Sample records for chemically modified antisense

  1. Antisense antibiotics: a brief review of novel target discovery and delivery.

    PubMed

    Bai, Hui; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Meng, Jingru; Luo, Xiaoxing

    2010-06-01

    The nightmare of multi-drug resistant bacteria will still haunt if no panacea is ever found. Efforts on seeking desirable natural products with bactericidal property and screening chemically modified derivatives of traditional antibiotics have lagged behind the emergence of new multi-drug resistant bacteria. The concept of using antisense antibiotics, now as revolutionary as is on threshold has experienced ups and downs in the past decade. In the past five years, however, significant technology advances in the fields of microbial genomics, structural modification of oligonucleotides and efficient delivery system have led to fundamental progress in the research and in vivo application of this paradigm. The wealthy information provided in the microbial genomics era has allowed the identification and/or validation of a number of essential genes that may serve as possible targets for antisense inhibition; antisense oligodeoxynucleotides (ODNs) based on the 3rd generation of modified structures, e.g., peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) have shown great potency in gene expression inhibition in a sequence-specific and dosedependent manner at low micromolar concentrations; and cell penetrating peptide mediated delivery system has enabled the effective display of intracellular antisense inhibition of targeted genes both in vitro and in vivo. The new methods show promise in the discovery of novel gene-specific antisense antibiotics that will be useful in the future battle against drug-resistant bacterial infections. This review describes this promising paradigm, the targets that have been identified and the recent technologies on which it is delivered.

  2. Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy.

    PubMed

    Krieg, A M; Tonkinson, J; Matson, S; Zhao, Q; Saxon, M; Zhang, L M; Bhanja, U; Yakubov, L; Stein, C A

    1993-02-01

    Phosphodiester oligodeoxynucleotides bearing a 5' cholesteryl (chol) modification bind to low density lipoprotein (LDL), apparently by partitioning the chol-modified oligonucleotides into the lipid layer. Both HL60 cells and primary mouse spleen T and B cells incubated with fluorescently labeled chol-modified oligonucleotide showed substantially increased cellular association by flow cytometry and increased internalization by confocal microscopy compared to an identical molecule not bearing the chol group. Cellular internalization of chol-modified oligonucleotide occurred at least partially through the LDL receptor; it was increased in mouse spleen cells by cell culture in lipoprotein-deficient medium and/or lovastatin, and it was decreased by culture in high serum medium. To determine whether chol-modified oligonucleotides are more potent antisense agents, we titered antisense unmodified phosphodiester and chol-modified oligonucleotides targeted against a mouse immunosuppressive protein. Murine spleen cells cultured with 20 microM phosphodiester antisense oligonucleotides had a 2-fold increase in RNA synthesis, indicating the expected lymphocyte activation. Antisense chol-modified oligonucleotides showed an 8-fold increase in relative potency: they caused a 2-fold increase in RNA synthesis at just 2.5 microM. The increased efficacy was blocked by heparin and was further increased by cell culture in 1% (vs. 10%) fetal bovine serum, suggesting that the effect may, at least in part, be mediated via the LDL receptor. Antisense chol-modified oligonucleotides are sequence specific and have increased potency as compared to unmodified oligonucleotides.

  3. Improved silencing properties using small internally segmented interfering RNAs

    PubMed Central

    Bramsen, Jesper B.; Laursen, Maria B.; Damgaard, Christian K.; Lena, Suzy W.; Ravindra Babu, B.; Wengel, Jesper; Kjems, Jørgen

    2007-01-01

    RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo. PMID:17726057

  4. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides

    PubMed Central

    Kole, Ryszard; Krainer, Adrian R.; Altman, Sidney

    2016-01-01

    Here we discuss three RNA therapeutic technologies exploiting various oligonucleotides that bind RNA by base-pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by enzyme-dependent degradation of targeted mRNA. Steric blocking oligonucleotides block access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or also downregulate gene expression. Moreover, they can be extensively chemically modified, resulting in more drug-like properties. The ability of RNA blocking oligonucleotides to restore gene function makes them suited for treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to realizing its clinical potential. PMID:22262036

  5. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prhavc, M.; Prakash, T.P.; Minasov, G.

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  6. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve therapeutic effect in living animals.

  7. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    PubMed

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition.

    PubMed

    Rasmussen, Louise Carøe Vohlander; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2007-08-10

    An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.

  9. Synthesis, physicochemical and biochemical studies of 1',2'-oxetane constrained adenosine and guanosine modified oligonucleotides, and their comparison with those of the corresponding cytidine and thymidine analogues.

    PubMed

    Pradeepkumar, Pushpangadan I; Cheruku, Pradeep; Plashkevych, Oleksandr; Acharya, Parag; Gohil, Suresh; Chattopadhyaya, Jyoti

    2004-09-22

    We have earlier reported the synthesis and antisense properties of the conformationally constrained oxetane-C and -T containing oligonucleotides, which have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells. Here we report on the straightforward syntheses of the oxetane-A and oxetane-G nucleosides as well as their incorporations into antisense oligonucleotides (AONs), and compare their structural and antisense properties with those of the T and C modified AONs (including the thermostability and RNase H recruitment capability of the AON/RNA hybrid duplex by Michaelis-Menten kinetic analyses, their resistance in the human serum, as well as in the presence of exo and endonucleases).

  10. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.

    PubMed

    Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M

    2018-05-03

    Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.

  11. Nucleic acids--genes, drugs, molecular lego and more.

    PubMed

    Häner, Robert

    2010-01-01

    Chemically modified nucleic acids find widespread use as tools in research, as diagnostic reagents and even as pharmaceutical compounds. On the background of antisense research and development, the synthesis and evaluation of modified oligonucleotides was intensively pursued in the early to mid nineties in corporate research of former Ciba. Most of these efforts concentrated on the development of sugar and/or backbone-modified derivatives for pharmaceutical applications. Additionally, oligonucleotide metal conjugates were investigated with the goal to develop artificial ribonucleases. Since the turn of the millennium also the potential of non-nucleosidic and non-hydrogen bonding building blocks has increasingly been recognized. Such derivatives possess unique properties that may have an impact in the fields of materials and genetic research. In this brief account, we take a personal look back on some past as well as some recent results.

  12. Integrated Safety Assessment of 2′-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman Primates and Healthy Human Volunteers

    PubMed Central

    Crooke, Stanley T; Baker, Brenda F; Kwoh, T Jesse; Cheng, Wei; Schulz, Dan J; Xia, Shuting; Salgado, Nelson; Bui, Huynh-Hoa; Hart, Christopher E; Burel, Sebastien A; Younis, Husam S; Geary, Richard S; Henry, Scott P; Bhanot, Sanjay

    2016-01-01

    The common chemical and biological properties of antisense oligonucleotides provide the opportunity to identify and characterize chemical class effects across species. The chemical class that has proven to be the most versatile and best characterized is the 2′-O-methoxyethyl chimeric antisense oligonucleotides. In this report we present an integrated safety assessment of data obtained from controlled dose-ranging studies in nonhuman primates (macaques) and healthy human volunteers for 12 unique 2′-O-methoxyethyl chimeric antisense oligonucleotides. Safety was assessed by the incidence of safety signals in standardized laboratory tests for kidney and liver function, hematology, and complement activation; as well as by the mean test results as a function of dose level over time. At high doses a number of toxicities were observed in nonhuman primates. However, no class safety effects were identified in healthy human volunteers from this integrated data analysis. Effects on complement in nonhuman primates were not observed in humans. Nonhuman primates predicted safe doses in humans, but over predicted risk of complement activation and effects on platelets. Although limited to a single chemical class, comparisons from this analysis are considered valid and accurate based on the carefully controlled setting for the specified study populations and within the total exposures studied. PMID:27357629

  13. Growth inhibition of N1E-115 mouse neuroblastoma cells by c-myc or N-myc antisense oligodeoxynucleotides causes limited differentiation but is not coupled to neurite formation.

    PubMed

    Larcher, J C; Basseville, M; Vayssiere, J L; Cordeau-Lossouarn, L; Croizat, B; Gros, F

    1992-06-30

    Antisense oligodeoxynucleotides were found to be stable in the culture medium containing fetal calf serum (heat-inactivated 30 minutes at 65 degrees C) and in cells. Antisense oligomer treatment causes cessation of mitoses, but does not lead to morphological differentiation. Under antisense conditions, we have observed an increase in the amount of two neurospecific protein, namely peripherin and gamma-enolase. Comparison of the results obtained with chemical inducers and antisense oligodeoxynucleotides allows us to postulate three phases in N1E-115 differentiation: the first correspond to the arrest of mitosis, the second to the expression of a limited neuronal program, and the third to the morphological and electrophysiological differentiation.

  14. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs

    PubMed Central

    Shen, Xiulong; Corey, David R

    2018-01-01

    Abstract RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed. PMID:29240946

  15. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T

    2018-01-01

    Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240

  16. Identification of sequence motifs in oligonucleotides whose presence is correlated with antisense activity

    PubMed Central

    Matveeva, O. V.; Tsodikov, A. D.; Giddings, M.; Freier, S. M.; Wyatt, J. R.; Spiridonov, A. N.; Shabalina, S. A.; Gesteland, R. F.; Atkins, J. F.

    2000-01-01

    Design of antisense oligonucleotides targeting any mRNA can be much more efficient when several activity-enhancing motifs are included and activity-decreasing motifs are avoided. This conclusion was made after statistical analysis of data collected from >1000 experiments with phosphorothioate-modified oligonucleotides. Highly significant positive correlation between the presence of motifs CCAC, TCCC, ACTC, GCCA and CTCT in the oligonucleotide and its antisense efficiency was demonstrated. In addition, negative correlation was revealed for the motifs GGGG, ACTG, AAA and TAA. It was found that the likelihood of activity of an oligonucleotide against a desired mRNA target is sequence motif content dependent. PMID:10908347

  17. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide).

    PubMed

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez, Ana Maria Jimenez; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-02-25

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.

  18. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  19. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  20. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents.

    PubMed

    Kaniowski, Damian; Ebenryter-Olbińska, Katarzyna; Sobczak, Milena; Wojtczak, Błażej; Janczak, Sławomir; Leśnikowski, Zbigniew J; Nawrot, Barbara

    2017-08-23

    Boron cluster-modified therapeutic nucleic acids with improved properties are of interest in gene therapy and in cancer boron neutron capture therapy (BNCT). High metallacarborane-loaded antisense oligonucleotides (ASOs) targeting epidermal growth factor receptor (EGFR) were synthesized through post-synthetic Cu (I)-assisted "click" conjugation of alkyne-modified DNA-oligonucleotides with a boron cluster alkyl azide component. The obtained oligomers exhibited increased lipophilicity compared to their non-modified precursors, while their binding affinity to complementary DNA and RNA strands was slightly decreased. Multiple metallacarborane residues present in the oligonucleotide chain, each containing 18 B-H groups, enabled the use of IR spectroscopy as a convenient analytical method for these oligomers based on the diagnostic B-H signal at 2400-2650 cm -1 . The silencing activity of boron cluster-modified ASOs used at higher concentrations was similar to that of unmodified oligonucleotides. The screened ASOs, when used in low concentrations (up to 50 μM), exhibited pro-oxidative properties by inducing ROS production and an increase in mitochondrial activities in HeLa cells. In contrast, when used at higher concentrations, the ASOs exhibited anti-oxidative properties by lowering ROS species levels. In the HeLa cells (tested in the MTT assay) treated (without lipofectamine) or transfected with the screened compounds, the mitochondrial activity remained equal to the control level or only slightly changed (±30%). These findings may be useful in the design of dual-action boron cluster-modified therapeutic nucleic acids with combined antisense and anti-oxidant properties.

  1. Inhibition of human papillomavirus expression using DNAzymes.

    PubMed

    Benítez-Hess, María Luisa; Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis Marat

    2011-01-01

    Deoxyribozymes (DXZs) are catalytic oligodeoxynucleotides capable of performing diverse functions including the specific cleavage of a target RNA. These molecules represent a new type of therapeutic oligonucleotides combining the efficiency of ribozymes and the intracellular endurance and simplicity of modified antisense oligonucleotides. Commonly used DXZs include the 8-17 and 10-23 motifs, which have been engineered to destroy disease-associated genes with remarkable efficiency. Targeting DXZs to disease-associated transcripts requires extensive biochemical testing to establish target RNA accessibility, catalytic efficiency, and nuclease sensibility. The usage of modified nucleotides to render nuclease-resistance DXZs must be counterweighted against deleterious consequences on catalytic activity. Further intracellular testing is required to establish the effect of microenvironmental conditions on DXZ activity and off-target issues. Application of modified DXZs to cervical cancer results in specific growth inhibition, cell death, and apoptosis. Thus, DXZs represent a highly effective antisense moiety with minimal secondary effects.

  2. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  3. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    PubMed

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  4. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structuresmore » of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.« less

  5. Method for phosphorothioate antisense DNA sequencing by capillary electrophoresis with UV detection.

    PubMed

    Froim, D; Hopkins, C E; Belenky, A; Cohen, A S

    1997-11-01

    The progress of antisense DNA therapy demands development of reliable and convenient methods for sequencing short single-stranded oligonucleotides. A method of phosphorothioate antisense DNA sequencing analysis using UV detection coupled to capillary electrophoresis (CE) has been developed based on a modified chain termination sequencing method. The proposed method reduces the sequencing cost since it uses affordable CE-UV instrumentation and requires no labeling with minimal sample processing before analysis. Cycle sequencing with ThermoSequenase generates quantities of sequencing products that are readily detectable by UV. Discrimination of undesired components from sequencing products in the reaction mixture, previously accomplished by fluorescent or radioactive labeling, is now achieved by bringing concentrations of undesired components below the UV detection range which yields a 'clean', well defined sequence. UV detection coupled with CE offers additional conveniences for sequencing since it can be accomplished with commercially available CE-UV equipment and is readily amenable to automation.

  6. Method for phosphorothioate antisense DNA sequencing by capillary electrophoresis with UV detection.

    PubMed Central

    Froim, D; Hopkins, C E; Belenky, A; Cohen, A S

    1997-01-01

    The progress of antisense DNA therapy demands development of reliable and convenient methods for sequencing short single-stranded oligonucleotides. A method of phosphorothioate antisense DNA sequencing analysis using UV detection coupled to capillary electrophoresis (CE) has been developed based on a modified chain termination sequencing method. The proposed method reduces the sequencing cost since it uses affordable CE-UV instrumentation and requires no labeling with minimal sample processing before analysis. Cycle sequencing with ThermoSequenase generates quantities of sequencing products that are readily detectable by UV. Discrimination of undesired components from sequencing products in the reaction mixture, previously accomplished by fluorescent or radioactive labeling, is now achieved by bringing concentrations of undesired components below the UV detection range which yields a 'clean', well defined sequence. UV detection coupled with CE offers additional conveniences for sequencing since it can be accomplished with commercially available CE-UV equipment and is readily amenable to automation. PMID:9336449

  7. Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1

    PubMed Central

    Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil

    2003-01-01

    α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  8. Antisense Oligonucleotides Modulating Activation of a Nonsense-Mediated RNA Decay Switch Exon in the ATM Gene.

    PubMed

    Kralovicova, Jana; Moreno, Pedro M D; Cross, Nicholas C P; Pêgo, Ana Paula; Vorechovsky, Igor

    2016-12-01

    ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.

  9. Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100.

    PubMed

    Yu, Rosie Z; Lemonidis, Kristina M; Graham, Mark J; Matson, John E; Crooke, Rosanne M; Tribble, Diane L; Wedel, Mark K; Levin, Arthur A; Geary, Richard S

    2009-03-01

    The in vivo pharmacokinetics/pharmacodynamics of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs), targeting apolipoprotein B-100 (apoB-100), were characterized in multiple species. The species-specific apoB antisense inhibitors demonstrated target apoB mRNA reduction in a drug concentration and time-dependent fashion in mice, monkeys, and humans. Consistent with the concentration-dependent decreases in liver apoB mRNA, reductions in serum apoB, and LDL-C, and total cholesterol were concurrently observed in animal models and humans. Additionally, the long duration of effect after cessation of dosing correlated well with the elimination half-life of 2'-MOE modified apoB ASOs studied in mice (t(1/2) congruent with 20 days) and humans (t(1/2) congruent with 30 days) following parental administrations. The plasma concentrations of ISIS 301012, observed in the terminal elimination phase of both mice and monkeys were in equilibrium with liver. The partition ratios between liver and plasma were similar, approximately 6000:1, across species, and thus provide a surrogate for tissue exposure in humans. Using an inhibitory E(max) model, the ASO liver EC(50s) were 101+/-32, 119+/-15, and 300+/-191 microg/g of ASO in high-fat-fed (HF) mice, transgenic mice containing the human apoB transgene, and monkeys, respectively. The estimated liver EC(50) in man, extrapolated from trough plasma exposure, was 81+/-122 microg/g. Therefore, extraordinary consistency of the exposure-response relationship for the apoB antisense inhibitor was observed across species, including human. The cross-species PK/PD relationships provide confidence in the use of pharmacology animal models to predict human dosing for second-generation ASOs targeting the liver.

  10. 2′-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo

    PubMed Central

    Prakash, Thazha P.; Johnston, Joseph F.; Graham, Mark J.; Condon, Thomas P.; Manoharan, Muthiah

    2004-01-01

    Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed. PMID:14762210

  11. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver.

    PubMed

    Miller, Colton M; Tanowitz, Michael; Donner, Aaron J; Prakash, Thazha P; Swayze, Eric E; Harris, Edward N; Seth, Punit P

    2018-06-01

    Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize our knowledge on receptor-mediated uptake of PS antisense oligonucleotides (ASOs) within different cell types of the liver-a privileged organ for the discovery of oligonucleotide-based therapeutics.

  12. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    PubMed

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors.

    PubMed

    Li, D; Mehta, J L

    2000-04-01

    A specific lectin-like endothelial receptor for oxidized low density lipoprotein (LOX-1), distinct from the scavenger receptor in monocytes/macrophages, has been identified and cloned. In this study, we examined the regulation of LOX-1 by oxidized low density lipoprotein (ox-LDL) and determined the role of LOX-1 in ox-LDL-induced apoptosis of cultured human coronary artery endothelial cells (HCAECs). Incubation of HCAECs with ox-LDL (40 microg/mL), but not native LDL, for 24 hours markedly increased LOX-1 expression (mRNA and protein). After 48 hours of preincubation of HCAECs with a specific antisense to LOX-1 mRNA (antisense LOX-1), ox-LDL-mediated upregulation of LOX-1 was suppressed (P<0.01). In contrast, treatment of HCAECs with sense LOX-1 had no effect. Ox-LDL also induced apoptosis (determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and DNA laddering) of HCAECs in a concentration- and time-dependent fashion. LOX-1 played an important role in ox-LDL-mediated apoptosis of HCAECs because antisense LOX-1 inhibited this effect of ox-LDL. Polyinosinic acid and carrageenan, 2 different chemical inhibitors of LOX-1, also decreased ox-LDL-mediated apoptosis of HCAECs. Nuclear factor (NF)-kappaB was markedly activated in ox-LDL-treated HCAECs. The critical role of NF-kappaB activation became evident in experiments with antisense LOX-1, which abolished ox-LDL-mediated NF-kappaB activation. In this process, an NF-kappaB inhibitor, caffeic acid phenethyl ester, also inhibited ox-LDL-mediated apoptosis of HCAECs. These findings indicate that ox-LDL upregulates its own endothelial receptor. Ox-LDL-induced apoptosis is mediated by the action of LOX-1. In this process, NF-kappaB activation may play an important role as a signal transduction mechanism.

  14. [The influence of HOXB2 anti-sense oligodeoxynucleotides on the proliferation and expression of human umbilical vein endothelial cells].

    PubMed

    Zhang, X; Liu, X; Liu, L

    2001-12-01

    To explore the effects of HOXB2 anti-sense oligodeoxynucleotides (asodn) on the proliferation and the expression of human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 ASODN modified by thiophosphate were transfected into HUVECs by liposome mediation. MTT and RT-PCR methods were employed to determine the influence of different concentrations of ASODN on endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 ASODN, the endothelial proliferation was inhibited in dose-dependent manner. Simultaneously, the expression level of HOXB2 mRNA decreased significantly. HOXB2 might play important roles in the proliferation of endothelial cells.

  15. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase.

    PubMed

    Ralph, J; Hatfield, R D; Piquemal, J; Yahiaoui, N; Pean, M; Lapierre, C; Boudet, A M

    1998-10-27

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl-SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl-SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.

  16. Intravenous administration of stabilized antisense lipid particles (SALP) leads to activation and expansion of liver natural killer cells.

    PubMed

    Bramson, J L; Bodner, C A; Johnson, J; Semple, S; Hope, M J

    2000-06-01

    Stabilized antisense lipid particles (SALP) have been developed for the systemic delivery of oligonucleotides. The impact of intravenous SALP administration was measured with respect to activation of natural killer (NK) and NK1.1+ T (NKT) cells in the livers of immunocompetent mice. Treatment with a SALP containing a highly mitogenic oligonucleotide (INX-6295) generated an increase in NK cytolytic activity and cell number within the liver but did not appear to affect the number of hepatic NKT cells or their cytolytic activity. The same results were observed after intravenous administration of the mitogenic oligonucleotide alone. Interestingly, treatment with a SALP containing a weakly mitogenic oligonucleotide (INX-6300) also activated the liver NK cells, whereas the oligonucleotide alone was unable to elicit these effects. The NK stimulatory activity of a SALP containing INX-6300 required both lipid and oligonucleotide components. These results demonstrate that in addition to modifying the pharmacokinetics and biodistribution of intravenously administered oligonucleotides, SALP possess immunostimulatory activity independent of oligonucleotide mitogenicity, which can serve as an adjuvant to antisense therapies for cancer.

  17. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis.

    PubMed

    Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L

    2003-10-15

    The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.

  18. Enzymatic and antisense effects of a specific anti-Ki-ras ribozyme in vitro and in cell culture.

    PubMed Central

    Giannini, C D; Roth, W K; Piiper, A; Zeuzem, S

    1999-01-01

    Due to their mode of action, ribozymes show antisense effects in addition to their specific cleavage activity. In the present study we investigated whether a hammerhead ribozyme is capable of cleaving mutated Ki-ras mRNA in a pancreatic carcinoma cell line and whether antisense effects contribute to the activity of the ribozyme. A 2[prime]-O-allyl modified hammerhead ribozyme was designed to cleave specifically the mutated form of the Ki- ras mRNA (GUU motif in codon 12). The activity was monitored by RT-PCR on Ki- ras RNA expression by determination of the relative amount of wild type to mutant Ki-ras mRNA, by 5-bromo-2[prime]-deoxy-uridine incorporation on cell proliferation and by colony formation in soft agar on malignancy in the human pancreatic adenocarcinoma cell line CFPAC-1, which is heterozygous for the Ki-ras mutation. A catalytically inactive ribozyme was used as control to differentiate between antisense and cleavage activity and a ribozyme with random guide sequences as negative control. The catalytically active anti-Ki-ras ribozyme was at least 2-fold more potent in decreasing cellular Ki-ras mRNA levels, inhibiting cell proliferation and colony formation in soft agar than the catalytically inactive ribozyme. The catalytically active anti-Ki-ras ribozyme, but not the catalytically inactive or random ribozyme, increased the ratio of wild type to mutated Ki-ras mRNA in CFPAC-1 cells. In conclusion, both cleavage activity and antisense effects contribute to the activity of the catalytically active anti-Ki-ras hammerhead ribozyme. Specific ribozymes might be useful in the treatment of pancreatic carcinomas containing an oncogenic GTT mutation in codon 12 of the Ki-ras gene. PMID:10373591

  19. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE PAGES

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.; ...

    2016-09-20

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  20. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  1. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages

    PubMed Central

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T.

    2015-01-01

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. PMID:25712094

  2. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase

    PubMed Central

    Ralph, John; Hatfield, Ronald D.; Piquemal, Joël; Yahiaoui, Nabila; Pean, Michel; Lapierre, Catherine; Boudet, Alain M.

    1998-01-01

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies. PMID:9788995

  3. Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice.

    PubMed

    Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Nakatani, Moeka; Wada, Shunsuke; Yasuhara, Hidenori; Narukawa, Keisuke; Sasaki, Kiyomi; Shibata, Masa-Aki; Torigoe, Hidetaka; Yamaoka, Tetsuji; Imanishi, Takeshi; Obika, Satoshi

    2012-05-15

    Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2',4'-BNA (also called as locked nucleic acid (LNA)) and 2',4'-BNA(NC) chemistries were demonstrated both in vitro and in vivo. An in vitro transfection study revealed that all of the BNA-AONs induce dose-dependent reductions in PCSK9 messenger RNA (mRNA) levels concomitantly with increases in LDLR protein levels. BNA-AONs were administered to atherogenic diet-fed C57BL/6J mice twice weekly for 6 weeks; 2',4'-BNA-AON that targeted murine PCSK9 induced a dose-dependent reduction in hepatic PCSK9 mRNA and LDL cholesterol (LDL-C); the 43% reduction of serum LDL-C was achieved at a dose of 20 mg/kg/injection with only moderate increases in toxicological indicators. In addition, the serum high-density lipoprotein cholesterol (HDL-C) levels increased. These results support antisense inhibition of PCSK9 as a potential therapeutic approach. When compared with 2',4'-BNA-AON, 2',4'-BNA(NC)-AON showed an earlier LDL-C-lowering effect and was more tolerable in mice. Our results validate the optimization of 2',4'-BNA(NC)-based anti-PCSK9 antisense molecules to produce a promising therapeutic agent for the treatment of hypercholesterolemia.

  4. The successes and future prospects of the linear antisense RNA amplification methodology.

    PubMed

    Li, Jifen; Eberwine, James

    2018-05-01

    It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.

