties and maintain cost efficiency of the multi-composite material.

  3. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  4. The potential toxicity of artificial sweeteners.

    PubMed

    Whitehouse, Christina R; Boullata, Joseph; McCauley, Linda A

    2008-06-01

    Since their discovery, the safety of artificial sweeteners has been controversial. Artificial sweeteners provide the sweetness of sugar without the calories. As public health attention has turned to reversing the obesity epidemic in the United States, more individuals of all ages are choosing to use these products. These choices may be beneficial for those who cannot tolerate sugar in their diets (e.g., diabetics). However, scientists disagree about the relationships between sweeteners and lymphomas, leukemias, cancers of the bladder and brain, chronic fatigue syndrome, Parkinson's disease, Alzheimer's disease, multiple sclerosis, autism, and systemic lupus. Recently these substances have received increased attention due to their effects on glucose regulation. Occupational health nurses need accurate and timely information to counsel individuals regarding the use of these substances. This article provides an overview of types of artificial sweeteners, sweetener history, chemical structure, biological fate, physiological effects, published animal and human studies, and current standards and regulations.

  5. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  6. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  7. Clusters, asters, and collective oscillations in chemotactic colloids

    NASA Astrophysics Data System (ADS)

    Saha, Suropriya; Golestanian, Ramin; Ramaswamy, Sriram

    2014-06-01

    The creation of synthetic systems that emulate the defining properties of living matter, such as motility, gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially contain active components that transform chemical energy into directed motion. These artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct a framework for studying their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.

  8. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  9. Artificial chemotaxis of phoretic swimmers

    NASA Astrophysics Data System (ADS)

    Tatulea-Codrean, Maria; Lauga, Eric

    2017-11-01

    A class of artificial active particles that has received significant attention in recent years is that of phoretic swimmers. By making use of self-generated gradients (e.g. in temperature, electric potential or some chemical product) phoretic swimmers can self-propel without the complications of mobile body parts or a controlled external field. By focusing on diffusiophoresis, we will present some theoretical results on the mechanism through which phoretic particles may achieve chemotaxis and the subsequent behaviour of a dilute suspension of such particles.

  10. Colorimetric detection and identification of natural and artificial sweeteners.

    PubMed

    Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S

    2009-08-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.

  11. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    PubMed Central

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  12. Evaluation of Sterilized Artificial Diets for Mass Rearing the Lucilia sericata (Diptera: Calliphoridae).

    PubMed

    Zheng, Le; Crippen, Tawni L; Dabney, Alan; Gordy, Alex; Tomberlin, Jeffery K

    2017-09-01

    The impact of six sterilized diets (blood-yeast agar diet, decomposed beef liver diet, powdered beef liver diet, powdered fish diet, milk-based diet, and a chemically defined diet) on Lucilia sericata (Meigen) larvae reared at three densities (10 larvae, 20 larvae, and 40 larvae on 20 g diet) was determined in comparison to fresh beef liver as a control. Specifically, the effects of these diets on the following traits of L. sericata were measured: 1) pupal weight, 2) pupation percentage, 3) eclosion percentage, as well as 4) adult longevity. The experiment included two trials with five technical replicates in each. Lucilia sericata did not successfully develop on the powdered fish, milk-based, or chemically defined diets. Overall, the liver-based diets (decomposed and powdered) resulted in the most similar fly development to the fresh beef liver. Larvae reared on blood-yeast agar diet resulted in a significantly (increased 20.56% ± 8.09%) greater pupation rate than those reared on the decomposed and powdered beef liver diets. Pupae from larvae fed the fresh beef liver were significantly larger (6.27 ± 1.01 mg, 4.05 ± 0.94 mg larger, respectively) than those reared on the blood-yeast agar diet, decomposed beef liver, and powdered beef liver diets. Overall, results revealed larvae reared on sterilized liver-based diets resulted in traits similar to those raised on fresh beef liver. Owing to low costs the sterile liver-based diets could be produced and used with limited infrastructure and economic incomes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. DEFINING THE CHEMICAL SPACE OF PUBLIC GENOMIC DATA (S)

    EPA Science Inventory

    The current project aims to chemically index the genomics content of public genomic databases to make these data accessible in relation to other publicly available, chemically-indexed toxicological information. By defining the chemical space of public genomic data, it is possibl...

  14. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  15. Presidential Green Chemistry Challenge: 2008 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2008 award winner, Dow AgroSciences, used an artificial neural network to discover spinetoram, an improved spinosad biopesticide to replace organophosphates for key pests of fruit trees.

  16. Contaminants of emerging concern in the open sea waters of the Western Mediterranean.

    PubMed

    Brumovský, Miroslav; Bečanová, Jitka; Kohoutek, Jiří; Borghini, Mireno; Nizzetto, Luca

    2017-10-01

    Pollution by chemical substances is of concern for the maintenance of healthy and sustainable aquatic environments. While the occurrence and fate of numerous emerging contaminants, especially pharmaceuticals, is well documented in freshwater, their occurrence and behavior in coastal and marine waters is much less studied and understood. This study investigates the occurrence of 58 chemicals in the open surface water of the Western Mediterranean Sea for the first time. 70 samples in total were collected in 10 different sampling areas. 3 pesticides, 11 pharmaceuticals and personal care products and 2 artificial sweeteners were detected at sub-ng to ng/L levels. Among them, the herbicide terbuthylazine, the pharmaceuticals caffeine, carbamazepine, naproxen and paracetamol, the antibiotic sulfamethoxazole, the antibacterial triclocarban and the two artificial sweeteners acesulfame and saccharin were detected in all samples. The compound detected at the highest concentration was saccharin (up to 5.23 ng/L). Generally small spatial differences among individual sampling areas point to a diffuse character of sources which are likely dominated by WWTP effluents and runoffs from agricultural areas or even, at least for pharmaceuticals and artificial food additives, from offshore sources such as ferries and cruising ships. The implications of the ubiquitous presence in the open sea of chemicals that are bio-active or toxic at low doses on photosynthetic organisms and/or bacteria (i.e., terbuthylazine, sulfamethoxazole or triclocarban) deserve scientific attention, especially concerning possible subtle impacts from chronic exposure of pelagic microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Framework for Evaluating Chemical Hazards.

    ERIC Educational Resources Information Center

    Coble, Charles R.; Hounshell, Paul B.

    1980-01-01

    Lists questions that teachers should ask relating to use of all chemicals in the school laboratory, as well as chemicals with known and suspected dangerous properties. Tables list Occupational Safety and Health Administration (OSHA)-defined carcinogens, American Chemical Society-defined teratogens, suspected carcinogens, and other hazardous…

  18. Encoding Optoelectrical Sub-Components in an Al2O3 Nanowire for Rewritable High-Resolution Nanopatterning.

    PubMed

    Sun, Bo; Sun, Yong; Wang, Chengxin

    2018-06-14

    Nanoscale encoding denotes the creation of distinct electric and photonic properties within small, artificially defined regions by physical or chemical means. An encoded single nanostructure includes independent subcomponents as functional units that can also work as functional integrated nanosystems. These can be applied in high-resolution displays, detection systems, and even more complex devices. However, there is still no agreed-upon best platform satisfying all requirements. This paper demonstrates a competitive candidate based on defect engineering, that is, low energy focused e-beam-induced oxygen ion migration in a carbon-doped Al 2 O 3 nanowire. The electronic and photonic properties of these singular units are examined to be significantly modified. Their application in a nanoscale steganography strategy was also evaluated in detail. Complex patterns composed of points, lines, and planes were printed on a single nanowire using a focused e-beam and were subsequently erasable via a simple thermal process in air.

  19. A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from -2 to 40°C

    NASA Astrophysics Data System (ADS)

    Clegg, Simon L.; Whitfield, Michael

    1995-06-01

    The calculation of the percentage of un-ionised ammonia in estuarine water and seawater requires values of the stoichiometric dissociation constant of ammonia, defined by: K*a/mol kg -1 = mNH 3mH +/ mNH +4, where m denotes molality. A thermodynamic model of seawater, including dissolved NH 3 and NH +4, is developed using an extended Pitzer formalism parameterised from available data. The model is validated using emf measurements for cells containing artificial seawater with added HCl, and NH 4Cl, and NH 3 over a range of temperatures and salinities. Calculated values of K*a are tabulated from 0 to 40 ppt salinity and -2 to 40°C, on both a free ( mH +) and total ( mH + + mHSO -4) hydrogen ion basis for use with pH measurements made on the corresponding scales. Accuracy (in K*a) is likely to be better than 5% at all temperatures and salinities.

  20. Monolayer atomic crystal molecular superlattices.

    PubMed

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A; Huang, Yu; Duan, Xiangfeng

    2018-03-07

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10 7 , along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  1. Monolayer atomic crystal molecular superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  2. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  3. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    PubMed

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  4. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    PubMed

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Degradation of ticarcillin by subcritial water oxidation method: Application of response surface methodology and artificial neural network modeling.

    PubMed

    Yabalak, Erdal

    2018-05-18

    This study was performed to investigate the mineralization of ticarcillin in the artificially prepared aqueous solution presenting ticarcillin contaminated waters, which constitute a serious problem for human health. 81.99% of total organic carbon removal, 79.65% of chemical oxygen demand removal, and 94.35% of ticarcillin removal were achieved by using eco-friendly, time-saving, powerful and easy-applying, subcritical water oxidation method in the presence of a safe-to-use oxidizing agent, hydrogen peroxide. Central composite design, which belongs to the response surface methodology, was applied to design the degradation experiments, to optimize the methods, to evaluate the effects of the system variables, namely, temperature, hydrogen peroxide concentration, and treatment time, on the responses. In addition, theoretical equations were proposed in each removal processes. ANOVA tests were utilized to evaluate the reliability of the performed models. F values of 245.79, 88.74, and 48.22 were found for total organic carbon removal, chemical oxygen demand removal, and ticarcillin removal, respectively. Moreover, artificial neural network modeling was applied to estimate the response in each case and its prediction and optimizing performance was statistically examined and compared to the performance of central composite design.

  6. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  7. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils

    PubMed Central

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M.

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM. PMID:26457111

  8. Some factors affecting the fecundity of Biomphalaria pfeifferi (Krauss) in glass aquaria*

    PubMed Central

    Frank, G. H.

    1963-01-01

    Little being known of the effect of artificial conditions on Biomphalaria snails maintained in laboratory aquaria, experiments were conducted to determine some of the basic requirements of these snails, expressed in terms of the influence of various factors on their growth, fecundity and mortality. Among the factors studied were diet, artificial aeration, the chemical and physical properties of the water, and the presence of human urine in the water. The results obtained suggest that a diet of dehydrated lettuce and lucerne, no artificial aeration, a CaCO3 concentration of approximately 18 p.p.m., a sodium/calcium ratio of 1, and mild “pollution” give optimum fecundity and growth and low mortality with Biomphalaria pfeifferi (Krauss). PMID:14099678

  9. Chemical synthesis of beta-O-4 type artificial lignin.

    PubMed

    Kishimoto, Takao; Uraki, Yasumitsu; Ubukata, Makoto

    2006-04-07

    An artificial lignin polymer containing only the beta-O-4 substructure was synthesized. The procedure consists of two key steps: 1) polycondensation of a brominated monomer by aromatic Williamson reaction; and 2) subsequent reduction of the carbonyl polymer. 13C-NMR and HMQC spectra of the polymer were consistent with beta-O-4 substructures in milled wood lignin isolated from Japanese fir wood. The weight average degree of polymerization (DP(w)) ranged from 19.5 to 30.6, which is comparable to enzymatically synthesized artificial lignin from p-hydroxycinnamyl alcohols (dehydrogenation polymer, DHP) and some isolated lignins. Using this new lignin model polymer, it will now be possible to reinvestigate the properties and reactivity of the main lignin structure in terms of its polymeric character.

  10. Synthetic transitions: towards a new synthesis

    PubMed Central

    Solé, Ricard

    2016-01-01

    The evolution of life in our biosphere has been marked by several major innovations. Such major complexity shifts include the origin of cells, genetic codes or multicellularity to the emergence of non-genetic information, language or even consciousness. Understanding the nature and conditions for their rise and success is a major challenge for evolutionary biology. Along with data analysis, phylogenetic studies and dedicated experimental work, theoretical and computational studies are an essential part of this exploration. With the rise of synthetic biology, evolutionary robotics, artificial life and advanced simulations, novel perspectives to these problems have led to a rather interesting scenario, where not only the major transitions can be studied or even reproduced, but even new ones might be potentially identified. In both cases, transitions can be understood in terms of phase transitions, as defined in physics. Such mapping (if correct) would help in defining a general framework to establish a theory of major transitions, both natural and artificial. Here, we review some advances made at the crossroads between statistical physics, artificial life, synthetic biology and evolutionary robotics. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431516

  11. Artificial intelligence in robot control systems

    NASA Astrophysics Data System (ADS)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  12. Are artificial neural networks black boxes?

    PubMed

    Benitez, J M; Castro, J L; Requena, I

    1997-01-01

    Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.

  13. Space Station Mission Planning System (MPS) development study. Volume 2

    NASA Technical Reports Server (NTRS)

    Klus, W. J.

    1987-01-01

    The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.

  14. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    PubMed

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  15. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  16. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  17. Biological life-support systems for Mars mission.

    PubMed

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  18. Surface characteristics of bioactive Ti fabricated by chemical treatment for cartilaginous-integration.

    PubMed

    Miyajima, Hiroyuki; Ozer, Fusun; Imazato, Satoshi; Mante, Francis K

    2017-09-01

    Artificial hip joints are generally expected to fail due to wear after approximately 15years and then have to be replaced by revision surgery. If articular cartilage can be integrated onto the articular surfaces of artificial joints in the same way as osseo-integration of titanium dental implants, the wear of joint implants may be reduced or prevented. However, very few studies have focused on the relationship between Ti surface and cartilage. To explore the possibility of cartilaginous-integration, we fabricated chemically treated Ti surfaces with H 2 O 2 /HCl, collagen type II and SBF, respectively. Then, we evaluated surface characteristics of the prepared Ti samples and assessed the cartilage formation by culturing chondrocytes on the Ti samples. When oxidized Ti was immersed in SBF for 7days, apatite was formed on the Ti surface. The surface characteristics of Ti indicated that the wettability was increased by all chemical treatments compared to untreated Ti, and that H 2 O 2 /HCl treated surface had significantly higher roughness compared to the other three groups. Chondrocytes produced significantly more cartilage matrix on all chemically treated Ti surfaces compared to untreated Ti. Thus, to realize cartilaginous-integration and to prevent wear of the implants in joints, application of bioactive Ti formed by chemical treatment would be a promising and effective strategy to improve durability of joint replacement. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the characterization of the training set. Consequently, for each zeolite species 250 EDS data (as elemental intensities) used for training and 200 ±50 analyses were tested. Finally, two prediction models were developed. The constructed models with various cross-correlation values (r) yielded an average accuracy of >91% for the best predictions using C5.0 Decision Tree algorithm and back propagation artificial neural network. Despite having similar accuracies, the developed models exhibit different prediction behaviors for some zeolite minerals. The results demonstrate that artificial neural network as a nonlinear tool and decision tree algorithm as a rule based prediction model would be employed to provide considerably efficient and reliable identification/classification of some zeolite minerals regardless of their similar elemental compositions. Keywords: mineral identification; zeolites; energy dispersive spectrometry; artificial neural networks; decision tree.

  20. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  1. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    DTIC Science & Technology

    1984-03-01

    GHz (see Table 1). Artificial aerosol populations of known chemical composition and concentration can be added to study their growth/evaporation... engen in the quantitative deorip im of the inter- (0) Water ion activity ...... .28. 45 action betven, millimeter waves and moist air. The water...sizes. and chemical two states called the saturation point. At saturation, the rate composition. and moat Importantly. having the ability to

  2. Feasibility Study of Improved Methods for Riverbank Stabilization

    DTIC Science & Technology

    1964-11-01

    hose materials which appear to be technically feasible for such applications are listed in Tables I - 1 and I - 2. I-9 Artificial Riprap...the uncompacted asphalt pavement. Those which 1-11 show the most potential for further study are soil cement, synthetic elastomer sheeting, and...uncompated asphalt pavement. Chemical soil stabilization and metal sheeting are too exp~nsive, and the quality of chemically stabilized soil protection is

  3. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  4. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems.

    PubMed

    Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz

    2008-02-01

    A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.

  5. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    PubMed

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol-1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10-5 mol m-2 s-1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  7. Plasmon-induced artificial photosynthesis

    PubMed Central

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-01-01

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst. PMID:26052419

  8. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  9. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models.

    PubMed

    Gentili, Pier Luigi; Giubila, Maria Sole; Germani, Raimondo; Romani, Aldo; Nicoziani, Andrea; Spalletti, Anna; Heron, B Mark

    2017-06-19

    Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  11. Functional integration of automated system databases by means of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Dubovoi, Volodymyr M.; Nikitenko, Olena D.; Kalimoldayev, Maksat; Kotyra, Andrzej; Gromaszek, Konrad; Iskakova, Aigul

    2017-08-01

    The paper presents approaches for functional integration of automated system databases by means of artificial intelligence. The peculiarities of turning to account the database in the systems with the usage of a fuzzy implementation of functions were analyzed. Requirements for the normalization of such databases were defined. The question of data equivalence in conditions of uncertainty and collisions in the presence of the databases functional integration is considered and the model to reveal their possible occurrence is devised. The paper also presents evaluation method of standardization of integrated database normalization.

  12. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.

    PubMed

    Katona, Robert L

    2015-02-01

    Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.

  13. Synthesis and biological screening by novel hybrid fluorocarbon hydrocarbon compounds for use as artificial blood substitutes

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.

    1979-01-01

    A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.

  14. Membranes with artificial free-volume for biofuel production

    PubMed Central

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  15. Membranes with artificial free-volume for biofuel production

    NASA Astrophysics Data System (ADS)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  16. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat

    NASA Astrophysics Data System (ADS)

    Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung

    2018-05-01

    This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.

  17. Membranes with artificial free-volume for biofuel production

    DOE PAGES

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; ...

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the termmore » artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.« less

  18. Artificial muscles made of chiral two-way shape memory polymer fibers

    NASA Astrophysics Data System (ADS)

    Yang, Qianxi; Fan, Jizhou; Li, Guoqiang

    2016-10-01

    In this work, we demonstrate the unusual improvement of the tensile actuation of hierarchically chiral structured artificial muscle made of two-way shape memory polymer (2W-SMP) fiber. Experimental results show that the chemically cross-linked poly(ethylene-co-vinyl acetate) 2W-SMP fibers possess an average negative coefficient of thermal expansion (NCTE) that is at least one order higher than that of the polyethylene fiber used previously. As expected, the increase in axial thermal contraction of the precursor fiber leads to an increase in the recovered torque ( 4.4 Nmm ) of the chiral fiber and eventually in the tensile actuation of the twisted-then-coiled artificial muscle ( 67.81 ±1.82 % ). A mechanical model based on Castigliano's second theorem is proposed, and the calculated result is consistent with the experimental result (64.17% tensile stroke). The model proves the significance of the NCTE and the recovered torque on tensile actuation of the artificial muscle and can be used as a guidance for the future design.

  19. Great landslide events in Italian artificial reservoirs

    NASA Astrophysics Data System (ADS)

    Panizzo, A.; de Girolamo, P.; di Risio, M.; Maistri, A.; Petaccia, A.

    2005-09-01

    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy), generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.

  20. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    PubMed

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Effects of graded load of artificial gravity on cardiovascular functions in humans.

    PubMed

    Iwase, Satoshi; Fu, Qi; Narita, Kenichi; Morimoto, Eiichi; Takada, Hiroki; Mano, Tadaaki

    2002-12-01

    An artificial gravity and ergometric exercise loading device for human use was manufactured. It has the capacity of a max 2 G-load at the heart level, and a max 150 W of work-load. Eight subjects (six completed) were subjected to four repeated trials with or without 20 W ergometric exercise. Anti-G score, defined as the G-load x running time to the endpoint, was significantly higher in the exercise trials than standing trials. Heart rate (HR), mean arterial pressure (MAP), thoracic fluid index (TFI) were significantly superior during the exercise trials. Artificial gravity by centrifuge at 1.2 or 1.4 G with 40 or 60 W of ergometric workload may be an excellent countermeasure against cardiovascular deconditioning after long exposure to microgravity.