  5. Translational and regulatory challenges for exon skipping therapies.

    PubMed

    Aartsma-Rus, Annemieke; Ferlini, Alessandra; Goemans, Nathalie; Pasmooij, Anna M G; Wells, Dominic J; Bushby, Katerine; Vroom, Elizabeth; Balabanov, Pavel

    2014-10-01

    Several translational challenges are currently impeding the therapeutic development of antisense-mediated exon skipping approaches for rare diseases. Some of these are inherent to developing therapies for rare diseases, such as small patient numbers and limited information on natural history and interpretation of appropriate clinical outcome measures. Others are inherent to the antisense oligonucleotide (AON)-mediated exon skipping approach, which employs small modified DNA or RNA molecules to manipulate the splicing process. This is a new approach and only limited information is available on long-term safety and toxicity for most AON chemistries. Furthermore, AONs often act in a mutation-specific manner, in which case multiple AONs have to be developed for a single disease. A workshop focusing on preclinical development, trial design, outcome measures, and different forms of marketing authorization was organized by the regulatory models and biochemical outcome measures working groups of Cooperation of Science and Technology Action: "Networking towards clinical application of antisense-mediated exon skipping for rare diseases." The workshop included participants from patient organizations, academia, and members of staff from the European Medicine Agency and Medicine Evaluation Board (the Netherlands). This statement article contains the key outcomes of this meeting.

  6. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment. PMID:21235785

  7. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-08

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

  8. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    PubMed

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  9. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.

    PubMed

    Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin

    2009-06-01

    Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that transfected SK-Br-3 oncocytes by antisense probe had the lowest signal of all. The SPIO-labeled ASODN probe shows unique features including well-distributed spherical morphology, high conjugating rate and loading efficiency, and the signal intensity of SPIO-labeled ASODN-transfected SK-Br-3 oncocytes is reduced in MR imaging. These results indicate that the SPIO-labeled ASODN probe is potentially useful as a MR targeting contrast enhancing agent to specifically diagnose tumors which had over-expression of the c-erbB2 oncogene at an early stage.

  10. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    DTIC Science & Technology

    2010-10-01

    ribozymes and the DNAzymes, small interfering RNAs and short hairpin RNAs, and anti-miRNA agents such as antisense oligo- nucleotides, locked nucleic...of the antagomir Preclinical studies Ribozymes or DNAzymes A ribozyme , or RNA enzyme, is an RNA molecule that can catalyze a chemical reaction. A

  11. Targeting MicroRNAs with Small Molecules a Novel Approach to Treating Breast Cancer

    DTIC Science & Technology

    2011-10-01

    pathogenesis of a disease. To date, the main RNA inhibition agents used in pre- clinical and clinical studies include antisense oligonucleotides, ribozymes ...antagomir Preclinical studies Ribozymes or DNAzymes A ribozyme , or RNA enzyme, is an RNA molecule that can catalyze a chemical reaction. A DNAzyme

  12. Widespread antisense transcription of Populus genome under drought.

    PubMed

    Yuan, Yinan; Chen, Su

    2018-06-06

    Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

  13. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast.

    PubMed

    Nevers, Alicia; Doyen, Antonia; Malabat, Christophe; Néron, Bertrand; Kergrohen, Thomas; Jacquier, Alain; Badis, Gwenael

    2018-05-18

    Pervasive transcription generates many unstable non-coding transcripts in budding yeast. The transcription of such noncoding RNAs, in particular antisense RNAs (asRNAs), has been shown in a few examples to repress the expression of the associated mRNAs. Yet, such mechanism is not known to commonly contribute to the regulation of a given class of genes. Using a mutant context that stabilized pervasive transcripts, we observed that the least expressed mRNAs during the exponential phase were associated with high levels of asRNAs. These asRNAs also overlapped their corresponding gene promoters with a much higher frequency than average. Interrupting antisense transcription of a subset of genes corresponding to quiescence-enriched mRNAs restored their expression. The underlying mechanism acts in cis and involves several chromatin modifiers. Our results convey that transcription interference represses up to 30% of the 590 least expressed genes, which includes 163 genes with quiescence-enriched mRNAs. We also found that pervasive transcripts constitute a higher fraction of the transcriptome in quiescence relative to the exponential phase, consistent with gene expression itself playing an important role to suppress pervasive transcription. Accordingly, the HIS1 asRNA, normally only present in quiescence, is expressed in exponential phase upon HIS1 mRNA transcription interruption.

  14. Pharmacology of a Central Nervous System Delivered 2′-O-Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates

    PubMed Central

    Chun, Seung J.; Norris, Daniel A.; Hung, Gene; Lee, Sam; Matson, John; Fey, Robert A.; Gaus, Hans; Hua, Yimin; Grundy, John S.; Krainer, Adrian R.; Henry, Scott P.; Bennett, C. Frank

    2014-01-01

    Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443–mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development. PMID:24784568

  15. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages.

    PubMed

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T

    2015-03-11

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Size-uniform 200 nm particles: fabrication and application to magnetofection.

    PubMed

    Mair, Lamar; Ford, Kris; Alam, M d Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard

    2009-04-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as successful agents for magnetically enhanced transfection of an antisense oligonucleotide.

  17. Identification and Characterization of Modified Antisense Oligonucleotides Targeting DMPK in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1

    PubMed Central

    Wheeler, Thurman M.; Justice, Samantha L.; Kim, Aneeza; Younis, Husam S.; Gattis, Danielle; Jauvin, Dominic; Puymirat, Jack; Swayze, Eric E.; Freier, Susan M.; Bennett, C. Frank; Thornton, Charles A.; MacLeod, A. Robert

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3′-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2′,4′-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2′-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1. PMID:26330536

  18. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1.

    PubMed

    Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L; Kim, Aneeza; Younis, Husam S; Gattis, Danielle; Jauvin, Dominic; Puymirat, Jack; Swayze, Eric E; Freier, Susan M; Bennett, C Frank; Thornton, Charles A; MacLeod, A Robert

    2015-11-01

    Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life.

    PubMed

    Sharma, Chiranjeev; Awasthi, Satish Kumar

    2017-01-01

    This review briefly discussed nomenclature, synthesis, chemistry, and biophysical properties of a plethora of PNA derivatives reported since the discovery of aegPNA. Different synthetic methods and structural analogs of PNA synthesized till date were also discussed. An insight was gained into various chemical, physical, and biological properties of PNA which make it preferable over all other classes of modified nucleic acid analogs. Thereafter, various approaches with special attention to the practical constraints, characteristics, and inherent drawbacks leading to the delay in the development of PNA as gene therapeutic drug were outlined. An explicit account of the successful application of PNA in different areas of research such as antisense and antigene strategies, diagnostics, molecular probes, and so forth was described along with the current status of PNA as gene therapeutic drug. Further, the plausibility of the existence of PNA and its role in primordial chemistry, that is, origin of life was explored in an endeavor to comprehend the mystery and open up its deepest secrets ever engaging and challenging the human intellect. We finally concluded it with a discussion on the future prospects of PNA technology in the field of therapeutics, diagnostics, and origin of life. © 2016 John Wiley & Sons A/S.

  20. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum.

    PubMed

    Perret, Stéphanie; Maamar, Hédia; Bélaich, Jean-Pierre; Tardif, Chantal

    2004-01-01

    The enzymatic composition of the cellulosomes produced by Clostridium cellulolyticum was modified by inhibiting the synthesis of Cel48F that is the major cellulase of the cellulosomes. The strain ATCC 35319 (pSOSasrF) was developed to over-produce a 469 nucleotide-long antisense-RNA (asRNA) directed against the ribosome-binding site region and the beginning of the coding region of the cel48F mRNAs. The cellulolytic system secreted by the asRNA-producing strain showed a markedly lower amount of Cel48F, compared to the control strain transformed with the empty plasmid (pSOSzero). This was correlated with a 30% decrease of the specific activity of the cellulolytic system on Avicel cellulose, indicating that Cel48F plays an important role in the recalcitrant cellulose degradation. However, only minor effects were observed on the growth parameters on cellulose. In both transformant strains, cellulosome production was found to be reduced and two unknown proteins (P105 and P98) appeared as major components of their cellulolytic systems. These proteins did not contain any dockerin domain and were shown to be not included into the cellulosomes; they are expected to participate to the non-cellulosomal cellulolytic system of C. cellulolyticum.

  1. Identification of sequence motifs significantly associated with antisense activity.

    PubMed

    McQuisten, Kyle A; Peek, Andrew S

    2007-06-07

    Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic mediators to speed the process along like the RNA Induced Silencing Complex (RISC) in RNAi. The independence of motif position and antisense activity also allows us to bypass consideration of this feature in the modelling process, promoting model efficiency and reducing the chance of overfitting when predicting antisense activity. The increase in SVR correlation with significant features compared to nearest-neighbour features indicates that thermodynamics alone is likely not the only factor in determining antisense efficiency.

  2. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period

    PubMed Central

    2012-01-01

    Background Recent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection. Results Characterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4–3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4–3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3′ LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication. Conclusions The results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4–3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle. PMID:22569184

  3. Antisense technology: an emerging platform for cardiovascular disease therapeutics.

    PubMed

    Lee, Richard G; Crosby, Jeff; Baker, Brenda F; Graham, Mark J; Crooke, Rosanne M

    2013-12-01

    Antisense oligonucleotides and small interfering RNAs, which suppress the translation of specific mRNA target proteins, are emerging as important therapeutic modalities for the treatment of cardiovascular disease. Over the last 25 years, the advances in all aspects of antisense technology, as well as a detailed understanding of the mechanism of action of antisense drugs, have enabled their use as therapeutic agents. These advancements culminated in the FDA approval of the first chronically administered cardiovascular antisense therapeutic, mipomersen, which targets hepatic apolipoprotein B mRNA. This review provides a brief history of antisense technology, highlights the progression of mipomersen from preclinical studies to multiple Phase III registration trials, and gives an update on the status of other cardiovascular antisense therapeutics currently in the clinic.

  4. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus Infection

    DTIC Science & Technology

    2009-05-01

    RNA replication. J. Virol. 79:4599–4609. 6. Dolnik, O., L. Kolesnikova, and S. Becker . 2008. Filoviruses: interactions with the host cell. Cell. Mol... dystrophy ) and inhibit murine coronavirus rep- lication in vivo. Biochem. Soc. Trans. 35:826–828. 22. Moulton, H. M., M. H. Nelson, S. A. Hatlevig, M. T

  5. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers

    PubMed Central

    Latgé, Guillaume; Poulet, Christophe; Bours, Vincent; Jerusalem, Guy

    2018-01-01

    Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers. PMID:29301303

  6. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers.

    PubMed

    Latgé, Guillaume; Poulet, Christophe; Bours, Vincent; Josse, Claire; Jerusalem, Guy

    2018-01-02

    Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers.

  7. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  8. Antisense Therapy in Neurology

    PubMed Central

    Lee, Joshua J.A.; Yokota, Toshifumi

    2013-01-01

    Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology. PMID:25562650

  9. Mass spectrometric detection of siRNA in plasma samples for doping control purposes.

    PubMed

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.

  10. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    PubMed

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  11. Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1.

    PubMed Central

    Homann, M; Tzortzakaki, S; Rittner, K; Sczakiel, G; Tabler, M

    1993-01-01

    The catalytic domain of a hammerhead ribozyme was incorporated into a 413 nucleotides long antisense RNA directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1) (pos. +222 to +634). The resulting catalytic antisense RNA was shown to cleave its target RNA in vitro specifically at physiological ion strength and temperature. We compared the antiviral effectiveness of this catalytic antisense RNA with that of the corresponding unmodified antisense RNA and with a mutated catalytic antisense RNA, which did not cleave the substrate RNA in vitro. Each of these RNAs was co-transfected into human SW480 cells together with infectious complete proviral HIV-1 DNA, followed by analysis of HIV-1 replication. The presence of the catalytically active domain resulted in 4 to 7 fold stronger inhibition of HIV-1 replication as compared to the parental antisense RNA and the inactive mutant. Kinetic and structural studies performed in vitro indicated that the ability for double strand formation was not changed in catalytic antisense RNA versus parental antisense RNA. Together, these data suggest that the ability to cleave target RNA is a crucial prerequisite for the observed increase of inhibition of the replication of HIV-1. Images PMID:8332489

  12. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    PubMed Central

    Ludwig, Linda B; Ambrus, Julian L; Krawczyk, Kristie A; Sharma, Sanjay; Brooks, Stephen; Hsiao, Chiu-Bin; Schwartz, Stanley A

    2006-01-01

    Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ) protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). Results Inspection of published sequences revealed a potential transcription initiator element (INR) situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR) suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s) could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s) were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK) sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP) sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The novel HAPs are encoded in a region of the LTR that has already been shown to be deleted in some HIV-infected long-term survivors and represent new potential targets for vaccine development. PMID:17090330

  13. Cleavage of HPV-16 E6/E7 mRNA mediated by modified 10-23 deoxyribozymes.

    PubMed

    Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis M

    2009-09-01

    Deoxyribozymes (DXZs) are small oligodeoxynucleotides capable of mediating phosphodiester bond cleavage of a target RNA in a sequence-specific manner. These molecules are a new generation of artificial catalytic nucleic acids currently used to silence many disease-related genes. The present study describes a DXZ (Dz1023-434) directed against the polycistronic mRNA from the E6 and E7 genes of human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer. Dz1023-434 showed efficient cleavage against a bona fide antisense window at nt 410-445 within HPV-16 E6/E7 mRNA even in low [Mg(2+)] conditions. Using a genetic analysis as guidance, we introduced diverse chemical modifications within Dz1023-434 catalytic core to produce a stable locked nucleic acid (LNA)-modified DXZ (Dz434-LNA) with significant cleavage activity of full E6/E7 transcripts. Cell culture testing of Dz434-LNA produced a sharp decrement of E6/E7 mRNA levels in HPV-16-positive cells resulting in decreased proliferation and considerable cell death in a specific and dose-dependent manner. No significant effects were observed with inactive or scrambled control DXZs nor from using HPV-negative cells, suggesting catalysis-dependent effect and high specificity. The biological effects of Dz434-LNA suggest a potential use for the treatment of cervical cancer.

  14. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides.

    PubMed

    Iwamoto, Naoki; Butler, David C D; Svrzikapa, Nenad; Mohapatra, Susovan; Zlatev, Ivan; Sah, Dinah W Y; Meena; Standley, Stephany M; Lu, Genliang; Apponi, Luciano H; Frank-Kamenetsky, Maria; Zhang, Jason Jingxin; Vargeese, Chandra; Verdine, Gregory L

    2017-09-01

    Whereas stereochemical purity in drugs has become the standard for small molecules, stereoisomeric mixtures containing as many as a half million components persist in antisense oligonucleotide (ASO) therapeutics because it has been feasible neither to separate the individual stereoisomers, nor to synthesize stereochemically pure ASOs. Here we report the development of a scalable synthetic process that yields therapeutic ASOs having high stereochemical and chemical purity. Using this method, we synthesized rationally designed stereopure components of mipomersen, a drug comprising 524,288 stereoisomers. We demonstrate that phosphorothioate (PS) stereochemistry substantially affects the pharmacologic properties of ASOs. We report that Sp-configured PS linkages are stabilized relative to Rp, providing stereochemical protection from pharmacologic inactivation of the drug. Further, we elucidated a triplet stereochemical code in the stereopure ASOs, 3'-SpSpRp, that promotes target RNA cleavage by RNase H1 in vitro and provides a more durable response in mice than stereorandom ASOs.

  15. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.

    PubMed

    Hernández, Armando R; Peterson, Larryn W; Kool, Eric T

    2012-08-17

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.

  16. Steric Restrictions of RISC in RNA Interference Identified with Size-Expanded RNA Nucleobases

    PubMed Central

    Hernández, Armando R.; Peterson, Larryn W.; Kool, Eric T.

    2012-01-01

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC) – the key protein complex of RNA interference (RNAi) – is of great importance to the development of siRNAs with improved biological, and potentially therapeutic, function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases, and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to −5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region, but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3′-end increased activity over wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation. PMID:22646660

  17. Pharmacology of Antisense Drugs.

    PubMed

    Bennett, C Frank; Baker, Brenda F; Pham, Nguyen; Swayze, Eric; Geary, Richard S

    2017-01-06

    Recent studies have led to a greater appreciation of the diverse roles RNAs play in maintaining normal cellular function and how they contribute to disease pathology, broadening the number of potential therapeutic targets. Antisense oligonucleotides are the most direct means to target RNA in a selective manner and have become an established platform technology for drug discovery. There are multiple molecular mechanisms by which antisense oligonucleotides can be used to modulate RNAs in cells, including promoting the degradation of the targeted RNA or modulating RNA function without degradation. Antisense drugs utilizing various antisense mechanisms are demonstrating therapeutic potential for the treatment of a broad variety of diseases. This review focuses on some of the advances that have taken place in translating antisense technology from the bench to the clinic.

  18. Synthesis and antisense properties of fluoro cyclohexenyl nucleic acid (F-CeNA), a nuclease stable mimic of 2'-fluoro RNA.

    PubMed

    Seth, Punit P; Yu, Jinghua; Jazayeri, Ali; Pallan, Pradeep S; Allerson, Charles R; Østergaard, Michael E; Liu, Fengwu; Herdewijn, Piet; Egli, Martin; Swayze, Eric E

    2012-06-01

    We report the design and synthesis of 2'-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorine atom was accomplished using nonafluorobutanesulfonyl fluoride, and the cyclohexenyl ring system was assembled by means of a palladium-catalyzed Ferrier rearrangement. Installation of the nucleobase was carried out under Mitsunobu conditions followed by standard protecting group manipulations to provide the desired pyrimidine phosphoramidites. Biophysical evaluation indicated that F-CeNA shows behavior similar to that of a 2'-modified nucleotide, and duplexes with RNA showed slightly lower duplex thermostability as compared to that of the more rigid 3'-fluoro hexitol nucleic acid (FHNA). However, F-CeNA modified oligonucleotides were significantly more stable against digestion by snake venom phosphodiesterases (SVPD) as compared to unmodified DNA, 2'-fluoro RNA (FRNA), 2'-methoxyethyl RNA (MOE), and FHNA modified oligonucleotides. Examination of crystal structures of a modified DNA heptamer duplex d(GCG)-T*-d(GCG):d(CGCACGC) by X-ray crystallography indicated that the cyclohexenyl ring system exhibits both the (3)H(2) and (2)H(3) conformations, similar to the C3'-endo/C2'-endo conformation equilibrium seen in natural furanose nucleosides. In the (2)H(3) conformation, the equatorial fluorine engages in a relatively close contact with C8 (2.94 Å) of the 3'-adjacent dG nucleotide that may represent a pseudo hydrogen bond. In contrast, the cyclohexenyl ring of F-CeNA was found to exist exclusively in the (3)H(2) (C3'-endo like) conformation in the crystal structure of the modified A-form DNA decamer duplex [d(GCGTA)-T*-d(ACGC)](2.) In an animal experiment, a 16-mer F-CeNA gapmer ASO showed similar RNA affinity but significantly improved activity compared to that of a sequence matched MOE ASO, thus establishing F-CeNA as a useful modification for antisense applications.

  19. Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection

    PubMed Central

    Mair, Lamar; Ford, Kris; Alam, Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard

    2009-01-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as successful agents for magnetically enhanced transfection of an antisense oligonucleotide. PMID:20055096

  20. Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels.

    PubMed

    Yoshigai, Emi; Hara, Takafumi; Araki, Yoshiro; Tanaka, Yoshito; Oishi, Masaharu; Tokuhara, Katsuji; Kaibori, Masaki; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio

    2013-04-01

    Natural antisense transcripts (asRNAs) are frequently transcribed from mammalian genes. Recently, we found that non-coding asRNAs are transcribed from the 3' untranslated region (3'UTR) of the rat and mouse genes encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the inflammatory mediator nitric oxide. The iNOS asRNA stabilizes iNOS mRNA by interacting with the mRNA 3'UTR. Furthermore, single-stranded 'sense' oligonucleotides corresponding to the iNOS mRNA sequence were found to reduce iNOS mRNA levels by interfering with mRNA-asRNA interactions in rat hepatocytes. This method was named natural antisense transcript-targeted regulation (NATRE) technology. In this study, we detected human iNOS asRNA expressed in hepatocarcinoma and colon carcinoma tissues. The human iNOS asRNA harbored a sequence complementary to an evolutionarily conserved region of the iNOS mRNA 3'UTR. When introduced into hepatocytes, iNOS sense oligonucleotides that were modified by substitution with partial phosphorothioate bonds and locked nucleic acids or 2'-O-methyl nucleic acids greatly reduced levels of iNOS mRNA and iNOS protein. Moreover, sense oligonucleotides and short interfering RNAs decreased iNOS mRNA to comparable levels. These results suggest that NATRE technology using iNOS sense oligonucleotides could potentially be used to treat human inflammatory diseases and cancers by reducing iNOS mRNA levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Synthesis and biological evaluation of sialyl-oligonucleotide conjugates targeting leukocyte B trans-membranal receptor CD22 as delivery agents for nucleic acid drugs.

    PubMed

    St-Pierre, Gabrielle; Pal, Sudip; Østergaard, Michael E; Zhou, Tianyuan; Yu, Jinghua; Tanowitz, Michael; Seth, Punit P; Hanessian, Stephen

    2016-06-01

    Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice.

    PubMed

    Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.

  3. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain.

    PubMed

    Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A

    2012-01-01

    The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.

  4. Epithelin/Granulin Precursor Expression in Human Breast Carcinoma

    DTIC Science & Technology

    1998-09-01

    antisense RNA as an inhibitor of oncogenic protein production (13). The development of stable transfected clones with antisense cDNA is advantageous...in that it allows a continuous supply of antisense RNA to disrupt protein synthesis, and it is well suited for in vivo tumorigenic assays. Our...processed form epithelin 1 in normal mammary epithelial cells and mammary carcinoma cells. 3- Effect of inhibition of PCDGF expression ( antisense

  5. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  6. An in vivo and in silico approach to study cis-antisense: a short cut to higher order response

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen; Varanasi, Usha; Chatterjee, Anushree

    2014-03-01

    Antisense interactions are present in all domains of life. Typically sense, antisense RNA pairs originate from overlapping genes with convergent face to face promoters, and are speculated to be involved in gene regulation. Recent studies indicate the role of transcriptional interference (TI) in regulating expression of genes in convergent orientation. Modeling antisense, TI gene regulation mechanisms allows us to understand how organisms control gene expression. We present a modeling and experimental framework to understand convergent transcription that combines the effects of transcriptional interference and cis-antisense regulation. Our model shows that combining transcriptional interference and antisense RNA interaction adds multiple-levels of regulation which affords a highly tunable biological output, ranging from first order response to complex higher-order response. To study this system we created a library of experimental constructs with engineered TI and antisense interaction by using face-to-face inducible promoters separated by carefully tailored overlapping DNA sequences to control expression of a set of fluorescent reporter proteins. Studying this gene expression mechanism allows for an understanding of higher order behavior of gene expression networks.

  7. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  8. Antisense protein kinase A RIalpha inhibits 7,12-dimethylbenz(a)anthracene-induction of mammary cancer: blockade at the initial phase of carcinogenesis.

    PubMed

    Nesterova, Maria V; Cho-Chung, Yoon S

    2004-07-01

    There are two types of cyclic AMP (cAMP)-dependent protein kinase (PKA), type I (PKA-I) and type II (PKA-II), which share a common catalytic (C) subunit but contain distinct regulatory (R) subunits, RI versus RII, respectively. Evidence suggests that increased expression of PKA-I and its regulatory subunit (RIalpha) correlates with tumorigenesis and tumor growth. We investigated the effect of sequence-specific inhibition of RIalpha gene expression at the initial phase of 7,12-dimethylbenz(alphaa)anthracene (DMBA)-induced mammary carcinogenesis. Antisense RIalpha oligodeoxynucleotide (ODN) targeted against PKA RIalpha was administered (0.1 mg/day/rat, i.p.) 1 day before DMBA intubation and during the first 9 days post-DMBA intubation to determine the anticarcinogenic effects. Antisense RIalpha, in a sequence-specific manner, inhibited the tumor production. At 90 days after DMBA intubation, untreated controls and RIalpha-antisense-treated rats exhibited an average mean number of tumors per rat of 4.2 and 1.8, respectively, and 90% of control and 45% of antisense-treated animals had tumors. The antisense also delayed the first tumor appearance. An increase in RIalpha and PKA-I levels in the mammary gland and liver preceded DMBA-induced tumor production, and antisense down-regulation of RIalpha restored normal levels of PKA-I and PKA-II in these tissues. Antisense RIalpha in the liver induced the phase II enzymes, glutathione S-transferase and quinone oxidoreductase, c-fos protein, and activator protein 1 (AP-1)- and cAMP response element (CRE)-directed transcription. In the mammary glands, antisense RIalpha promoted DNA repair processes. In contrast, the CRE transcription-factor decoy could not mimic these effects of antisense RIalpha. The results demonstrate that RIalpha antisense produces dual anticarcinogenic effects: (a) increasing DMBA detoxification in the liver by increasing phase II enzyme activities, increasing CRE-binding-protein phosphorylation and enhancing CRE- and Ap-1-directed transcription; and (b) activating DNA repair processes in the mammary gland by down-regulating PKA-I.

  9. Analysis of Antisense Expression by Whole Genome Tiling Microarrays and siRNAs Suggests Mis-Annotation of Arabidopsis Orphan Protein-Coding Genes

    PubMed Central

    Richardson, Casey R.; Luo, Qing-Jun; Gontcharova, Viktoria; Jiang, Ying-Wen; Samanta, Manoj; Youn, Eunseog; Rock, Christopher D.

    2010-01-01

    Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation. PMID:20520764

  10. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification

    NASA Technical Reports Server (NTRS)

    Blee, Kristopher A.; Choi, Joon W.; O'Connell, Ann P.; Schuch, Wolfgang; Lewis, Norman G.; Bolwell, G. Paul

    2003-01-01

    A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.

  11. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells.

    PubMed

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari; Gustincich, Stefano; Carninci, Piero

    2016-09-20

    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species.

  12. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    PubMed Central

    Sierant, Malgorzata; Paduszynska, Alina; Kazmierczak-Baranska, Julia; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Sochacka, Elzbieta; Nawrot, Barbara

    2011-01-01

    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide. PMID:21559198

  13. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Friedman, Peter A. (Inventor); Duncan, Randall L. (Inventor); Hruska, Keith A. (Inventor); Barry, Elizabeth L. R. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  14. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    PubMed

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  15. Expression of a putative grapevine hexose transporter in tobacco alters morphogenesis and assimilate partitioning.

    PubMed

    Leterrier, Marina; Atanassova, Rossitza; Laquitaine, Laurent; Gaillard, Cécile; Coutos-Thévenot, Pierre; Delrot, Serge

    2003-04-01

    Tobacco plants were transformed by leaf disc regeneration with the VvHT1 (Vitis vinifera hexose transporter 1) cDNA under the control of the constitutive CaMV 35S promoter in a sense or antisense orientation. Among the 20 sense plants and 10 antisense plants obtained, two sense plants showed a mutant phenotype when grown in vitro, with stunted growth and an increase in the (leaves+stem)/roots dry weight ratio. The rate of [(3)H]-glucose uptake in leaf discs from these plants was decreased to 25% of the value measured in control plants. The amount of VvHT1 transgene and of host monosaccharide transporter MST transcripts in the leaves were studied by RNA gel blot analysis. The VvHT1 transcripts were usually present, but the amount of MST transcripts was the lowest in the plants that exhibited the most marked phenotype. Although the phenotype was lost when the plants were transferred from in vitro to greenhouse conditions, it was found again in vitro in the progeny obtained by self-pollination or by back-cross. The data show that VvHT1 sense expression resulted in unidirectional post-transcriptional gene inactivation of MST in some of the transformants, with dramatic effects on growth. They provide the first example of plants modified for hexose transport by post-transcriptional gene silencing. Some of the antisense plants also showed reduced expression of MST, and decreased growth. These results indicate that, like the sucrose transporters, hexose transporters play an important role in assimilate transport and in morphogenesis.

  16. Complementation of a Fanconi anemia group A cell line by UbA{sup 52}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, R.E.; Heina, J.A.; Jakobs, P.M.

    1994-09-01

    Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistantmore » transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.« less

  17. Canonical and non-canonical barriers facing antimiR cancer therapeutics.

    PubMed

    Cheng, Christopher J; Saltzman, W Mark; Slack, Frank J

    2013-01-01

    Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.

  18. Targeting Cancer with Antisense Oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnatowich, DJ

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their nativemore » and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes radiotherapy rather than imaging, the delivery problem may be obviated by attaching the antisense oligomer to an antitumor antibody to improve delivery following intravenous administration. Since many antibodies are trapped in endosomes following internalization, a cell penetrating peptide such as tat will also be included to ensure transport of the complex without entrapment. Rather than covalent conjugation of the three entities, we are using streptavidin as linker after biotinylated each component. Our recent efforts have concentrated on establishing the influence of the streptavidin linker on the properties of each component within the delivery nanoparticle. Thus, we have shown that the Herceptin antibody, when linked to a labeled oligomer via streptavidin, remains capable of directing the label oligomer to Her2+ tumor cells in vitro and Her2+ tumor xenografts in mice. In addition, we have demonstrated that a labeled antisense oligomer within the nanoparticle remains capable of migrating to the nucleus and binding to its target mRNA in vitro and in vivo. We have shown that the tat peptide also preserves its properties of cell transport when incubated as one component of the nanoparticle. Most recently, we have addressed another of our concerns, namely whether the streptavidin would adversely effect the biodistribution of the antisense oligomer. We were pleased to find that the 99mTc-labeled antisense MORF within the Herceptin three component and two component nanoparticles accumulated and was retained in tumor in a manner suggestive of radiolabeled Herceptin itself. Thus the preserved properties within the streptavidin delivery nanoparticle of the Herceptin antibody, the tat peptide and the 111In labeled antisense MORF oligomer will explain why we have successfully demonstrated an Auger electron-mediated, antisense-mediated radiotherapy in cells in culture. One remaining concern is that the delivery nanoparticle may deliver the Auger electron emitting radionuclide to the nucleus of normal cells as well as tumor cells. We have now performed tumored mice studies of the three component delivery nanoparticle with the antisense MORF labeled with Cy3 so that tissue slices could be examined by immunohistology for evidence of MORF accumulations in the nuclei of both tumor and normal tissues. Microscopic examination shows nuclear staining in approximately 20% of the tumor cells in animals injected with the antisense nanoparticle and 10% of the tumor cells in animals receiving the sense nanoparticle, whereas no nuclear staining is seen in the tumor cells of mice given the PBS injection as another control. No nuclear staining was observed in all sections from all normal organs. Finally, my colleagues and I wish to express our gratitude to the DOE for their generous support of our research at a time when the NIH was unwilling to fund what they believed to be a risky« less

  19. Antisense therapy and emerging applications for the management of dyslipidemia.

    PubMed

    Toth, Peter P

    2011-01-01

    Because a significant percentage of patients who require high-dose statin therapy for dyslipidemia experience treatment-related muscle symptoms and an inconsistent clinical response, alternative or adjunctive approaches to the management of dyslipidemia are needed. One alternative approach, antisense therapy, may offer an effective and well-tolerated option for patients not satisfactorily responsive to or intolerant to standard pharmacologic dyslipidemia therapies. This review provides an overview of antisense technology and its potential role in the management of dyslipidemia. Source material was obtained primarily from the published literature identified through a search of the PubMed database. Antisense technology is an evolving approach to therapy that has gone through a series of refinements to enhance molecular stability, potency, and tolerability. Mipomersen is an antisense molecule capable of producing clinically meaningful reductions in low-density lipoprotein cholesterol in patients with severe familial hypercholesterolemia. Further long-term clinical studies are required to more clearly quantify its impact on risk for cardiovascular events and establish whether it increases risk for hepatosteatosis. Antisense therapy represents a potentially effective and well-tolerated emerging treatment modality for numerous diseases. In the treatment of hypercholesterolemia, the antisense therapy mipomersen may provide a possible treatment option for patients with treatment-resistant dyslipidemia. Copyright © 2011 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  20. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang

    2018-01-01

    Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .

  1. Identification and Characterization of a Cis-Encoded Antisense RNA Associated with the Replication Process of Salmonella enterica Serovar Typhi

    PubMed Central

    Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang

    2013-01-01

    Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809

  2. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

    PubMed Central

    Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies. PMID:25859258

  3. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides.

    PubMed

    Su, Xiaoye; Liang, Ruiting; Stolee, Jessica A

    2018-06-05

    Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improved therapeutic effectiveness by combining recombinant p14(ARF) with antisense complementary DNA of EGFR in laryngeal squamous cell carcinoma.

    PubMed

    Liu, Feng; Du, JinTao; Xian, Junming; Liu, Yafeng; Liu, Shixi; Lin, Yan

    2015-01-01

    The tumor suppressor p14(ARF) and proto-oncogene epidermal growth factor receptor (EGFR) play important roles in the development of laryngeal squamous cell carcinoma (LSCC). This study was aimed to determine whether combining recombinant p14(ARF) with antisense complementary DNA of EGFR could improve the therapeutic effectiveness in LSCC. After human larynx cancer cells (Hep-2) were infected with recombinant adenoviruses (Ad-p14(ARF) and Ad-antisense EGFR) together or alone in vitro, the proliferation and cell cycle distribution of Hep-2 cells were detected by MTT assay and flow cytometer analysis, respectively. Furthermore, the antitumor effects of recombinant adenoviruses together or alone on Hep-2 xenografts were examined in vivo. The levels of p14(ARF) and EGFR expressed in Hep-2 cells and xenografts were determined by western blot assay. Ad-p14(ARF) combining with Ad-antisense EGFR markedly inhibited the Hep-2 proliferation compared with alone (P=0.001, P=0.002 respectively). Combination of Ad-p14(ARF) and Ad-antisense EGFR led to the proportion of Hep-2 cells in G0/G1 phases increased by up to 86.9%. The down-expression of EGFR protein and overexpression of p14(ARF) protein were observed in vitro and in vivo, and this effect was preserved when Ad-p14(ARF) was combined with Ad-antisense EGFR. Besides, Ad-p14(ARF) plus Ad-antisense EGFR significantly (P<0.05) increased the antitumor activity against Hep-2 tumor xenografts comparing with Ad-p14(ARF) or Ad-antisense EGFR alone. Combination Ad-p14(ARF) with Ad-antisense EGFR significantly increased the antitumor responses in LSCC. An effectively potential gene therapy to prevent proliferation of LSCC was provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications.

    PubMed

    Saberi, Fatemeh; Kamali, Mehdi; Najafi, Ali; Yazdanparast, Alavieh; Moghaddam, Mehrdad Moosazadeh

    2016-01-01

    Naturally occurring antisense RNAs are small, diffusible, untranslated transcripts that pair to target RNAs at specific regions of complementarity to control their biological function by regulating gene expression at the post-transcriptional level. This review focuses on known cases of antisense RNA control in prokaryotes and provides an overview of some natural RNA-based mechanisms that bacteria use to modulate gene expression, such as mRNA sensors, riboswitches and antisense RNAs. We also highlight recent advances in RNA-based technology. The review shows that studies on both natural and synthetic systems are reciprocally beneficial.

  6. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation.

    PubMed

    Kayim, M; Ceccardi, T L; Berretta, M J G; Barthe, G A; Derrick, K S

    2004-11-01

    The protein p12 accumulates in leaves of trees with citrus blight (CB), a serious decline of unknown cause. The function of p12 is not known, but sequence analysis indicates it may be related to expansins. In studies to determine the function of p12, sense and antisense constructs were used to make transgenic Carrizo citrange using an Agrobacterium-mediated transformation system. Homogeneous beta-glucuronidase+ (GUS+) sense and antisense transgenic shoots were regenerated using kanamycin as a selective agent. Twenty-five sense and 45 antisense transgenic shoots were in vivo grafted onto Carrizo citrange for further analyses. In addition, 20 sense and 18 antisense shoots were rooted. The homogeneous GUS+ plants contained either the p12 sense or antisense gene (without the intron associated with the gene in untransformed citrus) as shown by PCR and Southern blotting. Northern blots showed the expected RNA in the sense and antisense plants. A protein of identical size and immunoreactivity was observed in seven of nine sense plants but not in nine antisense or non-transgenic plants. At the current stage of growth, there are no visual phenotypic differences between the transgenic and non-transgenic plants. Selected plants will be budded with sweet orange for field evaluation for resistance or susceptibility to CB and general rootstock performance.

  7. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport inmore » sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.« less

  8. Angubindin-1 opens the blood-brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system.

    PubMed

    Zeniya, Satoshi; Kuwahara, Hiroya; Daizo, Kaiichi; Watari, Akihiro; Kondoh, Masuo; Yoshida-Tanaka, Kie; Kaburagi, Hidetoshi; Asada, Ken; Nagata, Tetsuya; Nagahama, Masahiro; Yagi, Kiyohito; Yokota, Takanori

    2018-05-17

    Within the field of RNA therapeutics, antisense oligonucleotide-based therapeutics are a potentially powerful means of treating intractable diseases. However, if these therapeutics are used for the treatment of neurological disorders, safe yet efficient methods of delivering antisense oligonucleotides across the blood-brain barrier to the central nervous system must be developed. Here, we examined the use of angubindin-1, a binder to the tricellular tight junction, to modulate paracellular transport between brain microvascular endothelial cells in the blood-brain barrier for the delivery of antisense oligonucleotides to the central nervous system. This proof-of-concept study demonstrated that intravenously injected angubindin-1 increased the permeability of the blood-brain barrier and enabled transient delivery of subsequently administered antisense oligonucleotides into the mouse brain and spinal cord, leading to silencing of a target RNA without any overt adverse effects. We also found that two bicellular tight junction modulators did not produce such a silencing effect, suggesting that the tricellular tight junction is likely a better target for the delivery of antisense oligonucleotides than the bicellular tight junction. Our delivery strategy of modulating the tricellular tight junction in the blood-brain barrier via angubindin-1 provides a novel avenue of research for the development of antisense oligonucleotide-based therapeutics for the treatment of neurological disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes.

    PubMed

    Bierhoff, H; Schmitz, K; Maass, F; Ye, J; Grummt, I

    2010-01-01

    Alternative transcription of the same gene in sense and antisense orientation regulates expression of protein-coding genes. Here we show that noncoding RNA (ncRNA) in sense and antisense orientation also controls transcription of rRNA genes (rDNA). rDNA exists in two types of chromatin--a euchromatic conformation that is permissive to transcription and a heterochromatic conformation that is transcriptionally silent. Silencing of rDNA is mediated by NoRC, a chromatin-remodeling complex that triggers heterochromatin formation. NoRC function requires RNA that is complementary to the rDNA promoter (pRNA). pRNA forms a DNA:RNA triplex with a regulatory element in the rDNA promoter, and this triplex structure is recognized by DNMT3b. The results imply that triplex-mediated targeting of DNMT3b to specific sequences may be a common pathway in epigenetic regulation. We also show that rDNA is transcribed in antisense orientation. The level of antisense RNA (asRNA) is down-regulated in cancer cells and up-regulated in senescent cells. Ectopic asRNA triggers trimethylation of histone H4 at lysine 20 (H4K20me3), suggesting that antisense transcripts guide the histone methyltransferase Suv4-20 to rDNA. The results reveal that noncoding RNAs in sense and antisense orientation are important determinants of the epigenetic state of rDNA.

  10. Antisense long non-coding RNAs in rainbow trout: Discovery and potential role in muscle growth and quality traits

    USDA-ARS?s Scientific Manuscript database

    Endogenous mRNA-antisense transcripts are involved in regulation of a wide range of biological processes including muscle development and quality traits of farm animals. Standard RNA-Seq can be used to identify sense-antisense transcripts. However, strand-specific RNA-Seq is required to resolve ambi...

  11. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    ERIC Educational Resources Information Center

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  12. Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam

    2010-05-17

    Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possessmore » an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ~;;87 intergenic, while ~;;140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ~;;54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.« less

  13. Gene silencing in Escherichia coli using antisense RNAs expressed from doxycycline-inducible vectors.

    PubMed

    Nakashima, N; Tamura, T

    2013-06-01

    Here, we report on the construction of doxycycline (tetracycline analogue)-inducible vectors that express antisense RNAs in Escherichia coli. Using these vectors, the expression of genes of interest can be silenced conditionally. The expression of antisense RNAs from the vectors was more tightly regulated than the previously constructed isopropyl-β-D-galactopyranoside-inducible vectors. Furthermore, expression levels of antisense RNAs were enhanced by combining the doxycycline-inducible promoter with the T7 promoter-T7 RNA polymerase system; the T7 RNA polymerase gene, under control of the doxycycline-inducible promoter, was integrated into the lacZ locus of the genome without leaving any antibiotic marker. These vectors are useful for investigating gene functions or altering cell phenotypes for biotechnological and industrial applications. A gene silencing method using antisense RNAs in Escherichia coli is described, which facilitates the investigation of bacterial gene function. In particular, the method is suitable for comprehensive analyses or phenotypic analyses of genes essential for growth. Here, we describe expansion of vector variations for expressing antisense RNAs, allowing choice of a vector appropriate for the target genes or experimental purpose. © 2013 The Society for Applied Microbiology.

  14. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.

    PubMed Central

    Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.

    1997-01-01

    On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential. PMID:12223765

  15. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.

    PubMed

    Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.

    1997-08-01

    On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential.

  16. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line.

    PubMed

    Leonetti, C; Biroccio, A; Benassi, B; Stringaro, A; Stoppacciaro, A; Semple, S C; Zupi, G

    2001-06-01

    Phosphorothioate c-myc antisense oligodeoxynucleotides [S]ODNs (free INX-6295) were encapsulated in a new liposome formulation and the antitumor activity was compared to the unencapsulated antisense in a human melanoma xenograft. The systemic administration of INX-6295 encapsulated in stabilized antisense lipid particles (SALP INX-6295) improved plasma AUC (area under the plasma concentration-time curve) and initial half-life of free INX-6295, resulting in a significant enhancement in tumor accumulation and improvement in tumor distribution of antisense oligodeoxynucleotides. Animals treated with SALP INX-6295 exhibited a prolonged reduction of c-myc expression, reduced tumor growth and increased mice survival. When administered in combination with cisplatin (DDP), SALP INX-6295 produced a complete tumor regression in approximately 30% of treated mice, which persisted for at least 60 days following the first cycle of treatment. Finally, the median survival of mice treated with DDP/SALP INX-6295 increased by 105% compared to 84% for animals treated with the combination DDP/free INX-6295. These data indicate that the biological activity and the therapeutic efficacy of c-myc antisense therapy may be improved when these agents are administered in lipid-based delivery systems.

  17. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.

    PubMed

    Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K; Martineau, Laurie; Revillod, Lucille; Bassez, Guillaume; Lachon, Aline; MacLeod, A Robert; Gourdon, Geneviève; Wheeler, Thurman M; Thornton, Charles A; Bennett, C Frank; Puymirat, Jack

    2017-06-16

    Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG) n trinucleotide repeat in the 3' UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2'-4'-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3' UTR of the DMPK gene, which led to a 70% reduction in CUG exp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUG exp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  19. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  20. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    PubMed Central

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  1. Antisense imaging of gene expression in the brain in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Ningya; Boado, Ruben J.; Pardridge, William M.

    2000-12-01

    Antisense radiopharmaceuticals could be used to image gene expression in the brain in vivo, should these polar molecules be made transportable through the blood-brain barrier. The present studies describe an antisense imaging agent comprised of an iodinated peptide nucleic acid (PNA) conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-biotin technology. The PNA was a 16-mer antisense to the sequence around the methionine initiation codon of the luciferase mRNA. C6 rat glioma cells were permanently transfected with a luciferase expression plasmid, and C6 experimental brain tumors were developed in adult rats. The expression of the luciferase transgene in the tumors in vivo was confirmed by measurement of luciferase enzyme activity in the tumor extract. The [125I]PNA conjugate was injected intravenously in anesthetized animals with brain tumors and killed 2 h later for frozen sectioning of brain and film autoradiography. No image of the luciferase gene expression was obtained after the administration of either the unconjugated antiluciferase PNA or a PNA conjugate that was antisense to the mRNA of a viral transcript. In contrast, tumors were imaged in all rats administered the [125I]PNA that was antisense to the luciferase sequence and was conjugated to the targeting antibody. In conclusion, these studies demonstrate gene expression in the brain in vivo can be imaged with antisense radiopharmaceuticals that are conjugated to a brain drug-targeting system.

  2. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  3. Antisense-based RNA therapy of factor V deficiency: in vitro and ex vivo rescue of a F5 deep-intronic splicing mutation.

    PubMed

    Nuzzo, Francesca; Radu, Claudia; Baralle, Marco; Spiezia, Luca; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta

    2013-11-28

    Antisense molecules are emerging as a powerful tool to correct splicing defects. Recently, we identified a homozygous deep-intronic mutation (F5 c.1296+268A>G) activating a cryptic donor splice site in a patient with severe coagulation factor V (FV) deficiency and life-threatening bleeding episodes. Here, we assessed the ability of 2 mutation-specific antisense molecules (a morpholino oligonucleotide [MO] and an engineered U7 small nuclear RNA [snRNA]) to correct this splicing defect. COS-1 and HepG2 cells transfected with a F5 minigene construct containing the patient's mutation expressed aberrant messenger RNA (mRNA) in excess of normal mRNA. Treatment with mutation-specific antisense MO (1-5 µM) or a construct expressing antisense U7snRNA (0.25-2 µg) dose-dependently increased the relative amount of correctly spliced mRNA by 1 to 2 orders of magnitude, whereas control MO and U7snRNA were ineffective. Patient-derived megakaryocytes obtained by differentiation of circulating progenitor cells did not express FV, but became positive for FV at immunofluorescence staining after administration of antisense MO or U7snRNA. However, treatment adversely affected cell viability, mainly because of the transfection reagents used to deliver the antisense molecules. Our data provide in vitro and ex vivo proof of principle for the efficacy of RNA therapy in severe FV deficiency, but additional cytotoxicity studies are warranted.

  4. Prospects for nucleic acid-based therapeutics against hepatitis C virus.

    PubMed

    Lee, Chang Ho; Kim, Ji Hyun; Lee, Seong-Wook

    2013-12-21

    In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.

  5. Role of CREB in CML

    DTIC Science & Technology

    2007-02-01

    antisense RNA for suppressing gene expression in nematode worms (Caenorhabditis elegans) 2. This was followed by the introduction of dsRNA into worms...When single-stranded antisense RNA and double stranded RNA was introduced into worms, they found that dsRNA was more effective than either strand...RISC ( RNA -induced silencing complex), which contains helicase activity that unwinds the two strands 3 of RNA molecules, allowing the antisense

  6. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.

    PubMed

    Miller, Andrew D

    2015-02-01

    A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even entire genomes to entire proteomes. The possibility that such a proteomic code should exist is discussed. So too the potential implications for biology and pharmaceutical science are also discussed were such a code to exist.

  7. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis

    PubMed Central

    Dorst, Johannes; Ludolph, Albert C.; Huebers, Annemarie

    2017-01-01

    In this review, we summarize the most important recent developments in the treatment of amyotrophic lateral sclerosis (ALS). In terms of disease-modifying treatment options, several drugs such as dexpramipexole, pioglitazone, lithium, and many others have been tested in large multicenter trials, albeit with disappointing results. Therefore, riluzole remains the only directly disease-modifying drug. In addition, we discuss antisense oligonucleotides (ASOs) as a new and potentially causal treatment option. Progress in symptomatic treatments has been more important. Nutrition and ventilation are now an important focus of ALS therapy. Several studies have firmly established that noninvasive ventilation improves patients’ quality of life and prolongs survival. On the other hand, there is still no consensus regarding best nutritional management, but big multicenter trials addressing this issue are currently ongoing. Evidence regarding secondary symptoms like spasticity, muscle cramps or sialorrhea remains generally scarce, but some new insights will also be discussed. Growing evidence suggests that multidisciplinary care in specialized clinics improves survival. PMID:29399045

  8. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells

    PubMed Central

    Wu, Li; Wang, Yuan; Wu, Junzhou; Lv, Cong; Wang, Jie; Tang, Xinjing

    2013-01-01

    We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies. PMID:23104375

  9. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis.

    PubMed

    Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio

    2016-09-01

    Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening.

    PubMed

    Posé, Sara; Kirby, Andrew R; Paniagua, Candelas; Waldron, Keith W; Morris, Victor J; Quesada, Miguel A; Mercado, José A

    2015-11-05

    To ascertain the role of pectin disassembly in fruit softening, chelated- (CSP) and sodium carbonate-soluble (SSP) pectins from plants with a pectate lyase, FaplC, or a polygalacturonase, FaPG1, downregulated by antisense transformation were characterized at the nanostructural level. Fruits from transgenic plants were firmer than the control, although FaPG1 suppression had a greater effect on firmness. Size exclusion chromatography showed that the average molecular masses of both transgenic pectins were higher than that of the control. Atomic force microscopy analysis of pectins confirmed the higher degree of polymerization as result of pectinase silencing. The mean length values for CSP chains increased from 84 nm in the control to 95.5 and 101 nm, in antisense FaplC and antisense FaPG1 samples, respectively. Similarly, SSP polyuronides were longer in transgenic fruits (61, 67.5 and 71 nm, in the control, antisense FaplC and antisense FaPG1 samples, respectively). Transgenic pectins showed a more complex structure, with a higher percentage of branched chains than the control, especially in the case of FaPG1 silenced fruits. Supramolecular pectin aggregates, supposedly formed by homogalacturonan and rhamnogalacturonan I, were more frequently observed in antisense FaPG1 samples. The larger modifications in the nanostructure of pectins in FaPG1 silenced fruits when compared with antisense pectate lyase plants correlate with the higher impact of polygalacturonase silencing on reducing strawberry fruit softening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    PubMed

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number following incubation with anti-sense oligonucleotides, surface expression of Fc epsilon R II was consistent as measured over different time points. PCR analysis revealed that while most cells expressed either the alpha or the beta form of Fc epsilon R II, EBV-transformed cell lines, particularly RPMI 8866, were found to express both alpha and beta forms simultaneously. This may constitute a mechanism whereby EBV infection confers an immortal state to the cell, resulting in its uncontrolled proliferation. Cell lines expressing only one receptor form, either alpha or beta, were unaffected after incubation with anti-sense oligonucleotides.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Activation of Antitumorigenic Stat3beta in Breast Cancer by Splicing Redirection

    DTIC Science & Technology

    2013-07-01

    4175) model system REPORTABLE OUTCOMES 1. Lee Spraggon and Luca Cartegni; Antisense Modulation of RNA Processing as a Therapeutic Approach in...modulation. Proc Natl Acad Sci U S A 108: 17779-17784. 26. Spraggon L, Cartegni L (2013) Antisense modulation of RNA processing as a therapeutic...pre-print copy 1 Antisense Modulation of RNA Processing as a Therapeutic Approach in Cancer Therapy Lee Spraggon and Luca Cartegni Molecular

  13. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  14. Investigation into the mechanism(s) that leads to platelet decreases in cynomolgus monkeys during administration of ISIS-104838, a 2'-MOE-modified antisense oligonucleotide.