  2. Micromotors for "Chemistry-on-the-Fly".

    PubMed

    Karshalev, Emil; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2018-03-21

    This perspective reviews mobile micro/nanomotor scaffolds for performing "chemistry-on-the-fly". Synthetic nano/micromotors offer great versatility and distinct advantages in diverse chemical applications owing to their efficient propulsion and facile surface functionalization that allow these mobile platforms to move and disperse reactive materials across the solution. Such dynamic microreactors have led to accelerated chemical processes, including organic pollutant degradation, metal chelation, biorecognition, redox chemistry, chemical "writing", and a variety of other chemical transformations. Representative examples of such micromotor-enhanced chemical reactions are discussed, focusing on the specific chemical role of these mobile microreactors. The advantages, gaps and limitations of using micromotors as mobile chemical platforms are discussed, concluding with the future prospects of this emerging field. We envision that artificial nano/micromotors will become attractive dynamic tools for speeding up and enhancing "on-the-fly" chemical reactions.

  3. Application of an artificial intelligence program to therapy of high-risk surgical patients.

    PubMed

    Patil, R S; Adibi, J; Shoemaker, W C

    1996-11-01

    We developed an artificial intelligence program from a large computerized database of hemodynamic and oxygen transport measurements together with prior studies defining survivors' values, outcome predictors, and a branched-chain decision tree. The artificial intelligence program was then tested on the data of 100 survivors and 100 nonsurvivors not used for the development of the program or other analyses. Using the predictor as a surrogate outcome measure, the therapy recommended by the program improved the predicted outcome 3.16% per therapeutic intervention while the actual therapy given increased outcome 1.86% in surviving patients; the artificial intelligence-recommended therapy improved outcome 7.9% in nonsurvivors, while the actual therapy given increased predicted outcome -0.29% in nonsurvivors (p < .05). There were fewer patients whose predicted outcome decreased after recommended treatment (14%) than after the actual therapy given (37%). Review of therapy recommended by the program did not reveal instances of inappropriate or potentially harmful recommendations.

  4. [Studies on chemical constituents of cultivated Cistanche salsa].

    PubMed

    Yang, Jian-Hu; Hu, Jun-Ping; Rena, Kasimu; Du, Nian-Sheng

    2008-11-01

    To study the chemical constituents of cultivated Cistanche salsa. Compounds were isolated and purified on several chromatography, and then were identified by physico-chemical properties and structurally elucidated by spectral analysis. Seven compounds were isolated and identified as beta-sitosterol (I), daucosterol (II), beta-sitosteryl glucoside 3'-O-heptadecoicate (III), 8-hydroxygeraniol 1-beta-D-glucopyranoside (IV), 2-methanol-5-hydroxy-pyridine (V), betaine (VI), galactitol (VII). The chemical constituents of artificial cultivated Cistanche salsa are studied for the first time. Among them, compound III and IV are isolated from the plant for the first time, compound V is isolated from this genus for the first time.

  5. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    USGS Publications Warehouse

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may partly result from reaction with ammonium-containing pore waters.

  6. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    PubMed Central

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis. PMID:26052428

  7. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    PubMed

    Purchase, R L; de Groot, H J M

    2015-06-06

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis.

  8. Development of Stable Liquid Glucagon Formulations for Use in Artificial Pancreas

    PubMed Central

    Li, Ming; Krasner, Alan; De Souza, Errol

    2014-01-01

    Background: A promising approach to treat diabetes is the development of fully automated artificial/bionic pancreas systems that use both insulin and glucagon to maintain euglycemia. A physically and chemically stable liquid formulation of glucagon does not currently exist. Our goal is to develop a glucagon formulation that is stable as a clear and gel-free solution, free of fibrils and that has the requisite long-term shelf life for storage in the supply chain, short-term stability for at least 7 days at 37°C, and pump compatibility for use in a bihormonal pump. Methods: We report the development of two distinct families of stable liquid glucagon formulations which utilize surfactant or surfactant-like excipients (LMPC and DDM) to “immobilize” the glucagon in solution potentially through the formation of micelles and prevention of interaction between glucagon molecules. Results: Data are presented that demonstrate long-term physical and chemical stability (~2 years) at 5°C, short-term stability (up to 1 month) under accelerated 37°C testing conditions, pump compatibility for up to 9 days, and adequate glucose responses in dogs and diabetic swine. Conclusions: These stable glucagon formulations show utility and promise for further development in artificial pancreas systems. PMID:25352634

  9. Membrane Deformation and Permeabilization Caused by Microplasma Irradiation

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Nagaiwa, Hidenori; Yamamoto, Kenta; Kido, Yugo; Ikeda, Yoshihisa; Satoh, Susumu; Jinno, Masafumi

    2016-09-01

    The microplasma irradiation achieves high gene taransfection efficiency and high cell survivability simultaneously. For this purpose, we have developed a special plasma source using a microcapillary electrode. However, it is not clear how the stimuli of effective factors generated by plasma, such as current, charge, field, chemical species, cause transfection. In this study, we used artificial cell which is a spherical vesicle consisting of a lipid bilayer to visualize membrane dynamics and permeabilization caused by microplasma irradiation. Dioleoyl phosphatidylcholine (DOPC) was used as phospholipid molecules forming the lipid bilayer. The artificial cells were prepared by natural swelling method. Fluorescent labeled polyethylene glycol (PEG) polymers (Nanocs, MPEG Fluorescein, MW = 1000) were encapsulated in the artificial cells. The artificial cells were exposed to the microplasma for 5 ms and 10-20% of decrease of the dye fluorescence in the artificial cells was observed. This result suggests the outflow of the MPEG polymers through temporary poration or deformation of the lipid bilayer. The membrane deformation dynamics was directly observed with a microscope and the relationship to the polymer outflow will be shown at the conference. This work was partly supported by a Grant-in-Aid (25108509 and 15H00896) from JSPS and a grant from Ehime University.

  10. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    PubMed

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Time-domain terahertz spectroscopy of artificial skin

    NASA Astrophysics Data System (ADS)

    Corridon, Peter M.; Ascázubi, Ricardo; Krest, Courtney; Wilke, Ingrid

    2006-02-01

    Time-domain Terahertz (THz) spectroscopy and imaging is currently evaluated as a novel tool for medical imaging and diagnostics. The application of THz-pulse imaging of human skin tissues and related cancers has been demonstrated recently in-vitro and in-vivo. With this in mind, we present a time-domain THz-transmission study of artificial skin. The skin samples consist of a monolayer of porous matrix of fibers of cross-linked bovine tendon collagen and a glycosaminoglycan (chondroitin-6-sulfate) that is manufactured with a controlled porosity and defined degradation rate. Another set of samples consists of the collagen monolayer covered with a silicone layer. We have measured the THz-transmission and determined the index of refraction and absorption of our samples between 0.1 and 3 THz for various states of hydration in distilled water and saline solutions. The transmission of the THz-radiation through the artificial skin samples is modeled by electromagnetic wave theory. Moreover, the THz-optical properties of the artificial skin layers are compared to the THz-optical properties of freshly excised human skin samples. Based on this comparison the potential use of artificial skin samples as photo-medical phantoms for human skin is discussed.

  12. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    PubMed Central

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm. PMID:25691895

  13. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach.

    PubMed

    Sasaki, Ren; Kabir, Arif Md Rashedul; Inoue, Daisuke; Anan, Shizuka; Kimura, Atsushi P; Konagaya, Akihiko; Sada, Kazuki; Kakugo, Akira

    2018-04-05

    Self-organized structures of biomolecular motor systems, such as cilia and flagella, play key roles in the dynamic processes of living organisms, like locomotion or the transportation of materials. Although fabrication of such self-organized structures from reconstructed biomolecular motor systems has attracted much attention in recent years, a systematic construction methodology is still lacking. In this work, through a bottom-up approach, we fabricated artificial cilia from a reconstructed biomolecular motor system, microtubule/kinesin. The artificial cilia exhibited a beating motion upon the consumption, by the kinesins, of the chemical energy obtained from the hydrolysis of adenosine triphosphate (ATP). Several design parameters, such as the length of the microtubules, the density of the kinesins along the microtubules, the depletion force among the microtubules, etc., have been identified, which permit tuning of the beating frequency of the artificial cilia. The beating frequency of the artificial cilia increases upon increasing the length of the microtubules, but declines for the much longer microtubules. A high density of the kinesins along the microtubules is favorable for the beating motion of the cilia. The depletion force induced bundling of the microtubules accelerated the beating motion of the artificial cilia and increased the beating frequency. This work helps understand the role of self-assembled structures of the biomolecular motor systems in the dynamics of living organisms and is expected to expedite the development of artificial nanomachines, in which the biomolecular motors may serve as actuators.

  14. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    PubMed

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  15. 21 CFR 189.175 - P-4000.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-propoxyaniline, C9H12N2O3. It is a synthetic chemical having a sweet taste about 4000 times that of sucrose, is... for use as an artificial sweetener. (b) Food containing any added or detectable level of P-4000 is...

  16. 21 CFR 189.145 - Dulcin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., C9H12N2O2. It is a synthetic chemical having a sweet taste about 250 times that of sucrose, is not found in... artificial sweetener. (b) Food containing any added or detectable level of dulcin is deemed to be adulterated...

  17. Fixed obstructive lung disease among workers in the flavor-manufacturing industry--California, 2004-2007.

    PubMed

    2007-04-27

    Bronchiolitis obliterans, a rare and life-threatening form of fixed obstructive lung disease, is known to be caused by exposure to noxious gases in occupational settings and has been described in workers in the microwave-popcorn industry who were exposed to artificial butter-flavoring chemicals, including diacetyl. In August 2004, the California Department of Health Services (CDHS) and Division of Occupational Safety and Health (Cal/OSHA) received the first report of a bronchiolitis obliterans diagnosis in a flavor-manufacturing worker in California. In April 2006, a second report was received of a case in a flavor-manufacturing worker from another company. Neither worker was employed in the microwave-popcorn industry; both were workers in the flavor-manufacturing industry, which produces artificial butter flavoring and other flavors such as cherry, almond, praline, jalapeno, and orange. Both workers had handled pure diacetyl, an ingredient in artificial butter and other flavorings, and additional chemicals involved in the manufacturing process. Studies have indicated that exposure to diacetyl causes severe respiratory epithelial injury in animals. Because the manufacture of flavorings involves more than 2,000 chemicals, workers in the general flavor-manufacturing industry are exposed to more chemicals than workers in the microwave-popcorn industry, which primarily uses butter flavorings. Food flavorings are designated "generally recognized as safe" when approved by the U.S. Food and Drug Administration; flavorings are not known to put consumers at risk for lung disease. This report describes the first two cases of bronchiolitis obliterans in flavor-manufacturing workers in California, the findings of the public health investigation, and the actions taken by state and federal agencies to prevent future cases of occupational bronchiolitis obliterans. To identify cases and reduce risk for lung disease from occupational exposure to flavorings, a timely, effective response is needed, including medical surveillance, exposure monitoring, and reduced exposure.

  18. Nest Material Shapes Eggs Bacterial Environment.

    PubMed

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically environmental variation associated with risk of bacterial proliferation determining the strength of such effects. Because of costs associated to nest building, birds should adjust nest building effort to expected bacterial environments during incubation, a prediction that should be further explored.

  19. Nest Material Shapes Eggs Bacterial Environment

    PubMed Central

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically environmental variation associated with risk of bacterial proliferation determining the strength of such effects. Because of costs associated to nest building, birds should adjust nest building effort to expected bacterial environments during incubation, a prediction that should be further explored. PMID:26871451

  20. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes manmade structures, as well as all natural structures in which chemicals are purposefully placed... agricultural products during a year. Hazardous chemical means any hazardous chemical as defined under 29 CFR... of a technically qualified individual; or (iii) In routine agricultural operations or is a fertilizer...

  1. 40 CFR 355.61 - How are key words in this part defined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes manmade structures, as well as all natural structures in which chemicals are purposefully placed... agricultural products during a year. Hazardous chemical means any hazardous chemical as defined under 29 CFR... of a technically qualified individual; or (iii) In routine agricultural operations or is a fertilizer...

  2. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  3. Artifical Pancreas

    NASA Astrophysics Data System (ADS)

    Fei, Jiangfeng

    2013-03-01

    In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.

  4. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal moleculemore » bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.« less

  5. Superfluid transition in the attractive Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Iskin, M.

    2016-08-01

    We consider a Fermi gas that is loaded onto a square optical lattice and subjected to a perpendicular artificial magnetic field, and determine its superfluid transition boundary by adopting a BCS-like mean-field approach in momentum space. The multiband structure of the single-particle Hofstadter spectrum is taken explicitly into account while deriving a generalized pairing equation. We present the numerical solutions as functions of the artificial magnetic flux, interaction strength, Zeeman field, chemical potential, and temperature, with a special emphasis on the roles played by the density of single-particle states and center-of-mass momentum of Cooper pairs.

  6. Exploration in the Complexity of Possible Life: Abstracting and Synthesizing the Principles of Living Systems - Proceedings of the German Workshop on Artificial Life (7th) Held in Jena, Germany on 26-28 Jul 2006

    DTIC Science & Technology

    2006-01-01

    artificial chemistry. 1 Introduction Chemical evolution (i.e., prebiotic evolution) is concerned with the period of life’s history that precedes the...arrival of the first living organism [17]. Since Miller’s pioneering work [19, 20], prebiotic chemistry has been studied in various laboratory...Bada. The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig Life Evol Biosph, 33(3):235–42, 2003. 145 [17] J. Maynard

  7. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.

    PubMed

    McKie, Michael J; Andrews, Susan A; Andrews, Robert C

    2016-02-15

    The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  9. Centuries of artificial recharge on the southern edge of the Sierra Nevada (Granada, Spain)

    NASA Astrophysics Data System (ADS)

    Pulido-Bosch, A.; Sbih, Y. Ben

    1995-07-01

    In the Alpujarra (southern Spain), every year between the March and June, an ancestral practice continues in the form of diverting water from the rivers by way of an extensive network of irrigation channels ( acequias) to well-defined, highly permeable areas. This practice, known as careos, constitutes an ancient example of artificial recharge. The objective is to guarantee a supply of drinking water during the dry months, as well as improve the physicochemical characteristics of the water. In addition, this system helps maintain moisture in the immediate environment, and thus has a positive effect on local vegetation.

  10. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction.

    PubMed

    Park, Seong Ho; Han, Kyunghwa

    2018-03-01

    The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical images. Adoption of an artificial intelligence tool in clinical practice requires careful confirmation of its clinical utility. Herein, the authors explain key methodology points involved in a clinical evaluation of artificial intelligence technology for use in medicine, especially high-dimensional or overparameterized diagnostic or predictive models in which artificial deep neural networks are used, mainly from the standpoints of clinical epidemiology and biostatistics. First, statistical methods for assessing the discrimination and calibration performances of a diagnostic or predictive model are summarized. Next, the effects of disease manifestation spectrum and disease prevalence on the performance results are explained, followed by a discussion of the difference between evaluating the performance with use of internal and external datasets, the importance of using an adequate external dataset obtained from a well-defined clinical cohort to avoid overestimating the clinical performance as a result of overfitting in high-dimensional or overparameterized classification model and spectrum bias, and the essentials for achieving a more robust clinical evaluation. Finally, the authors review the role of clinical trials and observational outcome studies for ultimate clinical verification of diagnostic or predictive artificial intelligence tools through patient outcomes, beyond performance metrics, and how to design such studies. © RSNA, 2018.

  11. A/C Interface: Expert Systems: Part II.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1984-01-01

    Discusses working implementations of artificial intelligence systems for chemical laboratory applications. They include expert systems for liquid chromatography, spectral analysis, instrument control of a totally computerized triple-quadrupole mass spectrometer, and the determination of the mineral constituents of a rock sample given the powder…

  12. Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals

    EPA Science Inventory

    This paper reports on the results of acute toxicity tests conducted with common surrogate species, and several species of threatened and endangered species for which there were excess artificially propagated stock to allow direct testing.

  13. Nanocrystals with linear and branched topology

    DOEpatents

    Alivisatos, A. Paul; Milliron, Delia; Manna, Liberato; Hughes, Steven M.

    2007-12-04

    Disclosed herein are nanostructures comprising distinct dots and rods coupled through potential barriers of tuneable height and width, and arranged in three dimensional space at well defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.

  14. Computers Simulate Human Experts.

    ERIC Educational Resources Information Center

    Roberts, Steven K.

    1983-01-01

    Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)

  15. Social Structure Simulation and Inference Using Artificial Intelligence Techniques

    DTIC Science & Technology

    2005-06-15

    Batagelj and Mrvar , 2003] comes closest to defining a universal interchange format for social network data. PAJEK .net format is defined using a...ObjectStyle, 2005] and in future version of PAJEK[ Batagelj and Mrvar , 2003] GXL[Holt, Winter, and Schürr, 2000][Taentzer, 2001][Winter, 2001] was...Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, Oct 1999. V. Batagelj and A. Mrvar . Pajek - analysis and

  16. Disparities in reproductive outcomes according to the endometrial preparation protocol in frozen embryo transfer : The risk of early pregnancy loss in frozen embryo transfer cycles.

    PubMed

    Hatoum, I; Bellon, L; Swierkowski, N; Ouazana, M; Bouba, S; Fathallah, K; Paillusson, B; Bailly, M; Boitrelle, F; Alter, L; Bergère, M; Selva, J; Wainer, R

    2018-03-01

    The purpose of this study was to determine the effect of stimulated and artificial endometrial preparation protocols on reproductive outcomes in frozen embryo transfer (FET) cycles. We performed a retrospective study of 1926 FET cycles over a 3.5-year period in the Fertility Unit at a University Hospital. Stimulated and artificial protocols were used for endometrial preparation. The embryos for FET were obtained from either in vitro fertilization or intracytoplasmic sperm injection cycles. Live birth rate and early pregnancy loss rates were retrospectively compared. In artificial protocols, oral or vaginal administration of oestradiol 2 mg two or three times a day was followed by vaginal supplementation with progesterone 200 mg two or three times a day. In stimulated protocols, recombinant follicle-stimulating hormone was administered from day 4 onward. Vaginal ultrasound was used for endometrial and ovarian monitoring. A pregnancy test was performed 14 days after FET. If it was positive, oestradiol and progesterone were administered up until the 12th week of gestation in artificial cycles. We defined early pregnancy losses as biochemical pregnancies (preclinical losses) and miscarriages. Data on 865 artificial cycles (45% of the total) and 1061 stimulated cycles (55%) were collected. Early pregnancy loss rate was significantly lower for stimulated cycles (34.2%) than for artificial cycles (56.9%), and the live birth rate was significantly higher for stimulated cycles (59.7%) than for artificial cycles (29.1%). In frozen embryo transfer, artificial cycles were associated with more early pregnancy loss and lower live birth rate than stimulated cycles.

  17. Characterization and modeling of ionic polymeric smart materials as artificial muscles and robotic swimming structures

    NASA Astrophysics Data System (ADS)

    Mojarrad, Mehran

    2001-07-01

    In this dissertation document, a thorough review and investigation of works in connection with the ionic polymeric gels as artificial muscles and electrically controllable polymeric network structures were performed. Where possible, comparisons were made with biological muscles and applications in marine propulsion using such polymeric materials were investigated. Furthermore, methods of fabrication of several chemically active ionic polymeric gel muscles such as PolyAcryloNitrile (PAN), Poly(2-Acrylamido-2-Methyl-1-PropaneSulfonic) acid (PAMPS), and PolyAcrylic-acid-bis-AcrylaMide (PAAM) as well as a new class of electrically active composite muscle such as Ion-Exchange-Metal-Composites (IEMC) or Ionic Polymer Metal Composites (IPMC) materials are introduced and investigated that resulted in two US patents regarding their fabrication and application capabilities as actuators and sensors. In this research, various forms of the IPMC fabrication were explored and reported. In addition, characterization of PAN muscles, bundling and encapsulation were investigated. Conversion of chemical to electrical artificial muscles were also investigated using chemical plating techniques as well as physical vapor deposition methods of the pH-activated muscles like PAN fibers. Experimental methods were devised to characterize contraction, expansion, and bending of various actuators using isometric, isoionic, and isotonic characterization methods. Several apparatuses for modeling and testing of the various artificial muscles were built to show the viability of the application of both chemoactive and electroactive muscles. Furthermore PAN fiber muscles in different configurations such as spring-loaded fiber bundles, biceps, triceps, ribbon type muscles, and segmented fiber bundles were fabricated to make a variety of actuators. Additionally, swimming robotic structures and associated hardware were built to incorporate IPMC as biomimetic propulsion fin actuators. In addition, various configuration of IPMC such as linear actuators and multiplayer actuators were fabricated and evaluated for load and sensing capability. Theories associated with ionic polymer gels electrodynamics and chemodynamics were proposed, analyzed and modeled for the manufactured material. Futhermore, theoretical models of swimming structures were developed and compared with biological fish propulsion models and dynamically evaluated for robotic applications.