    PubMed

    Narayanan, P K; Shen, L; Curtis, B R; Bourdon, M; Nolan, J P; Zhou, F; Christian, B; Gupta, S; Schaubhut, J L; Greenlee, S; Hoffmaster, C; Burel, S; Witztum, J L; Engelhardt, J A; Henry, S P

    2018-05-29

    ISIS 104838, a 2'-O-methoxyethyl (2'-MOE)-modified antisense oligonucleotide (ASO), causes a moderate, reproducible, dose-dependent, but self-limiting decrease in platelet (PLT) counts in monkeys and humans. To determine the etiology of PLT decrease in cynomolgus monkeys, a 12-week repeat dose toxicology study in 5 cynomolgus monkeys given subcutaneous injections of ISIS 104838 (30 to 60 mg/kg/week). Monkeys were also injected intravenously with 111In-oxine-labeled PLTs to investigate PLT sequestration. In response to continued dosing, PLT counts were decreased by 50 to 90% by day 30 in all monkeys. PLT decreases were accompanied by 2- to 4.5-fold increases in immunoglobulin M(IgM), which were typified by a 2-to-5-fold increase in anti-platelet factor 4 (PF4) IgM and anti-PLT IgM, respectively. Monocyte chemotactic protein 1 (MCP-1) increased upon dosing of ISIS 104838, concomitant with a 2- to 6-fold increase in monocyte-derived extracellular vesicles (EVs), indicating monocyte activation but not PLT activation. Despite a 2- to- 3-fold increase in von Willebrand factor (VWF) antigen in all monkeys following ASO administration, only two monkeys showed a 2 to 4-fold increase in endothelial EVs. Additionally, a 25-45% increase in PLT sequestration in liver and spleen was also observed. Collectively, these results suggest the overall increase in total IgM, anti-PLT IgM and/or anti-PF4 IgM, in concert with monocyte activation contributed to increased PLT sequestration in spleen and liver, leading to decreased PLTs in peripheral blood.

  15. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2.

    PubMed

    Zanardi, Thomas A; Han, Su-Cheol; Jeong, Eun Ju; Rime, Soyub; Yu, Rosie Z; Chakravarty, Kaushik; Henry, Scott P

    2012-11-01

    ISIS 388626, a 2'-methoxyethyl (MOE)-modified antisense oligonucleotide (ASO) that targets human sodium glucose cotransporter 2 (SGLT2) mRNA, is in clinical trials for the management of diabetes. SGLT2 plays a pivotal role in renal glucose reabsorption, and inhibition of SGLT2 is anticipated to reduce hyperglycemia in diabetic subjects by increasing urinary glucose elimination. To selectively inhibit SGLT2 in the kidney, ISIS 388626 was designed as a "shortmer" ASO, consisting of only 12 nucleotides with two 2'-MOE-modified nucleotides at the termini. Mice and monkeys received up to 30 mg/kg/week ISIS 388626 via subcutaneous injection for 6 or 13 weeks. Dose-dependent decreases in renal SGLT2 mRNA expression were observed, which correlated with dose-related increases in glucosuria without concomitant hypoglycemia. There were no histologic changes in the kidney attributed to SGLT2 inhibition after 6 or 13 weeks of treatment. The remaining changes observed in these studies were typical of those produced in these species by the administration of oligonucleotides, correlated with high doses of ISIS 388626, and were unrelated to the inhibition of SGLT2 expression. The kidney contained the highest concentration of ISIS 388626, and dose-dependent basophilic granule accumulation in tubular epithelial cells of the kidney, which is evidence of oligonucleotide accumulation in these cells, was the only histologic change identified. No changes in kidney function were observed. These results revealed only readily reversible changes after the administration of ISIS 388626 and support the continued investigation of the safety and efficacy of ISIS 388626 in human trials.

  16. Antisense Oligonucleotides for the Treatment of Spinal Muscular Atrophy

    PubMed Central

    Porensky, Paul N.

    2013-01-01

    Abstract Spinal muscular atrophy (SMA) is an autosomal recessive disease affecting ∼1 in 10,000 live births. The most striking component is the loss of α-motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment paradigm other than supportive care, though the past 15 years has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease-modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials, including the application of antisense oligonucleotide (ASO) therapy for the correction of aberrant RNA splicing characteristic of SMA. Survival motor neuron (SMN) is a ubiquitously expressed 38-kD protein. Humans have two genes that produce SMN, SMN1 and SMN2, the former of which is deleted or nonfunctional in the majority of patients with SMA. These two genes are nearly identical with one exception, a C to T transition (C6T) within exon 7 of SMN2. C6T disrupts a modulator of splicing, leading to the exclusion of exon 7 from ∼90% of the mRNA transcript. The resultant truncated Δ7SMN protein does not oligomerize efficiently and is rapidly degraded. SMA can therefore be considered a disease of too little SMN protein. A number of cis-acting splice modifiers have been identified in the region of exon 7, the steric block of which enhances the retention of the exon and a resultant full-length mRNA sequence. ASOs targeted to these splice motifs have shown impressive phenotype rescue in multiple SMA mouse models. PMID:23544870

  17. Complex Interplay among DNA Modification, Noncoding RNA Expression and Protein-Coding RNA Expression in Salvia miltiorrhiza Chloroplast Genome

    PubMed Central

    Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box–like motif (CPGDMM1, “TATANNNATNA”), and an unknown motif (CPGDMM2 “WNYANTGAW”). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome. PMID:24914614

  18. Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome.

    PubMed

    Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box-like motif (CPGDMM1, "TATANNNATNA"), and an unknown motif (CPGDMM2 "WNYANTGAW"). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome.

  19. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design.

    PubMed Central

    Tabler, M; Homann, M; Tzortzakaki, S; Sczakiel, G

    1994-01-01

    Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed. Images PMID:7937118

  20. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato

    PubMed Central

    Bae, Jung Myung

    2013-01-01

    The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants. PMID:22945944

  1. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25more » nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen-signaling proteins in pollen tubes from the lilly Agapanthus umbellatus. For the uptake of DNA pollen tubes represent a unique system since the growing tip is surrounded by a loose matrix of hemicellulose and pectins, exposing the plasma membrane7 and the first uptake of ODNs by pollen tubes was reported as early as 1994. A breakthrough in the employment of antisense ODN inhibition as a powerful approach in plant biology was recently presented through our work on intact barley leaves. As was illustrated by confocal microscopy and fluorescently labeled ODNs, naked ODNs were taken up through the leaf petiole and efficiently imported into the plant cell and the nucleus. The work portrayed in that study demonstrate the applicability of antisense ODN inhibition in plant biology, e.g. as a rapid antecedent to time-consuming transgenic studies, and that it operates through RNase H degradation. We employed the antisense ODN strategy to demonstrate the importance of the SUSIBA2 transcription factor in regulation of starch synthesis, and to depict a possible mechanism for sugar signaling in plants and how it might confer endosperm-specific gene expression during seed development. We also described the employment of the antisense ODN strategy for studies on in vitro spike cultures of barley. Here we present further evidence as to the value of the antisense ODN approach in plant biology by following the effects on starch branching enzyme (SBE) accumulation in barley leaves after suppression of individual SBE genes. In agreement with transcript analyses of SBE expression in barley leaves, a zymogram assay (Fig. 1) revealed that sucrose treatment of barley leaves increased the number of SBE activity bands as compared to sorbitol treatment. In the presence of antisense SBEI or SBEIIA ODNs, zymograms of sucrose-treated leaves displayed only a subset of these activities with bands in the top portion of the zymogram gel missing or diminished. With antisense SBEIIB ODN, all activity bands in the top portion of the gel as well as the lowest band were absent. Based on these data we provide a tentative annotation for the various SBE activity bands. In animal experiments, naked ODNs are usually not taken up by the cells since both the ODNs and the outside of the plasma membrane carry a net negative charge. Thus the uptake of naked ODNs into barley leaf cells was surprising and called for an explanation. As demonstrated in our subsequent paper, the answer seems to be that the ODNs slip into the cells through sugar translocators as they are activated in the presence of the appropriate sugar (Fig. 2). Whether it is the structural resemblance between the sugar (deoxyribose) backbone of the ODNs and the transported sugars that allows for the ODNs to be transferred, or if other mechanisms are involved, remains to be elucidated.« less

  2. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX.

    PubMed

    Sun, Wei-Hong; Wang, Yong; He, Hua-Gang; Li, Xue; Song, Wan; Du, Bin; Meng, Qing-Wei

    2013-07-01

    Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.

  3. Magnetic nanoparticles for bio-analytical applications

    NASA Astrophysics Data System (ADS)

    Yedlapalli, Sri Lakshmi

    Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was studied by UVVIS spectrophotometry. In this study, the antisense oligonucleotide sequence to the anti-apoptopic protein survivin was coupled to SPIONs to provide molecular targeting and potential therapy for cancer cells. Successful coupling of antisense survivin to SPIONs was demonstrated by circular dichroism studies of the conjugate and its complementary sequence. Such multifunctional SPIONs can be used as active targeting agents for cancer cells, producing enhanced magnetic resonance imaging contrast and releasing chemotherapeutic agents to targeted cells. SPIONs also serve as an excellent platform for analytical sensing. Streptavidin modified SPIONs were used as substrates to immobilize biotinylated aptamers (single-stranded DNA). The binding affinity of such aptamers to its target was achieved by quantifying the amount of target released from the aptamer. This quantification was achieved using pH-mediated stacking capillary electrophoresis. SPIONs were shown to be more efficient compared to magnetic microbeads as the sensing elements. The binding affinity constant of the aptamer determined was almost 8-fold better than that obtained using magnetic microbeads.

  4. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology.

    PubMed

    Timme-Laragy, Alicia R; Karchner, Sibel I; Hahn, Mark E

    2012-01-01

    The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring). In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.

  5. Genetic therapies for RNA mis-splicing diseases.

    PubMed

    Hammond, Suzan M; Wood, Matthew J A

    2011-05-01

    RNA mis-splicing diseases account for up to 15% of all inherited diseases, ranging from neurological to myogenic and metabolic disorders. With greatly increased genomic sequencing being performed for individual patients, the number of known mutations affecting splicing has risen to 50-60% of all disease-causing mutations. During the past 10years, genetic therapy directed toward correction of RNA mis-splicing in disease has progressed from theoretical work in cultured cells to promising clinical trials. In this review, we discuss the use of antisense oligonucleotides to modify splicing as well as the principles and latest work in bifunctional RNA, trans-splicing and modification of U1 and U7 snRNA to target splice sites. The success of clinical trials for modifying splicing to treat Duchenne muscular dystrophy opens the door for the use of splicing modification for most of the mis-splicing diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish model: applications for developmental toxicology

    PubMed Central

    Timme-Laragy, Alicia R.; Karchner, Sibel I.; Hahn, Mark E.

    2014-01-01

    Summary The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knock-down via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level, while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e. phenotypic anchoring). In this chapter we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use. PMID:22669659

  7. Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver.

    PubMed

    Donner, Aaron J; Wancewicz, Edward V; Murray, Heather M; Greenlee, Sarah; Post, Noah; Bell, Melanie; Lima, Walt F; Swayze, Eric E; Seth, Punit P

    2017-08-01

    Phosphorothioate (PS) modified antisense oligonucleotides (ASOs) have progressed rapidly in the clinic for treating a variety of disease indications. We previously demonstrated that the activity of PS ASOs in the liver can be enhanced by co-infusion of an excipient oligonucleotide (EON). It was posited that the EON saturates a nonproductive uptake pathway(s) thereby permitting accumulation of the PS ASO in a productive tissue compartment. In this report, we measured PS ASO activity following administration by bolus, infusion or co-fusion with EON within hepatocytes and nonparenchymal cells (NPCs), of the liver. This revealed that while ASOs accumulate preferentially in NPCs, they are intrinsically more active in hepatocytes. Furthermore, we show that the EON enhances ASO potency when infused up to 72 h before or after administration of the active ASO suggesting that the EON can saturate and displace the ASO from nonproductive to productive compartments. Physical presence of the EON in tissues was required for optimal potentiation suggesting that there is a dynamic distribution of the ASO and EON between the compartments. Lastly, using a candidate approach, we confirmed Stabilin-2 as a molecular pathway for ASO uptake in sinusoidal endothelial cells and the ASGR as a pathway for ASO uptake into hepatocytes in the liver.

  8. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    PubMed

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  9. Pectin engineering to modify product quality in potato.

    PubMed

    Ross, Heather A; Morris, Wayne L; Ducreux, Laurence J M; Hancock, Robert D; Verrall, Susan R; Morris, Jenny A; Tucker, Gregory A; Stewart, Derek; Hedley, Pete E; McDougall, Gordon J; Taylor, Mark A

    2011-10-01

    Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    PubMed

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

  11. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    PubMed

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food intake and enhancing locomotor activity in rat VMH. Copyright 1998 Elsevier Science B.V.

  12. Anti-sense oligonucleotide therapies for the treatment of hyperlipidaemia.

    PubMed

    Wierzbicki, Anthony S; Viljoen, Adie

    2016-09-01

    Anti-sense oligonucleotide (ASO) therapies are a new development in clinical pharmacology offering greater specificity compared to small molecule inhibitors and the ability to target intracellular process' not susceptible to antibody-based therapies. This article reviews the chemical biology of ASOs and related RNA therapeutics. It then reviews the data on their use to treat hyperlipidaemia. Data on mipomersen - an ASO to apolipoprotein B-100(apoB) licensed for treatment of homozygous familial hypercholesterolaemia (FH) is presented. Few effective therapies are available to reduce atehrogenic lipoprotein (a) levels. An ASO therapy to apolipoprotein(a) (ISIS Apo(a)Rx) specifically reduced lipoprotein (a) levels by up to 78%. Treatment options for patients with familial chylomicronaemia syndrome (lipoprotein lipase deficiency; LPLD) or lipodystrophies are highly limited and often inadequate. Volanesorsen, an ASO to apolipoprotein C-3, shows promise in the treatment of LPLD and severe hypertriglyceridaemia as it increases clearance of triglyceride-rich lipoproteins and can normalise triglycerides in these patients. The uptake of the novel ASO therapies is likely to be limited to selected niche groups or orphan diseases. These will include homozygous FH, severe heterozygous FH for mipomersen; LPLD deficiency and lipodystrophy syndromes for volanesorsen and treatment of patients with high elevated Lp(a) levels.

  13. Flowering time control: another window to the connection between antisense RNA and chromatin.

    PubMed

    Ietswaart, Robert; Wu, Zhe; Dean, Caroline

    2012-09-01

    A high proportion of all eukaryotic genes express antisense RNA (asRNA), which accumulates to varying degrees at different loci. Whether there is a general function for asRNA is unknown, but its widespread occurrence and frequent regulation by stress suggest an important role. The best-characterized plant gene exhibiting a complex antisense transcript pattern is the Arabidopsis floral regulator FLOWERING LOCUS C (FLC). Changes occur in the accumulation, splicing, and polyadenylation of this antisense transcript, termed COOLAIR, in different environments and genotypes. These changes are associated with altered chromatin regulation and differential FLC expression, provoking mechanistic comparisons with many well-studied loci in yeast and mammals. Detailed analysis of these specific examples may shed light on the complex interplay between asRNA and chromatin modifications in different genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase.

    PubMed Central

    Laitala, T; Väänänen, H K

    1994-01-01

    The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption. Images PMID:8200964

  15. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    PubMed Central

    Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim

    2010-01-01

    To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity. PMID:20517481

  16. Antisense apolipoprotein B therapy: where do we stand?

    PubMed

    Akdim, Fatima; Stroes, Erik S G; Kastelein, John J P

    2007-08-01

    Antisense oligonucleotides are novel therapeutic agents that reduce the number of specific mRNAs available for translation of the encoded protein. ISIS 301012 is an antisense oligonucleotide developed to reduce the hepatic synthesis of apolipoprotein B-100. Apolipoprotein B-100 is made in the liver, and antisense oligonucleotides preferentially distribute to that organ, so antisense apolipoprotein B-100 may have potential as an efficacious lipid-lowering agent. Recently, in healthy volunteers and in mild dyslipidaemic patients, this strategy as monotherapy or in conjunction with statins has shown unparalleled efficacy in reducing apolipoprotein B-100 and LDL-cholesterol. Tolerance for this novel therapy is encouraging and safety concerns currently only relate to mild injection-site reactions and rare liver-function test abnormalities. It should be noted, however, that these safety results were obtained in relatively few individuals. ISIS 301012 has initially shown promising results in experimental animal models, and in clinical trials in humans. Besides the effect of reducing apolipoprotein B-100 and LDL-cholesterol, this compound also significantly lowers plasma triglycerides. Safety concerns related to the drug include increased liver-function tests. To date no evidence of hepatic steatosis has been reported. Nonetheless, clinical trials of longer duration are required to demonstrate further safety.

  17. RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces

    PubMed Central

    Šetinová, Dita; Šmídová, Klára; Pohl, Pavel; Musić, Inesa; Bobek, Jan

    2018-01-01

    cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors. PMID:29379487

  18. RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces.

    PubMed

    Šetinová, Dita; Šmídová, Klára; Pohl, Pavel; Musić, Inesa; Bobek, Jan

    2017-01-01

    cis -Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces , the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH , and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces , including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.

  19. Upping the Antisense Ante.

    ERIC Educational Resources Information Center

    Weiss, Rick

    1991-01-01

    Discussed is a designer-drug technology called antisense which blocks messenger RNA's ability to carry information to protein producing sites in the cell. The applications of this drug to AIDS research, cancer therapy, and other diseases are discussed. (KR)

  20. AntiHunter 2.0: increased speed and sensitivity in searching BLAST output for EST antisense transcripts.

    PubMed

    Lavorgna, Giovanni; Triunfo, Riccardo; Santoni, Federico; Orfanelli, Ugo; Noci, Sara; Bulfone, Alessandro; Zanetti, Gianluigi; Casari, Giorgio

    2005-07-01

    An increasing number of eukaryotic and prokaryotic genes are being found to have natural antisense transcripts (NATs). There is also growing evidence to suggest that antisense transcription could play a key role in many human diseases. Consequently, there have been several recent attempts to set up computational procedures aimed at identifying novel NATs. Our group has developed the AntiHunter program for the identification of expressed sequence tag (EST) antisense transcripts from BLAST output. In order to perform an analysis, the program requires a genomic sequence plus an associated list of transcript names and coordinates of the genomic region. After masking the repeated regions, the program carries out a BLASTN search of this sequence in the selected EST database, reporting via email the EST entries that reveal an antisense transcript according to the user-supplied list. Here, we present the newly developed version 2.0 of the AntiHunter tool. Several improvements have been added to this version of the program in order to increase its ability to detect a larger number of antisense ESTs. As a result, AntiHunter can now detect, on average, >45% more antisense ESTs with little or no increase in the percentage of the false positives. We also raised the maximum query size to 3 Mb (previously 1 Mb). Moreover, we found that a reasonable trade-off between the program search sensitivity and the maximum allowed size of the input-query sequence could be obtained by querying the database with the MEGABLAST program, rather than by using the BLAST one. We now offer this new opportunity to users, i.e. if choosing the MEGABLAST option, users can input a query sequence up to 30 Mb long, thus considerably improving the possibility to analyze longer query regions. The AntiHunter tool is freely available at http://bioinfo.crs4.it/AH2.0.

  1. Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen.

    PubMed

    Boase, Murray R; Lewis, David H; Davies, Kevin M; Marshall, Gayle B; Patel, Deepa; Schwinn, Kathy E; Deroles, Simon C

    2010-06-13

    Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments. A full-length cDNA putatively identified as a F3'5'H (CpF3'5'H) was isolated from cyclamen flower tissue. Amino acid and phylogeny analyses indicated the CpF3'5'H encodes a F3'5'H enzyme. Two cultivars of minicyclamen were transformed via Agrobacterium tumefaciens with an antisense CpF3'5'H construct. Flowers of the transgenic lines showed modified colour and this correlated positively with the loss of endogenous F3'5'H transcript. Changes in observed colour were confirmed by colorimeter measurements, with an overall loss in intensity of colour (C) in the transgenic lines and a shift in hue from purple to red/pink in one cultivar. HPLC analysis showed that delphinidin-derived pigment levels were reduced in transgenic lines relative to control lines while the percentage of cyanidin-derived pigments increased. Total anthocyanin concentration was reduced up to 80% in some transgenic lines and a smaller increase in flavonol concentration was recorded. Differences were also seen in the ratio of flavonol types that accumulated. To our knowledge this is the first report of genetic modification of the anthocyanin pathway in the commercially important species cyclamen. The effects of suppressing a key enzyme, F3'5'H, were wide ranging, extending from anthocyanins to other branches of the flavonoid pathway. The results illustrate the complexity involved in modifying a biosynthetic pathway with multiple branch points to different end products and provides important information for future flower colour modification experiments in cyclamen.

  2. Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen

    PubMed Central

    2010-01-01

    Background Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments. Results A full-length cDNA putatively identified as a F3'5'H (CpF3'5'H) was isolated from cyclamen flower tissue. Amino acid and phylogeny analyses indicated the CpF3'5'H encodes a F3'5'H enzyme. Two cultivars of minicyclamen were transformed via Agrobacterium tumefaciens with an antisense CpF3'5'H construct. Flowers of the transgenic lines showed modified colour and this correlated positively with the loss of endogenous F3'5'H transcript. Changes in observed colour were confirmed by colorimeter measurements, with an overall loss in intensity of colour (C) in the transgenic lines and a shift in hue from purple to red/pink in one cultivar. HPLC analysis showed that delphinidin-derived pigment levels were reduced in transgenic lines relative to control lines while the percentage of cyanidin-derived pigments increased. Total anthocyanin concentration was reduced up to 80% in some transgenic lines and a smaller increase in flavonol concentration was recorded. Differences were also seen in the ratio of flavonol types that accumulated. Conclusion To our knowledge this is the first report of genetic modification of the anthocyanin pathway in the commercially important species cyclamen. The effects of suppressing a key enzyme, F3'5'H, were wide ranging, extending from anthocyanins to other branches of the flavonoid pathway. The results illustrate the complexity involved in modifying a biosynthetic pathway with multiple branch points to different end products and provides important information for future flower colour modification experiments in cyclamen. PMID:20540805

  3. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector

    PubMed Central

    Azizi, Ebrahim; Namazi, Alireza; Haririan, Ismaeil; Fouladdel, Shamileh; Khoshayand, Mohammad R; Shotorbani, Parisa Y; Nomani, Alireza; Gazori, Taraneh

    2010-01-01

    Chitosan/alginate nanoparticles which had been optimized in our previous study using two different N/P ratios were chosen and their ability to release epidermal growth factor receptor (EGFR) antisense was investigated. In addition, the stability of these nanoparticles in aqueous medium and after freeze-drying was investigated. In the case of both N/P ratios (5, 25), nanoparticles started releasing EGFR antisense as soon as they were exposed to the medium and the release lasted for approximately 50 hours. Nanoparticle size, shape, zeta potential, and release profile did not show any significant change after the freeze-drying process (followed by reswelling). The nanoparticles were reswellable again after freeze-drying in phosphate buffer with a pH of 7.4 over a period of six hours. Agarose gel electrophoresis of the nanoparticles with the two different N/P ratios showed that these nanoparticles could protect EGFR antisense molecules for six hours. PMID:20957167

  4. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2013-01-01

    Environmental stimulation results in an increased expression of transcription factors called immediate early genes (IEG) in specific neuronal populations. In male Japanese quail, copulation with a female increases the expression of the IEGs zenk and c-fos in the medial preoptic nucleus (POM), a key nucleus controlling male sexual behavior. The functional significance of this increased IEG expression that follows performance of copulatory behavior is unknown. We addressed this question by repeatedly quantifying the performance of appetitive (learned social proximity response) and consummatory (actual copulation) sexual behavior in castrated, testosterone-treated males that received daily intracerebroventricular injection of an antisense oligodeoxynucleotide targeting c-fos or control vehicle. Daily antisense injections significantly inhibited expression of copulatory behavior as well as acquisition of the learned social proximity response. A strong reduction of the proximity response was still observed in antisense-treated birds that copulated with a female, ruling out the indirect effect of the absence of interactions with females on the learning process. After a two-day interruption of behavioral testing but not of antisense injections, birds were submitted to a final copulatory test that confirmed the behavioral inhibition in antisense-injected birds. Brains were collected 90 min after the behavioral testing for quantification of c-fos immunoreactive cells. A significant reduction of the number of c-fos-positive cells in POM but not in other brain regions was observed following antisense injection. Together, data suggest that c-fos expression in POM modulates copulatory behavior and sexual learning in male quail. PMID:23895306

  5. Two Distinct Repressive Mechanisms for Histone 3 Lysine 4 Methylation through Promoting 3′-End Antisense Transcription

    PubMed Central

    Margaritis, Thanasis; Oreal, Vincent; Brabers, Nathalie; Maestroni, Laetitia; Vitaliano-Prunier, Adeline; Benschop, Joris J.; van Hooff, Sander; van Leenen, Dik

    2012-01-01

    Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3′-end, indicating that repression is coupled to 3′-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3′-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3′-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3′-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3′-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3′-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms. PMID:23028359

  6. Distinct transcripts are recognized by sense and antisense riboprobes for a member of the murine HSP70 gene family, HSP70.2, in various reproductive tissues

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    The expression of hsp70.2, an hsp70 gene family member, originally characterized by its high levels of expression in germ cells in the adult mouse testis, was detected in several other reproductive tissues, including epididymis, prostate, and seminal vesicles, as well as in extraembryonic tissues of mid-gestation fetuses. In addition, hybridization with RNA probes transcribed in the sense orientation surprisingly indicated the presence of slightly larger "antisense" transcripts in several tissues. The levels of antisense transcripts varied among the tissues, with the highest signal detected in the prostate and no signal being detectable in the testis. Consistent with these results, in situ hybridization analysis clearly localized the sense-orientation transcripts to pachytene spermatocytes, while no antisense-orientation transcripts were observed in adjacent sections of the same tubules. Our findings have thus shown that although hsp70.2 was expressed abundantly and in a highly stage-specific manner in the male germ line, it was also expressed in other murine tissues. Furthermore, we have made the surprising observation of antisense transcription of the hsp70.2 gene in several mouse tissues, revealing another level of complexity in the regulation and function of heat shock proteins.

  7. On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides.

    PubMed

    Yessine, Marie-Andrée; Meier, Christian; Petereit, Hans-Ulrich; Leroux, Jean-Christophe

    2006-05-01

    The delivery of active biomacromolecules to the cytoplasm is a major challenge as it is generally hindered by the endosomal/lysosomal barrier. Synthetic titratable polyanions can overcome this barrier by destabilizing membrane bilayers at pH values typically found in endosomes. This study investigates how anionic polyelectrolytes can enhance the cytoplasmic delivery of an antisense oligonucleotide (ODN). Novel methacrylic acid (MAA) copolymers were examined for their pH-sensitive properties and ability to destabilize cell membranes in a pH-dependent manner. Ternary complex formulations prepared with the ODN, a cationic lipid and a MAA copolymer were systematically characterized with respect to their size, zeta potential, antisense activity, cytotoxicity and cellular uptake using the A549 human lung carcinoma cell line. The MAA copolymer substantially increased the activity of the antisense ODN in inhibiting the expression of protein kinase C-alpha. Uptake, cytotoxicity and antisense activity were strongly dependent on copolymer concentration. Metabolic inhibitors demonstrated that endocytosis was the major internalization pathway of the complexes, and that endosomal acidification was essential for ODN activity. Confocal microscopy analysis of cells incubated with fluorescently-labeled complexes revealed selective delivery of the ODN, but not of the copolymer, to the cytoplasm/nucleus. This study provides new insight into the mechanisms of intracellular delivery of macromolecular drugs, using synthetic anionic polyelectrolytes.

  8. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    PubMed

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  9. Antisense Transcription Is Pervasive but Rarely Conserved in Enteric Bacteria

    PubMed Central

    Raghavan, Rahul; Sloan, Daniel B.; Ochman, Howard

    2012-01-01

    ABSTRACT Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. PMID:22872780

  10. Permissive Sense and Antisense Transcription from the 5′ and 3′ Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1

    PubMed Central

    Polakowski, Nicholas; Hoang, Kimson

    2016-01-01

    ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5′ and 3′ peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3′ LTR regulates expression of a single gene, hbz, while sense transcription from the 5′ LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3′ LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G0/G1 phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. IMPORTANCE The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5′ and 3′ ends. The LTRs modulate transcription in both forward (sense) and reverse (antisense) directions. We found that sense transcription from the 5′ LTR does not interfere with antisense transcription from the 3′ LTR, allowing viral genes encoded on opposite DNA strands to be simultaneously transcribed. Two such genes are tax and hbz, and while they are thought to function at different times during the course of infection to promote leukemogenesis of infected T cells, our results indicate that they can be simultaneously transcribed. We also found that the ability of Tax to induce cell cycle arrest inhibits its fundamental function of activating viral sense transcription but does not affect antisense transcription. This regulatory mechanism may be important for long-term HTLV-1 infection. PMID:26792732

  11. Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells.

    PubMed

    Avogaro, Laura; Querido, Emmanuelle; Dalachi, Myriam; Jantsch, Michael F; Chartrand, Pascal; Cusanelli, Emilio

    2018-04-16

    Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.

  12. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations.

    PubMed Central

    Cotton, R G; Rodrigues, N R; Campbell, R D

    1988-01-01

    The chemical reactivity of thymine (T), when mismatched with the bases cytosine, guanine, and thymine, and of cytosine (C), when mismatched with thymine, adenine, and cytosine, has been examined. Heteroduplex DNAs containing such mismatched base pairs were first incubated with osmium tetroxide (for T and C mismatches) or hydroxylamine (for C mismatches) and then incubated with piperidine to cleave the DNA at the modified mismatched base. This cleavage was studied with an internally labeled strand containing the mismatched T or C, such that DNA cleavage and thus reactivity could be detected by gel electrophoresis. Cleavage at a total of 13 T and 21 C mismatches isolated (by at least three properly paired bases on both sides) single-base-pair mismatches was identified. All T or C mismatches studied were cleaved. By using end-labeled DNA probes containing T or C single-base-pair mismatches and conditions for limited cleavage, we were able to show that cleavage was at the base predicted by sequence analysis and that mismatches in a length of DNA could be readily detected by such an approach. This procedure may enable detection of all single-base-pair mismatches by use of sense and antisense probes and thus may be used to identify the mutated base and its position in a heteroduplex. Images PMID:3260032

  13. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  14. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts

    PubMed Central

    PETERS, NICK T.; ROHRBACH, JUSTIN A.; ZALEWSKI, BRIAN A.; BYRKETT, COLLEEN M.; VAUGHN, JACK C.

    2003-01-01

    We have previously described an example of extensively A-to-G edited cDNA derived from adult heads of the fruitfly Drosophila melanogaster. In that study, the source of the predicted antisense RNA pairing strand for template recognition by dADAR editase was not identified, and the biological significance of the observed hyperediting was not known. Here, we address each of these questions. 4f-rnp and sas-10 are closely adjacent X-linked genes located on opposite DNA strands that produce convergent transcripts. We show that developmentally regulated antisense sas-10 readthrough mRNA arises by activation of an upstream promoter P2 during the late embryo stage of fly development. The sas-10 readthrough transcripts pair with 4f-rnp mRNA to form double-stranded molecules, as indicated by A-to-G editing observed in both RNA strands. It would be predicted that perfect RNA duplexes would be targeted for modification/degradation by enzyme pathways that recognize double-stranded RNAs, leading to decline in 4f-rnp mRNA levels, and this is what we observe. The observation using quantitative RT-PCR that sas-10 readthrough and 4f-rnp transcript levels are inversely related suggests a role for the antisense RNA in posttranscriptional regulation of 4f-rnp gene expression during development. Potential molecular mechanisms that could lead to this result are discussed, one of which is targeted transcript degradation via the RNAi pathway. Insofar as the dADAR editase and RNAi pathways are known to be constitutive in this system, it is likely that control of antisense RNA transcription is the rate-limiting factor. The results provide insight into roles of naturally occurring antisense RNAs in regulation of eukaryotic gene expression. PMID:12756328

  15. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro.

    PubMed

    Goh, Shan; Loeffler, Anette; Lloyd, David H; Nair, Sean P; Good, Liam

    2015-11-11

    Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p < 0.05). At these PNA concentrations, 66 % of MRSA and 92 % of MRSP cells were killed by oxacillin (p < 0.01). Anti-ftsZ PNA at 7.5 and 2.5 μM reduced ftsZ mRNA in MRSA and MRSP, respectively (p ≤ 0.05). At these PNA concentrations, 86 % of MRSA cells and 95 % of MRSP cells were killed by oxacillin (p < 0.05). Anti-ftsZ PNAs resulted in swelling of bacterial cells. Scrambled PNA controls did not affect MRSA but sensitized MRSP moderately to oxacillin without affecting mRNA levels. The antisense PNAs effects observed provide in vitro proof of concept that this approach can be used to reverse β-lactam resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed.

  16. The Seeds of Lotus japonicus Lines Transformed with Sense, Antisense, and Sense/Antisense Galactomannan Galactosyltransferase Constructs Have Structurally Altered Galactomannans in Their Endosperm Cell Walls1

    PubMed Central

    Edwards, Mary E.; Choo, Tze-Siang; Dickson, Cathryn A.; Scott, Catherine; Gidley, Michael J.; Reid, J.S. Grant

    2004-01-01

    Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1→6)-α-galactose (Gal) substitution of the (1→4)-β-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense (“hairpin loop”) constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase. PMID:14988472

  17. Simultaneous Down-Regulation of Caffeic/5-Hydroxy Ferulic Acid-O-Methyltransferase I and Cinnamoyl-Coenzyme A Reductase in the Progeny from a Cross between Tobacco Lines Homozygous for Each Transgene. Consequences for Plant Development and Lignin Synthesis1

    PubMed Central

    Pinçon, Gaelle; Chabannes, Matthieu; Lapierre, Catherine; Pollet, Brigitte; Ruel, Katia; Joseleau, Jean-Paul; Boudet, Alain M.; Legrand, Michel

    2001-01-01

    Inhibition of specific lignin biosynthetic steps by antisense strategy has previously been shown to alter lignin content and/or structure. In this work, homozygous tobacco (Nicotiana tabacum) lines transformed with cinnamoyl-coenzyme A reductase (CCR) or caffeic acid/5-hydroxy ferulic acid-O-methyltransferase I (COMT I) antisense sequences have been crossed and enzyme activities, lignin synthesis, and cell wall structure of the progeny have been analyzed. In single transformed parents, CCR inhibition did not affect COMT I expression, whereas marked increases in CCR activity were observed in COMT I antisense plants, suggesting potential cross talk between some genes of the pathway. In the progeny, both CCR and COMT I activities were shown to be markedly decreased due to the simultaneous repression of the two genes. In these double transformants, the lignin profiles were dependent on the relative extent of down-regulation of each individual enzyme. For the siblings issued from a strongly repressed antisense CCR parent, the lignin patterns mimicked the patterns obtained in single transformants with a reduced CCR activity. In contrast, the specific lignin profile of COMT I repression could not be detected in double transformed siblings. By transmission electron microscopy some cell wall loosening was detected in the antisense CCR parent but not in the antisense COMT I parent. In double transformants, immunolabeling of non-condensed guaiacyl-syringyl units was weaker and revealed changes in epitope distribution that specifically affected vessels. Our results more widely highlight the impact of culture conditions on phenotypes and gene expression of transformed plants. PMID:11351078

  18. The macrophage as a Trojan horse for antisense oligonucleotide delivery.

    PubMed

    Novak, James S; Jaiswal, Jyoti K; Partridge, Terence A

    2018-06-04

    The gateway to the promised land of gene therapy has been obstructed by the problem of accurate and efficient delivery of therapeutic agents to their target sites. This is true both of constructs designed to directly express proteins of interest, and of constructs or agents aimed at modifying the expression of endogenous genes. It is recognized as a major impediment to the effective application of genetic therapies currently or incipiently in clinical trial. Our recent study has examined the mechanism underlying delivery of therapeutic antisense oligonucleotides (ASO) for treating the devastating muscle disease Duchenne muscular dystrophy [1]. Working to understand the mode of ASO delivery in DMD, we discovered that inflammatory cells act as a depot that locally stores the intravenously administered ASO. This local depot of ASO then becomes available to the muscle fibres by way of satellite cells that deliver their cargo by fusion with damaged fibres during muscle repair. This finding points to a potentially novel strategy for systemic ASO delivery, involving the use of the inflammatory cell as a Trojan horse. Such an approach would have the benefit not only of enhancing tissue-specific delivery of ASO, but also of reducing the impact of their rapid clearance from the circulation. Here, we discuss the issues surrounding ASO-mediated exon skipping efficacy for DMD, and outline research aimed at improving targeted ASO delivery.

  19. Strategies to introduce resistance to viroids (Book Chapter)

    USDA-ARS?s Scientific Manuscript database

    Little or no naturally occurring durable resistance to viroids has been found in most viroid host species; therefore efforts to engineer viroid resistance in these plant hosts have been made. These efforts include strategies that incorporate viroid-specific antisense RNAs, sense and antisense viroid...

  20. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    PubMed

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  1. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons

    PubMed Central

    Zhao, Xiuli; Tang, Zongxiang; Zhang, Hongkang; Atianjoh, Fidelis E.; Zhao, Jian-Yuan; Liang, Lingli; Wang, Wei; Guan, Xiaowei; Kao, Sheng-Chin; Tiwari, Vinod; Gao, Yong-Jing; Hoffman, Paul N.; Cui, Hengmi; Li, Min; Dong, Xinzhong; Tao, Yuan-Xiang

    2013-01-01

    Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation within the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA for Kcna2 (named Kcna2 antisense RNA) in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increases Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to Kcna2 antisense RNA gene promoter. Mimicking this increase downregulates Kcna2, reduces total Kv current, increases excitability in DRG neurons, and produces neuropathic pain symptoms. Blocking this increase reverses nerve injury-induced downregulation of DRG Kcna2 and attenuates development and maintenance of neuropathic pain. These findings suggest native Kcna2 antisense RNA as a new therapeutic target for the treatment of neuropathic pain. PMID:23792947

  2. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition.

    PubMed

    Jaeger, Laura B; Dohgu, Shinya; Hwang, Mark C; Farr, Susan A; Murphy, M Paul; Fleegal-DeMotta, Melissa A; Lynch, Jessica L; Robinson, Sandra M; Niehoff, Michael L; Johnson, Steven N; Kumar, Vijaya B; Banks, William A

    2009-01-01

    Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimer's disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.

  3. Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology.

    PubMed

    Crooke, Rosanne M; Graham, Mark J

    2013-01-01

    Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs.

  4. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis.

    PubMed

    Ramazeilles, C; Mishra, R K; Moreau, S; Pascolo, E; Toulmé, J J

    1994-08-16

    We targeted the mini-exon sequence, present at the 5' end of every mRNA of the protozoan parasite Leishmania amazonensis, by phosphorothioate oligonucleotides. A complementary 16-mer (16PS) was able to kill amastigotes--the intracellular stage of the parasite--in murine macrophages in culture. After 24 hr of incubation with 10 microM 16PS, about 30% infected macrophages were cured. The oligomer 16PS acted through antisense hybridization in a sequence-dependent way; no effect on parasites was observed with noncomplementary phosphorothioate oligonucleotides. The antisense oligonucleotide 16PS was a selective killer of the protozoans without any detrimental effect to the host macrophage. Using 16PS linked to a palmitate chain, which enabled it to complex with low density lipoproteins, improved the leishmanicidal efficiency on intracellular amastigotes, probably due to increased endocytosis. Phosphorothioate oligonucleotides complementary to the intron part of the mini-exon pre-RNA were also effective, suggesting that antisense oligomers could prevent trans-splicing in these parasites.

  5. Antisense and sense poly(A)-RNAs from the Xenopus laevis pyruvate dehydrogenase gene loci are regulated with message production during embryogenesis.

    PubMed

    Islam, N; Poitras, L; Gagnon, F; Moss, T

    1996-10-17

    The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.

  6. High-value bioproducts from microalgae: strategies and progress.

    PubMed

    Liang, Ming-Hua; Zhu, Jianhua; Jiang, Jian-Guo

    2018-04-20

    Microalgae have been considered as alternative sustainable resources for high-value bioproducts such as lipids (especially triacylglycerides [TAGs]), polyunsaturated fatty acids (PUFAs), and carotenoids, due to their relatively high photosynthetic efficiency, no arable land requirement, and ease of scale-up. It is of great significance to exploit microalgae for the production of high-value bioproducts. How to improve the content or productivity of specific bioproducts has become one of the most urgent challenges. In this review, we will describe high-value bioproducts from microalgae and their biosynthetic pathways (mainly for lipids, PUFAs, and carotenoids). Recent progress and strategies for the enhanced production of bioproducts from microalgae are also described in detail, and these strategies take advantages of optimized cultivation conditions with abiotic stress, chemical stress (addition of metabolic precursors, phytohormones, chemical inhibitors, and chemicals inducing oxidative stress response), and molecular approaches such as metabolic engineering, transcriptional engineering, and gene disruption strategies (mainly RNAi, antisense RNA, miRNA-based knockdown, and CRISPR/Cas9).

  7. RNA therapeutics: RNAi and antisense mechanisms and clinical applications.

    PubMed

    Chery, Jessica

    2016-07-01

    RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA) for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are distinct from other pharmacological modalities, such as small molecules and antibodies that target mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs (siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (lncRNAs). As our understanding of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the genome is estimated to be transcribed. These transcripts include non-coding RNAs such as miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of genetic information from DNA to protein, the final product of the central dogma in biology 1 . Currently there are two main approaches used to target RNA: double stranded RNA-mediated interference (RNAi) and antisense oligonucleotides (ASO). Both approaches are currently in clinical trials for targeting of RNAs involved in various diseases, such as cancer and neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral sclerosis have shown positive results in clinical trials 2 . Advantages of ASOs include higher affinity due to the development of chemical modifications that increase affinity, selectivity while decreasing toxicity due to off-target effects. This review will highlight the major therapeutic approaches of RNA medicine currently being applied with a focus on RNAi and ASOs.

  8. Antisense oligonucleotide technologies in drug discovery.

    PubMed

    Aboul-Fadl, Tarek

    2006-09-01

    The principle of antisense oligonucleotide (AS-OD) technologies is based on the specific inhibition of unwanted gene expression by blocking mRNA activity. It has long appeared to be an ideal strategy to leverage new genomic knowledge for drug discovery and development. In recent years, AS-OD technologies have been widely used as potent and promising tools for this purpose. There is a rapid increase in the number of antisense molecules progressing in clinical trials. AS-OD technologies provide a simple and efficient approach for drug discovery and development and are expected to become a reality in the near future. This editorial describes the established and emerging AS-OD technologies in drug discovery.

  9. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes.

    PubMed

    Fokina, Alesya A; Stetsenko, Dmitry A; François, Jean-Christophe

    2015-05-01

    Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.

  10. Natural antisense transcripts associated with salinity response in alfalfa

    USDA-ARS?s Scientific Manuscript database

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  11. Comparison of three techniques for generation of tolerogenic dendritic cells: siRNA, oligonucleotide antisense, and antibody blocking.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Moazzeni, Mohammad; Soheili, Zahra Soheila; Samiee, Shahram

    2010-12-01

    In recent years, a new view of dendritic cells (DCs) as a main regulator of immunity to induce and maintain tolerance has been established. In vitro manipulation of their development and maturation is a topic of DC therapeutic application, which utilizes their inherent tolerogenicity. In this field, the therapeutic potential of antisense, siRNA, and blocking antibody are an interesting goal. In the present study, the efficiency of these three methods--siRNA, antisense, and blocking antibody--against CD40 molecule and its function in DCs and BCL1 cell line are compared. DCs were separated from mouse spleen and then cultured in vitro using Lipofectamine 2000 to deliver both silencers; the efficacy of transfection was estimated by flow cytometry. mRNA expression and protein synthesis were assessed by real time-PCR and flow cytometry, respectively. By Annexin V and propidium iodine staining, we could evaluate the viability of transfected cells. Knocking down the CD40 gene into separate groups of DCs by siRNA, antisense, and blocking antibody treated DCs can cause an increase in IL-4, decrease in IL-12, IFN-γ production, and allostimulation activity. Our results indicated that, in comparison to antisense and blocking antibody, siRNAs appear to be quantitatively more efficient in CD40 downregulation and their differences are significant.

  12. Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions.

    PubMed

    Chang, S H; Bugos, R C; Sun, W H; Yamamoto, H Y

    2000-01-01

    Violaxanthin de-epoxidase (VDE) catalyzes the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle. Tobacco was transformed with an antisense VDE construct under control of the cauliflower mosaic virus 35S promoter to determine the effect of reduced levels of VDE on plant growth. Screening of 40 independent transformants revealed 18 antisense lines with reduced levels of VDE activity with two in particular (TAS32 and TAS39) having greater than 95% reduction in VDE activity. Northern analysis demonstrated that these transformants had greatly suppressed levels of VDE mRNA. De-epoxidation of violaxanthin was inhibited to such an extent that no zeaxanthin and only very low levels of antheraxanthin could be detected after exposure of leaves to high light (2000 mumol m(-2) s(-1) for 20 min) with no observable effect on levels of other carotenoids and chlorophyll. Non-photochemical quenching was greatly reduced in the antisense VDE tobacco, demonstrating that a significant level of the non-photochemical quenching in tobacco requires de-epoxidation of violaxanthin. Although the antisense plants demonstrated a greatly impaired de-epoxidation of violaxanthin, no effect on plant growth or photosynthetic rate was found when plants were grown at a photon flux density of 500 or 1000 mumol m(-2) s(-1) under controlled growth conditions as compared to wild-type tobacco.

  13. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits.

    PubMed

    Sugano, M; Makino, N; Sawada, S; Otsuka, S; Watanabe, M; Okamoto, H; Kamada, M; Mizushima, A

    1998-02-27

    Cholesteryl ester transfer protein (CETP) is the enzyme that facilitates the transfer of cholesteryl ester from high density lipoprotein (HDL) to apolipoprotein B (apoB)-containing lipoproteins. However, the exact role of CETP in the development of atherosclerosis has not been determined. In the present study, we examined the effect of the suppression of increased plasma CETP by intravenous injection with antisense oligodeoxynucleotides (ODNs) against CETP targeted to the liver on the development of atherosclerosis in rabbits fed a cholesterol diet. The ODNs against rabbit CETP were coupled to asialoglycoprotein (ASOR) carrier molecules, which serve as an important method to regulate liver gene expression. Twenty-two male Japanese White rabbits were used in the experiment. Eighteen animals were fed a standard rabbit chow supplemented with 0.3% cholesterol throughout the experiment for 16 weeks. At 8 weeks, they were divided into three groups (six animals in each group), among which the plasma total and HDL cholesterol concentrations did not significantly change. The control group received nothing, the sense group were injected with the sense ODNs complex, and the antisense group were injected with the antisense ODNs complex, respectively, for subsequent 8 weeks. ASOR. poly(L-lysine) ODNs complex were injected via the ear veins twice a week. Four animals were fed a standard rabbit diet for 16 weeks. The total cholesterol concentrations and the CETP mass in the animals injected with antisense ODNs were all significantly decreased in 12 and 16 weeks compared with those injected with sense ODNs and the control animals. The HDL cholesterol concentrations measured by the precipitation assay did not significantly change among the groups fed a cholesterol diet, and triglyceride concentrations did not significantly change in the four groups. However, at the end of the study, when the HDL cholesterol concentrations were measured after the isolation by ultracentrifugation and a column chromotography, they were significantly higher in the animals injected with antisense ODNs than in the animals injected with sense ODNs and in the control animals. A reduction of CETP mRNA and an increase of LDL receptor mRNA in the liver were observed in the animals injected with antisense ODNs compared with those injected with sense ODNs and the control animals. Aortic cholesterol contents and the aortic percentage lesion to total surface area were significantly lower in the animals injected with antisense ODNs than in the animals injected with sense ODNs and in the control animals. These findings showed for the first time that suppression of increased plasma CETP by the injection with antisense ODNs against CETP coupled to ASOR carrier molecules targeted to the liver could thus inhibit the atherosclerosis possibly by decreasing the plasma LDL + very low density lipoprotein (VLDL) cholesterol in cholesterol-fed rabbits.

  14. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  15. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  16. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    PubMed

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    PubMed Central

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  18. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    USDA-ARS?s Scientific Manuscript database

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  19. Bcl-2 antisense therapy in B-cell malignancies.

    PubMed

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  20. Construction of a directed hammerhead ribozyme library: towards the identification of optimal target sites for antisense-mediated gene inhibition.

    PubMed Central

    Pierce, M L; Ruffner, D E

    1998-01-01

    Antisense-mediated gene inhibition uses short complementary DNA or RNA oligonucleotides to block expression of any mRNA of interest. A key parameter in the success or failure of an antisense therapy is the identification of a suitable target site on the chosen mRNA. Ultimately, the accessibility of the target to the antisense agent determines target suitability. Since accessibility is a function of many complex factors, it is currently beyond our ability to predict. Consequently, identification of the most effective target(s) requires examination of every site. Towards this goal, we describe a method to construct directed ribozyme libraries against any chosen mRNA. The library contains nearly equal amounts of ribozymes targeting every site on the chosen transcript and the library only contains ribozymes capable of binding to that transcript. Expression of the ribozyme library in cultured cells should allow identification of optimal target sites under natural conditions, subject to the complexities of a fully functional cell. Optimal target sites identified in this manner should be the most effective sites for therapeutic intervention. PMID:9801305

  1. Review on investigations of antisense oligonucleotides with the use of mass spectrometry.

    PubMed

    Studzińska, Sylwia

    2018-01-01

    Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Vector Library for Silencing Central Carbon Metabolism Genes with Antisense RNAs in Escherichia coli

    PubMed Central

    Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination. PMID:24212579

  3. TGF-beta antisense oligonucleotides reduce mRNA expression of matrix metalloproteinases in cultured wound-healing-related cells.

    PubMed

    Philipp, Katrin; Riedel, Frank; Germann, Günter; Hörmann, Karl; Sauerbier, Michael

    2005-02-01

    The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.

  4. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals.

    PubMed

    Velho, Renata V; Sperb-Ludwig, Fernanda; Schwartz, Ida V D

    2015-08-01

    With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  5. Effect of anti-sense oligodeoxynucleotides homeobox B2 on the proliferation and expression of primary human umbilical vein endothelial cells.

    PubMed

    Liu, Xusheng; Zhang, Xiaoqi

    2002-02-01

    To explore the effect of homeobox B2 (HOXB2) anti sense oligodeoxynucleotides (asodn) on the proliferation and expression of primary human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 asodn modified by thiophosphate transfected the induction of liposome into HUVECs. MTT a nd RT-PCR methods were employed to determine the effect of different conc ent rations of asodn on the endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 asodn, the endothelial proliferation was inhibited in a dose-dependent fashion. Simultaneously, the expression of HOXB2 mRNA decreased significantly. HOXB2 plays an important role in the proliferation of endothelia.