  18. The physico-chemical properties and structural characteristics of artificial soil for cut slope restoration in Southwestern China

    PubMed Central

    Chen, Shunan; Ai, Xiaoyan; Dong, Tengyun; Li, Binbin; Luo, Ruihong; Ai, Yingwei; Chen, Zhaoqiong; Li, Chuanren

    2016-01-01

    Cut slopes are frequently generated by construction work in hilly areas, and artificial soil is often sprayed onto them to promote ecological rehabilitation. The artificial soil properties are very important for effective management of the slopes. This paper uses fractal and moment methods to characterize soil particle size distribution (PSD) and aggregates composition. The fractal dimension (D) showed linear relationships between clay, silt, and sand contents, with coefficients of determination from 0.843 to 0.875, suggesting that using of D to evaluate the PSD of artificial soils is reasonable. The bias (CS) and peak convex (CE) coefficients showed significant correlations with structure failure rate, moisture content, and total porosity, which validated the moment method to quantitatively describe soil structure. Railway slope (RS) soil has lower organic carbon and soil moisture, and higher pH than natural slope soil. Overall, RS exhibited poor soil structure and physicochemical properties, increasing the risk of soil erosion. Hence, more effective management measures should be adopted to promote the restoration of cut slopes. PMID:26883986

  19. Investigation into the artificial ageing effects on the microstructure of an industrial solid waste treated with cement.

    PubMed

    Choura, M; Keskes, M; Tayibi, H; Rouis, J

    2011-04-01

    Metal hydroxide sludges are classified as hazardous wastes in the European Hazardous Waste Catalogue (EHWC) because of their high heavy metal contents (Zn, Cr, Fe, Cu, etc.) and the release of these pollutants to the environment. Thereby, the disposal of this waste without any treatment is a substantial environmental problem. Stabilization/solidification technologies are widely used for the treatment of wastes and residues in order to obtain inert materials. This work aims to assess the effectiveness of the chemical fixation and solidification of a metal hydroxide sludge generated by the electrotyping surface treatment industry, using Portland Artificial Cement. In order to predict the medium- and long-term behaviour of the solidified waste, an artificial ageing by means of thermal shocks and humidity variation cycles was applied. Scanning Electron Microscopy (SEM) and X-ray Diffraction studies revealed a considerable increase in calcite within the solid matrix after the artificial ageing, which can be attributed to the phenomenon of carbonation. It was also found that the mechanical properties of the solidified material, after ageing, were improved by up to 30%.

  20. Water quality of a coastal lagoon (ES, Brazil): abiotic aspects, cytogenetic damage, and phytoplankton dynamics.

    PubMed

    Duarte, Ian Drumond; Silva, Nayara Heloisa Vieira Fraga; da Costa Souza, Iara; de Oliveira, Larissa Bassani; Rocha, Lívia Dorsch; Morozesk, Mariana; Bonomo, Marina Marques; de Almeida Pereira, Thaís; Dias, Mauro Cesar; de Oliveira Fernandes, Valéria; Matsumoto, Silvia Tamie

    2017-04-01

    Assessment of water resources requires interdisciplinary studies that include multiple ecosystem aspects. This study evaluated the water quality of Juara Lagoon (ES, Brazil) based on physical and chemical variables, cytogenetic responses in Allium cepa and phytoplankton dynamics. Three sampling sites were defined and water samples were collected during two sampling periods. Analyses such as determination of photic zone, conductivity, and concentrations of nutrients and metals were conducted as well as cytotoxic, mutagenic, and genotoxic potentials using A. cepa test. The main attributes of phytoplankton community, such as total richness, total density, density by class, dominance, and diversity, were also evaluated. Results have revealed that Juara Lagoon has signs of artificial eutrophication at two sampling sites due to high levels of total phosphorus and ammonia nitrogen. Cytotoxic, genotoxic, and mutagenic potentials were detected as well as high concentrations of Fe and Mn. Furthermore, 165 phytoplankton taxa were recorded, with highest richness in Chlorophyceae and Cyanophyceae classes. In addition, Cyanophyceae presented as the highest density class. A. cepa test and phytoplankton community evaluation indicated that the ecological quality of Juara Lagoon is compromised.

  1. Structural DNA nanotechnology for intelligent drug delivery.

    PubMed

    Chao, Jie; Liu, Huajie; Su, Shao; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2014-11-01

    Drug delivery carriers have been popularly employed to improve solubility, stability, and efficacy of chemical and biomolecular drugs. Despite the rapid progress in this field, it remains a great challenge to develop an ideal carrier with minimal cytotoxicity, high biocompatibility and intelligence for targeted controlled release. The emergence of DNA nanotechnology offers unprecedented opportunities in this regard. Due to the unparalleled self-recognition properties of DNA molecules, it is possible to create numerous artificial DNA nanostructures with well-defined structures and DNA nanodevices with precisely controlled motions. More importantly, recent studies have proven that DNA nanostructures possess greater permeability to the membrane barrier of cells, which pave the way to developing new drug delivery carriers with nucleic acids, are summarized. In this Concept, recent advances on the design and fabrication of both static and dynamic DNA nanostructures, and the use of these nanostructures for the delivery of various types of drugs, are highlighted. It is also demonstrated that dynamic DNA nanostructures provide the required intelligence to realize logically controlled drug release. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Artificial Intelligence, DNA Mimicry, and Human Health.

    PubMed

    Stefano, George B; Kream, Richard M

    2017-08-14

    The molecular evolution of genomic DNA across diverse plant and animal phyla involved dynamic registrations of sequence modifications to maintain existential homeostasis to increasingly complex patterns of environmental stressors. As an essential corollary, driver effects of positive evolutionary pressure are hypothesized to effect concerted modifications of genomic DNA sequences to meet expanded platforms of regulatory controls for successful implementation of advanced physiological requirements. It is also clearly apparent that preservation of updated registries of advantageous modifications of genomic DNA sequences requires coordinate expansion of convergent cellular proofreading/error correction mechanisms that are encoded by reciprocally modified genomic DNA. Computational expansion of operationally defined DNA memory extends to coordinate modification of coding and previously under-emphasized noncoding regions that now appear to represent essential reservoirs of untapped genetic information amenable to evolutionary driven recruitment into the realm of biologically active domains. Additionally, expansion of DNA memory potential via chemical modification and activation of noncoding sequences is targeted to vertical augmentation and integration of an expanded cadre of transcriptional and epigenetic regulatory factors affecting linear coding of protein amino acid sequences within open reading frames.

  3. Principles of light harvesting from single photosynthetic complexes.

    PubMed

    Schlau-Cohen, G S

    2015-06-06

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate.

  4. Physicochemical Quality and Chemical Safety of Chlorine as a Reconditioning Agent and Wash Water Disinfectant for Fresh-Cut Lettuce Washing

    PubMed Central

    Van Haute, Sam; Holvoet, Kevin; Uyttendaele, Mieke

    2013-01-01

    Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing. PMID:23396332

  5. Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing.

    PubMed

    Van Haute, Sam; Sampers, Imca; Holvoet, Kevin; Uyttendaele, Mieke

    2013-05-01

    Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing.

  6. "Artificial humans": Psychology and neuroscience perspectives on embodiment and nonverbal communication.

    PubMed

    Vogeley, Kai; Bente, Gary

    2010-01-01

    "Artificial humans", so-called "Embodied Conversational Agents" and humanoid robots, are assumed to facilitate human-technology interaction referring to the unique human capacities of interpersonal communication and social information processing. While early research and development in artificial intelligence (AI) focused on processing and production of natural language, the "new AI" has also taken into account the emotional and relational aspects of communication with an emphasis both on understanding and production of nonverbal behavior. This shift in attention in computer science and engineering is reflected in recent developments in psychology and social cognitive neuroscience. This article addresses key challenges which emerge from the goal to equip machines with socio-emotional intelligence and to enable them to interpret subtle nonverbal cues and to respond to social affordances with naturally appearing behavior from both perspectives. In particular, we propose that the creation of credible artificial humans not only defines the ultimate test for our understanding of human communication and social cognition but also provides a unique research tool to improve our knowledge about the underlying psychological processes and neural mechanisms. Copyright © 2010. Published by Elsevier Ltd.

  7. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    NASA Astrophysics Data System (ADS)

    1995-10-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  8. Artificial Red Cells with Polyhemoglobin Membranes.

    DTIC Science & Technology

    1981-09-01

    4,4’-diaminobiphenyl-2,2’-disulfonic acid to improve the dispersability of his nylon cells, but their intravascular persistence was short. (24) Kondo...Group, decaglycerol decaoleate, HLB 2.0 * Cholesterol, Aldrich Chemical Co., HLB 2.0 " Alcolec PG, American Lecithin Co., purified soy phosphatides

  9. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  10. A stone's throw into the universe: A memoir

    NASA Technical Reports Server (NTRS)

    Zwicky, F.

    1977-01-01

    Early goals in experimental astronomy are recalled. Physio-chemical properties of the atmosphere were studied by observing the tracks and point-to-point spectra of fast particles from artificial meteors. Some of these self-luminous pellets were fired from an Aerobee rocket in 1958.

  11. Catalytic nanomotors for environmental monitoring and water remediation.

    PubMed

    Soler, Lluís; Sánchez, Samuel

    2014-07-07

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes-and therefore pollutants, or "chemical threats"-can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These "self-powered remediation systems" could be seen as a new generation of "smart devices" for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future.

  12. Catalytic nanomotors for environmental monitoring and water remediation

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Sánchez, Samuel

    2014-06-01

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes--and therefore pollutants, or ``chemical threats''--can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These ``self-powered remediation systems'' could be seen as a new generation of ``smart devices'' for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future.

  13. Application of Artificial Neuro-Fuzzy Logic Inference System for Predicting the Microbiological Pollution in Fresh Water

    NASA Astrophysics Data System (ADS)

    Bouharati, S.; Benmahammed, K.; Harzallah, D.; El-Assaf, Y. M.

    The classical methods for detecting the micro biological pollution in water are based on the detection of the coliform bacteria which indicators of contamination. But to check each water supply for these contaminants would be a time-consuming job and a qualify operators. In this study, we propose a novel intelligent system which provides a detection of microbiological pollution in fresh water. The proposed system is a hierarchical integration of an Artificial Neuro-Fuzzy Inference System (ANFIS). This method is based on the variations of the physical and chemical parameters occurred during bacteria growth. The instantaneous result obtained by the measurements of the variations of the physical and chemical parameters occurred during bacteria growth-temperature, pH, electrical potential and electrical conductivity of many varieties of water (surface water, well water, drinking water and used water) on the number Escherichia coli in water. The instantaneous result obtained by measurements of the inputs parameters of water from sensors.

  14. Changing Roles for References Librarians.

    ERIC Educational Resources Information Center

    Kelly, Julia; Robbins, Kathryn

    1996-01-01

    Discusses the future outlook for reference librarians, with topics including: "Technology as the Source of Change"; "Impact of the Internet"; "Defining the Virtual Library"; "Rethinking Reference"; "Out of the Library and into the Streets"; "Asking Users About Their Needs"; "Standardization and Artificial Intelligence"; "The Financial Future"; and…

  15. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    NASA Technical Reports Server (NTRS)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  16. Color stability of maxillofacial silicone with nanoparticle pigment and opacifier submitted to disinfection and artificial aging.

    PubMed

    Filié Haddad, Marcela; Coelho Goiato, Marcelo; Micheline Dos Santos, Daniela; Moreno, Amália; Filipe D'almeida, Nuno; Alves Pesqueira, Aldiéris

    2011-09-01

    The purpose of this study was to evaluate the color stability of a maxillofacial elastomer with the addition of a nanoparticle pigment and∕or an opacifier submitted to chemical disinfection and artificial aging. Specimens were divided into four groups (n = 30): group I: silicone without pigment or opacifier, group II: ceramic powder pigment, group III: Barium sulfate (BaSO(4)) opacifier, and group IV: ceramic powder and BaSO(4) opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was done three times a week during two months. Afterward, specimens were submitted to different periods of artificial aging. Color evaluation was initially done, after 60 days (disinfection period) and after 252, 504, and 1008 h of artificial aging with aid of a reflection spectrophotometer. Data were analyzed by three-way ANOVA and Tukey test (α = 0.05). The isolated factor disinfection did not statistically influence the values of color stability among groups. The association between pigment and BaSO(4) opacifier (GIV) was more stable in relationship to color change (△E). All values of △E obtained, independent of the disinfectant and the period of artificial aging, were considered acceptable in agreement with the norms presented in literature.

  17. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    PubMed

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  18. [Study on preparation of the pH sensitive hydroxyethyl chitin/poly (acrylic acid) hydrogel and its drug release property].

    PubMed

    Zhao, Yu; Chen, Guohua; Sun, Mingkun; Jin, Zhitao; Gao, Congjie

    2006-04-01

    Hydroxyethyl chitin (HECH) is a water soluble chitin derivative made by etherification of chitin, ethylene chlorohydrin was used as etherification reagent in this reaction. A novel interpenetrating polymer network (IPN) composed of HECH/PAA was prepared. The IR spectra confirmed that HECH/PAA was formed through chemical bond interaction. The sensitivity of this hydrogel to temperature and pH was studied. The swelling ratio of this hydrogel in artificial intestinal juice is much greater than that in artificial gastric juice. The IPN hydrogel exhibited a typical pH-sensitivity, and its degree of swelling ratio increased with the increase of temperature. The sustained-release drug system of Dichlofenac potassium was prepared by using HECH/PAA as the drug carrier. The release experiment showed a perfect release behavior in artificial intestinal juice. This IPN is expected to be used as a good drug delivery system of enteric medicine.

  19. De Novo Design of Bioactive Small Molecules by Artificial Intelligence

    PubMed Central

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca

    2018-01-01

    Abstract Generative artificial intelligence offers a fresh view on molecular design. We present the first‐time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine‐tuned on recognizing retinoid X and peroxisome proliferator‐activated receptor agonists. We synthesized five top‐ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low‐micromolar receptor modulatory activity in cell‐based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. PMID:29319225

  20. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    PubMed Central

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  1. Dermal absorption of benzo[a]pyrene into human skin from soil: Effect of artificial weathering, concentration, and exposure duration.

    PubMed

    Peckham, Trevor K; Shirai, Jeffry H; Bunge, Annette L; Lowney, Yvette W; Ruby, Michael V; Kissel, John C

    2017-11-01

    In vitro assessments of 14 C-benzo[a]pyrene (BaP) absorption through human epidermis were conducted with the sub-63-μm fraction of four test soils containing different amounts of organic and black carbon. Soils were artificially weathered for eight weeks and applied to epidermis at nominal BaP concentrations of 3 and 10 mg/kg for 8 or 24 h. Experiments were also conducted at 24 h with unweathered soils and with BaP deposited onto skin from acetone at a comparable chemical load. For the weathered soils, absorption was independent of the amount of organic or black carbon, the mass in the receptor fluid was proportional to exposure duration but independent of concentration, and the mass recovered in the skin after washing was proportional to concentration and independent of exposure time. Results from the weathered and unweathered soils were similar except for the mass recovered in the washed skin, which was lower for the weathered soil only at the higher concentration. We hypothesize that chemical concentrations exceeded the BaP sorption capacity accessible within the artificial weathering timeframe for all soils tested, and that BaP mass in the washed skin was dominated by particles that were not removed by washing. Fluxes into and through skin from soils were lower by an order of magnitude than from acetone-deposited BaP.

  2. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi

    NASA Astrophysics Data System (ADS)

    Baik, Sangyul; Kim, Da Wan; Park, Youngjin; Lee, Tae-Jin; Ho Bhang, Suk; Pang, Changhyun

    2017-06-01

    Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well—and repeatedly—under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.

  3. Artificially modified collagen fibril orientation affects leather tear strength.

    PubMed

    Kelly, Susyn J; Wells, Hannah C; Sizeland, Katie H; Kirby, Nigel; Edmonds, Richard L; Ryan, Tim; Hawley, Adrian; Mudie, Stephen; Haverkamp, Richard G

    2018-07-01

    Ovine leather has around half the tear strength of bovine leather and is therefore not suitable for high-value applications such as shoes. Tear strength has been correlated with the natural collagen fibril alignment (orientation index, OI). It is hypothesized that it could be possible to artificially increase the OI of the collagen fibrils and that an artificial increase in OI could increase tear strength. Ovine skins, after pickling and bating, were strained biaxially during chrome tanning. The strain ranged from 2 to 15% of the initial sample length, either uniformly in both directions by 10% or with 3% in one direction and 15% in the other. Once tanned, the leather tear strengths were measured and the collagen fibril orientation was measured using synchrotron-based small-angle X-ray scattering. The OI increased as a result of strain during tanning from 0.48 to 0.79 (P = 0.001) measured edge-on and the thickness-normalized tear strength increased from 27 to 43 N mm -1 (P < 0.001) after leather was strained 10% in two orthogonal directions. This is evidence to support a causal relationship between high OI (measured edge-on), highly influenced by thickness, and tear strength. It also provides a method to produce stronger leather. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Live-cell imaging of invasion and intravasation in an artificial microvessel platform.

    PubMed

    Wong, Andrew D; Searson, Peter C

    2014-09-01

    Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies. ©2014 American Association for Cancer Research.

  5. Synthetic biology routes to bio-artificial intelligence

    PubMed Central

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  6. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    PubMed Central

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-01-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information. PMID:26830629

  7. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.

    PubMed

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  8. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Tierno, Pietro

    Artificial spin-ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  9. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  10. Chemical Sniffing Instrumentation for Security Applications.

    PubMed

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F

    2016-07-27

    Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and (c) threat compounds (drugs, explosives, and chemical warfare agents).

  11. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    PubMed

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  12. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  13. Artificial recharge of groundwater and its role in water management

    USGS Publications Warehouse

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of freshwater could be made available for the artificial-recharge operations. ?? 1989.

  14. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    PubMed

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge.

    PubMed

    Finnegan, C J; van Egmond, R A; Price, O R; Whelan, M J

    2009-04-01

    In regions of the world with poor provision of wastewater treatment, raw sewage is often discharged directly into surface waters. This paper describes an experimental evaluation of the fate of two organic chemicals under these conditions using an artificial channel cascade fed with a mix of settled sewage and river water at its upstream end and operated under continuous steady-state conditions. The experiments underpin an environmental risk assessment methodology based on the idea of an "impact zone" (IZ) - the zone downstream of wastewater emission in which water quality is severely impaired by high concentrations of unionised ammonia, nitrite and biochemical oxygen demand (BOD). Radiolabelled dodecane-6-benzene sulphonate (DOBS) and aniline hydrochloride were used as the model chemical and reference compound respectively. Rapid changes in (14)C counts were observed with flow-time for both these materials. These changes were most likely to be due to complete mineralisation. A dissipation half-life of approximately 7.1 h was observed for the (14)C label with DOBS. The end of the IZ was defined as the point at which the concentration of both unionised ammonia and nitrite fell below their respective predicted no-effect concentrations for salmonids. At these points in the cascade, approximately 83 and 90% of the initial concentration of (14)C had been removed from the water column, respectively. A simple model of mineral nitrogen transformations based on Michaelis-Menten kinetics was fitted to observed concentrations of NH(4), NO(2) and NO(3). The cascade is intended to provide a confirmatory methodology for assessing the ecological risks of chemicals under direct discharge conditions.

  16. Physico-chemical characterization and the in vitro genotoxicity of medical implants metal alloy (TiAlV and CoCrMo) and polyethylene particles in human lymphocytes.

    PubMed

    Gajski, Goran; Jelčić, Zelimir; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Garaj-Vrhovac, Vera

    2014-01-01

    The main objective of the present study was to investigate chemical composition and possible cyto/genotoxic potential of several medical implant materials commonly used in total hip joint replacement. Medical implant metal alloy (Ti6Al4V and CoCrMo) and high density polyethylene particles were analyzed by energy dispersive X-ray spectrometry while toxicological characterization was done on human lymphocytes using multi-biomarker approach. Energy dispersive X-ray spectrometry showed that none of the elements identified deviate from the chemical composition defined by appropriate ISO standard. Toxicological characterization showed that the tested materials were non-cyto/genotoxic as determined by the comet and cytokinesis-block micronucleus (CBMN) assay. Particle morphology was found (by using scanning electron and optical microscope) as flat, sharp-edged, irregularly shaped fiber-like grains with the mean particle size less than 10µm; this corresponds to the so-called "submicron wear". The very large surface area per wear volume enables high reactivity with surrounding media and cellular elements. Although orthopedic implants proved to be non-cyto/genotoxic, in tested concentration (10μg/ml) there is a constant need for monitoring of patients that have implanted artificial hips or other joints, to minimize the risks of any unwanted health effects. The fractal and multifractal analyses, performed in order to evaluate the degree of particle shape effect, showed that the fractal and multifractal terms are related to the "remnant" level of the particles' toxicity especially with the cell viability (trypan blue method) and total number of nucleoplasmic bridges and nuclear buds as CBMN assay parameters. © 2013.

  17. The artificial pancreas: evaluating risk of hypoglycaemia following errors that can be expected with prolonged at-home use.

    PubMed

    Wolpert, H; Kavanagh, M; Atakov-Castillo, A; Steil, G M

    2016-02-01

    Artificial pancreas systems show benefit in closely monitored at-home studies, but may not have sufficient power to assess safety during infrequent, but expected, system or user errors. The aim of this study was to assess the safety of an artificial pancreas system emulating the β-cell when the glucose value used for control is improperly calibrated and participants forget to administer pre-meal insulin boluses. Artificial pancreas control was performed in a clinic research centre on three separate occasions each lasting from 10 p.m. to 2 p.m. Sensor glucose values normally used for artificial pancreas control were replaced with scaled blood glucose values calculated to be 20% lower than, equal to or 33% higher than the true blood glucose. Safe control was defined as blood glucose between 3.9 and 8.3 mmol/l. Artificial pancreas control resulted in fasting scaled blood glucose values not different from target (6.67 mmol/l) at any scaling factor. Meal control with scaled blood glucose 33% higher than blood glucose resulted in supplemental carbohydrate to prevent hypoglycaemia in four of six participants during breakfast, and one participant during the night. In all instances, scaled blood glucose reported blood glucose as safe. Outpatient trials evaluating artificial pancreas performance based on sensor glucose may not detect hypoglycaemia when sensor glucose reads higher than blood glucose. Because these errors are expected to occur, in-hospital artificial pancreas studies using supplemental carbohydrate in anticipation of hypoglycaemia, which allow safety to be assessed in a controlled non-significant environment should be considered as an alternative. Inpatient studies provide a definitive alternative to model-based computer simulations and can be conducted in parallel with closely monitored outpatient artificial pancreas studies used to assess benefit. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  18. Acoustic control of mosquito larvae in artificial drinking water containers

    USDA-ARS?s Scientific Manuscript database

    Acoustic larvicide devices are part of an emerging technology that provides a non-chemical and non-biological means to reduce larval populations of key medically important mosquito species such as Aedes aegypti in containers or catchments of water. These devices could benefit integrated vector manag...

  19. Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence

    EPA Science Inventory

    Information on where and how individuals spend their time is important for characterizing exposures to chemicals in consumer products and in indoor environments. Traditionally, exposure assessors have relied on time-use surveys in order to obtain information on exposure-related b...

  20. 21 CFR 189.135 - Cyclamate and its derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., (C6H12NO3S)2Mg, and (C6H12NO3S)K. Cyclamates are synthetic chemicals having a sweet taste 30 to 40 times that... have been used as artificial sweeteners. (b) Food containing any added or detectable level of cyclamate...

  1. Tunable Artificial Receptor as a Chemical Sensor for V- and G-agents

    DTIC Science & Technology

    2012-06-01

    shows the design concept for a fluorescent tether. The highly electrophilic nature of fluorescein required the used of carefully selected protecting...atoms removed for clarity) and a space-filling model (Key to figures: carbon: grey; oxygen: red; nitrogen: blue; phosphorus: orange; fluorine : yellow

  2. Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers

    PubMed Central

    Pavilonis, Brian T.; Weisel, Clifford P.; Buckley, Brian; Lioy, Paul J.

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960’s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semivolatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n=8), different types of infill (n=8), and samples from actual fields (n=7). Three artificial biofluids were prepared which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. PMID:23758133

  3. Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates)

    NASA Astrophysics Data System (ADS)

    Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui

    This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.

  4. Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing.

    PubMed

    Thiel, Scott; Mitchell, Jennifer; Williams, Jim

    2017-03-01

    Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system.

  5. Artificially structured thin-film materials and interfaces.

    PubMed

    Narayanamurti, V

    1987-02-27

    The ability to artificially structure new materials on an atomic scale by using advanced crystal growth methods such as molecular beam epitaxy and metal-organic chemical vapor deposition has recently led to the observation of unexpected new physical phenomena and to the creation of entirely new classes of devices. In particular, the growth of materials of variable band gap in technologically important semiconductors such as GaAs, InP, and silicon will be reviewed. Recent results of studies of multilayered structures and interfaces based on the use of advanced characterization techniques such as high-resolution transmission electron microscopy and scanning tunneling microscopy will be presented.

  6. Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing

    PubMed Central

    Thiel, Scott; Mitchell, Jennifer; Williams, Jim

    2016-01-01

    Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system. PMID:27784829

  7. Chemical Separation of Fe-Ni Particles after Impact

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Fukuyama, S.; Kedves, M. A.; Yamori, A.; Okamoto, M.; Gucsik, A.

    Tiny grains of Fe-Ni system originated from planetesimals or meteoroids can remain under solid (or melt)-solid impact reactions even after impact process, probably together with high pressure form of Fe phase. Impact fragment with major Fe-Si (-Ni) system can be formed under vapor condition of impact reaction from terrestrial and artificial impact craters and spherules, and those with Ni-Cl (-S) system in composi- tion are formed under vapor condition of artificial impact experiments on the Barringer iron meteorite. These impact grains of Fe-bearing composition or high pressure form of iron-rich phases will be found probably on the asteroids in future exploration

  8. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?

    PubMed

    Skoraczyński, G; Dittwald, P; Miasojedow, B; Szymkuć, S; Gajewska, E P; Grzybowski, B A; Gambin, A

    2017-06-15

    As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest - and hope - that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited - in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors.

  9. Fitting PMT Responses with an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kemmerer, William; Niculescu, Gabriel

    2017-09-01

    Correctly modeling the low light responce of photodetectors such as photomultiplier tubes (PMT) is crucial for the operation of particle detection relying on the Cherenkov effect. The Gas Ring Imaging Cherenkov (GRINCH) in the SuperBigBite Spectrometer (SBS) at Jefferson Lab will rely on an array of 510 29 mm 9125B PMTs. To select the tubes for this array, more than 900 were tested and their low-light response function was fitted. An Artificial Neural Network was defined and trained to extract the relevant PMT parameters without carrying out a detailed fir of the ADC spectrum. These results will be discussed here. NSF.

  10. Optimization of Artificial Propagation in Piracanjuba Fish Brycon orbignyanus Using Cryopreserved Semen.

    PubMed

    Felizardo, V O; Melo, C C V; Murgas, L D S; Andrade, E S; Navarro, R D; Ftreitas, T F

    BACKGROUND: Cryopreserved semen could facilitate procedures during the artificial reproduction in fish. Factors affecting cryopreservation efficiency are important to define efficient protocols. This study investigated the application of cryoprotectants on the quality of piracanjuba fish semen, the sperm concentration required for oocyte fertilization and spermatic activation. We evaluated two intracellular cryoprotectant solutions (DMSO and methanol) and two extracellular cryoprotectant solutions (egg yolk and lactose) to cryopreserved piracanjuba semen. Sperm motility rate, motility duration and spermatic alterations were assessed. The protocol for piracanjuba semen cryopreservation can use solutions including either DMSO or methanol as intracellular cryoprotectant and egg yolk or lactose as extracellular cryoprotectants.

  11. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    PubMed Central

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305

  12. Aps and Tep Chemical Characterization: Link Between The Dom and Pom Pools

    NASA Astrophysics Data System (ADS)

    Gogou, A.; Repeta, D. J.

    The ocean inventory of dissolved organic carbon (DOC) is approximately 750 GT, comprising one of the Earth's largest carbon reservoirs on Earth. Despite its potential significance, the mechanisms that lead to DOM production and to spatial and temporal variations of DOM concentration in the world ocean are poorly understood. Chemical characterization studies show that up to 50% of HMW DOM is a structurally well-defined class of acylated polysaccharides (APS), which exhibits novel molecular-level characteris tics. Although APS synthesis occurs in the euphotic zone, a large fraction of the marine inventory of APS (appr. 10-30 GT C), resides in the deep ocean, and is approximately equal in mass to the total marine inventory of particulate organic carbon. While radiocarbon dating of deep sea DOC yields very old apparent ages (4000-6000 ybp), radiocarbon measurements made by our group on individual APS sugars shows that APS in the deep ocean has a radiocarbon value of +56 per mil, equivalent to surface water POC and DIC. This is the first clear evidence for the presence of "young" DOC in the deep ocean. One mechanism that could be important for the rapid removal of APS from surface seawater is physical removal by macroaggregates. To investigate the significance of this mechanism, we studied the chemical composition of surface-active POM (TEP) produced naturally on surface waters and in laboratory experiments, after bubbling of HMW DOM isolated from algal cultures. 1H-NMR spectral properties and molecular-level distribution of neutral sugars in natural and artificially produced TEP closely resembled those observed for cultured and oceanic HMW DOM, while they are significantly different from those of suspended particulate matter in the ocean (Gogou and Repeta, 2000). The results of these experiments provide evidence that POM with similar chemical characteristics to HMW DOM can be produced from algal-derived DOM in the surface ocean.

  13. Biodegradation screening of chemicals in an artificial matrix simulating the water-sediment interface.

    PubMed

    Baginska, Ewelina; Haiß, Annette; Kümmerer, Klaus

    2015-01-01

    Biodegradation is the most important attenuation process for most of organic chemicals in the environment. This process decides whether the organic substance itself or its degradation products rests in the environment and should be considered for a further risk assessment. This work presents the development of a water sediment screening test, based on OECD guideline 308, with a high significance to environmental conditions and with a good reproducibility and consistency of results. The increased reproducibility was achieved by creating an artificial and standardized medium, based on the existing OECD guidelines OECD 302C, 301D and 218. Each test consisted of five different series: blank, quality control, test, toxicity control and abiotic control. Biodegradation was assessed by measurement of pressure difference in closed vessels using the OxiTop(®) system. Aniline, diethylene glycol and sodium acetate were used to optimize and validate test conditions. Additionally, two pharmaceuticals: Acetaminophen and ciprofloxacin (CIP) were tested as an example of possible test application. Acetaminophen was mainly removed from the system by biodegradation whereas CIP was removed from water phase by sorption onto sediment. Water sediment test proved to be a promising tool for the biodegradation investigation of chemicals in the water-sediment interface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2017-09-01

    Bacteria are far more intelligent than we can think of. They adopt different survival strategies to make their life comfortable. Researches on bacterial communication to date suggest that bacteria can communicate with each other using chemical signaling molecules as well as using ion channel mediated electrical signaling. Though in past few decades the scopes of chemical signaling have been investigated extensively, those of electrical signaling have received less attention. In this article, we present a novel perspective on time-sharing behavior, which maintains the biofilm growth under reduced nutrient supply between two distant biofilms through electrical signaling based on the experimental evidence reported by Liu et al., in 2017. In addition, following the recent work by Humphries et al. Cell 168(1):200-209, in 2017, we highlight the consequences of long range electrical signaling within biofilm communities through spatially propagating waves of potassium. Furthermore, we address the possibility of two-way cellular communication between artificial and natural cells through chemical signaling being inspired by recent experimental observation (Lentini et al. 2017) where the efficiency of artificial cells in imitating the natural cells is estimated through cellular Turing test. These three spectacular observations lead us to envisage and devise new classical and quantum views of these complex biochemical networks that have never been realized previously.

  15. Predicting Exposure to Consumer-Products Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence and Empirically -Based Scheduling Models

    EPA Science Inventory

    Information on human behavior and consumer product use is important for characterizing exposures to chemicals in consumer products and in indoor environments. Traditionally, exposure-assessors have relied on time-use surveys to obtain information on exposure-related behavior. In ...

  16. NCAA Drug-Testing Program 2010-11

    ERIC Educational Resources Information Center

    National Collegiate Athletic Association (NJ1), 2010

    2010-01-01

    The National Collegiate Athletic Association (NCAA) Drug-Testing Program was created to protect the health and safety of student-athletes and to ensure that no one participant might have an artificially induced advantage or be pressured to use chemical substances. This publication describes this program in the following chapters: (1) NCAA…

  17. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Artificial Synthesis of New Life Forms

    ERIC Educational Resources Information Center

    Danielli, James F.

    1972-01-01

    Research in manipulation of genetic inheritance opens new vistas. Biologically-styled industrial synthesis is better in many respects than chemical engineering practices now in use. An approach for improving hereditary characters in living organisms without considering social implications is unwise. (PS)

  18. 21 CFR 501.22 - Animal foods; labeling of spices, flavorings, colorings, and chemical preservatives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., meat, fish, poultry, eggs, dairy products, or fermentation products thereof. Artificial flavor includes... products, or fermentation products thereof, whose significant function in food is flavoring rather than... or retard deterioration thereof, but does not include common salt, sugars, vinegars, spices, or oils...

  19. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    NASA Astrophysics Data System (ADS)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  20. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  1. How do we think machines think? An fMRI study of alleged competition with an artificial intelligence

    PubMed Central

    Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine

    2012-01-01

    Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents. PMID:22586381

  2. How do we think machines think? An fMRI study of alleged competition with an artificial intelligence.

    PubMed

    Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine

    2012-01-01

    Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents.

  3. Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential.

    PubMed

    Liu, Chang-He; Dong, Hai-Bo; Ma, Dong-Li; Li, You-Wei; Han, Dong; Luo, Ming-Jiu; Chang, Zhong-Le; Tan, Jing-He

    2016-01-01

    A specific problem in goat semen preservation is the detrimental effect of seminal plasma on sperm viability in extenders containing yolk or milk. Thus, the use of chemically defined extenders will have obvious advantages. Although previous studies indicate that the initial pH of an extender is crucial to sustain high sperm motility, changes in extender pH during long-term semen storage have not been observed. Monitoring extender pH at different times of semen storage and modeling its variation according to nonlinear models is thus important for protocol optimization for long-term liquid semen preservation. The present results showed that during long-term liquid storage of goat semen, both sperm motility and semen pH decreased gradually, and a strong correlation was observed between the two. Whereas increasing the initial extender pH from 6.04 to 6.25 or storage with stabilized pH improved, storage with artificially lowered pH impaired sperm motility. Extender renewal improved sperm motility by maintaining a stable pH. Sperm coating with chicken (Gallus gallus) egg yolk improved motility by increasing tolerance to pH decline. A new extender (n-mZAP) with a higher buffering capacity was formulated, and n-mZAP maintained higher sperm motility, membrane integrity and acrosome intactness than the currently used mZAP extender did. Goat semen liquid-stored for 12 d in n-mZAP produced pregnancy and kidding rates similar to those obtained with freshly collected semen following artificial insemination. In conclusion, maintenance of a stable pH during liquid semen storage dramatically improved sperm viability and fertilizing potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct Analysis in Real Time-Mass Spectrometry & Kohonen Artificial Neural Networks for the Rapid Species Identification of Larvae, Pupae and Adult Life Stages of Carrion Insects.

    PubMed

    Beyramysoltan, Samira; Giffen, Justine E; Rosati, Jennifer Y; Musah, Rabi Ann

    2018-06-20

    Species determination of the various life stages of flies (order: Diptera) is challenging, particularly for the immature forms, because analogous life stages of different species are difficult to differentiate morphologically. It is demonstrated here that DART high-resolution mass spectrometry (DART-HRMS) combined with supervised Kohonen Self-Organizing Maps (SOM) enables accomplishment of species-level identification of larvae, pupae and adult life stages of carrion flies. DART-HRMS data for each life stage were acquired from analysis of ethanol suspensions representing Calliphoridae, Phoridae and Sarcophagidae families, without additional sample preparation. After preprocessing, the data were subjected to a combination of minimum Redundancy Maximal Relevance (mRMR) and Sparse Discriminant Analysis (SDA) methods to select the most significant variables for creating accurate SOM models. The resulting data were divided into training and validation sets, and then analyzed by the SOM method to define the proper discrimination models. The 5-fold venetian blind cross-validation misclassification error was below 7% for all life stages, and the validation samples were correctly identified in all cases. The multiclass SOM model also revealed which chemical components were the most significant markers for each species, with several of these being amino acids. The results show that processing of DART-HRMS data using artificial neural networks (ANNs) based on the Kohonen SOM approach enables rapid discrimination and identification of fly species even for the immature life stages. The ANNs can be continuously expanded to include a larger number of species, and can be used to screen DART-HRMS data from unknowns to rapidly determine species identity.

  5. Towards a Scalable, Biomimetic, Antibacterial Coating

    NASA Astrophysics Data System (ADS)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria, without the use of any chemical antibiotic agents. Such nanotopographic coatings can be applied to implantable polymer medical devices with scalable, commercializable processes, and may deter or delay biofilm formation, potentially improving patient outcomes. This thesis also opens the door for adaptation of antibacterial, nanopillared surfaces for other applications including other medical devices, marine applications and environmental surfaces.

  6. Temporal Variation of Chemical Persistence in a Swedish Lake Assessed by Benchmarking.

    PubMed

    Zou, Hongyan; Radke, Michael; Kierkegaard, Amelie; McLachlan, Michael S

    2015-08-18

    Chemical benchmarking was used to investigate the temporal variation of the persistence of chemical contaminants in a Swedish lake. The chemicals studied included 12 pharmaceuticals, an artificial sweetener, and an X-ray contrast agent. Measurements were conducted in late spring, late autumn, and winter. The transformation half-life in the lake could be quantified for 7 of the chemicals. It ranged from several days to hundreds of days. For 5 of the chemicals (bezafibrate, climbazole, diclofenac, furosemide, and hydrochlorothiazide), the measured persistence was lower in late spring than in late autumn. This may have been caused by lower temperatures and/or less irradiation during late autumn. The seasonality in chemical persistence contributed to changes in chemical concentrations in the lake during the year. The impact of seasonality of persistence was compared with the impact of other important variables determining concentrations in the lake: chemical inputs and water flow/dilution. The strongest seasonal variability in chemical concentration in lake water was observed for hydrochlorothiazide (over a factor of 10), and this was attributable to the seasonality in its persistence.

  7. Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation

    PubMed Central

    Kim, Soohyun; Kim, Hyori; Chung, Junho

    2016-01-01

    For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process. PMID:26764487

  8. Review of Artificial Abrasion Test Methods for PV Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Muller, Matt T.; Simpson, Lin J.

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended tomore » provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.« less

  9. Disruption of behavior and brain metabolism in artificially reared rats.

    PubMed

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  10. Development and validation of a sensitive LC-MS-MS method for the simultaneous determination of multicomponent contents in artificial Calculus Bovis.

    PubMed

    Peng, Can; Tian, Jixin; Lv, Mengying; Huang, Yin; Tian, Yuan; Zhang, Zunjian

    2014-02-01

    Artificial Calculus Bovis is a major substitute in clinical treatment for Niuhuang, a widely used, efficacious but rare traditional Chinese medicine. However, its chemical structures and the physicochemical properties of its components are complicated, which causes difficulty in establishing a set of effective and comprehensive methods for its identification and quality control. In this study, a simple, sensitive and reliable liquid chromatography-tandem mass spectrometry method was successfully developed and validated for the simultaneous determination of bilirubin, taurine and major bile acids (including six unconjugated bile acids, two glycine-conjugated bile acids and three taurine-conjugated bile acids) in artificial Calculus Bovis using a Zorbax SB-C18 column with a gradient elution of methanol and 10 mmol/L ammonium acetate in aqueous solution (adjusted to pH 3.0 with formic acid). The mass spectra were obtained in the negative ion mode using dehydrocholic acid as the internal standard. The content of each analyte in artificial Calculus Bovis was determined by monitoring specific ion pairs in the selected reaction monitoring mode. All analytes demonstrated perfect linearity (r(2) > 0.994) in a wide dynamic range, and 10 batches of samples from different sources were further analyzed. This study provided a comprehensive method for the quality control of artificial Calculus Bovis.

  11. PIXE Analysis of Artificial Turf

    NASA Astrophysics Data System (ADS)

    Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.

  12. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.

    PubMed

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-03-02

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length ( L ), interval ( S ), and height ( H ) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  13. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    PubMed Central

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  14. Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru; Physics Faculty, Lomonosov Moscow State University, Moscow 119991; Lubenchenko, A. V.

    2015-03-28

    Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of themore » alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.« less

  15. A comparison between artificial and natural water oxidation.

    PubMed

    Li, Xichen; Chen, Guangju; Schinzel, Sandra; Siegbahn, Per E M

    2011-11-14

    Two artificial water oxidation catalysts, the blue dimer and the Llobet catalyst, have been studied using hybrid DFT methods. The results are compared to those for water oxidation in the natural photosystem II enzyme. Studies on the latter system have now reached a high level of understanding, at present much higher than the one for the artificial systems. A recent high resolution X-ray structural investigation of PSII has confirmed the main features of the structure of the oxygen evolving complex (OEC) suggested by previous DFT cluster studies. The O-O bond formation mechanism suggested is of direct coupling (DC) type between an oxygen radical and a bridging oxo ligand. A similar DC mechanism is found for the Llobet catalyst, while an acid-base (AB) mechanism is preferred for the blue dimer. All of them require at least one oxygen radical. Full energy diagrams, including both redox and chemical steps, have been constructed illustrating similarities and differences to the natural system. Unlike previous DFT studies, the results of the present study suggest that the blue dimer is rate-limited by the initial redox steps, and the Llobet catalyst by O(2) release. The results could be useful for further improvement of the artificial systems.