  6. Alteration of hairpin ribozyme specificity utilizing PCR.

    PubMed

    DeGrandis, P; Hampel, A; Galasinski, S; Borneman, J; Siwkowski, A; Altschuler, M

    1994-12-01

    We have developed a method by which a researcher can quickly alter the specificity of a trans hairpin ribozyme. Utilizing this PCR method, two oligonucleotides, and any target vector, new ribozyme template sequences can be generated without the synthesis of longer oligonucleotides. We have produced templates with altered specificity for both standard and modified (larger) ribozymes. After transcription, these ribozymes show specific cleavage activity with the new substrate beta-glucuronidase (GUS), and no activity against the original substrate (HIV-1, 5' leader sequence). Utilizing this technique, it is also possible to produce an inactive ribozyme that can be used as an antisense control. Applications of this procedure would provide a rapid and economical system for the assessment of trans ribozyme activity.

  7. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  8. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri.

    PubMed

    Tran, Chi Nhan; Giangrossi, Mara; Prosseda, Gianni; Brandi, Anna; Di Martino, Maria Letizia; Colonna, Bianca; Falconi, Maurizio

    2011-10-01

    The icsA gene of Shigella encodes a structural protein involved in colonization of the intestinal mucosa by bacteria. This gene is expressed upon invasion of the host and is controlled by a complex regulatory circuit involving the nucleoid protein H-NS, the AraC-like transcriptional activator VirF, and a 450 nt antisense RNA (RnaG) acting as transcriptional attenuator. We investigated on the interplay of these factors at the molecular level. DNase I footprints reveal that both H-NS and VirF bind to a region including the icsA and RnaG promoters. H-NS is shown to repress icsA transcription at 30°C but not at 37°C, suggesting a significant involvement of this protein in the temperature-regulated expression of icsA. We also demonstrate that VirF directly stimulates icsA transcription and is able to alleviate H-NS repression in vitro. According to these results, icsA expression is derepressed in hns- background and overexpressed when VirF is provided in trans. Moreover, we find that RnaG-mediated transcription attenuation depends on 80 nt at its 5'-end, a stretch carrying the antisense region. Bases engaged in the initial contact leading to sense-antisense pairing have been identified using synthetic RNA and DNA oligonucleotides designed to rebuild and mutagenize the two stem-loop motifs of the antisense region.

  9. Tetrahedral DNA Nanoparticle Vector for Intracellular Delivery of Targeted Peptide Nucleic Acid Antisense Agents to Restore Antibiotic Sensitivity in Cefotaxime-Resistant Escherichia coli.

    PubMed

    Readman, John Benedict; Dickson, George; Coldham, Nick G

    2017-06-01

    The bacterial cell wall presents a barrier to the uptake of unmodified synthetic antisense oligonucleotides, such as peptide nucleic acids, and so is one of the greatest obstacles to the development of their use as therapeutic anti-bacterial agents. Cell-penetrating peptides have been covalently attached to antisense agents, to facilitate penetration of the bacterial cell wall and deliver their cargo into the cytoplasm. Although they are an effective vector for antisense oligonucleotides, they are not specific for bacterial cells and can exhibit growth inhibitory properties at higher doses. Using a bacterial cell growth assay in the presence of cefotaxime (CTX 16 mg/L), we have developed and evaluated a self-assembling non-toxic DNA tetrahedron nanoparticle vector incorporating a targeted anti-bla CTX-M-group 1 antisense peptide nucleic acid (PNA4) in its structure for penetration of the bacterial cell wall. A dose-dependent CTX potentiating effect was observed when PNA4 (0-40 μM) was incorporated into the structure of a DNA tetrahedron vector. The minimum inhibitory concentration (to CTX) of an Escherichia coli field isolate harboring a plasmid carrying bla CTX-M-3 was reduced from 35 to 16 mg/L in the presence of PNA4 carried by the DNA tetrahedron vector (40 μM), contrasting with no reduction in MIC in the presence of PNA4 alone. No growth inhibitory effects of the DNA tetrahedron vector alone were observed.

  10. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein.

    PubMed

    Duchrow, M; Schmidt, M H; Zingler, M; Anemüller, S; Bruch, H P; Broll, R

    2001-01-01

    The human antigen defined by the monoclonal antibody Ki-67 (pKi-67) is a human nuclear protein strongly associated with cell proliferation and found in all tissues studied. It is widely used as a marker of proliferating cells, yet its function is unknown. To investigate its function we suppressed pKi-67 expression by antisense RNA and overexpressed a partial structure of pKi-67 in HeLa cells. A BrdU-incorporation assay showed a significant decrease in DNA synthesis after antisense inhibition. Cell cycle analysis indicated a higher proportion of cells in G1 phase and a lower proportion of cells in S phase while the number of G(2)/M phase cells remained constant. Overexpression of a recombinant protein encoding three of the repetitive elements from exon 13 of pKi-67 had a similar effect to that obtained by antisense inhibition. The similarity of the effect of expressing 'Ki-67 repeats' and pKi-67 antisense RNA could be explained by a negative effect on the folding of the endogenous protein in the endoplasmatic reticulum. Furthermore excessive self-association of pKi-67 via the repeat structure could inhibit its nuclear transport, preventing it from getting to its presumptive site of action. We conclude that the Ki-67 protein has an important role in the regulation of the cell cycle, which is mediated in part by its repetitive elements. Copyright 2001 S. Karger AG, Basel

  11. Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer

    PubMed Central

    Liu, Pengfei; Sun, Manna; Jiang, Wenhua; Zhao, Jinkun; Liang, Chunyong; Zhang, Huilai

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) regulated by microRNA (miRNA)-221 and miRNA-222 that are associated with the resistance of breast cancer to fulvestrant. The GSE19777 transcription profile was downloaded from the Gene Expression Omnibus database, and includes data from three samples of antisense miRNA-221-transfected fulvestrant-resistant MCF7-FR breast cancer cells, three samples of antisense miRNA-222-transfected fulvestrant-resistant MCF7-FR cells and three samples of control inhibitor (green fluorescent protein)-treated fulvestrant-resistant MCF7-FR cells. The linear models for microarray data package in R/Bioconductor was employed to screen for DEGs in the miRNA-transfected cells, and the pheatmap package in R was used to perform two-way clustering. Pathway enrichment was conducted using the Gene Set Enrichment Analysis tool. Furthermore, a miRNA-messenger (m) RNA regulatory network depicting interactions between miRNA-targeted upregulated DEGs was constructed and visualized using Cytoscape. In total, 492 and 404 DEGs were identified for the antisense miRNA-221-transfected MCF7-FR cells and the antisense miRNA-222-transfected MCF7-FR cells, respectively. Genes of the pentose phosphate pathway (PPP) were significantly enriched in the antisense miRNA-221-transfected MCF7-FR cells. In addition, components of the Wnt signaling pathway and cell adhesion molecules (CAMs) were significantly enriched in the antisense miRNA-222-transfected MCF7-FR cells. In the miRNA-mRNA regulatory network, miRNA-222 was demonstrated to target protocadherin 10 (PCDH10). The results of the present study suggested that the PPP and Wnt signaling pathways, as well as CAMs and PCDH10, may be associated with the resistance of breast cancer to fulvestrant. PMID:27895744

  12. [Inhibiting target gene expression and controlling growth of Epstein-Barr virus transformed cells by antisense RNA transcripts].

    PubMed

    Chen, Jian-jing; Raab-Traub, Nancy; Yao, Qing-yun; Zhang, Feng; Huang, Mei-ling; Kuang, Zhu-ji; Zhang, Xiao-shi; Ye, Yan-li; Gu, Li

    2002-01-01

    The latent membrane protein gene (LMP) of Epstein-Barr virus (EBV) was thought to play an important role in the carcinogenesis of nasopharyngeal carcinoma (NPC). In this study, the authors investigated the effects of antisense RNA (AsRNA) on LMP for down regulating at the target gene over expression in EBV transformed lymphoid cells, and set up an antisense system to inhibit LMP expression. Constructing the single strand antisense transcription system in vitro, the authors have got large amount of AsRNA. Designing and setting up an antisense tracing system in situ (ATSIS), the authors could observe the living particles of AsRNA/sense RNA duplex dimer. With time lapse phase-contrast microscopy, the agglutination phenotype on living cells was easily detected by MTT test, the inhibition rate on EBV transformed cells was calculated. LMP 1.9 fragment ligated into pGEM vector in reverse orientation have been constructed and produced a plentiful amount of AsLMPmRNA which could incorporated into both B95-8 and C1936 cell lines by endophagocytosis and formed the duplex dimer of As/Sense RNA. This particles have been visualized in situ when labelling 35S isotope by ATSIS. When AsLMPmRNA acted as agents for specific inhibition to LMP over expression, the transform phenotype of cell agglutination have been suppressed and MTT particle formatin was apparently reduced both two EBV tansformed cell lines. AsLMPmRNA targets at sense strand have a high effectiveness of down-regulation on EBV-LMP overexpression. This down regulating function of LMP and growth inhibition on transformed cell is demonstrated by the antisenes tracing system in situ (ATSIS). The results provide a clue to overcome the latent EBV infection in human bodies all living long time and to prevent it inducing NPC in high incidence area by antisense strategies.

  13. Expression of cathepsin S antisense transcripts by adenovirus in retinal pigment epithelial cells.

    PubMed

    Rakoczy, P E; Lai, M C; Baines, M G; Spilsbury, K; Constable, I J

    1998-10-01

    To show the production of sense or antisense transcripts by recombinant adenoviruses, to investigate whether the transcripts produced were suitable for downregulating the expression of the targeted gene, cathepsin S (CatS), and to examine the effect of antisense transcript production on the biologic function of retinal pigment epithelial (RPE) cells, including the regulation of endogenous aspartic protease expression. Ad.MLP.CatSAS, Ad.RSV.CatSAS, and Ad.MLP.CatSS recombinant viruses were produced by homologous recombination. The recombinant viruses were tested by restriction enzyme digestion to confirm the orientation of the inserts. The expression of antisense transcripts was tested by northern blot analysis. Western blot analysis was used to study the regulation of the endogenous CatS protein in ARPE19 cells. The biologic effect of CatS downregulation in ARPE19 cells was tested by proliferation and phagocytosis assays, de novo cathepsin D (CatD) synthesis, and measurement of aspartic protease activity. After characterization of the recombinant adenovirus constructs, the production of antisense and sense CatS transcripts was shown in ARPE19 cells. The transcripts appeared at approximately 1.9 kb 48 hours after transduction, and the expression of the antisense transcripts was similar in constructs carrying either the MLP or the RSV promoter. Western blot analysis showed that ARPE19 cells transduced with Ad.MLP.CatSAS and Ad.RSV.CatSAS had no detectable CatS. In contrast, there was a strong signal appearing at 24 kDa in ARPE19 cells transduced with Ad.MLP.CatSS. ARPE19 cells were transduced to a high level. The transduction of ARPE19 cells with the recombinant adenoviruses did not affect the morphologic appearance of the cells, their proliferation, or their phagocytosing ability. However, ARPE19 cells transduced by Ad.MLP.CatSAS recombinant adenovirus showed a significant downregulation of de novo CatD synthesis and a twofold decrease in aspartic protease activity. Recombinant adenoviruses were shown to be suitable for producing antisense CatS transcripts to modulate endogenous CatS expression in RPE cells. It is proposed that CatS may play an important role, directly or indirectly, in the lysosomal digestion of outer segments through the regulation of other lysosomal enzyme activity, such as the expression of CatD.

  14. Antisense transcription is pervasive but rarely conserved in enteric bacteria.

    PubMed

    Raghavan, Rahul; Sloan, Daniel B; Ochman, Howard

    2012-01-01

    Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell's transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.

  15. Role of TAF12 in the Increased VDR Activity in Paget’s Disease of Bone

    DTIC Science & Technology

    2013-10-01

    and 5’‐GCC AAA TGC AGT TTA AGC TCT GCT‐3’ (antisense). The gene‐specific primers for mouse b‐actin were 5’‐GGC CGT ACC ACT GGC ATC GTG ATG‐ 3...cycles. The gene‐specific primers for CYP24A1 mRNA were 5’‐CGG GTG GAC CAT TTA CAA CTC GG‐3’ (sense) and 5’‐CTC AAC AGG CTC ATT GTC TGT GG‐3’ (antisense...The gene specific designing primers for b‐actinwere 5’‐ GTG CGT GAC ATC AAA GAG‐3’ (sense) and 5’‐GCC ACA GGA TTC CAT ACC‐3’ (antisense). The

  16. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  17. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  18. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  19. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides.

    PubMed Central

    Cazenave, C; Stein, C A; Loreau, N; Thuong, N T; Neckers, L M; Subasinghe, C; Hélène, C; Cohen, J S; Toulmé, J J

    1989-01-01

    We have studied the translation of rabbit globin mRNA in cell free systems (reticulocyte lysate and wheat germ extract) and in microinjected Xenopus oocytes in the presence of anti-sense oligodeoxynucleotides. Results obtained with the unmodified all-oxygen compounds were compared with those obtained when phosphorothioate or alpha-DNA was used. In the wheat germ system a 17-mer sequence targeted to the coding region of beta-globin mRNA was specifically inhibitory when either the unmodified phosphodiester oligonucleotide or its phosphorothioate analogue were used. In contrast no effect was observed with the alpha-oligomer. These results were ascribed to the fact that phosphorothioate oligomers elicit an RNase-H activity comparable to the all-oxygen congeners, while alpha-DNA/mRNA hybrids were a poor substrate. Microinjected Xenopus oocytes followed a similar pattern. The phosphorothioate oligomer was more efficient to prevent translation than the unmodified 17-mer. Inhibition of beta-globin synthesis was observed in the nanomolar concentration range. This result can be ascribed to the nuclease resistance of phosphorothioates as compared to natural phosphodiester linkages, alpha-oligomers were devoid of any inhibitory effect up to 30 microM. Phosphorothioate oligodeoxyribonucleotides were shown to be non-specific inhibitors of protein translation, at concentrations in the micromolar range, in both cell-free systems and oocytes. Non-specific inhibition of translation was dependent on the length of the phosphorothioate oligomer. These non-specific effects were not observed with the unmodified or the alpha-oligonucleotides. Images PMID:2472605

  20. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice

    PubMed Central

    Hua, Yimin; Vickers, Timothy A.; Okunola, Hazeem L.; Bennett, C. Frank; Krainer, Adrian R.

    2008-01-01

    survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA. PMID:18371932

  1. The Effects of 2′-O-Methoxyethyl Containing Antisense Oligonucleotides on Platelets in Human Clinical Trials

    PubMed Central

    Baker, Brenda F.; Witztum, Joseph L.; Kwoh, T. Jesse; Pham, Nguyen C.; Salgado, Nelson; McEvoy, Bradley W.; Cheng, Wei; Hughes, Steven G.; Bhanot, Sanjay; Geary, Richard S.

    2017-01-01

    A thorough analysis of clinical trial data in the Ionis integrated safety database (ISDB) was performed to determine if there is a class effect on platelet numbers and function in subjects treated with 2′-O-methoxyethyl (2′MOE)-modified antisense oligonucleotides (ASOs). The Ionis ISDB includes over 2,600 human subjects treated with 16 different 2′MOE ASOs in placebo-controlled and open-label clinical trials over a range of doses up to 624 mg/week and treatment durations as long as 4.6 years. This analysis showed that there is no class generic effect on platelet numbers and no incidence of confirmed platelet levels below 50 K/μL in subjects treated with 2′MOE ASOs. Only 7 of 2,638 (0.3%) subjects treated with a 2′MOE ASO experienced a confirmed postbaseline (BSLN) platelet count between 100 and 50 K/μL. Three of sixteen 2′MOE ASOs had >10% incidence of platelet decreases >30% from BSLN, suggesting that certain sequences may associate with clinically insignificant platelet declines. Further to these results, we found no evidence that 2′MOE ASOs alter platelet function, as measured by the lack of clinically relevant bleeding in the presence or absence of other drugs that alter platelet function and/or number and by the results from trials conducted with the factor XI (FXI) ASO. PMID:28145801

  2. DNA-binding and oxidative properties of cationic phthalocyanines and their dimeric complexes with anionic phthalocyanines covalently linked to oligonucleotides.

    PubMed

    Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S

    2008-12-01

    Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.

  3. Divergent transcription is associated with promoters of transcriptional regulators

    PubMed Central

    2013-01-01

    Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181

  4. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans.

    PubMed

    Graham, Mark J; Lee, Richard G; Bell, Thomas A; Fu, Wuxia; Mullick, Adam E; Alexander, Veronica J; Singleton, Walter; Viney, Nick; Geary, Richard; Su, John; Baker, Brenda F; Burkey, Jennifer; Crooke, Stanley T; Crooke, Rosanne M

    2013-05-24

    Elevated plasma triglyceride levels have been recognized as a risk factor for the development of coronary heart disease. Apolipoprotein C-III (apoC-III) represents both an independent risk factor and a key regulatory factor of plasma triglyceride concentrations. Furthermore, elevated apoC-III levels have been associated with metabolic syndrome and type 2 diabetes mellitus. To date, no selective apoC-III therapeutic agent has been evaluated in the clinic. To test the hypothesis that selective inhibition of apoC-III with antisense drugs in preclinical models and in healthy volunteers would reduce plasma apoC-III and triglyceride levels. Rodent- and human-specific second-generation antisense oligonucleotides were identified and evaluated in preclinical models, including rats, mice, human apoC-III transgenic mice, and nonhuman primates. We demonstrated the selective reduction of both apoC-III and triglyceride in all preclinical pharmacological evaluations. We also showed that inhibition of apoC-III was well tolerated and not associated with increased liver triglyceride deposition or hepatotoxicity. A double-blind, placebo-controlled, phase I clinical study was performed in healthy subjects. Administration of the human apoC-III antisense drug resulted in dose-dependent reductions in plasma apoC-III, concomitant lowering of triglyceride levels, and produced no clinically meaningful signals in the safety evaluations. Antisense inhibition of apoC-III in preclinical models and in a phase I clinical trial with healthy subjects produced potent, selective reductions in plasma apoC-III and triglyceride, 2 known risk factors for cardiovascular disease. This compelling pharmacological profile supports further clinical investigations in hypertriglyceridemic subjects.

  5. Antisense Oligonucleotide Therapy for Patients with Advanced Cancer | Center for Cancer Research

    Cancer.gov

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the U.S. Improvements in therapy have increased the survival of patients with CRC from 10 months to two years, but for patients who stop responding to treatments, such as irinotecan, options for additional therapy are limited. Antisense oligonucleotides (ASOs) may offer advantages over traditional

  6. Anti-Angiogenic Action of Neutral Endopeptidase

    DTIC Science & Technology

    2007-11-01

    message levels of NEP in hypoxia treated PC cells. Messenger RNA levels of NEP decreased between 50-75% relative to normoxic controls with high...GAGCATC-3 (sense) and 5-ATATGAATTCTCAGCTCT- TAGCAGACATGGAAGAAAG-3 ( antisense ) for glutathione S-transferase (GST) fusion proteins and 5-ATGGCAGCCGG...GAGCATC-3 (sense) and 5-CCCCAAGCTTTTAGCTCT- TAGCAGACAT-3 ( antisense ) for maltose-binding protein fusion proteins, as previously described (13

  7. Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell lines.

    PubMed Central

    Whitesell, L; Rosolen, A; Neckers, L M

    1991-01-01

    Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098

  8. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    PubMed Central

    Falzarano, Maria Sofia; Passarelli, Chiara

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy. PMID:24506782

  9. Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species

    PubMed Central

    Bernick, David L.; Dennis, Patrick P.; Lui, Lauren M.; Lowe, Todd M.

    2012-01-01

    A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations. PMID:22783241

  10. Biological and molecular characterization of cellular differentiation in Tetrahymena vorax: a potential biocontrol protozoan.

    PubMed

    Green, M M; LeBoeuf, R D; Churchill, P F

    2000-01-01

    Tetrahymena vorax (T. vorax) is an indigenous fresh water protozoan with the natural biological potential to maintain a specific aquatic microbial flora by ingesting and eliminating specific microorganism. To investigate the molecular mechanisms controlling Tetrahymena vorax (T. vorax) cellular differentiation from a small-mouth vegetative cell to a voracious large-mouth carnivore capable of ingesting prey ciliates and bacteria from aquatic environments, we use DNA subtraction and gene discovery techniques to identify and isolate T. vorax differentiation-specific genes. The physiological necessity for one newly discovered gene, SUBII-TG, was determined in vivo using an antisense oligonucleotide directed against the 5' SUBII-TG DNA sequence. The barriers to delivering antisense oligonucleotides to the cytoplasm of T. vorax were circumvented by employing a new but simple procedure of processing the oligonucleotide with the differentiation stimulus, stomatin. In these studies, the antisense oligonucleotide down-regulated SUBII-TG mRNA expression, and blocked differentiation and ingestion of prey ciliates. The ability to down-regulate SUBII-TG expression with the antisense oligonucleotide suggests that the molecular mechanisms controlling the natural biological activities of T. vorax can be manipulated to further study its cellular differentiation and potential as a biocontrol microorganism.

  11. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes

    PubMed Central

    Nicolás, Francisco E.; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M.

    2003-01-01

    Transformation of Mucor circinelloides with self-replicative plasmids containing a wild-type copy of the carotenogenic gene carB causes silencing of the carB function in 3% of transformants. Genomic analyses revealed a relationship between silenced phenotype and number of copies of plasmids. This phenotype results from a reduction of the steady-state levels of carB mRNA, a reduction that is not due to differences in the level of transcription, indicating that silencing is post-transcriptional. Small sense and antisense RNAs have been found to be associated with gene silencing in M.circinelloides. Two size classes of small antisense RNAs, differentially accumulated during the vegetative growth of silenced transformants, have been detected: a long 25-nucleotide RNA and a short 21-nucleotide RNA. Secondary sense and antisense RNAs corresponding to sequences of the endogenous gene downstream of the initial triggering molecule have also been detected, revealing the existence of spreading of RNA targeting in fungi. These findings, together with the self-replicative nature of the triggering molecules, make M.circinelloides a suitable organism for investigating some unresolved questions in RNA silencing. PMID:12881432

  12. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leavesmore » and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.« less

  13. The role of antisense oligonucleotide therapy in patients with familial hypercholesterolemia: risks, benefits, and management recommendations.

    PubMed

    Agarwala, Anandita; Jones, Peter; Nambi, Vijay

    2015-01-01

    Antisense oligonucleotide therapy is a promising approach for the treatment of a broad variety of medical conditions. It functions at the cellular level by interfering with RNA function, often leading to degradation of specifically targeted abnormal gene products implicated in the disease process. Mipomersen is a novel antisense oligonucleotide directed at apolipoprotein (apoB)-100, the primary apolipoprotein associated with low-density lipoprotein cholesterol (LDL-C), which has recently been approved for the treatment of familial hypercholesterolemia. A number of clinical studies have demonstrated its efficacy in lowering LDL-C and apoB levels in patients with elevated LDL-C despite maximal medical therapy using conventional lipid-lowering agents. This review outlines the risks and benefits of therapy and provides recommendations on the use of mipomersen.

  14. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    PubMed Central

    Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M

    2017-01-01

    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518

  15. Individualised cancer therapeutics: dream or reality? Therapeutics construction.

    PubMed

    Shen, Yuqiao; Senzer, Neil; Nemunaitis, John

    2005-11-01

    The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.

  16. Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi

    2018-01-01

    SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.

  17. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  18. 4'- C -Methoxy-2-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek-Adamian, Elise; Guenther, Dale C.; Matsuda, Shigeo

    We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodifiedmore » nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.« less

  19. Cellular uptake of modified oligonucleotides: fluorescence approach

    NASA Astrophysics Data System (ADS)

    Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves

    2005-06-01

    Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.

  20. Intravesical NGF Antisense Therapy Using Lipid Nanoparticle for Interstitial Cystitis

    DTIC Science & Technology

    2016-12-01

    bladder symptoms including urinary frequency and urgency. Previous studies have indicated that overexpression of nerve growth factor (NGF) is an... studies indicate overexpression of nerve growth factor (NGF) as a key factor in the symptom development of IC/BPS. NGF antisense oligonucleotides hold...Stability Testing  Ex -vivo stress testing II-2. Research Accomplishment Description AIM 1 Regulatory approval for animal research ; Obtain

  1. Improving Breast Cancer Diagnosis by Antisense Targeting

    DTIC Science & Technology

    2007-08-01

    aminohexanoic acid linker (21st Century Biochemicals, Mar- lboro, MA). The biotinylated cholesterol was synthesized by reacting biotinyl-3,6...radiolabel was placed on the MORF. The model carriers were a tat and a polyarginine peptide and cholesterol . The 25 mer MORF was selected as a suitable test...the MORF/streptavidin/ cholesterol accumulations were lower but stil1 significant). Furthermore, accumulations of the antisense MORF/streptavidin

  2. Development of siRNA Technology to Prevent Scar Formation in Tendon Repair

    DTIC Science & Technology

    2013-12-01

    Anti-sense RNA technologies: Under normal conditions cells produce small interfering (si) RNAs that inhibit protein synthesis and stimulate...stimulation of fibroblast proliferation and migration, collagen and fibronectin synthesis , and altered tissue remodeling through regulation of MMPs...expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000;18:862-7. 7. Guha M, Xu ZG, Tung D, Lanting L

  3. Marfan syndrome, magnesium status and medical prevention of cardiovascular complications by hemodynamic treatments and antisense gene therapy.