  16. Evaluation of the efficiency and safety in cosmetic products.

    PubMed

    Uckaya, Meryem; Uckaya, Fatih; Demir, Nazan; Demir, Yasar

    2016-02-29

    Chemicals used in cosmetics have to interact with enzymes for beneficial or destroy purpose after they enter in our body. Active sections of enzymes that catalyze reactions have three dimensions and they are active optically. When these limitations of catalytic sections are considered, it may be considered that defining geometric specifications of chemical materials and functional groups they contain may contribute on safety evaluations of cosmetic products. In this study, defining similarities and differences of geometric structures of chemicals that are prohibited to be used in cosmetic products and chemical that are allowed to be used by using group theory and analyze of functional groups that are often encountered in these chemicals are aimed. Molecule formulas related to chemical material of, 276 pieces chemicals that are prohibited to be used in cosmetic products and 65 pieces chemicals that are allowed, are used as the material. Two and three-dimension structures of these formulas are drawn and types and quantity of functional groups they contain are defined. And as a method, freeware (Free Trial) version of "Chem-BioOffice Ultra 13.0 Suite" chemical drawing program to draw two and three-dimension of formulas, "Campus-Licensed" version that are provided for use by our university of "Autodesk 3DS Max" for three-dimension drawings are used. In order to analyze geometric specifications of drawn molecules according to Group Theory and define type and quantity of available functional groups, Excel applications developed by Prof. Dr. Yaşar Demir are used. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Erickson, Amy A.; Feller, Ilka C.; Paul, Valerie J.; Kwiatkowski, Lisa M.; Lee, Woody

    2008-02-01

    Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ˜ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet. Artificial feeding assays also demonstrated that chemical cues were responsible for selection of animal matter, up to 25× more than other available resources. Non-polar extracts (derived from extraction in 1:1 ethyl actetate:methanol) stimulated feeding the most, suggesting that fatty acids, triglycerides, or sterols may be important for growth, reproduction, or survival. Results for both sexes were similar across most assays. While chemical composition of food resources appears to play some role in selection, this does not discount the potential role of other factors, such as resource availability, competition, predation, or reproductive requirements in influencing feeding preferences. Bioassay-guided fractionation of extracts should aid in determining chemical constituents that play the greatest role in determining feeding preferences.

  18. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.

    PubMed

    Hisaki, Tomoka; Aiba Née Kaneko, Maki; Yamaguchi, Masahiko; Sasa, Hitoshi; Kouzuki, Hirokazu

    2015-04-01

    Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).

  20. Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC)

    DTIC Science & Technology

    2015-09-01

    Proliferation of weapons of mass destruction (WMD, defined as nuclear, chemical , and biological) and weapons of mass effect (WME, defined as other high... Chemical Weapons • Scoping Study for a U.S.-Israel Strategic Dialogued 5 • U.S.-India Strategic Dialogue • Implications of Indian Tactical...of Chemical Weapons : Strategic Dialogue, Research, and Report Performer: Arizona State University (ASU) Principal Investigator: Orde Kittrie Cost

  1. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production.

    PubMed

    Pflugfelder, Stephen C; De Paiva, Cintia S; Villarreal, Arturo L; Stern, Michael E

    2008-01-01

    To evaluate the effects of sequential treatment with artificial tears and cyclosporine emulsion on conjunctival goblet cell density and production of transforming growth factor (TGF)-beta2 in patients with dry eye disease. Patients with dry eye disease (N = 6) defined by an Ocular Surface Disease Index symptom score >or=25, Schirmer test 1 <10 mm, and corneal fluorescein and conjunctival lissamine green staining scores >or=3 were treated with artificial tears (Refresh Plus; Allergan, Irvine, CA) 4 times a day for 4 weeks, followed by 0.05% cyclosporine emulsion (Restasis; Allergan) twice a day for 12 weeks. Impression cytology was performed on the bulbar conjunctiva of both eyes at baseline, after artificial tear therapy, and after 6 and 12 weeks of cyclosporine therapy. Goblet cells were counted in 5 representative microscopic fields per membrane in those taken from the temporal and inferior bulbar conjunctiva of the worse eye, and membranes taken from the fellow eye were immunostained for TGF-beta2. There were no differences in mean goblet cell density between baseline and 4 weeks of artificial tears in the temporal and inferior bulbar specimens. After 6 weeks of cyclosporine emulsion, goblet cell density was significantly greater than baseline and artificial tears in the inferior bulbar conjunctiva (P < 0.01). After 12 weeks of cyclosporine emulsion, goblet cell density was significantly greater than baseline and artificial tears in both temporal and inferior bulbar sites (P < 0.01). The number of TGF-beta2-positive goblet cells was also noted to increase after 6 and 12 weeks of cyclosporine therapy (P < 0.001). Cyclosporine emulsion, but not artificial tears, increases goblet cell density and production of the immunoregulatory factor TGF-beta2 in the bulbar conjunctiva in patients with dry eye.

  2. Artificial Turf: Contested Terrains for Precautionary Public Health with Particular Reference to Europe?

    PubMed Central

    Watterson, Andrew

    2017-01-01

    Millions of adults, children and teenagers use artificial sports pitches and playgrounds globally. Pitches are artificial grass and bases may be made up of crumb rubber from recycled tires or new rubber and sand. Player injury on pitches was a major concern. Now, debates about health focus on possible exposure and uptake of chemicals within pitch and base materials. Research has looked at potential risks to users from hazardous substances such as metals, volatile organic compounds, polycyclic aromatic hydrocarbons including benzo (a) (e) pyrenes and phthalates: some are carcinogens and others may be endocrine disruptors and have developmental reproductive effects. Small environmental monitoring and modelling studies, often with significant data gaps about exposure, range of substances monitored, occupational exposures, types of surfaces monitored and study length across seasons, indicated little risk to sports people and children but some risk to installation workers. A few, again often small, studies indicated potentially harmful human effects relating to skin, respiration and cancers. Only one widely cited biomonitoring study has been done and no rigorous cancer epidemiological studies exist. Unravelling exposures and uptake over decades may prove complex. European regulators have strengthened controls over crumb rubber chemicals, set different standards for toys and crumb rubber pitches. Bigger US studies now underway attempting to fill some of the data gaps will report between 2017 and 2019. Public health professionals in the meantime may draw on established principles to support greater caution in setting crumb rubber exposure limits and controls. PMID:28895924

  3. Insectivorous birds eavesdrop on the pheromones of their prey.

    PubMed

    Saavedra, Irene; Amo, Luisa

    2018-01-01

    Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.

  4. The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.

    2016-12-01

    Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.

  5. Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers.

    PubMed

    Pavilonis, Brian T; Weisel, Clifford P; Buckley, Brian; Lioy, Paul J

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semi-volatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n = 8), different types of infill (n = 8), and samples from actual fields (n = 7). Three artificial biofluids were prepared, which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids, precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. © 2013 Society for Risk Analysis.

  6. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Using Decision Support System to Find Suitable Sites for Groundwater Artificial Recharge

    NASA Astrophysics Data System (ADS)

    Ghasemian, D.; Winter, C. L.; Kheirkhah Zarkesh, M. M.; Moradi, H. R.

    2014-12-01

    Some parts of Iran are considered as one of the driest regions of the world, where water is a limiting factor for lasting life therefore using seasonal floodwaters is very important in these arid regions. On the other hand, special attention has been paid to artificial groundwater recharge in these regions. Floodwater spreading on the permeable terrain is one of the flood control and utilization methods. Determination of appropriate site for water spreading is one of the most important stages of this project. Parameters considered in the selection of groundwater artificial recharge locations are diverse and complex. These factors consist of earth sciences (geology, geomorphology and soils), hydrology (runoff, sediment yield, infiltration and groundwater conditions) and socio-economic aspects (irrigated agriculture, flood damage mitigation, environment, job creation and so on). Hence, decision making depends on criteria of diverse nature. The goal of this study is defining a Decision Support System for floodwater site selection in Shahriary area. Four main criteria were selected in this research which are floodwater characters, infiltration, water applications and flood damage. In order to determine the weight of factors, Analytical Hierarchy Process was used. The results showed that soil texture and floodwater volume of infiltration are the most important factors. After providing output maps which had been defined in five scenarios, Kappa Index was used to evaluate the model. Based on the obtained results, the maps showed an acceptable agreement with control zones.

  8. Expert System Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    C Language Integrated Production System (CLIPS) is a software shell for developing expert systems is designed to allow research and development of artificial intelligence on conventional computers. Originally developed by Johnson Space Center, it enables highly efficient pattern matching. A collection of conditions and actions to be taken if the conditions are met is built into a rule network. Additional pertinent facts are matched to the rule network. Using the program, E.I. DuPont de Nemours & Co. is monitoring chemical production machines; California Polytechnic State University is investigating artificial intelligence in computer aided design; Mentor Graphics has built a new Circuit Synthesis system, and Brooke and Brooke, a law firm, can determine which facts from a file are most important.

  9. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    NASA Astrophysics Data System (ADS)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  10. Towards Self-Assembled Hybrid Artificial Cells: Novel Bottom-Up Approaches to Functional Synthetic Membranes

    PubMed Central

    Brea, Roberto J.; Hardy, Michael D.; Devaraj, Neal K.

    2015-01-01

    There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. PMID:26149747

  11. Artificial Affinity Proteins as Ligands of Immunoglobulins

    PubMed Central

    Mouratou, Barbara; Béhar, Ghislaine; Pecorari, Frédéric

    2015-01-01

    A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized. PMID:25647098

  12. Nanotechnologv Enabled Biological and Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  13. The effects of gelatin supplementation prior to cooling on ram semen quality and fertility.

    USDA-ARS?s Scientific Manuscript database

    The physical and chemical characteristics of gelatin have been used to justify its inclusion in extenders to preserve the sperm quality and improve results of cervical artificial insemination with cooled semen. The objective of this study was to evaluate the effect of gelatin supplementation in cool...

  14. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  15. The great chemical residue detection debate: dog versus machine

    NASA Astrophysics Data System (ADS)

    Tripp, Alan C.; Walker, James C.

    2003-09-01

    Many engineering groups desire to construct instrumentation to replace dog-handler teams in identifying and localizing chemical mixtures. This goal requires performance specifications for an "artificial dog-handler team". Progress toward generating such specifications from laboratory tests of dog-handler teams has been made recently at the Sensory Research Institute, and the method employed is amenable to the measurement of tasks representative of the decision-making that must go on when such teams solve problems in actual (and therefore informationally messy) situations. As progressively more quantitative data are obtained on progressively more complex odor tasks, the boundary conditions of dog-handler performance will be understood in great detail. From experiments leading to this knowledge, one ca develop, as we do in this paper, a taxonomy of test conditions that contain various subsets of the variables encountered in "real world settings". These tests provide the basis for the rigorous testing that will provide an improved basis for deciding when biological sensing approaches (e.g. dog-handler teams) are best and when "artificial noses" are most valuable.

  16. Catalytic nanomotors for environmental monitoring and water remediation

    PubMed Central

    Soler, Lluís

    2014-01-01

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes—and therefore pollutants, or “chemical threats”—can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These “self-powered remediation systems” could be seen as a new generation of “smart devices” for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future. PMID:24752489

  17. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin; Mielniczek-Brzóska, Ewa

    2015-11-01

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca2+ ions and causes the formation of CaCit- and Ca10(PO4)6CO3 complexes. Trisodium citrate binds Ca2+ ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed.

  18. Short-term memory of TiO2-based electrochemical capacitors: empirical analysis with adoption of a sliding threshold

    NASA Astrophysics Data System (ADS)

    Lim, Hyungkwang; Kim, Inho; Kim, Jin-Sang; Hwang, Cheol Seong; Jeong, Doo Seok

    2013-09-01

    Chemical synapses are important components of the large-scaled neural network in the hippocampus of the mammalian brain, and a change in their weight is thought to be in charge of learning and memory. Thus, the realization of artificial chemical synapses is of crucial importance in achieving artificial neural networks emulating the brain’s functionalities to some extent. This kind of research is often referred to as neuromorphic engineering. In this study, we report short-term memory behaviours of electrochemical capacitors (ECs) utilizing TiO2 mixed ionic-electronic conductor and various reactive electrode materials e.g. Ti, Ni, and Cr. By experiments, it turned out that the potentiation behaviours did not represent unlimited growth of synaptic weight. Instead, the behaviours exhibited limited synaptic weight growth that can be understood by means of an empirical equation similar to the Bienenstock-Cooper-Munro rule, employing a sliding threshold. The observed potentiation behaviours were analysed using the empirical equation and the differences between the different ECs were parameterized.

  19. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  20. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    NASA Astrophysics Data System (ADS)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  1. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network.

    PubMed

    Janet, Jon Paul; Chan, Lydia; Kulik, Heather J

    2018-03-01

    Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.

  2. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  3. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  4. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  5. The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Dragon, Toby

    2013-01-01

    This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…

  6. Growing media [Chapter 5

    Treesearch

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  7. Electric deregulation: Defining and ensuring fair competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, A.E.

    1998-04-01

    Regulation has several important duties in the transition of the electricity industry to competition. But in fulfilling these responsibilities, regulators must refrain from policies pressed upon them by consumer representatives, on one side, and would-be rivals of utility companies, on the other, that would artificially handicap utilities and blunt the salutary forces of competition.

  8. The Glass Ceiling Initiative. A Report.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC.

    While minorities and women have made considerable gains in entering the workforce in the last few decades, there remains a dearth of minorities and women at management levels. This phenomenon has come to be known as the "glass ceiling." The Department of Labor defines the glass ceiling as those artificial barriers based on attitudinal or…

  9. Semantics of Context-Free Fragments of Natural Languages.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The objective of this paper is to combine the viewpoint of model-theoretic semantics and generative grammar, to define semantics for context-free languages, and to apply the results to some fragments of natural language. Following the introduction in the first section, Section 2 describes a simple artificial example to illustrate how a semantic…

  10. On insomnia analysis using methods of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Skalski, M.

    2011-10-01

    Insomnia generally is defined as a subjective report of difficulty falling sleep, difficulty staying asleep, early awakening, or nonrestorative sleep. It is one of the most common health complaints among the general population. in this paper we try to find relationships between different insomnia cases and predisposing, precipitating, and perpetuating factors following by pharmacological treatment.

  11. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  12. Role of Educational Games Improves Meaningful Learning

    ERIC Educational Resources Information Center

    Nachimuthu, K.; Vijayakumari, G.

    2011-01-01

    A game is a set of activities involving one or more players. It has goals, constraints, payoffs, and consequences. A game is rule-guided and artificial in some respects. (Richard Wilson, 2010). According to Garris et al. (2002), define educational game play as "voluntary, nonproductive, and separate from the real world"; and they found…

  13. The Impact of Reading Material's Lexical Accessibility on Text Fading Effects in Children's Reading Performance

    ERIC Educational Resources Information Center

    Nagler, Telse; Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven

    2014-01-01

    The "acceleration phenomenon" (AP) is defined by improvements in reading speed and reading comprehension, induced by an artificial text fading procedure corresponding to the previously determined fastest individual reading rate. Recent results, however, indicated that fading that is slower than the self-paced reading rate can produce…

  14. A conceptual framework for intelligent real-time information processing

    NASA Technical Reports Server (NTRS)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  15. Fuzzy logic and A* algorithm implementation on goat foraging games

    NASA Astrophysics Data System (ADS)

    Harsani, P.; Mulyana, I.; Zakaria, D.

    2018-03-01

    Goat foraging is one of the games that apply the search techniques within the scope of artificial intelligence. This game involves several actors including players and enemies. The method used in this research is fuzzy logic and Algorithm A*. Fuzzy logic is used to determine enemy behaviour. The A* algorithm is used to search for the shortest path. There are two input variables: the distance between the player and the enemy and the anger level of the goat. The output variable that has been defined is the enemy behaviour. The A* algorithm is used to determine the closest path between the player and the enemy and define the enemy's escape path to avoid the player. There are 4 types of enemies namely farmers, planters, farmers and sellers of plants. Players are goats that aims to find a meal that is a plant. In this game goats aim to spend grass in the garden in the form of a maze while avoiding the enemy. The game provides an application of artificial intelligence and is made in four difficulty levels.

  16. Swarm formation control utilizing elliptical surfaces and limiting functions.

    PubMed

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  17. New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds.

    PubMed

    Krüger, O; Kalbe, U; Richter, E; Egeler, P; Römbke, J; Berger, W

    2013-04-01

    Artificial surfaces for outdoor sporting grounds may pose environmental and health hazards that are difficult to assess due to their complex chemical composition. Ecotoxicity tests can indicate general hazardous impacts. We conducted growth inhibition (Pseudokirchneriella subcapitata) and acute toxicity tests (Daphnia magna) with leachates obtained from batch tests of granular infill material and column tests of complete sporting ground assemblies. Ethylene propylene diene monomer rubber (EPDM) leachate showed the highest effect on Daphnia magna (EC(50) < 0.4% leachate) and the leachate of scrap tires made of styrene butadiene rubber (SBR) had the highest effect on P. subcapitata (EC(10) = 4.2% leachate; EC(50) = 15.6% leachate). We found no correlations between ecotoxicity potential of leachates and zinc and PAH concentrations. Leachates obtained from column tests revealed lower ecotoxicological potential. Leachates of column tests of complete assemblies may be used for a reliable risk assessment of artificial sporting grounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bioengineering strategies to generate artificial protein complexes.

    PubMed

    Kim, Heejae; Siu, Ka-Hei; Raeeszadeh-Sarmazdeh, Maryam; Sun, Qing; Chen, Qi; Chen, Wilfred

    2015-08-01

    For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique. © 2015 Wiley Periodicals, Inc.

  19. Lessons from natural and artificial polyploids in higher plants.

    PubMed

    Hegarty, M; Coate, J; Sherman-Broyles, S; Abbott, R; Hiscock, S; Doyle, J

    2013-01-01

    Polyploidy in higher plants is a major source of genetic novelty upon which selection may act to drive evolution, as evidenced by the widespread success of polyploid species in the wild. However, research into the effects of polyploidy can be confounded by the entanglement of several processes: genome duplication, hybridisation (allopolyploidy is frequent in plants) and subsequent evolution. The discovery of the chemical agent colchicine, which can be used to produce artificial polyploids on demand, has enabled scientists to unravel these threads and understand the complex genomic changes involved in each. We present here an overview of lessons learnt from studies of natural and artificial polyploids, and from comparisons between the 2, covering basic cellular and metabolic consequences through to alterations in epigenetic gene regulation, together with 2 in-depth case studies in Senecio and Glycine. See also the sister article focusing on animals by Arai and Fujimoto in this themed issue. Copyright © 2013 S. Karger AG, Basel.

  20. Materials for Diabetes Therapeutics

    PubMed Central

    Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.; Langer, Robert

    2013-01-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). PMID:23184741

  1. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    PubMed

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  3. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  4. Predatory behaviour in synthetic protocell communities

    NASA Astrophysics Data System (ADS)

    Qiao, Yan; Li, Mei; Booth, Richard; Mann, Stephen

    2017-02-01

    Recent progress in the chemical construction of colloidal objects comprising integrated biomimetic functions is paving the way towards rudimentary forms of artificial cell-like entities (protocells). Although several new types of protocells are currently available, the design of synthetic protocell communities and investigation of their collective behaviour has received little attention. Here we demonstrate an artificial form of predatory behaviour in a community of protease-containing coacervate microdroplets and protein-polymer microcapsules (proteinosomes) that interact via electrostatic binding. The coacervate microdroplets act as killer protocells for the obliteration of the target proteinosome population by protease-induced lysis of the protein-polymer membrane. As a consequence, the proteinosome payload (dextran, single-stranded DNA, platinum nanoparticles) is trafficked into the attached coacervate microdroplets, which are then released as functionally modified killer protocells capable of rekilling. Our results highlight opportunities for the development of interacting artificial protocell communities, and provide a strategy for inducing collective behaviour in soft matter microcompartmentalized systems and synthetic protocell consortia.

  5. Identifying chemicals that are planetary boundary threats.

    PubMed

    MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

    2014-10-07

    Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects.

  6. Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.

    PubMed

    Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi

    2018-04-01

    Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.

  7. Engineering of frustration in colloidal artificial ice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-09-01

    Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  8. Assembling the Anthropocene: deep-time perspective on the development of a lithostratigraphic classification of Anthropogenic deposits and excavations

    NASA Astrophysics Data System (ADS)

    Waters, C. N.; Ford, J. R.; Price, S.; Cooper, A. H.

    2012-12-01

    Human modification of the Earth's surface/subsurface is associated with artificial deposits (anthropogenic sedimentary units) and excavated ground (anthropogenic unconformities), analogous to ancient depositional systems. This study examines how artificial ground can be classified by the procedures used for natural deposits. Anthropogenic deposits have different characteristics to other parts of the stratigraphic column: 1) they vary greatly in lateral and vertical extent; 2) they are strictly allostratigraphic, i.e. defined and identified by bounding discontinuities, either unconformities (e.g. artificial deposits resting directly upon bedrock), disconformities (e.g. a time-gap between parallel artificial strata associated with non-deposition or reworking) or the present-day land surface; 3) many units have no overlying strata or bounding surface; 4) they are often poorly exposed, though associated landforms/geomorphology may show characteristic features that can aid definition. Artificial deposits comprise modified geologic materials, e.g. sand, clay, coal and novel anthropogenic materials, e.g. plastic, brick, glass. Such deposits are typically heterogeneous, the lithology determined for practical purposes by current/former landuse activity. BGS maps for the UK use a five-fold morpho-stratigraphic subdivision with no lithological attribution. An enhanced BGS scheme (Price et al. 2011) uses a three-tier hierarchy to describe the origin and landform of the deposit or excavation with lithology and age treated as additional attributes. Though based largely on geomorphlogical expression and genetic origin, the scheme can be used for classifying subsurface deposits lacking landform expression. Anthropogenic modification ('anthropoturbation') of rock and natural sediments, e.g. boreholes, tunnels and mineshafts, may extend to significant depths. Although indicating the extent of human influence they do not affect the classification of the stratigraphy; analogous to post-depositional tectonics not resulting in renamed lithostratigraphic units. However, it may be necessary to classify large non-stratiform bodies, i.e. underground infilled cavities, as lithodemic units in a manner applicable to igneous intrusive rocks. A lithostratigraphic scheme for the Anthropocene should conform to international stratigraphic principles (Salvador 1994), each unit named after an appropriate geographic location and defined by a stratotype. Inclusion of a lithologic term is discouraged by Salvador (1994) and because of the inherent heterogeneity of artificial deposits would be unsuitable. However, additional morphologic/genetic epithets could be included for low ranking units. PRICE, S.J., FORD, J.R., COOPER, A.H. & NEAL, C. 2011. Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society, A2011 369, 1056-1084. SALVADOR, A. 1994. International Stratigraphic Guide. A guide to stratigraphic classification, terminology, and procedure. 2nd Edition. The International Union of Geological Sciences and The Geological Society of America (Colorado). 214 pp.

  9. Consumption of Artificially-Sweetened Soft Drinks in Pregnancy and Risk of Child Asthma and Allergic Rhinitis

    PubMed Central

    Maslova, Ekaterina; Strøm, Marin; Olsen, Sjurdur F.; Halldorsson, Thorhallur I.

    2013-01-01

    Background Past evidence has suggested a role of artificial sweeteners in allergic disease; yet, the evidence has been inconsistent and unclear. Objective To examine relation of intake of artificially-sweetened beverages during pregnancy with child asthma and allergic rhinitis at 18 months and 7 years. Methods We analyzed data from 60,466 women enrolled during pregnancy in the prospective longitudinal Danish National Birth Cohort between 1996 and 2003. At the 25th week of gestation we administered a validated Food Frequency Questionnaire which asked in detail about intake of artificially-sweetened soft drinks. At 18 months, we evaluated child asthma using interview data. We also assessed asthma and allergic rhinitis through a questionnaire at age 7 and by using national registries. Current asthma was defined as self-reported asthma diagnosis and wheeze in the past 12 months. We examined the relation between intake of artificially-sweetened soft drinks and child allergic disease outcomes and present here odds ratios with 95% CI comparing daily vs. no intake. Results At 18 months, we found that mothers who consumed more artificially-sweetened non-carbonated soft drinks were 1.23 (95% CI: 1.13, 1.33) times more likely to report a child asthma diagnosis compared to non-consumers. Similar results were found for child wheeze. Consumers of artificially-sweetened carbonated drinks were more likely to have a child asthma diagnosis in the patient (1.30, 95% CI: 1.01, 1.66) and medication (1.13, 95% CI: 0.98, 1.29) registry, as well as self-reported allergic rhinitis (1.31, 95% CI: 0.98, 1.74) during the first 7 years of follow-up. We found no associations for sugar-sweetened soft drinks. Conclusion Carbonated artificially-sweetened soft drinks were associated with registry-based asthma and self-reported allergic rhinitis, while early childhood outcomes were related to non-carbonated soft drinks. These results suggest that consumption of artificially-sweetened soft drinks during pregnancy may play a role in offspring allergic disease development. PMID:23460835

  10. Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake.

    PubMed

    Zou, Hongyan; Radke, Michael; Kierkegaard, Amelie; MacLeod, Matthew; McLachlan, Michael S

    2015-02-03

    It is challenging to measure the persistence of chemicals under field conditions. In this work, two approaches for measuring persistence in the field were compared: the chemical mass balance approach, and a novel chemical benchmarking approach. Ten pharmaceuticals, an X-ray contrast agent, and an artificial sweetener were studied in a Swedish lake. Acesulfame K was selected as a benchmark to quantify persistence using the chemical benchmarking approach. The 95% confidence intervals of the half-life for transformation in the lake system ranged from 780-5700 days for carbamazepine to <1-2 days for ketoprofen. The persistence estimates obtained using the benchmarking approach agreed well with those from the mass balance approach (1-21% difference), indicating that chemical benchmarking can be a valid and useful method to measure the persistence of chemicals under field conditions. Compared to the mass balance approach, the benchmarking approach partially or completely eliminates the need to quantify mass flow of chemicals, so it is particularly advantageous when the quantification of mass flow of chemicals is difficult. Furthermore, the benchmarking approach allows for ready comparison and ranking of the persistence of different chemicals.

  11. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.

  12. Artificial gravity in space and in medical research

    NASA Technical Reports Server (NTRS)

    Cardus, D.

    1994-01-01

    The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space stations with some means of artificial gravity in this initial phase is, therefore, necessary without question. In a strict sense artificial gravity is conceived as a means of replacing natural gravity in space by the centripetal acceleration generated by some sort of rotating device. Rotating devices create an inertial force which has effects on bodies similar to those caused by terrestrial gravity, but artificial gravity by a rotation device is not the same as terrestrial gravity, as we shall see. Present research in artificial gravity for space exploration is projected in two main directions: artificial gravity for whole space stations and artificial gravity produced by short arm centrifuges designed for human use in space.

  13. Artificial gravity in space and in medical research.

    PubMed

    Cardús, D

    1994-05-01

    The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space stations with some means of artificial gravity in this initial phase is, therefore, necessary without question. In a strict sense artificial gravity is conceived as a means of replacing natural gravity in space by the centripetal acceleration generated by some sort of rotating device. Rotating devices create an inertial force which has effects on bodies similar to those caused by terrestrial gravity, but artificial gravity by a rotation device is not the same as terrestrial gravity, as we shall see. Present research in artificial gravity for space exploration is projected in two main directions: artificial gravity for whole space stations and artificial gravity produced by short arm centrifuges designed for human use in space.

  14. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  15. Hair decontamination procedure prior to multi-class pesticide analysis.

    PubMed

    Duca, Radu-Corneliu; Hardy, Emilie; Salquèbre, Guillaume; Appenzeller, Brice M R

    2014-06-01

    Although increasing interest is being observed in hair analysis for the biomonitoring of human exposure to pesticides, some limitations still have to be addressed for optimum use of this matrix in that specific context. One main possible issue concerns the need to differentiate chemicals biologically incorporated into hair from those externally deposited on hair surface from contaminated air or dust. The present study focuses on the development of a washing procedure for the decontamination of hair before analysis of pesticides from different chemical classes. For this purpose, three different procedures of artificial contamination (with silica, cellulose, and aqueous solution) were used to simulate pesticides deposition on hair surface. Several washing solvents (four organic: acetone, dichloromethane, methanol, acetonitrile; and four aqueous: water, phosphate buffer, shampoo, sodium dodecylsulfate) were evaluated for their capacity to remove artificially deposited pesticides from hair surface. The most effective washing solvents were sodium dodecylsulfate and methanol for aqueous and organic solvents, respectively. Moreover, after a first washing with sodium dodecylsulfate or methanol, the majority of externally deposited pesticides was removed and a steady-state was reached since significantly lower amounts were removed by additional second and third washings. Finally, the effectiveness of a decontamination procedure comprising washing with sodium dodecylsulfate and methanol was successively demonstrated. In parallel, it was determined that the final procedure did not affect the chemicals biologically incorporated, as hair strands naturally containing pesticides were used. Such a procedure appears to remove in one-shot the fraction of chemicals located on hair surface and does not require repeated washing steps. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Optical sensor nanoparticles in artificial sediments--a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses.

    PubMed

    Koren, Klaus; Brodersen, Kasper E; Jakobsen, Sofie L; Kühl, Michael

    2015-02-17

    Seagrass communities provide important ecosystems services in coastal environments but are threatened by anthropogenic impacts. Especially the ability of seagrasses to aerate their below-ground tissue and immediate rhizosphere to prevent sulfide intrusion from the surrounding sediment is critical for their resilience to environmental disturbance. There is a need for chemical techniques that can map the O2 distribution and dynamics in the seagrass rhizosphere upon environmental changes and thereby identify critical stress thresholds of e.g. water flow, turbidity, and O2 conditions in the water phase. In a novel experimental approach, we incorporated optical O2 sensor nanoparticles into a transparent artificial sediment matrix consisting of pH-buffered deoxygenated sulfidic agar. Seagrass growth and photosynthesis was not inhibited in the experimental setup when the below-ground biomass was immobilized in the artificial sulfidic sediment with nanoparticles and showed root growth rates (∼ 5 mm day(-1)) and photosynthetic quantum yields (∼ 0.7) comparable to healthy seagrasses in their natural habitat. We mapped the real-time below ground O2 distribution and dynamics in the whole seagrass rhizosphere during experimental manipulation of light exposure and O2 content in the overlaying water. Those manipulations showed that oxygen release from the belowground tissue is much higher in light as compared to darkness and that water column hypoxia leads to diminished oxygen levels around the rhizome/roots. Oxygen release was visualized and analyzed on a whole rhizosphere level, which is a substantial improvement to existing methods relying on point measurements with O2 microsensors or partial mapping of the rhizosphere in close contact with a planar O2 optode. The combined use of optical nanoparticle-based sensors with artificial sediments enables imaging of chemical microenvironments in the rhizosphere of aquatic plants at high spatiotemporal resolution with a relatively simple experimental setup and thus represents a significant methodological advancement for studies of environmental impacts on aquatic plant ecophysiology.

  17. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to identify the main adsorption mechanisms, and to study the effect of modifications in soil physico-chemical properties on the fate of pesticides.

  18. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation.

    PubMed

    Huh, Jung-Bo; Lee, Jeong-Yeol; Jeon, Young-Chan; Shin, Sang-Wan; Ahn, Jin-Soo; Ryu, Jae-Jun

    2013-05-01

    The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (α=0.05). Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

  20. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

    PubMed

    Tan, Juzhong; Kerr, William L

    2018-08-01

    Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN. Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%. The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Stereodivergent synthesis with a programmable molecular machine

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone

    2017-09-01

    It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the ribosome to polyketide synthases, where tethered molecules are passed from active site to active site in multi-enzyme complexes. Artificial molecular machines have been developed for tasks that include sequence-specific oligomer synthesis and the switching of product chirality, a photo-responsive host molecule has been described that is able to mechanically twist a bound molecular guest, and molecular fragments have been selectively transported in either direction between sites on a molecular platform through a ratchet mechanism. Here we detail an artificial molecular machine that moves a substrate between different activating sites to achieve different product outcomes from chemical synthesis. This molecular robot can be programmed to stereoselectively produce, in a sequential one-pot operation, an excess of any one of four possible diastereoisomers from the addition of a thiol and an alkene to an α,β-unsaturated aldehyde in a tandem reaction process. The stereodivergent synthesis includes diastereoisomers that cannot be selectively synthesized through conventional iminium-enamine organocatalysis. We anticipate that future generations of programmable molecular machines may have significant roles in chemical synthesis and molecular manufacturing.

  2. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.

    PubMed

    Urvoas, Agathe; Guellouz, Asma; Valerio-Lepiniec, Marie; Graille, Marc; Durand, Dominique; Desravines, Danielle C; van Tilbeurgh, Herman; Desmadril, Michel; Minard, Philippe

    2010-11-26

    Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (T(m) >70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    DOE PAGES

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...

    2016-07-05

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less

  4. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  5. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  6. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  7. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  8. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  9. Challenges in the Development of Functional Assays of Membrane Proteins

    PubMed Central

    Tiefenauer, Louis; Demarche, Sophie

    2012-01-01

    Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  10. Evaluating specificity of sequential extraction for chemical forms of lead in artificially-contaminated and field-contaminated soils.

    PubMed

    Tai, Yiping; McBride, Murray B; Li, Zhian

    2013-03-30

    In the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite. However, the BCR sequential extraction for field-collected soils with known and different sources of Pb contamination was not sufficiently discriminatory in the dissolution of soil Pb phases to allow soil Pb forms to be "fingerprinted" by this method. It is concluded that standard sequential extraction procedures are probably not very useful in predicting lability and bioavailability of Pb in contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

    PubMed Central

    Chen, Hao; Biela, Sarah A; Kaufmann, Dieter

    2016-01-01

    The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies. PMID:28144512

  12. Basic forensic identification of artificial leather for hit-and-run cases.

    PubMed

    Sano, Tetsuya; Suzuki, Shinichi

    2009-11-20

    Single fibers retrieved from a victim's garments and adhered to the suspect's automobile have frequently been used to prove the relationship between victim and suspect's automobile. Identification method for single fiber discrimination has already been conducted. But, a case was encountered requiring discrimination of artificial leather fragments retrieved from the victim's bag and fused fibers from the bumper of the suspect's automobile. In this report, basic studies were conducted on identification of artificial leathers and single fibers from leather materials. Fiber morphology was observed using scanning electron microscopy (SEM), color of these leather sheets was evaluated by microspectrophotometry (MSP), the leather components were measured by infrared micro spectrometry (micro-FT-IR) and the inorganic contents were ascertained by micro-X-ray fluorescence spectrometry (micro-XRF). These two methods contribute to other analytical methods too, in the case of utilized single fiber analytical methods. The combination of these techniques showed high potential of discrimination ability in forensic examinations of these artificial leather samples. In regard with smooth surface artificial leather sheet samples, a total of 182 sheets were obtained, including 177 colored sheets directly from 10 of 24 manufacturers in Japan, and five of them were purchased at retail circulation products. Nine samples of suede-like artificial leather were obtained, 6 of them were supplied from 2 manufacturers and 3 sheets were purchased as retailing product. Single fibers from the smooth surface artificial leather sheets showed characteristic for surface markings, and XRF could effectively discriminate between these sheets. The combination of results of micro-FT-IR, color evaluation by MSP and the contained inorganic elements by XRF enabled to discriminate about 92% of 15,576 pairs comparison. Five smooth surface samples form retailing products were discriminated by their chemical composition into four categories, and in addition color information to this result, they were clearly distinguished. Suede-like artificial leather sheets showed characteristic extra-fine fibers on their surface by the observation of SEM imaging, providing high discriminating ability, in regard with suede-like artificial leather sheets were divided into three categories by micro-FT-IR, and the combination of these results and color evaluation information, it was possible to discriminate all the nine suede-like artificial leather sheets examined.

  13. Measures of Light in Studies on Light-Driven Plant Plasticity in Artificial Environments

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.

    2012-01-01

    Within-canopy variation in light results in profound canopy profiles in foliage structural, chemical, and physiological traits. Studies on within-canopy variations in key foliage traits are often conducted in artificial environments, including growth chambers with only artificial light, and greenhouses with and without supplemental light. Canopy patterns in these systems are considered to be representative to outdoor conditions, but in experiments with artificial and supplemental lighting, the intensity of artificial light strongly deceases with the distance from the light source, and natural light intensity in greenhouses is less than outdoors due to limited transmittance of enclosure walls. The implications of such changes in radiation conditions on canopy patterns of foliage traits have not yet been analyzed. We developed model-based methods for retrospective estimation of distance vs. light intensity relationships, for separation of the share of artificial and natural light in experiments with combined light and for estimation of average enclosure transmittance, and estimated daily integrated light at the time of sampling (Qint,C), at foliage formation (Qint,G), and during foliage lifetime (Qint,av). The implications of artificial light environments were analyzed for altogether 25 studies providing information on within-canopy gradients of key foliage traits for 70 species × treatment combinations. Across the studies with artificial light, Qint,G for leaves formed at different heights in the canopy varied from 1.8- to 6.4-fold due to changing the distance between light source and growing plants. In experiments with combined lighting, the share of natural light at the top of the plants varied threefold, and the share of natural light strongly increased with increasing depth in the canopy. Foliage nitrogen content was most strongly associated with Qint,G, but photosynthetic capacity with Qint,C, emphasizing the importance of explicit description of light environment during foliage lifetime. The reported and estimated transmittances of enclosures varied between 0.27 and 0.85, and lack of consideration of the reduction of light compared with outdoor conditions resulted in major underestimation of foliage plasticity to light. The study emphasizes that plant trait vs. light relationships in artificial systems are not directly comparable to natural environments unless modifications in lighting conditions in artificial environments are taken into account. PMID:22822407

  14. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial.

    PubMed

    Haidar, Ahmad; Legault, Laurent; Messier, Virginie; Mitre, Tina Maria; Leroux, Catherine; Rabasa-Lhoret, Rémi

    2015-01-01

    The artificial pancreas is an emerging technology for the treatment of type 1 diabetes and two configurations have been proposed: single-hormone (insulin alone) and dual-hormone (insulin and glucagon). We aimed to delineate the usefulness of glucagon in the artificial pancreas system. We did a randomised crossover trial of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy (continuous subcutaneous insulin infusion) in participants aged 12 years or older with type 1 diabetes. Participants were assigned in a 1:1:1:1:1:1 ratio with blocked randomisation to the three interventions and attended a research facility for three 24-h study visits. During visits when the patient used the single-hormone artificial pancreas, insulin was delivered based on glucose sensor readings and a predictive dosing algorithm. During dual-hormone artificial pancreas visits, glucagon was also delivered during low or falling glucose. During conventional insulin pump therapy visits, patients received continuous subcutaneous insulin infusion. The study was not masked. The primary outcome was the time for which plasma glucose concentrations were in the target range (4·0-10·0 mmol/L for 2 h postprandially and 4·0-8·0 mmol/L otherwise). Hypoglycaemic events were defined as plasma glucose concentration of less than 3·3 mmol/L with symptoms or less than 3·0 mmol/L irrespective of symptoms. Analysis was by modified intention to treat, in which we included data for all patients who completed at least two visits. A p value of less than 0·0167 (0·05/3) was regarded as significant. This trial is registered with ClinicalTrials.gov, number NCT01754337. The mean proportion of time spent in the plasma glucose target range over 24 h was 62% (SD 18), 63% (18), and 51% (19) with single-hormone artificial pancreas, dual-hormone artificial pancreas, and conventional insulin pump therapy, respectively. The mean difference in time spent in the target range between single-hormone artificial pancreas and conventional insulin pump therapy was 11% (17; p=0·002) and between dual-hormone artificial pancreas and conventional insulin pump therapy was 12% (21; p=0·00011). There was no difference (15; p=0·75) in the proportion of time spent in the target range between the single-hormone and dual-hormone artificial pancreas systems. There were 52 hypoglycaemic events with conventional insulin pump therapy (12 of which were symptomatic), 13 with the single-hormone artificial pancreas (five of which were symptomatic), and nine with the dual-hormone artificial pancreas (0 of which were symptomatic); the number of nocturnal hypoglycaemic events was 13 (0 symptomatic), 0, and 0, respectively. Single-hormone and dual-hormone artificial pancreas systems both provided better glycaemic control than did conventional insulin pump therapy. The single-hormone artificial pancreas might be sufficient for hypoglycaemia-free overnight glycaemic control. Canadian Diabetes Association; Fondation J A De Sève; Juvenile Diabetes Research Foundation; and Medtronic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Epibenthic communities associated with unintentional artificial reefs (modern shipwrecks) under contrasting regimes of nutrients in the Levantine Sea (Cyprus and Lebanon)

    PubMed Central

    Andreou, Vasilis; Evriviadou, Marina; Munkes, Britta; Hadjioannou, Louis; Petrou, Antonis; Abu Alhaija, Rana

    2017-01-01

    Artificial reefs, in the Eastern Mediterranean (Cyprus,) became a popular and frequently used tool, in fisheries and biodiversity conservation management. Even though evaluation studies about the efficacy of artificial reefs are plentiful in the rest of the Mediterranean (Central and Western), in the Eastern Basin they are largely absent. As the Eastern part of the Mediterranean Sea is characterised by unique physical parameters, the necessity to study artificial reefs under these contrasting regimes increases. The epibenthic communities of two unintentional artificial reefs (modern shipwrecks) in Cyprus (Zenobia) and Lebanon (Alice-B) were evaluated in 2010. Both shipwrecks are at similar depth, type of sea bottom, made of the same material (steel) and were sunk approximately the same period of time. However, Alice-B shipwreck off the coast of Lebanon is constantly exposed to higher levels of nutrients than Zenobia in Cyprus. Significant dissimilarities were observed in the composition, percentage of benthic cover of predominant taxonomic groups and development of the epibenthic communities. Differences in physical and chemical parameters between sides lay mainly in the nutrient and thermal regimes affecting the shipwrecks and most likely bring about the differences in the observed community structure. The results of this study suggest that epibenthic communities could be highly impacted by eutrophication caused by anthropogenic activities, leading to less biodiverse communities dominated by specific species that are favoured by the eutrophic conditions. PMID:28850572

  16. Artificial substrates preference for proliferation and immigration in Aurelia aurita (s. l.) polyps

    NASA Astrophysics Data System (ADS)

    Feng, Song; Lin, Jianing; Sun, Song; Zhang, Fang

    2017-01-01

    The increasing amounts of artificial marine substrates, in many parts of the world have been proposed as a potential driver of Aurelia spp. blooms, on account of providing extra habitats for the settlement and the proliferation of the benthic stage (polyps). Previous experiments have mainly focused on the substrate choices of Aurelia spp. planulae. However, substrate preferences for the proliferation and immigration of polyps have not been reported. We monitored the propagation and immigration of Aurelia aurita (s. l.) polyps on two natural and nine artificial substrates at constant temperature (20±0.5°C) and salinity (30±0.5) in beakers and a glass aquarium in the laboratory, respectively. The results showed that, among artificial substrates, the highest number for polyp proliferation and immigration was found on nets, rigid polyvinyl chloride plates (RPVC), and wood. The lowest density of polyps was present on iron plates. Among natural substrates, the asexual reproduction rate of polyps on Patinopecten yessoensis (Jay, 1857) shells was significantly higher than Azumapecten farreri (Jones & Preston, 1904). On the account of the distinction in the roughness, chemical properties and biofilms of these material surfaces, bare artificial or natural substrates discriminatively affect the proliferation and the immigration of Aurelia spp. polyps at laboratory. These observations suggest that, even in the natural environment, different materials and texture may influence the composition and the abundance of the fouling communities and the assemblages of polyps and, indirectly, have effects on the amounts of released medusae.