    PubMed

    Igondjo-Tchen, S; Pagès, N; Bac, P; Godeau, G; Durlach, J

    2003-03-01

    The medical management of Marfan Syndrome (MFS) mainly relies on early prevention of the aortic complications. Hemodynamic treatments try to diminish the forcefulness of cardiac contractions and to reduce blood pressure: for example long term administration of propranolol may significantly reduce the rate of increase in aortic ratio (aortic diameter/expected aortic diameter). Retardation of aortic dilatation may be most often observed by early treatment started when the baseline end-diastolic aortic root diameter is < 40 mm. It seems better to use beta-blockers without intrinsic sympathomimetic activity. Successful acceptance of beta-blockers may be limited by side-effects, but the efficiency of alternative hypotensive agents (calcium channel inhibitors, ACE inhibitors) is not yet validated. Gene therapy might constitute an etiologic specific treatment of MFS. FBN1-RZ1 hammerhead antisense ribozyme is able to suppress expression of the mutant FBN1 allele. The use of ribozymes as systemic therapeutic agents will depend on efficient delivery to its target, but the various proposed vectors raise yet unsolved problems. A hydrogel angioplasty balloon might be a possible vector for delivering an antisense ribozyme in the aortic wall specifically. Ribozymes--as deoxyribonucleotides--may be taken up by tissue upon local application. Further research should study ex vivo local application of antisense ribozyme on human aortic wall, before assessing in vivo efficiency and tolerance of this aortic local vectorisation. It is always necessary to maintain a balanced magnesium intake in patients with MFS. Firstly to prevent the multiple noxious effects of magnesium deficiency on cardiovascular targets. Secondly to ensure the best efficiency and the least toxicity of the hemodynamic drugs used as long term prophylactic treatment for cardiovascular complications and of the etiologic antisense magnesium-dependent gene therapy, in the future.

  4. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    PubMed

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  5. C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.

    PubMed

    Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N

    1995-07-01

    The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.

  6. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley

    PubMed Central

    Held, Michael A.; Penning, Bryan; Brandt, Amanda S.; Kessans, Sarah A.; Yong, Weidong; Scofield, Steven R.; Carpita, Nicholas C.

    2008-01-01

    Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3′-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends ≥1230 bp from the 3′ end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-14C-Glc into cellulose and into mixed-linkage (1 → 3),(1 → 4)-β-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis. PMID:19075248

  7. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Jane; Hall, William W.; Ratner, Lee

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we foundmore » that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.« less

  8. Targeted delivery of an antisense oligonucleotide in the retina: uptake, distribution, stability, and effect.

    PubMed

    Rakoczy, P E; Lai, M C; Watson, M; Seydel, U; Constable, I

    1996-01-01

    In this article, we describe the preliminary results of the development of an animal model that will enable us to study the effect of photoreceptor-derived debris accumulation on the normal function of the retina in vivo. An antisense oligonucleotide (Cat 5), saline, and two control oligonucleotides were injected into the vitreous of 7-week-old RCS-rdy+ rats. The uptake, distribution, and persistence of the antisense oligonucleotide in the retina was demonstrated by fluorescent confocal microscopy, and the stability of the oligonucleotide was shown by GeneScan analysis using a fluorescein-labeled derivative of Cat 5 (Cat 5F). The accumulation of photoreceptor-derived debris was monitored by the number of undigested phagosomes in the RPE layer by light microscopy. Following intravitreal injection of Cat 5F, penetration of the oligonucleotide was observed in the ganglion cell layer in 2 hours and in the photoreceptor and pigment epithelial layers 3 days later. However, at 7, 28, and 56 days postinjection, only the RPE layer had significant amounts of Cat 5F present. Using GeneScan analysis, it was demonstrated that the fluorescein-labeled oligonucleotide present in the RPE layer was not degraded and it retained its original 19-mer length. There was no statistically significant difference in the number of phagosomes found in the RPE layer of control uninjected, saline-injected, and two sense and two antisense oligonucleotides-injected animals at 7 and 28 days postinjection. In contrast, the number of phagosomes was significantly higher (p < 0.001) in the RPE layer of Cat 5 antisense oligonucleotide-injected animals at 7 and 28 days postinjection. This difference, however, disappeared by 56 days postinjection. The inner nuclear layers of the retina of control and experimental animals were not affected by the injections.

  9. The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply*

    PubMed Central

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R.; Aro, Eva-Mari

    2012-01-01

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon. PMID:22854963

  10. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to themore » start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.« less

  11. Antisense Treatments for Biothreat Agents

    DTIC Science & Technology

    2006-08-01

    2001) 19(4):360-364. 82. Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L: Inhibition of Staphylococcus aureus gene expression and growth using...to PNA enhanced the entry of the antisense molecules and reduced expression of the bacterial target genes both in E coli [81] and Staphylococcus ... aureus [82]. Peptide-tagged PMOs can also efficiently inhibit bacterial growth in pure and infected cultures [75]. In a recent study, we observed that

  12. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2007-10-01

    PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12...Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or...Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol

  13. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents

    Treesearch

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    Reduced lignin content in perennial crops has been sought as a means to improve biomass processability for paper and biofuels production, but it is unclear how this could affect wood properties and tree form. Here, we studied a nontransgenic control and 14 transgenic events containing an antisense 4-coumarate:coenzyme A ligase (4CL) to discern the...

  14. Antisense Oligonucleotide Therapy for Patients with Advanced Cancer | Center for Cancer Research

    Cancer.gov

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the U.S. Improvements in therapy have increased the survival of patients with CRC from 10 months to two years, but for patients who stop responding to treatments, such as irinotecan, options for additional therapy are limited. Antisense oligonucleotides (ASOs) may offer advantages over traditional therapies if an appropriate target can be identified.

  15. Annexin II-Dependent Mechanism of Breast Cancer Progression

    DTIC Science & Technology

    2008-06-01

    and migratory capacities of the annexin II-suppressed cells. Methods: We used antisense RNA technology to silence the annexin II gene in MDA...gene in mDA-MB231 cells using polymerase chain reaction-based short hairpin RNA (1–7 months) b) Characterize the proliferative, invasive, and...MB231 cells according to methods described by Li et al. (24). Briefly, three different diothionated antisense nucleotides (ODN) were synthesized

  16. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family.

    PubMed

    Law, Lee Yong; Zhang, Wei V; Stott, N Susan; Becker, David L; Green, Colin R

    2006-09-01

    The completion of the human and mouse genomes has identified at least 20 connexin isomers in this family of intercellular channel proteins. However, there are no specific gap junction blockers or channel-blocking mimetic peptides available for the study of specific connexins. We designed antisense oligodeoxynucleotides that functionally reduce targeted connexin protein expression and can be used to reveal the biological function of individual connexins in vivo. Connexin mRNA was firstly exposed in vitro to deoxyribozymes complementing the sense coding sequence. Those that cleaved the target connexin mRNA in defined regions were used as the basis to design oligodeoxynucleotides to the accessible sites, thus taking into account tertiary mRNA configurations rather than relying on computed predictions. Antisense oligodeoxynucleotides designed to bind to accessible mRNA sites selectively reduced connexin26 and -43 mRNA expression in a corneal epithelium ex vivo model. Connexin43 protein levels were reduced correlating with the knockdown in mRNA and the protein's rapid turnover; protein levels of connexin26 did not alter, supporting lower turnover rates reported for that protein. We show, for the first time, an inexpensive and empirical approach to the preparation of specific and functional antisense oligodeoxynucleotides against known gene targets in the post-genomic era.

  17. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy

    PubMed Central

    Ottesen, Eric W.

    2017-01-01

    Abstract Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols. PMID:28400976

  18. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

    PubMed Central

    Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.

    2010-01-01

    Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064

  19. Cocaine alters Homer1 natural antisense transcript in the nucleus accumbens.

    PubMed

    Sartor, Gregory C; Powell, Samuel K; Velmeshev, Dmitry; Lin, David Y; Magistri, Marco; Wiedner, Hannah J; Malvezzi, Andrea M; Andrade, Nadja S; Faghihi, Mohammad A; Wahlestedt, Claes

    2017-12-01

    Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. cis-antisense RNA, another level of gene regulation in bacteria.

    PubMed

    Georg, Jens; Hess, Wolfgang R

    2011-06-01

    A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.

  1. cis-Antisense RNA, Another Level of Gene Regulation in Bacteria

    PubMed Central

    Georg, Jens; Hess, Wolfgang R.

    2011-01-01

    Summary: A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology. PMID:21646430

  2. EGO-1, a C. elegans RdRP, Modulates Gene Expression via Production of mRNA-Templated Short Antisense RNAs

    PubMed Central

    Maniar, Jay M.; Fire, Andrew Z.

    2011-01-01

    SUMMARY Background The development of the germline in Caenorhabditis elegans is a complex process involving the regulation of thousands of genes in a coordinated manner. Several genes required for small RNA biogenesis and function are among those required for the proper organization of the germline. EGO-1 is a putative RNA-directed RNA polymerase (RdRP) that is required for multiple aspects of C. elegans germline development and efficient RNAi of germline-expressed genes. RdRPs have been proposed to act through a variety of mechanisms including the post-transcriptional targeting of specific mRNAs as well as through a direct interaction with chromatin. Despite extensive investigation, the molecular role of EGO-1 has remained enigmatic. Results Here we use high-throughput small RNA and messenger RNA sequencing to investigate EGO-1 function. We found that EGO-1 is required to produce a distinct pool of small RNAs antisense to a number of germline-expressed mRNAs through several developmental stages. These potential mRNA targets fall into distinct classes, including genes required for kinetochore and nuclear pore assembly, histone-modifying activities and centromeric proteins. We also found several RNAi-related genes to be targets of EGO-1. Finally, we show a strong association between the loss of small RNAs and the rise of mRNA levels in ego-1(−) animals. Conclusions Our data support the conclusion that EGO-1 produces triphosphorylated small RNAs derived from mRNA templates and that these small RNAs modulate gene expression through the targeting of their cognate mRNAs. PMID:21396820

  3. Antisense imaging of epidermal growth factor-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 human breast cancer xenografts.

    PubMed

    Wang, Judy; Chen, Paul; Mrkobrada, Marko; Hu, Meiduo; Vallis, Katherine A; Reilly, Raymond M

    2003-09-01

    Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21(WAF-1/CIP-1), a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21(WAF-1/CIP-1) gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with (111)In. The known induction of the p21(WAF-1/CIP-1) gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 n M) increased the ratio of p21(WAF-1/CIP-1) mRNA/beta-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21(WAF-1/CIP-1) protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 microM. There was a fourfold lower inhibition of p21(WAF-1/CIP-1) protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 microg/dayx3 days) were employed to induce p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21(WAF-1/CIP-1) mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of (111)In-labeled antisense ODNs (3.7 MBq; 2 microg). Tumors displaying basal levels of p21(WAF-1/CIP-1) gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor accumulation of (111)In-labeled antisense ODNs in the presence of EGF induction of the p21(WAF-1/CIP-1) gene (0.32%+/-0.06% injected dose/g) compared with normal saline-treated control mice (0.11%+/-0.07% injected dose/g). The tumor/blood ratio for antisense ODNs in the presence of EGF induction of the p21(WAF-1/CIP-1) gene (4.87+/-0.87) was also significantly higher than for control random sequence ODNs (2.14+/-0.69) or for mice receiving antisense ODNs but not treated with EGF (2.07+/-0.37). We conclude that antisense imaging of upregulated p21(WAF-1/CIP-1) gene expression is feasible and could represent a promising new molecular imaging strategy for monitoring tumor response in cancer patients. To our knowledge, this study also describes the first report of molecular imaging of the upregulated expression of a downstream gene target of the EGFR, a transmembrane tyrosine kinase receptor.

  4. Antagonists of the miRNA-Argonaute 2 Protein Complex: Anti-miR-AGOs.

    PubMed

    Schmidt, Marco F; Korb, Oliver; Abell, Chris

    2017-01-01

    microRNAs (miRNAs) have been identified as high-value drug targets. A widely applied strategy in miRNA inhibition is the use of antisense agents. However, it has been shown that oligonucleotides are poorly cell permeable because of their complex chemical structure and due to their negatively charged backbone. Consequently, the general application of oligonucleotides in therapy is limited. Since miRNAs' functions are executed exclusively by the Argonaute 2 protein, we therefore describe a protocol for the design of a novel miRNA inhibitor class: antagonists of the miRNA-Argonaute 2 protein complex, so-called anti-miR-AGOs, that not only block the crucial binding site of the target miRNA but also bind to the protein's active site. Due to their lower molecular weight and, thus, more drug-like chemical structure, the novel inhibitor class may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.

  5. Anti-NGF Local Therapy for Autonomic Dysreflexia in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    growth factor in the urothelium of sham treated rats, which was decreased 5 by antisense treatment (Fig. 4A) and (5) increased nerve growth...sensitization. B Figure 4. A: Antisense OND mediated suppression of acetic acid (AA) induced NGF protein expression in urothelium . AA exposure...upregulation in the bladder urothelium of SCI rats  Detection of hyperexcitability of bladder afferent neurons due to the reduction of A-type K+ channel

  6. Growth Suppression and Therapy Sensitization of Breast Cancer

    DTIC Science & Technology

    2000-07-01

    determined by performed on two independent occasions. PCR amplification of a given housekeeping gene have been shown to correspond to determinations of...h incubation in the presence or absence of 1 mM cisplatin expressed housekeeping gene, dihydrofolate reductase (DHFR). (Platinol, aqueous solution at... G3PDH :j G3PDH Figure 9. A549 cells were treated with 3 different antisense oligonucleotides complementary to JNKI mRNA (including the active antisense

  7. Generation of Soluble Receptor Activator of NF-kappa B Ligand is Critical for Osteolytic Bone Metastasis

    DTIC Science & Technology

    2009-10-01

    differentiation and activation of osteoclast precursors. Targeting RANKL expression with antisense oligonucleotides (RANKL- ASO ) decreased RANKL expression and...1,175 Ci/mmol at 10 mCi/mL). Two microliters of the reaction mixture were separated on a 12% SDS-polyacrylamide gel and subsequently visualized...OPG), a decoy receptor for RANKL, at the TB-interface was also increased. Targeting RANKL expression with antisense oligonucleotides (RANKL- ASO

  8. Imaging Oncogene Expression

    PubMed Central

    Mukherjee, Archana; Wickstrom, Eric

    2009-01-01

    This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated. PMID:19264436

  9. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  10. Versatile Method for the Site-Specific Modification of DNA with Boron Clusters: Anti-Epidermal Growth Factor Receptor (EGFR) Antisense Oligonucleotide Case.

    PubMed

    Ebenryter-Olbińska, Katarzyna; Kaniowski, Damian; Sobczak, Milena; Wojtczak, Błażej A; Janczak, Sławomir; Wielgus, Ewelina; Nawrot, Barbara; Leśnikowski, Zbigniew J

    2017-11-21

    A general and convenient approach for the incorporation of different types of boron clusters into specific locations of the DNA-oligonucleotide chain based on the automated phosphoramidite method of oligonucleotide synthesis and post-synthetic "click chemistry" modification has been developed. Pronounced effects of boron-cluster modification on the physico- and biochemical properties of the antisense oligonucleotides were observed. The silencing activity of antisense oligonucleotides bearing a single boron cluster modification in the middle of the oligonucleotide chain was substantially higher than that of unmodified oligonucleotides. This finding may be of importance for the design of therapeutic nucleic acids with improved properties. The proposed synthetic methodology broadens the availability of nucleic acid-boron cluster conjugates and opens up new avenues for their potential practical use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Inhibition of monocytes adhesion to the intima of arterial wall by local expression of antisense monocyte chemotactic protein-1].

    PubMed

    Wu, Q; Qiao, H; Wang, Z; Zhang, H; Liu, P; Xu, M; Ren, G; Zhao, S; She, M

    2000-04-01

    To study the mechanism of monocyte recruitment in atherogenesis and to clarify the effect of monocyte chemotactic protein-1 (MCP-1) in this process. Femoral arteries isolated from the rabbits which had been fed with a high cholesterol diet and locally perfused with MM-LDL within the artery beforehand, were used as the models. Antisense MCP-1cDNA was transferred into the arterial wall by injecting recombinant LNCX-anti-MCP-1/liposomal complex in the femoral sheath and the periarterial tissue. Expression of antisense MCP-1 mediated by recombinant LNCX plasmid/lipsomal complex gene transfer enabled to inhibit MCP-1 gene expression and adhesion of monocyte to the intima. MCP-1 plays an important role on the recruitment of monocytes in the arterial wall, which provides a potential clue in developing a gene therapy project for the prevention and treatment of atherogenesis.

  12. Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice.

    PubMed

    Bell, Thomas A; Graham, Mark J; Lee, Richard G; Mullick, Adam E; Fu, Wuxia; Norris, Dan; Crooke, Rosanne M

    2013-10-01

    Due to their ability to promote positive effects across all of the lipoprotein classes, cholesteryl ester transfer protein (CETP) inhibitors are currently being developed as therapeutic agents for cardiovascular disease. In these studies, we compared an antisense oligonucleotide (ASO) inhibitor of CETP to the CETP small molecule inhibitor anacetrapib. In hyperlipidemic CETP transgenic (tg) mice, both drugs provided comparable reductions in total plasma cholesterol, decreases in CETP activity, and increases in HDL cholesterol. However, only mice treated with the antisense inhibitor showed an enhanced effect on macrophage reverse cholesterol transport, presumably due to differences in HDL apolipoprotein composition and decreases in plasma triglyceride. Additionally, the ASO-mediated reductions in CETP mRNA were associated with less accumulation of aortic cholesterol. These preliminary findings suggest that CETP ASOs may represent an alternative means to inhibit that target and to support their continued development as a treatment for cardiovascular disease in man.

  13. Antisense oligonucleotides as therapeutics for hyperlipidaemias.

    PubMed

    Crooke, Rosanne M

    2005-07-01

    Hyperlipidaemia, due to elevations of low-density lipoprotein cholesterol (LDL-C) or triglycerides (TGs), is recognised as a significant risk factor contributing to the development of coronary heart disease (CHD), the leading cause of morbidity and mortality in the Western world. Even though a variety of established antihyperlipidaemic agents are available, the majority of high-risk patients do not reach their lipid goals, indicating the need for new and more effective therapeutics to be used alone or as combination agents with existing drugs. Antisense oligonucleotides (ASOs), designed to specifically and selectively inhibit novel targets involved in cholesterol/TG homeostasis, represent a new class of agents that may prove beneficial for the treatment of hyperlipidaemias resulting from various genetic, metabolic or behavioural factors. This article describes the antisense technology platform, highlights the advantages of these novel drugs for the treatment of hyperlipidaemia and reviews the current research in this area.

  14. Inhibition of adenovirus 5 replication in COS-1 cells by antisense RNAs against the viral E1a region.

    PubMed

    Miroshnichenko, O I; Ponomareva, T I; Tikchonenko, T I

    1989-12-07

    To study the effect of antisense E1a RNA (asRNA) on adenovirus development, two types of adenovirus 5 E1a antisense constructs have been engineered. One was complementary to the viral DNA region [nucleotide (nt) positions 500-720] regulated by the metallothionein-I promoter, and the other was complementary to the DNA regions (nt positions 630-1570) under control of the long terminal repeat Moloney mouse leukosis virus promoter. Both asRNA constructs were cloned into a plasmid containing the simian virus 40 origin of replication, the gene controlling geneticin (G418) resistance (G418R), and other regulatory elements. The COS-1 cells, which contained up to 100 copies of the engineered plasmids, synthesized antiviral asRNAs, which provided 71 to over 95% inhibition of adenoviral replication, in comparison to the control cells not synthesizing asRNAs.

  15. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.

  16. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  17. A novel method for size uniform 200nm particles: multimetallic particles and in vitro gene delivery

    NASA Astrophysics Data System (ADS)

    Mair, Lamar; Ford, Kris; Superfine, Richard

    2008-10-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts. Metal particles evaporated on cylindrical structures 0.20μm in diameter and 0.33μm tall are released via photoresist dissolution, resulting in freely suspended, shape defined particles. These Post-Particles have highly tunable composition, as demonstrated by our deposition of five different multimetallic particle blends. We calculate the susceptibility and magnetization of 200nm Fe particles in an applied 0.081T magnetic field. In order to evaluate their usefulness as magnetofection agents an antisense oligonucleotide designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA was successfully attached to Fe Post-Particles via a polyethyleneimine linker and transfected into a modified HeLa cell line.

  18. Tritium labeling of antisense oligonucleotides by exchange with tritiated water.

    PubMed Central

    Graham, M J; Freier, S M; Crooke, R M; Ecker, D J; Maslova, R N; Lesnik, E A

    1993-01-01

    We describe a simple, efficient, procedure for labeling oligonucleotides to high specific activity (< 1 x 10(8) cpm/mumol) by hydrogen exchange with tritiated water at the C8 positions of purines in the presence of beta-mercaptoethanol, an effective radical scavenger. Approximately 90% of the starting material is recovered as intact, labeled oligonucleotide. The radiolabeled compounds are stable in biological systems; greater than 90% of the specific activity is retained after 72 hr incubation at 37 degrees C in serum-containing media. Data obtained from in vitro cellular uptake experiments using oligonucleotides labeled by this method are similar to those obtained using 35S or 14C-labeled compounds. Because this protocol is solely dependent upon the existence of purine residues, it should be useful for radiolabeling modified as well as unmodified phosphodiester oligonucleotides. Images PMID:8367289

  19. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  20. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  1. Antisense RNA that Affects Rhodopseudomonas palustris Quorum-Sensing Signal Receptor Expression

    DTIC Science & Technology

    2012-01-01

    antisense molecules were produced, we performed a Northern blot analysis with RNA harvested from wild-type and rpaR-mutant R. palustris cells by using...aeruginosa, cells were grown to late-log phase, harvested by cen- trifugation, suspended in SDS/PAGE buffer, and lysed by boiling and sonication. Cell...a selectable DNA fragment. Gene 29:303–313. 17. Egland KA, Greenberg EP (1999) Quorum sensing in Vibrio fischeri: Elements of the luxl promoter. Mol

  2. Visual Servoing for Optimization of Anticancer Drug Uptake in Human Breast Cancer Cells

    DTIC Science & Technology

    2000-09-01

    successfully obtained new DOE Medical Applications Program funding for this research (included in Appendix G: Automated Imaging System for Guiding Antisense ...Guiding Antisense Compounds to Specific mRNVA targets in Living Cells ) that will support this integration and development work with Dr. Parvin and Deep...a DNA and RNA binding fluorescence probe with a very different emission wavelengths, depending on whether it is bound to DNA or RNA ). Cells were then

  3. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.

    PubMed

    Ottesen, Eric W

    2017-01-01

    Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 ( SMN1 ) gene. SMN2 , a nearly identical copy of SMN1 , cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza ™ (synonyms: Nusinersen, IONIS-SMN RX , ISIS-SMN RX ), an antisense drug based on ISS-N1 target. Spinraza ™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza ™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza ™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.

  4. Spleen-specific suppression of TNF-alpha by cationic hydrogel-delivered antisense nucleotides for the prevention of arthritis in animal models.

    PubMed

    Dong, Lei; Xia, Suhua; Chen, Huan; Chen, Jiangning; Zhang, Junfeng

    2009-09-01

    This study developed a transplantable platform based on cationic hydrogels to deliver antisense oligodeoxynucleotides (ASOs) targeting the mRNA of TNF-alpha. Cationic agarose (c-agarose) was obtained by conjugating ethylenediamine to agarose via an N,N'-carbonyldiimidazole (CDI)-activation method. ASO-c-agarose system was constructed by mixing ASO in cationic agarose gel of proper concentration and gelation temperature. In vivo assessment of ASO distribution suggested that the system specifically target to spleen, wherein the c-agarose-delivered ASO had a concentration remarkably 50-fold higher than that of the naked ASO. The distribution of c-agarose-delivered ASO was scarcely detectable in liver and kidney. Next, three types of animal models were setup to evaluate the therapeutic efficacies of ASO-Gel, including the adjuvant-induced arthritis (AA), carrageen/lipopolysaccharide (LPS)-induced arthritis (CLA) and collagen-induced arthritis (CIA) models. The effects of ASO-c-agarose in alleviating inflammation and tissue destruction were evidenced in more than 90% of the testing animals, with decrease of main inflammatory cytokines, lightening of joint swelling and tissue damage, as well as increase in their body weights. All these findings suggest that this highly operable devise for the conveyance of antisense nucleotides together with its spleen-targeting property, could become a useful means of antisense-based therapeutics against rheumatoid arthritis and other diseases.

  5. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    PubMed

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  6. [Inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleotides on the growth of human salivary adenoid cystic carcinoma xenografts in nude mice].

    PubMed

    Li, Xiao-guang; Wang, Xu-xia; Li, Teng-yu; Wang, Yan-xiu; Gao, Jing; Ni, Chun-xiao

    2012-12-01

    To investigate the inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleoiides on the growth of human salivary adenoid cystic carcinoma (SACC) xenografts in nude mice. The VEGF-ASODN was synthesised artificially. After the model of human SACC xenografts in nude mice was established, they were random1y divided into three groups: antisense group, scrambled group and normal saline group. A control group without cancer was also established. Antisense(66 μg), scrambled sequence(66 μg) and normal saline(once every 3 days and 7 times in all) were injected in three experimental groups, respectively. Two days after therapy, the mice were sacrificed. Serums were used for detection of VEGF protein. All tumors were measured and weighted. The quantity of VEGF mRNA and protein and PLI, MVD was detected by hybridization in situ and immunohistochemistry. SPSS13.0 software package was used for statistical analysis. The VEGF-ASODN could suppress the expression of VEGF in human SACC xenografts in nude mice and reduce VEGF protein in serum of nude mice significantly. It cou1d also reduce the volume and weight of xenografts and could reduce the expression of VEGF mRNA and its protein, PCNA and CD34. By inhibiting the expression of VEGF, VEGF-ASODN can inhabit proliferation of human SACC xenografts in nude mice.

  7. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling.

    PubMed

    Konishi, Hirosato; Yamane, Hisakazu; Maeshima, Masayoshi; Komatsu, Setsuko

    2004-12-01

    Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 microM GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 microM GA3, FBPA activity increased very little by 0.1 microM GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+ -ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.

  8. Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants.