  17. Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector.

    PubMed

    Tron, Arnaud; Pianet, Isabelle; Martinez-Cuezva, Alberto; Tucker, James H R; Pisciottani, Luca; Alajarin, Mateo; Berna, Jose; McClenaghan, Nathan D

    2017-01-06

    A molecular barbiturate messenger, which is reversibly released/captured by a photoswitchable artificial molecular receptor, is shown to act as an effector to control ring gliding on a distant hydrogen-bonding [2]rotaxane. Thus, light-driven chemical communication governing the operation of a remote molecular machine is demonstrated using an information-rich neutral molecule.

  18. Applications of artificial intelligence for chemical inference. V.

    NASA Technical Reports Server (NTRS)

    Sheikh, Y. M.; Delfino, A. B.; Schroll, G.; Duffield, A. M.; Djerassi, C.; Buchanan, B. G.; Sutherland, G. L.; Feigenbaum, E. A.; Lederberg, J.; Buchs, A.

    1970-01-01

    Discussion of the modification of the DENDRAL computer program to extend the program to cyclic structures which exceed numerically the linear molecules of a given composition. IR, NMR and mass spectroscopy is used to develop a method for identification of each of the 27 possible ketones (exclusive of 5 cyclopropanones) of composition C6H10O.

  19. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  20. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  1. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  2. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  3. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  4. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    PubMed

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  5. 78 FR 24426 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... application for the Kineflex/C Cervical Artificial Disc sponsored by SpinalMotion. The Kineflex/C is a metal-on-metal (cobalt chrome molybdenum alloy) cervical total disc replacement device. The Kineflex/C is... degenerative disc disease (DDD) where DDD is defined as discogenic back pain with degeneration of the disc as...

  6. Testing the Efficiency of Markov Chain Monte Carlo with People Using Facial Affect Categories

    ERIC Educational Resources Information Center

    Martin, Jay B.; Griffiths, Thomas L.; Sanborn, Adam N.

    2012-01-01

    Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as…

  7. The scanning tunnelling microscope as an operative tool: doing physics and chemistry with single atoms and molecules.

    PubMed

    Rieder, Karl-Heinz; Meyer, Gerhard; Hla, Saw-Wai; Moresco, Francesca; Braun, Kai F; Morgenstern, Karina; Repp, Jascha; Foelsch, Stefan; Bartels, Ludwig

    2004-06-15

    The scanning tunnelling microscope, initially invented to image surfaces down to the atomic scale, has been further developed in the last few years to an operative tool, with which atoms and molecules can be manipulated at will at low substrate temperatures in different manners to create and investigate artificial structures, whose properties can be investigated employing spectroscopic dI/dV measurements. The tunnelling current can be used to selectively break chemical bonds, but also to induce chemical association. These possibilities give rise to startling new opportunities for physical and chemical experiments on the single atom and single molecule level. Here we provide a short overview on recent results obtained with these techniques.

  8. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  9. Selective suppression of in situ proliferation of scyphozoan polyps by biofouling.

    PubMed

    Feng, Song; Wang, Shi-Wei; Zhang, Guang-Tao; Sun, Song; Zhang, Fang

    2017-01-30

    An increase in marine artificial constructions has been proposed as a major cause of jellyfish blooms, because these constructions provide additional substrates for organisms at the benthic stage (polyps), which proliferate asexually and release a large amount of free-swimming medusae. These hard surfaces are normally covered by fouling communities, the components of which have the potential to impede the proliferation of polyps. In this study, we report an in situ experiment of polyp survival of four large scyphozoan species found in East Asian marginal seas that were exposed to biofouling, a universal phenomenon occurring on marine artificial constructions. Our results showed that the polyps of three species (Nemopilema nomurai, Cyanea nozaki, and Rhopilema esculentum) attached to the artificial surfaces were completely eliminated by biofouling within 7-8months, and only those of moon jellyfish (Aurelia sp.1) in the upper layers could multiply on both artificial materials and other organisms (e.g., ascidians and bryozoans). Fouling-associated competition and predation and suppressed asexual reproduction of podocysts were observed to contribute to the loss of polyps. This study shows that the natural distribution of polyps is defined by the biofouling community that colonizes the surfaces of artificial constructions. Consequently, the contribution of marine constructions to jellyfish bloom is limited only to the ability of the jellyfish species to reproduce asexually through budding and inhabit solid surfaces of fouling organisms in addition to inhabiting original artificial materials. We anticipate that fragile polyps will colonize and proliferate in harsh environments that are deleterious to biofouling, and we propose special attention to polyps in antifouling practices for excluding the possibility that they occupy the available ecological space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  11. Validation of artificial skin equivalents as in vitro testing systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena

    2011-03-01

    With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.

  12. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  13. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Darling, Cynthia L.; Featherstone, John D. B.; Fried, Daniel

    2006-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is potentially useful for imaging the nonsurgical remineralization of dental enamel. This study uses an all-fiber-based PS-OCT system operating at 1310 nm to image demineralized and fluoride-enhanced remineralized artificial lesions. PS-OCT images of lesions before and after remineralization are compared with the relative mineral loss ΔZ (%vol×µm), obtained from high resolution digital microradiography (DM), and chemical composition changes by infrared spectroscopy. Severe early artificial caries show a significant increase in perpendicular-axis integrated reflectivity after remineralization. After sectioning the samples, DM demonstrates that the lesions remineralized with new mineral and the lesion surface zone show significant restoration of mineral volume. PS-OCT and DM both do not show a major change in lesion depth. For less severe artificial caries, the perpendicular-axis image resolves the scattering and depolarization of an outer growth layer after remineralization. This outer layer has a mineral volume close to that of sound enamel, and spectroscopic analysis indicates that the layer is a highly crystalline phase of apatite, without carbonate substitutions that increase the solubility of sound enamel. This study determines that PS-OCT can image the effects of fluoride-enhanced remineralization of mild and severe early artificial in vitro caries.

  14. New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt.

    PubMed

    Cao, Danfeng; Zhang, Yingchao; Cui, Zhanchen; Du, Yuanyuan; Shi, Zuosen

    2017-01-01

    In order to obtain an ideal material using for artificial corneal skirt, a porous polymer hydrogel containing 2-hydroxyethyl methacrylate (HEMA), trimethylolpropane triacrylate (TMPTA) and butyl acrylate was prepared through one-step radical polymerization method and the usage of CaCO 3 whisker as porogen. The physical-chemical properties of the fabricated polymer hydrogel can be adjusted by CaCO 3 whisker content, such as pore size, porosity, water content of materials and surface topography. Then a series of cell biology experiments of human corneal fibroblasts (HCFs) were carried out to evaluate its properties as an artificial corneal skirt, such as the adhesion of cells on the materials with different pore size and porosity, the apoptosis on materials with different characteristics, the distribution of the cells on the material surface. The results revealed that high porosity not only could improve water content of hydrogel, but also strengthen the adhesion of HCFs on hydrogel. In addition, high porosity hydrogel with the whisker shape of pores showed much elongate spindle-like morphology than those low porosity hydrogels. MTT assay certified that the resulted polymer hydrogel material possessed excellent biocompatibility and was suitable for HCFs growing, making it promising for being developed as artificial corneal skirt. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A peek into the history of sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near-net-shape sapphire domes was demonstrated by both the EFG and HEM methods in the 1980s under government contract, but neither method entered commercial production. Today, domes in the U.S. are made by "scooping" sapphire boules with diamond-impregnated cutting tools. Commercial markets for sapphire, especially in the semiconductor industry, are healthy and growing at the dawn of the 21st century.

  16. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells.

    PubMed

    Zeisberger, Steffen M; Schulz, Julia C; Mairhofer, Mario; Ponsaerts, Peter; Wouters, Guy; Doerr, Daniel; Katsen-Globa, Alisa; Ehrbar, Martin; Hescheler, Jurgen; Hoerstrup, Simon P; Zisch, Andreas H; Kolbus, Andrea; Zimmermann, Heiko

    2011-01-01

    While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations-umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)-were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the feasibility and robustness of standardized xeno-free cryopreservation of different human progenitor cells and encourage their use even more in the field of tissue-engineering and regenerative medicine.

  17. Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip

    NASA Astrophysics Data System (ADS)

    Hla, S.-W.

    The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.

  18. Structure-biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopman, G.; Tu, M.

    1997-09-01

    It is shown that a combination of two programs, MultiCASE and META, can help assess the biodegradability of industrial organic materials in the ecosystem. MultiCASE is an artificial intelligence computer program that had been trained to identify molecular substructures believed to cause or inhibit biodegradation and META is an expert system trained to predict the aerobic biodegradation products of organic molecules. These two programs can be used to help evaluate the fate of disposed chemicals by estimating their biodegradability and the nature of their biodegradation products under conditions that may model the environment.

  19. Artificial intelligence applications in space and SDI: A survey

    NASA Technical Reports Server (NTRS)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  20. Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling.

    PubMed

    Satake, Akiharu; Kobuke, Yoshiaki

    2007-06-07

    This paper reviews selected types of structurally well defined assemblies of porphyrins and phthalocyanines with strong electronic coupling. Face-to-face, head-to-tail, slipped cofacial, and non-parallel dimeric motifs constructed by covalent and non-covalent bonds are compared in the earlier sections. Their molecular orientation, electronic overlap, and absorption and fluorescence properties are discussed with a view towards the development of artificial photosynthetic systems and molecular electronics. Complementary coordination dimers are fully satisfactory in terms of structural stability, orientation factor, pi-electronic overlap, and zero fluorescence quenching. In later sections, several polymeric and macrocyclic porphyrin assemblies constructed by a combination of covalent bonds and complementary coordination bonds are discussed from the viewpoint of light-harvesting antenna functions.

  1. Study of the decay and recovery of orbiting artificial space objects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The reentry of earth-orbiting space objects unconsumed in the atmosphere represents a potential hazard to populated areas of the earth. The Smithsonian Astrophysical Observatory has conducted a program called Moonwatch, whose purposes were to observe orbiting artificial satellites and reentries of space objects and, if possible, to recover and analyze reentered pieces. In addition, through observations of low-perigee objects, data obtained by Moonwatchers have been instrumental in defining some of the factors affecting satellite decay. The objectives of the program are presented, and the problems that enter into satellite-orbit and decay predictions are addressed. Moonwatchers contributed substantially to increasing an overall prediction capability, and some of the specific achievements over the 6-year period are cited.

  2. The adhesion and hysteresis effect in friction skin with artificial materials

    NASA Astrophysics Data System (ADS)

    Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H. S.

    2017-02-01

    Human skin is a soft biomaterial with a complex anatomical structure and it has a complex material behavior during the mechanical contact with objects and surfaces. The friction adhesion component is defined by means of the theories of Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis - Dugdale (MD). We shall consider the human skin entering into contact with a rigid surface. The deformation (hysteresis) component of the skin friction is evaluated with Voigt rheological model for the spherical contact, with the original model, developed in MATHCAD software. The adhesive component of the skin friction is greater than the hysteresis component for all friction parameters (load, velocity, the strength of interface between skin and the artificial material).

  3. Using isotopes for design and monitoring of artificial recharge systems

    USGS Publications Warehouse

    Contributors: Hendriksson, N.; Kulongoski, J.T.; Massmann, G.; Newman, B.

    2013-01-01

    Over the past years, the IAEA has provided support to a number of Member States engaged in the implementation of hydrological projects dealing with the design and monitoring of artificial recharge ( A R ) systems, primarily situated in arid and semiarid regions. AR is defined as any engineered system designed to introduce water to, and store water in, underlying aquifers. Aquifer storage and recovery (ASR) is a specific type of AR used with the purpose of increasing groundwater resources. Different water management strategies have been tested under various geographical, hydrological and climatic regimes. However, the success of such schemes cannot easily be predicted, since many variables need to be taken into account in the early stages of every AR project.

  4. Integration of robotics and neuroscience beyond the hand: What kind of synergies?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    d'Avella, Andrea

    2016-07-01

    Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?

  5. Neurolinguistically constrained simulation of sentence comprehension: integrating artificial intelligence and brain theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigley, H.M.

    1982-01-01

    An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less

  6. Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

    PubMed Central

    Nguyen, Van-Huy; Bai, Hsunling

    2014-01-01

    Summary The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass 1.5 Global Filter at 1.6/18.5 mW·cm−2) and ultraviolet light (Mercury Arc lamp with different filters in the range of 0.1–0.8 mW·cm−2). This is the first report of using artificial sunlight to drive the photo-epoxidation of propylene. Over V-Ti/MCM-41 photocatalyst, the propylene oxide (PO) formation rate is 193.0 and 112.1 µmol·gcat −1·h−1 with a PO selectivity of 35.0 and 53.7% under UV light and artificial sunlight, respectively. A normalized light utilization (NLU) index is defined and found to correlate well with the rate of both PO formation and C3H6 consumption in log–log scale. The light utilization with a mercury arc lamp is better than with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested in this study. PMID:24991493

  7. Recommendations of the GARIN group for managing non-critically ill patients with diabetes or stress hyperglycaemia and artificial nutrition.

    PubMed

    Olveira, G; García-Luna, P P; Pereira, J L; Rebollo, I; García-Almeida, J M; Serrano, P; Irles, J A; Muñoz-Aguilar, A; Molina, M J; Tapia, M J

    2012-01-01

    By means of this update, the GARIN working group aims to define its position regarding the treatment of patients with diabetes or stress hyperglycaemia and artificial nutrition. In this area there are many aspects of uncertainty, especially in non-critically ill patients. Bibliographical review, and specific questions in advance were discussed and answered at a meeting in the form of conclusions. We propose a definition of stress hyperglycaemia. The indications and access routes for artificial nutrition are no different in patients with diabetes/stress hyperglycaemia than in non-diabetics. The objective must be to keep pre-prandial blood glucose levels between 100 and 140 mg/dl and post-prandial levels between 140 and 180 mg/dl. Hyperglycemia can be prevented through systematic monitoring of capillary glycaemias and adequately calculate energy-protein needs. We recommend using enteral formulas designed for patients with diabetes (high monounsaturated fat) to facilitate metabolic control. The best drug treatment for treating hyperglycaemia/diabetes in hospitalised patients is insulin and we make recommendations for adapt the theoretical insulin action to the nutrition infusion regimen. We also addressed recommendations for future investigation. This recommendations about artificial nutrition in patients with diabetes or stress hyperglycaemia can add value to clinical work.

  8. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans.

    PubMed

    Iwase, Satoshi

    2005-01-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies. c2005 Elsevier Ltd. All rights reserved.

  9. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi

    2005-07-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7±1.9yr) were exposed to simulated microgravity for 14 days of -6∘ head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1,2,3,5,7,9,11,12,13,14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load×running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed ( -5.0±2.4 vs. -16.4±1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.

  10. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    A variety of artificial intelligence techniques which could be used with regard to NASA space applications and robotics were evaluated. The techniques studied were decision tree manipulators, problem solvers, rule based systems, logic programming languages, representation language languages, and expert systems. The overall structure of a robotic simulation tool was defined and a framework for that tool developed. Nonlinear and linearized dynamics equations were formulated for n link manipulator configurations. A framework for the robotic simulation was established which uses validated manipulator component models connected according to a user defined configuration.

  11. Dietary intake of four artificial sweeteners by Irish pre-school children.

    PubMed

    Martyn, Danika M; Nugent, Anne P; McNulty, Breige A; O'Reilly, Emer; Tlustos, Christina; Walton, Janette; Flynn, Albert; Gibney, Michael J

    2016-01-01

    In spite of rigorous pre- and post-market reviews of safety, there remains a high level of debate regarding the use of artificial sweeteners in foods. Young children are of particular interest when assessing food chemical exposure as a result of their unique food consumption patterns and comparatively higher exposure to food chemicals on a body weight basis when compared with the general population. The present study examined the intakes of four intense sweeteners (acesulfame K, aspartame, saccharin, sucralose) in the diets of children aged 1-4 years using food consumption and sweetener presence data from the Irish National Pre-school Nutrition Survey (2010-11) and analytical data for sweetener concentration in foods obtained from a national testing programme. Four exposure assessment scenarios were conducted using the available data on sweetener occurrence and concentration. The results demonstrated that the mean daily intakes for all four sweeteners were below the acceptable daily intake (ADI) (17-31%), even considering the most conservative assumptions regarding sweetener presence and concentration. High consumer intakes (P95) were also below the ADI for the four sweeteners when more realistic estimates of exposure were considered. Both sweetener occurrence and concentration data had a considerable effect on reducing the estimated intake values, with a combined reduction in intakes of 95% when expressed as a proportion of the ADI. Flavoured drinks were deemed to be a key contributor to artificial sweetener intakes in this population cohort. It was concluded that there is no health risk to Irish pre-school children at current dietary intake levels of the sweeteners studied.

  12. Prediction of Austenite Formation Temperatures Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.

    2016-03-01

    For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.

  13. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory

    NASA Astrophysics Data System (ADS)

    Baum, David A.; Vetsigian, Kalin

    2017-12-01

    Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.

  14. The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records

    NASA Astrophysics Data System (ADS)

    Deng, Qimin; Nian, Da; Fu, Zuntao

    2018-02-01

    Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.

  15. Environmental hazard and risk characterisation of petroleum substances: a guided "walking tour" of petroleum hydrocarbons.

    PubMed

    Bierkens, Johan; Geerts, Lieve

    2014-05-01

    Petroleum substances are used in large quantities, primarily as fuels. They are complex mixtures whose major constituents are hydrocarbons derived from crude oil by distillation and fractionation. Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the huge number of molecular components. This complex nature of petroleum products, with their varied number of constituents, all of them exhibiting different fate and effect characteristics, merits a dedicated hazard and risk assessment approach. From a regulatory perspective they pose a great challenge in a number of REACH processes, in particular in the context of dossier and substance evaluation but also for priority setting activities. In order to facilitate the performance of hazard and risk assessment for petroleum substances the European oil company association, CONCAWE, has developed the PETROTOX and PETRORISK spreadsheet models. Since the exact composition of many petroleum products is not known, an underlying assumption of the PETROTOX and PETRORISK tools is that the behaviour and fate of a total petroleum substance can be simulated based on the physical-chemical properties of representative structures mapped to hydrocarbon blocks (HBs) and on the relative share of each HB in the total mass of the product. To assess how differing chemical compositions affect the simulated chemical fate and toxicity of hydrocarbon mixtures, a series of model simulations were run using an artificial petroleum substance, containing 386 (PETROTOX) or 160 (PETRORISK) HBs belonging to different chemical classes and molecular weight ranges, but with equal mass assigned to each of them. To this artificial petroleum substance a guided series of subsequent modifications in mass allocation to a delineated number of HBs belonging to different chemical classes and carbon ranges was performed, in what we perceived as a guided "walking tour" through the chemical space of petroleum substances. We show that the PETROTOX and PETRORISK predictions reflect changes in mass distribution introduced to selected HBs by affecting hazard and risk estimates in correspondence with what is expected based on physical-chemical properties of individual constituents in the corresponding HBs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange).

    PubMed

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them.

  17. Collection and Chemical Composition of Phloem Sap from Citrus sinensis L. Osbeck (Sweet Orange)

    PubMed Central

    Hijaz, Faraj; Killiny, Nabil

    2014-01-01

    Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them. PMID:25014027

  18. SUBSTITUTION REACTIONS FOR THE DETOXIFICATION OF HAZARDOUS CHEMICALS

    EPA Science Inventory

    Chemical Treatment is one of several treatment techniques used for the remediation of toxic and hazardous chemicals. Chemical treatment in this report is defined as substitution of halogens by hydrogens for the conversion of halogenated organic toxicant into its native hydrocarb...

  19. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...

  20. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...

  1. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  2. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...

  3. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  4. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...

  5. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen generator...

  6. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  7. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Calculation of NMR chemical shifts in organic solids: accounting for motional effects.

    PubMed

    Dumez, Jean-Nicolas; Pickard, Chris J

    2009-03-14

    NMR chemical shifts were calculated from first principles for well defined crystalline organic solids. These density functional theory calculations were carried out within the plane-wave pseudopotential framework, in which truly extended systems are implicitly considered. The influence of motional effects was assessed by averaging over vibrational modes or over snapshots taken from ab initio molecular dynamics simulations. It is observed that the zero-point correction to chemical shifts can be significant, and that thermal effects are particularly noticeable for shielding anisotropies and for a temperature-dependent chemical shift. This study provides insight into the development of highly accurate first principles calculations of chemical shifts in solids, highlighting the role of motional effects on well defined systems.

  9. Recent developments in broadly applicable structure-biodegradability relationships.

    PubMed

    Jaworska, Joanna S; Boethling, Robert S; Howard, Philip H

    2003-08-01

    Biodegradation is one of the most important processes influencing concentration of a chemical substance after its release to the environment. It is the main process for removal of many chemicals from the environment and therefore is an important factor in risk assessments. This article reviews available methods and models for predicting biodegradability of organic chemicals from structure. The first section of the article briefly discusses current needs for biodegradability estimation methods related to new and existing chemicals and in the context of multimedia exposure models. Following sections include biodegradation test methods and endpoints used in modeling, with special attention given to the Japanese Ministry of International Trade and Industry test; a primer on modeling, describing the various approaches that have been used in the structure/biodegradability relationship work, and contrasting statistical and mechanistic approaches; and recent developments in structure/biodegradability relationships, divided into group contribution, chemometric, and artificial intelligence approaches.

  10. Unweathered and weathered aviation kerosine: Chemical characterization and effects on hatching success of duck eggs

    USGS Publications Warehouse

    Albers, P.H.; Gay, M.L.

    1982-01-01

    Effects of weathered aviation kerosine from a pipeline rupture in northern Virginia on mallard egg hatchability. Artificially-incubated mallard eggs were exposed by eggshell application to several amounts of weathered and unweathered aviation kerosine on day 6 of incubation. Measured hatching success of eggs and characterized the kerosine according to 14 aliphatic and 9 aromatic compounds.

  11. Spectroscopic Characterization of Microplasmas

    DTIC Science & Technology

    2009-09-20

    Symposium on Plasma Chemistry (Bochum, Germany, Jul. 2009). 22. K. Tachibana: “Microplasma Generation in Artificial Media and its Potential Applications...Plenary)”, 19th International Symposium on Plasma Chemistry (Bochum, Germany, Jul. 2009). - 18 - 23. K. Urabe, J. Choi, Y. Ito, K. Tachibana and... Plasma Chemistry (Bochum, Germany, Jul. 2009). 24. T. Morita, O. Sakai, T. Shirafuji and K. Tachibana: “Underwater Chemical Reactions by

  12. Engineering Robust Yeasts for Biorefinery Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taek Soon; Niles, Brad; Chow, Ruthie

    2016-06-22

    Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.

  13. Marking petroglyphs with calcite and gypsum-based chalks: Interaction with granite under different simulated conditions and the effectiveness and harmfulness of cleaning methods.

    PubMed

    Pozo-Antonio, J S; Fernández-Rodríguez, S; Rocha, C S A; Carrera, F; Rivas, T

    2018-01-15

    Marking petroglyphs with chalk is a common practice to enhance them for documentation and reproduction. Although this procedure has started to be less frequently used, there is no knowledge about the interaction between the rock engravings nor about the effectiveness achieved by the common cleaning procedures of such markers considering the chalk extraction and the induced damage to the rock. This study evaluates the interaction between two chalks of different composition (calcite and gypsum) and a granite on which the majority of NW Iberian Peninsula-petroglyphs are carved. Granitic samples marked with these chalks were subjected to artificial rain events and high temperatures (700°C) related to fires. After each aging test, chemical and physical modifications on the rock were analysed by means of stereomicroscopy, x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and colour spectrophotometry. Moreover, the evaluation of the effectiveness and harmfulness of several mechanical and chemical cleaning procedures commonly used in the field of cultural heritage conservation was carried out. Both chalks remained at different extent on the surface after the artificial rain events. Water would promote a different penetration-depth of the chalks into the stone, depending on their solubility. High temperatures led to mineral phase transformations of the chalks influencing the interaction with the rock. Regarding cleaning effectiveness, despite a few chalk remains were found in all the cleanings, chemical methods showed higher effectiveness than mechanical procedures even though some of them leave chemical contamination. Benzalkonium chloride can be considered as the cleaner with the best results to extract both types of chalk on granite. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Metabolic Engineering of a Glycerol-Oxidative Pathway in Lactobacillus panis PM1 for Utilization of Bioethanol Thin Stillage: Potential To Produce Platform Chemicals from Glycerol

    PubMed Central

    Kang, Tae Sun; Korber, Darren R.

    2014-01-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. PMID:25281374

  15. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    PubMed

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: the case of the endangered Mahogany tree.

    PubMed

    Cabral, Elaine C; Simas, Rosineide C; Santos, Vanessa G; Queiroga, Carmen L; da Cunha, Valnei S; de Sá, Gilberto F; Daroda, Romeu J; Eberlin, Marcos N

    2012-01-01

    Venturi easy ambient sonic spray ionization mass spectrometry in both its liquid (V(L) -EASI-MS) and solid sample modes (V(S) -EASI-MS) is shown to provide nearly immediate and secure typification of woods, as demonstrated for Mahogany, an endangered and most valuable type of tropical wood. This reddish wood displays unique phytochemical markers (phragmalin-type limonoids) which are rapidly detected from the wood surface by V(S) -EASI-MS or from a simple methanol extract of a tiny wood chip by V(L) -EASI-MS. Unique profiles were obtained for Mahogany (Swietenia macrophylla) whereas genuine samples of six other similar types of woods, which are commonly falsified by artificial coloring and commercialized as Mahogany, display also typical but dissimilar pythochemical profiles as compared to that of the authentic wood. Variable and atypical chemical profiles were observed for artificially colored woods. Secure chemical characterization via V(S) -EASI-MS or V(s) -EASI-MS fingerprints of Mahogany and other types of woods with similar appearance should help to control the illegal logging and trade of this and other endangered woods and their falsification, and to create certified standards. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Application of gas sensor arrays in assessment of wastewater purification effects.

    PubMed

    Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej

    2014-12-23

    A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  18. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).

    PubMed

    Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin

    2011-10-17

    In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.

  19. Application of counterpropagation artificial neural network for modelling properties of fish antibiotics.

    PubMed

    Maran, E; Novic, M; Barbieri, P; Zupan, J

    2004-01-01

    The present study focuses on fish antibiotics which are an important group of pharmaceuticals used in fish farming to treat infections and, until recently, most of them have been exposed to the environment with very little attention. Information about the environmental behaviour and the description of the environmental fate of medical substances are difficult or expensive to obtain. The experimental information in terms of properties is reported when available, in other cases, it is estimated by standard tools as those provided by the United States Environmental Protection Agency EPISuite software and by custom quantitative structure-activity relationship (QSAR) applications. In this study, a QSAR screening of 15 fish antibiotics and 132 xenobiotic molecules was performed with two aims: (i) to develop a model for the estimation of octanol--water partition coefficient (logP) and (ii) to estimate the relative binding affinity to oestrogen receptor (log RBA) using a model constructed on the activities of 132 xenobiotic compounds. The custom models are based on constitutional, topological, electrostatic and quantum chemical descriptors computed by the CODESSA software. Kohonen neural networks (self organising maps) were used to study similarity between the considered chemicals while counter-propagation artificial neural networks were used to estimate the properties.

  20. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  1. The chemical state of defective uranium-plutonium oxide fuel pins irradiated in sodium cooled reactors

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1997-09-01

    Steady-state irradiation experiments were conducted in the sodium loop of the Siloe reactor on artificially failed mixed oxide pins that had been pre-irradiated in fast reactors up to 11.5% burnup. The formation of the predominant reaction product Na 3(U,Pu)O 4 starts on the fuel surface and is terminated when a lower O/(U + Pu) threshold of the fuel is attained. The axial extent of the reaction product depends on the size of the initial cladding defect. The occurrence of secondary cracks is possible. Na(U,Pu)O 3 forms at higher fuel temperatures. The existence of Na 3U 1- xPu xO 4 is shown in pre-irradiated blanket pins after artificial defect formation. Caesium in the oxocompounds is reduced to the metallic state and is dissolved in the coolant. Evidence of a very low chemical potential of oxygen in defective fuel pins is sustained by the occurrence of actinide-platinum metal phases formed by coupled reduction of hypostoichiometric fuel with ɛ-(Mo,Tc,Ru,Rh,Pd) precipitates. Continued operation of defective pins is not hazardous by easy precautions.

  2. Functional Concepts in Mental Retardation: Finding the Natural Essence of an Artificial Category

    ERIC Educational Resources Information Center

    Greenspan, Stephen

    2006-01-01

    Although there have always been people considered to have mental retardation (MR), the category has proven surprisingly difficult to define adequately. This is because it includes a subcategory of mild MR whose members are part of a larger population of marginally competent people, some of whom may be considered to have other forms of disability…

  3. The Implications of Null Patterns and Output Unit Activation Functions on Simulation Studies of Learning: A Case Study of Patterning

    ERIC Educational Resources Information Center

    Yaremchuk, V.; Willson, L.R.; Spetch, M.L.; Dawson, M.R.W.

    2005-01-01

    Animal learning researchers have argued that one example of a linearly nonseparable problem is negative patterning, and therefore they have used more complicated multilayer networks to study this kind of discriminant learning. However, it is shown in this paper that previous attempts to define negative patterning problems to artificial neural…

  4. A survey of fault diagnosis technology

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel

    1989-01-01

    Existing techniques and methodologies for fault diagnosis are surveyed. The techniques run the gamut from theoretical artificial intelligence work to conventional software engineering applications. They are shown to define a spectrum of implementation alternatives where tradeoffs determine their position on the spectrum. Various tradeoffs include execution time limitations and memory requirements of the algorithms as well as their effectiveness in addressing the fault diagnosis problem.

  5. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.

    PubMed

    Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S

    2016-08-15

    The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.

  6. The Institutional Approach for Modeling the Evolution of Human Societies.

    PubMed

    Powers, Simon T

    2018-01-01

    Artificial life is concerned with understanding the dynamics of human societies. A defining feature of any society is its institutions. However, defining exactly what an institution is has proven difficult, with authors often talking past each other. This article presents a dynamic model of institutions, which views them as political game forms that generate the rules of a group's economic interactions. Unlike most prior work, the framework presented here allows for the construction of explicit models of the evolution of institutional rules. It takes account of the fact that group members are likely to try to create rules that benefit themselves. Following from this, it allows us to determine the conditions under which self-interested individuals will create institutional rules that support cooperation-for example, that prevent a tragedy of the commons. The article finishes with an example of how a model of the evolution of institutional rewards and punishments for promoting cooperation can be created. It is intended that this framework will allow artificial life researchers to examine how human groups can themselves create conditions for cooperation. This will help provide a better understanding of historical human social evolution, and facilitate the resolution of pressing societal social dilemmas.

  7. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    NASA Astrophysics Data System (ADS)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  8. Correlation of mastication and masticatory movements and effect of chewing side preference.

    PubMed

    Farias Gomes, Simone Guimarães; Custodio, William; Moura Jufer, Juliana Silva; Del Bel Cury, Altair Antoninha; Rodrigues Garcia, Renata Cunha Matheus

    2010-01-01

    The aims of this study were to correlate masticatory performance with mandibular movements during mastication, and to evaluate masticatory performance and mandibular movements of subjects with different types of mastication. Seventy-eight healthy dentate subjects were selected and divided into 2 groups: bilateral and unilateral chewers. This classification was set by using kinesiography during mastication of an artificial material. Unilateral mastication was defined as the majority of the cycles took place at one specific side. The same tracings used to define type of mastication were used to evaluate mandibular movements by means of its parameters. Masticatory performance was analyzed by comminution of the artificial material and a sieving method. Statistical analysis was performed by Spearman's correlation method, and Mann-Whitney and Student's t-test, when appropriate, at 5% significance level. No correlation was found between masticatory performance and parameters of mandibular movement during mastication. Bilateral chewers presented significantly better (p<0.05) masticatory performance than unilateral ones, however no differences in parameters of mandibular movement were found between groups. Within the limits of this study, it may be concluded that parameters of jaw movements during mastication are not related to masticatory performance, and that the presence of a preferred chewing side worsens mastication.

  9. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... 2070-AD16 Testing of Certain High Production Volume Chemicals; Second Group of Chemicals AGENCY... processors of certain high production volume (HPV) chemical substances to conduct testing to obtain screening... potentially affected by this action if you manufacture (defined by statute to include import) or process any...

  10. An artificial test substrate for evaluating electron microscopic immunocytochemical labeling reactions.

    PubMed

    Gagne, G D; Miller, M F

    1987-08-01

    We describe an artificial substrate system for optimization of labeling parameters in electron microscope immunocytochemical studies. The system involves use of blocks of glutaraldehyde-polymerized BSA into which a desired antigen is incorporated by a simple soaking procedure. The resulting antigen-impregnated artificial substrate can then be fixed and embedded identically to a piece of tissue. The BSA substrate can also be dried and then sectioned for immunolabeling with or without chemical fixation and without exposing the antigen to dehydrating agents and embedding resins. The effects of various fixation and embedding procedures can thus be evaluated separately. Other parameters affecting immunocytochemical labeling, such as antibody and conjugate concentration, can also be evaluated. We used this system, along with immunogold labeling, to determine quantitatively the optimal fixation and embedding conditions for labeling of hepatitis B surface antigen (HbsAg), human IgG, and horseradish peroxidase. Using unfixed and unembedded HBsAg, we were able to detect antigen concentrations below 20 micrograms/ml. We have shown that it is not possible to label HBsAg within resin-embedded cells using conventional aldehyde fixation protocols and polyclonal antibodies.

  11. Materials for diabetes therapeutics.

    PubMed

    Bratlie, Kaitlin M; York, Roger L; Invernale, Michael A; Langer, Robert; Anderson, Daniel G

    2012-05-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies-(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The incorporation of hydrophobic protein receptors and artificial lipid membranes.

    PubMed

    Reader, T A; Fiszer de Plazas, S; Salas, P J; de Robertis, E

    1976-01-01

    The mechanism of chemical synaptic transmission implies: 1) the existence of a specific protein receptor at the postsynaptic membrane, and 2) the interaction between the transmitter released and the receptor, thus producing a change in ionic permeability. Previous studies from our laboratory have shown that special hydrophobic proteins extracted from postsynpatic membranes of different tissues showed a high affinity binding for the different pharmacological agents. The present paper describes experiments in which different hydrophobic protein binding acetylcholine, noradrenaline, gamma-aminobutyric acid, and glutamate were incorporated into artificial lipid membranes, similar to those first described by Mueller et al. (19). The effect of the different pharmacological agents was tested under experimental conditions of voltage clamp and the d.c. current changes measured. The results were then compared for the different lipid-protein membranes employed during the steady state and during transient conductance changes. The specificity of the responses indicate that artificial lipid membranes containing these hydrophobic proteins from electroplax, myocardium, spleen capsule and shrimp muscle can be used as a model to study pharmacologic receptors.

  13. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  14. Cumulative effects of antiandrogenic chemical mixtures and their relevance to human health risk assessment

    EPA Science Inventory

    Toxicological studies of defined chemical mixtures assist human health risk assessment by establishing the manner by which chemicals interact with one another to induce an effect. This paper reviews how antiandrogenic chemical mixtures can alter reproductive tract development in ...

  15. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    PubMed

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  16. Terraforming the Moon: a Viable Step in the Colonization of the Solar System?

    NASA Astrophysics Data System (ADS)

    Renn, H. W.

    2002-01-01

    One potential option for the colonization of other celestial bodies is Terraforming. The latter involves, as a first step, the creation of a breathable, artificial atmosphere. While terraforming other planets, especially Mars, has been under discussion for several decades, applying the same concept to Earth's closest neighbor, namely the Moon, plays virtually no role in existing plans for space colonization. This paper investigates the technical and economical feasibility of supplying the Moon with an artificial atmosphere. Based on existing concepts for life support systems, essential requirements for an artificial Lunar atmosphere are defined. Various alternatives for the atmospheric composition are investigated and the parameters of a preferred `reference atmosphere' are described in detail. In order to assess the latter's habitability, particularly with respect to wind speeds and temperature cycles, the Moon's wind system and temperature field are analyzed by using a customized climate simulation model. Aspects of technical feasibility are evaluated and major obstacles are identified. Finally, various assessment criteria with particular respect to economical and ethical considerations are discussed and preliminary conclusions are presented.

  17. Synthetic biology routes to bio-artificial intelligence.

    PubMed

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  18. Merging Applicability Domains for in Silico Assessment of Chemical Mutagenicity

    DTIC Science & Technology

    2014-02-04

    molecular fingerprints as descriptors for developing quantitative structure−activity relationship ( QSAR ) models and defining applicability domains with...used to define and quantify an applicability domain for either method. The importance of using applicability domains in QSAR modeling cannot be...domain from roughly 80% to 90%. These results indicated that the proposed QSAR protocol constituted a highly robust chemical mutagenicity prediction

  19. Phenologic variation of major triterpenoids in regular and white Antrodia cinnamomea.

    PubMed

    Chen, Wei-Lun; Ho, Yen-Peng; Chou, Jyh-Ching

    2016-12-01

    Antrodia cinnamomea and its host Cinnamomum kanehirae are both endemic species unique to Taiwan. Many studies have confirmed that A. cinnamomea is rich in polysaccharides and triterpenoids that may carry medicinal effects in anti-cancer, anti-inflammation, anti-hypertension, and anti-oxidation. Therefore it is of interest to study the chemical variation of regular orange-red strains and white strains, which included naturally occurring and blue-light induced white A. cinnamomea. The chemical profiles of A. cinnamomea extracts at different growth stages were compared using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). The TLC and HPLC profiles indicated that specific triterpenoids varied between white and regular strains. Moreover, the compounds of blue-light induced white strain were similar to those of naturally occurring white strain but retained specific chemical characteristics in more polar region of the HPLC chromatogram of regular strain. Blue-light radiation could change color of the regular A. cinnamomea from orange-red to white by changing its secondary metabolism and growth condition. Naturally occurring white strain did not show a significantly different composition of triterpenoid profiles up to eight weeks old when compared with the triterpenoid profiles of the regular strain at the same age. The ergostane-type triterpenoids were found existing in both young mycelia and old mycelia with fruiting body in artificial agar-plate medium culture, suggesting a more diversified biosynthetic pathway in artificial agar-plate culture rather than wild or submerged culture.

  20. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.

    PubMed

    Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad

    2009-08-01

    The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.

Top