    PubMed Central

    Song, W; Koh, S; Czako, M; Marton, L; Drenkard, E; Becker, J M; Stacey, G

    1997-01-01

    Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246. PMID:9232875

  9. In vitro knockout of human p47phox blocks superoxide anion production and LDL oxidation by activated human monocytes.

    PubMed

    Bey, E A; Cathcart, M K

    2000-03-01

    We previously reported that superoxide dismutase (SOD) blocked human monocyte oxidation of LDL and therefore concluded that superoxide anion (O(2)(.-)) was required for oxidation. Others, however, have suggested that SOD may inhibit by mechanisms alternative to the dismutation of O(2)(.-). This study definitively addresses the involvement of O(2)(.-) in monocyte oxidation of LDL. Using an antisense ODN designed to target p47phox mRNA, we found that treatment of monocytes with antisense ODN caused a substantial and selective decrease in expression of p47phox protein, whereas sense ODN was without effect. Corresponding functional assays demonstrated that antisense ODN inhibited production of O(2)(.-). As sense ODN caused no inhibition of O(2)(.-) production, these results suggested that inhibition of p47phox expression caused reduction in O(2)(.-) production. Evaluation of the contribution of O(2)(.-) production to monocyte-mediated oxidation of LDL lipids confirmed that O(2)(.-) production is required for LDL lipid oxidation as antisense ODN treatment significantly inhibited LDL oxidation whereas sense ODN treatment caused no inhibition. This is the first report of the reduction of NADPH oxidase activity in intact human monocytes by directly targeting the mRNA of a significant member of this enzyme complex. Our results provide convincing data that O(2)(.-) is indeed required for monocyte-mediated LDL oxidation.

  10. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  11. Shine-Dalgarno sequence enhances the efficiency of lacZ repression by artificial anti-lac antisense RNAs in Escherichia coli.

    PubMed

    Stefan, Alessandra; Schwarz, Flavio; Bressanin, Daniela; Hochkoeppler, Alejandro

    2010-11-01

    Silencing of the lacZ gene in Escherichia coli was attempted by means of the expression of antisense RNAs (asRNAs) in vivo. A short fragment of lacZ was cloned into the pBAD expression vector, in reverse orientation, using the EcoRI and PstI restriction sites. This construct (pBAD-Zcal1) was used to transform E. coli cells, and the antisense transcription was induced simply by adding arabinose to the culture medium. We demonstrated that the Zcal1 asRNA effectively silenced lacZ using β-galactosidase activity determinations, SDS-PAGE, and Western blotting. Because the concentration of the lac mRNA was always high in cells that expressed Zcal1, we hypothesize that this antisense acts by inhibiting messenger translation. Similar analyses, performed with a series of site-specific Zcal1 mutants, showed that the Shine-Dalgarno sequence, which is conferred by the pBAD vector, is an essential requisite for silencing competence. Indeed, the presence of the intact Shine-Dalgarno sequence positively affects asRNA stability and, hence, silencing effectiveness. Our observations will contribute to the understanding of the main determinants of silencing as exerted by asRNAs as well as provide useful support for the design of robust and efficient prokaryotic gene silencers. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  13. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  14. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  15. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  16. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  17. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  18. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  19. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  20. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  1. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  2. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  3. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  4. 40 CFR 721.5908 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5908 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified phenolic resin (PMN P...

  5. 40 CFR 721.5905 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5905 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified phenolic resin (PMN...

  6. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  7. 40 CFR 721.2540 - Diphenylmethane diisocyanate (MDI) modified.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2540 Diphenylmethane diisocyanate (MDI) modified. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a...

  8. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  9. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  10. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  11. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  12. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  13. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  14. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  15. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  16. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  18. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418) is...

  19. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  20. ISIS 301012 gene therapy for hypercholesterolemia: sense, antisense, or nonsense?

    PubMed

    Ito, Matthew K

    2007-10-01

    To present an overview of antisense technology and to review and assess available literature on the chemistry, pharmacology, pharmacokinetics, drug interactions, preclinical and clinical studies, dosing, and adverse events of ISIS 301012 in the treatment of hyperlipidemia. PubMed database searches were conducted from 1966 to May 2007 using the search terms ISIS 301012, antisense, oligonucleotide, hypercholesterolemia, hyperlipidemia, and apolipoprotein B. Bibliographies of relevant review articles and information from the manufacturer were reviewed for additional references. Available English-language literature, including abstracts, preclinical, and clinical trials, review articles, and scientific presentations were examined. Apolipoprotein B is an important structural protein on the surface of atherogenic lipoproteins such as remnant very-low-density lipoprotein and low-density lipoprotein and facilitates the clearance of these particles from the circulation by binding to the low-density lipoprotein receptor. Overproduction of apolipoprotein B or reduced receptor-mediated clearance of lipoproteins leads to elevated serum cholesterol levels and premature atherosclerosis. ISIS 301012 is an antisense oligonucleotide that inhibits apolipoprotein B production by binding directly to and reducing the expression of apolipoprotein B messenger RNA. In a clinical trial, ISIS 301012 50-400 mg administered weekly via subcutaneous injection for 4 weeks reduced apolipoprotein B by 14.3-47.4% and low-density lipoprotein cholesterol by 5.9-40% at 55 days. The most frequent adverse event was injection-site erythema that resolved spontaneously. Studies are ongoing to further define the safety, efficacy, and pharmacokinetics of ISIS 301012 as add-on therapy in patients with heterozygous and homozygous familial hypercholesterolemia. No pharmacokinetic interactions have been demonstrated with ezetimibe and simvastatin. ISIS 301012 is the first agent to enter clinical trials utilizing an antisense mechanism for reducing the production of apolipoprotein B. Further studies are needed to verify its safety, efficacy, and position of therapy in the dyslipidemic patient.

  1. The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB

    PubMed Central

    López-Aguilar, Celeste; Romero-López, Cristina; Espinosa, Manuel; Berzal-Herranz, Alfredo; del Solar, Gloria

    2015-01-01

    Rolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication. Structure analysis of RNAII revealed that it folds into an 8-bp-long stem containing a 1-nt bulge and closed by a 6-nt apical loop. This hairpin is flanked by a 17-nt-long single-stranded 5′-tail and an 8-nt-long 3′-terminal U-rich stretch. Here, the 3′ and 5′ regions of the 5′-tail of RNAII are shown to play a critical role in the binding to the target mRNA and in the inhibition of repB translation, respectively. In contrast, the apical loop of the single hairpin of RNAII plays a rather secondary role and the upper stem region hardly contributes to the binding or inhibition processes. The entire 5′-tail is required for efficient inhibition of repB translation, though only the 8-nt-long region adjacent to the hairpin seems to be essential for rapid binding to the mRNA. These results show that a “kissing” interaction involving base-pairing between complementary hairpin loops in RNAII and mRNA is not critical for efficient RNA/RNA binding or repB translation inhibition. A singular binding mechanism is envisaged whereby initial pairing between complementary single-stranded regions in the antisense and sense RNAs progresses upwards into the corresponding hairpin stems to form the intermolecular duplex. PMID:26175752

  2. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered chemicals...

  3. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor.

    PubMed Central

    Cheng, S Y; Huang, H J; Nagane, M; Ji, X D; Wang, D; Shih, C C; Arap, W; Huang, C M; Cavenee, W K

    1996-01-01

    The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma. Images Fig. 1 Fig. 4 PMID:8710899

  4. Sensible use of antisense: how to use oligonucleotides as research tools.

    PubMed

    Myers, K J; Dean, N M

    2000-01-01

    In the past decade, there has been a vast increase in the amount of gene sequence information that has the potential to revolutionize the way diseases are both categorized and treated. Old diagnoses, largely anatomical or descriptive in nature, are likely to be superceded by the molecular characterization of the disease. The recognition that certain genes drive key disease processes will also enable the rational design of gene-specific therapeutics. Antisense oligonucleotides represent a technology that should play multiple roles in this process.

  5. VRP09 Reduction of Corneal Scarring Following Blast and Burn Injuries to Cornea Using siRNAs Targeting TGFb and CTGF

    DTIC Science & Technology

    2013-03-01

    oligonucleotide-based drug approaches (better than ribozymes, antisense oligonucleotides ( ASO ), or microRNAs). (4) To accomplish these objectives, we...negative control scrambled ASO (designated NC). The combination of siRNAs T1 and R1 produced a knockdown of ~80% of TGFb1 protein in the conditioned...sequences (antisense oligonucleotides, ASOs ) into rabbit corneal cells and found that technique was very effective in delivering ASOs into the stroma and

  6. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  7. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  8. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    PubMed

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  9. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies

    PubMed Central

    Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.

    2016-01-01

    ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478

  10. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with alkyl...

  11. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  12. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  13. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  14. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  15. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  16. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline.

    PubMed

    Hennessy, Elizabeth J; Moore, Kathryn J

    2013-09-01

    It is now appreciated that over 90% of the human genome is comprised of noncoding RNAs that have the ability to affect other components of the genome and regulate gene expression. This has galvanized the development of RNA-based therapeutics for a myriad of diseases, including cancer, inflammatory conditions, and cardiovascular disease. Several classes of RNA therapeutics are currently under clinical development, including antisense oligonucleotides, small interfering RNA, and microRNA mimetics and inhibitors. The field of antisense technology saw a huge leap forward with the recent Food and Drug Administration approval of the first antisense therapy, directed against apolipoprotein B, for the treatment of familial hypercholesterolemia. In addition, recent progress in the development of approaches to inhibit microRNAs has helped to illuminate their roles in repressing gene networks and also revealed their potential as therapeutic targets. In this review, these exciting opportunities in the field of drug discovery, with a focus on emerging therapeutics in the field of cardiovascular disease, are summarized.

  17. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy

    PubMed Central

    Bhargava-Shah, Aarohi; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy

    2016-01-01

    Background: This study explores the use of hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NPs) as delivery system to improve the antitumor effect of antiobesity drug orlistat for triple-negative breast cancer (TNBC) therapy by improving its bioavailability. Materials & methods: PLGA-PEG-NPs were synthesized by emulsion-diffusion-evaporation method, and the experiments were conducted in vitro in MDA-MB-231 and SKBr3 TNBC and normal breast fibroblast cells. Results: Delivery of orlistat via PLGA-PEG-NPs reduced its IC50 compared with free orlistat. Combined treatment of orlistat-loaded NPs and doxorubicin or antisense-miR-21-loaded NPs significantly enhanced apoptotic effect compared with independent doxorubicin, anti-miR-21-loaded NPs, orlistat-loaded NPs or free orlistat treatments. Conclusion: We demonstrate that orlistat in combination with antisense-miR-21 or current chemotherapy holds great promise as a novel and versatile treatment agent for TNBC. PMID:26787319

  18. Targeting of Repeated Sequences Unique to a Gene Results in Significant Increases in Antisense Oligonucleotide Potency

    PubMed Central

    Vickers, Timothy A.; Freier, Susan M.; Bui, Huynh-Hoa; Watt, Andrew; Crooke, Stanley T.

    2014-01-01

    A new strategy for identifying potent RNase H-dependent antisense oligonucleotides (ASOs) is presented. Our analysis of the human transcriptome revealed that a significant proportion of genes contain unique repeated sequences of 16 or more nucleotides in length. Activities of ASOs targeting these repeated sites in several representative genes were compared to those of ASOs targeting unique single sites in the same transcript. Antisense activity at repeated sites was also evaluated in a highly controlled minigene system. Targeting both native and minigene repeat sites resulted in significant increases in potency as compared to targeting of non-repeated sites. The increased potency at these sites is a result of increased frequency of ASO/RNA interactions which, in turn, increases the probability of a productive interaction between the ASO/RNA heteroduplex and human RNase H1 in the cell. These results suggest a new, highly efficient strategy for rapid identification of highly potent ASOs. PMID:25334092

  19. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

    PubMed Central

    Gifford, Lida K.; Opalinska, Joanna B.; Jordan, David; Pattanayak, Vikram; Greenham, Paul; Kalota, Anna; Robbins, Michelle; Vernovsky, Kathy; Rodriguez, Lesbeth C.; Do, Bao T.; Lu, Ponzy; Gewirtz, Alan M.

    2005-01-01

    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells. PMID:15718294

  20. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    PubMed

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.

  1. The Role of Mesopontine NGF in Sleep and Wakefulness

    PubMed Central

    Ramos, Oscar V.; Torterolo, Pablo; Lim, Vincent; Chase, Michael H.; Sampogna, Sharon; Yamuy, Jack

    2011-01-01

    The microinjection of nerve growth factor (NGF) into the cat pontine tegmentum rapidly induces rapid eye movement (REM) sleep. To determine if NGF is involved in naturally-occurring REM sleep, we examined whether it is present in mesopontine cholinergic structures that promote the initiation of REM sleep, and whether the blockade of NGF production in these structures suppresses REM sleep. We found that cholinergic neurons in the cat dorsolateral mesopontine tegmentum exhibited NGF-like immunoreactivity. In addition, the microinjection of an oligodeoxyribonucleotide (OD) directed against cat NGF mRNA into this region resulted in a reduction in the time spent in REM sleep in conjunction with an increase in the time spent in wakefulness. Sleep and wakefulness returned to baseline conditions 2 to 5 days after antisense OD administration. The preceding antisense OD-induced effects occurred in conjunction with the suppression of NGF-like immunoreactivity within the site of antisense OD injection. These data support the hypothesis that NGF is involved in the modulation of naturally-occurring sleep and wakefulness. PMID:21840513

  2. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  3. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice.

    PubMed

    Graham, Mark J; Lemonidis, Kristina M; Whipple, Charles P; Subramaniam, Amuthakannan; Monia, Brett P; Crooke, Stanley T; Crooke, Rosanne M

    2007-04-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of a family of proteases that is thought to promote the degradation of the low density lipoprotein receptor (LDLR) through an as yet undefined mechanism. We developed second generation antisense oligonucleotide (ASO) inhibitors targeting murine PCSK9 to determine their potential as lipid-lowering agents. Administration of a PCSK9 ASO to high fat-fed mice for 6 weeks reduced total cholesterol and LDL by 53% and 38%, respectively. Moreover, inhibition of PCSK9 expression resulted in a 2-fold increase in hepatic LDLR protein levels. This phenotype closely resembles that reported previously in Pcsk9-deficient mice. The absence of cholesterol lowering in Ldlr-deficient mice effectively demonstrated a critical role for this receptor in mediating the lipid-lowering effects of PCSK9 inhibition. Antisense inhibition of PCSK9 is an attractive and novel therapeutic approach for treating hypercholesterolemia in human.

  4. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B

    PubMed Central

    Crooke, Stanley T; Geary, Richard S

    2013-01-01

    Mipomersen is a second generation antisense oligonucleotide that targets apolipoprotein B. It has been studied thoroughly in clinical trials (more than 800 subjects), including four randomized double-blind placebo controlled phase 3 studies involving 391 patients, and is in registration for the treatment of severe hypercholesterolaemia. The pharmacokinetic and pharmacodynamic properties of mipomersen are well characterized. Mipomersen is rapidly and extensively absorbed after subcutaneous administration and has an elimination half-life of approximately 30 days across species. It is cleared by nuclease metabolism and renal excretion of the metabolites. Mipomersen reduces all apolipoprotein B containing atherogenic particles and displays dose dependent reductions between 50–400 mg week−1, both as a single agent and in the presence of maximal lipid lowering therapy. No drug–drug interactions have been identified. Mipomersen is a representative of second generation antisense drugs, all of which have similar properties, and is thus representative of the behaviour of the class of drugs. PMID:23013161

  5. Proliferation marker pKi-67 affects the cell cycle in a self-regulated manner.

    PubMed

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-01-01

    The proliferation marker pKi-67 is commonly used in research and pathology to detect proliferating cells. In a previous work, we found the protein to be associated with regulators of the cell cycle, controlling S-phase progression, as well as entry into and exit from mitosis. Here we investigate whether pKi-67 has a regulative effect on the cell cycle itself. For that purpose we cloned four fragments of pKi-67, together representing nearly the whole protein, and an N-terminal pKi-67 antisense oligonucleotide into a tetracycline inducible gene expression system. The sense fragments were C-terminally modified by addition of either a nuclear localization sequence (NLS) or a STOP codon to address the impact of their intracellular distribution. FACS based cell cycle analysis revealed that expression of nearly all pKi-67 domains and the antisense oligonucleotide led to a decreased amount of cells in S-phase and an increased number of cells in G(2)/M- and G(1)-phase. Subsequent analysis of the endogenous pKi-67 mRNA and protein levels revealed that the constructs with the most significant impact on the cell cycle were able to silence pKi-67 transcription as well. We conclude from the data that pKi-67 influences progression of S-phase and mitosis in a self-regulated manner and, therefore, effects the cell cycle checkpoints within both phases. Furthermore, we found pKi-67 mediates an anti-apoptotic effect on the cell and we verified that this marker, although it is a potential ribosomal catalyst, is not expressed in differentiated tissues with a high transcriptional activity. Copyright 2002 Wiley-Liss, Inc.

  6. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras.

    PubMed

    Doss, C George Priya; Debottam, S; Debajyoti, C

    2013-06-01

    Gene therapy through antisense technology via intracellular delivery of a gene-silencing element is a promising approach to treat critical diseases like cancers. Ras acts as molecular switch, considered as one of the proto-oncogenes whose modification or mutation may promote tumor formation. The recent trends of nano-carrier-based drug delivery have gained superiority and proved to be 100 times more potent in drug delivery compared to standard therapies. The nano-based drug delivery has provided the basis of achieving successful target-specific drug delivery. Glutathione (GSH) is considered as one of the best and ubiquitous internal stimulus for swift destabilization of nano-transporters inside cells to accomplish proficient intracellular drug release. This concept has given a new hope to oncologists of modifying the existing drugs to be delivered to their desired destination. RNA interference is a primary tool in functional genomics to selectively silence messenger RNA (mRNA) expression, which can be exploited quickly to develop novel drugs against lethal disease target. Silencing of mRNA molecules using siRNA has also come of age to become one of the latest weapons developed in the concept of gene therapy. However, this strategy has severely failed to achieve target specificity especially to a tumor cell. In this context, we have proposed the incorporation of an antisense siRNA packed inside a GSH-responsive nano-transporter to be delivered specifically to a tumor cell against the sense mRNA of the Ras protein. It will limit the Ras-mediated activation of other proteins and transcription factors. Thus, it will knock down several differential gene expressions being regulated by Ras-activated pathways like enzyme-linked receptor kinase pathway. Henceforth, gene silencing technology through nano-drug delivery can be combined as a single weapon to terminate malignancy.

  7. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.

  8. The effect on biological and moisture resistance of epichlorohydrin chemically modified wood

    Treesearch

    Rebecca E. Ibach; Beom-Goo Lee

    2002-01-01

    Southern pine solid wood and fiber were chemically modified with epichlorohydrin to help in understanding the role of moisture in the mechanism of biological effectiveness of chemically modified wood. The solid wood had weight gains from 11% to 34%, while the fiber had weight gains from 9% to 75%. After modification, part of the specimens were water leached for 2 weeks...

  9. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  10. Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions

    PubMed Central

    Depke, Maren; Pané-Farré, Jan; Debarbouille, Michel; van der Kooi-Pol, Magdalena M.; Guérin, Cyprien; Dérozier, Sandra; Hiron, Aurelia; Jarmer, Hanne; Leduc, Aurélie; Michalik, Stephan; Reilman, Ewoud; Schaffer, Marc; Schmidt, Frank; Bessières, Philippe; Noirot, Philippe; Hecker, Michael; Msadek, Tarek; Völker, Uwe; van Dijl, Jan Maarten

    2016-01-01

    Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria. PMID:27035918

  11. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean

    2017-03-01

    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O 2 uptake, flux of carbon between sucrose and CO 2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility.

    PubMed

    Song, Jiang-Hua; Cao, Jia-Shu; Wang, Cheng-Gang

    2013-01-01

    KEY MESSAGE : BcMF11 as a non-coding RNA gene has an essential role in pollen development, and might be useful for regulating the pollen fertility of crops by antisense RNA technology. We previously identified a 828-bp full-length cDNA of BcMF11, a novel pollen-specific non-coding mRNA-like gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). However, little information is known about the function of BcMF11 in pollen development. To investigate its exact biological roles in pollen development, the BcMF11 cDNA was antisense inhibited in transgenic Chinese cabbage under the control of a tapetum-specific promoter BcA9 and a constitutive promoter CaMV 35S. Antisense RNA transgenic plants displayed decreasing expression of BcMF11 and showed distinct morphological defects. Pollen germination test in vitro and in vivo of the transgenic plants suggested that inhibition of BcMF11 decreased pollen germination efficiency and delayed the pollen tubes' extension in the style. Under scanning electron microscopy, many shrunken and collapsed pollen grains were detected in the antisense BcMF11 transgenic Chinese cabbage. Further cytological observation revealed abnormal pollen development process in transgenic plants, including delayed degradation of tapetum, asynchronous separation of microspore, and aborted development of pollen grain. These results suggest that BcMF11, as a non-coding RNA, plays an essential role in pollen development and male fertility.

  13. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA combined with cisplatin inhibits cellular growth and induces apoptosis in HPV-positive head and neck cancer cells.

    PubMed

    Kojima, Yasutaka; Otsuki, Naoki; Kubo, Mie; Kitamoto, Junko; Takata, Eri; Saito, Hiroki; Kosaka, Kyoko; Morishita, Naoya; Uehara, Natsumi; Shirakawa, Toshiro; Nibu, Ken-Ich

    2018-05-24

    Human papillomavirus (HPV) infection has been identified as an etiologic factor of head and neck cancers (HNCs). We explored the potential use of antisense HPV RNA transcripts for gene therapy and its effect in combination with cisplatin (CDDP) for HPV-positive HNCs. We introduced the antisense RNA transcripts of the E6 and E7 genes of HPV type 16 into UM-SCC-47 cells harboring HPV 16 and YCU-T892 cells that were HPV-negative using a recombinant adenoviral vector, Ad-E6/E7-AS. We then analyzed the effects of the introduction of Ad-E7-AS on cell and tumor growth and the synergistic effect with CDDP in vitro and in vivo. After infection of Ad-E6/E7-AS, the cellular growth of UM-SCC-47 cells were suppressed, but not that of YCU-T892 cells. E7 protein expression was suppressed, and p53 and pRb protein expression increased after infection of Ad-E7-AS. Cell growth and tumorigenicity were greatly suppressed in combination with CDDP compared with Ad-E7-AS or CDDP treatment alone in vitro. Ad-E7-AS combined with CDDP treatment significantly reduced the volumes of established subcutaneous tumors. Transfection with HPV 16 E7 antisense RNA combined with CDDP treatment might be a potentially useful approach to the therapy of HPV 16-positive HNC.

  14. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy

    PubMed Central

    Singh, Natalia N.; Howell, Matthew D.; Androphy, Elliot J.; Singh, Ravindra N.

    2017-01-01

    Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7 during pre-mRNA splicing. With the recent FDA approval of nusinersen (Spinraza™), the potential for correction of SMN2 exon 7 splicing as a SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions. PMID:28485722

  15. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.

    PubMed

    Singh, N N; Howell, M D; Androphy, E J; Singh, R N

    2017-09-01

    Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here, we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.

  16. Dissecting the hybridization of oligonucleotides to structured complementary sequences.

    PubMed

    Peracchi, Alessio

    2016-06-01

    When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana.

    PubMed

    Nanjo, T; Kobayashi, M; Yoshiba, Y; Sanada, Y; Wada, K; Tsukaya, H; Kakubari, Y; Yamaguchi-Shinozaki, K; Shinozaki, K

    1999-04-01

    Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.

  18. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  19. Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells.

    PubMed

    Yasui, Takahiro; Fujita, Keiji; Asai, Kiyofumi; Kohri, Kenjiro

    2002-02-01

    The association of calcium crystals with renal tubular cells is an important factor during the formation of urinary stones. We previously reported the strong expression of osteopontin (OPN) on renal tubular cells in the stone-forming kidney, suggesting that OPN plays a role in the crystal-cell interaction. In the present study, we examined the biological consequences of inhibiting OPN expression at the translational level on the formation and adhesion of crystals. We synthesized antisense OPN expression vector (pTet-OPNas) using the tetracycline-regulated expression system. The pTet-OPNas was constructed using a mouse OPN cDNA sequence in an inverted (antisense) orientation. Two clones (NRK-52E/ASs) were identified by transfection of pTet-OPNas into NRK-52E cells and they showed a marked reduction of OPN synthesis in the absence of tetracycline. Calcium oxalate (CaOx) crystal suspension was spread homogeneously on top of the NRK-52E cells. After incubation, the association of CaOx crystals and cells was visualized by scanning electron microscopy. Intact NRK-52E cells, NRK-52E cells transfected with empty vector and tetracycline-treated antisense clones (NRK-52E/ASs), under identical conditions, were associated with CaOx crystals. In contrast, the expression of antisense OPN prevented the association of CaOx crystals with NRK-52E cells. Osteopontin plays a crucial role in the adhesion process of CaOx crystals to renal tubular cells in stone formation.

  20. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  1. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes

    PubMed Central

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-01-01

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. PMID:26209135

  2. Copper-64-labeled anti-bcl-2 PNA-peptide conjugates selectively localize to bcl-2-positive tumors in mouse models of B-cell lymphoma.

    PubMed

    Jia, Fang; Balaji, Baghavathy S; Gallazzi, Fabio; Lewis, Michael R

    2015-11-01

    The bcl-2 gene is overexpressed in non-Hodgkin's lymphoma (NHL). We have reported micro-SPECT/CT imaging of Mec-1 human lymphoma xenografts in SCID mice, using [(111)In]DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate. In order to reduce normal organ accumulation and improve imaging contrast, modified monomers with neutral hydrophilic (serine, TS) or negatively charged (aspartic acid, TD) residues were synthesized as substitutes for glycine at T(14) in the PNA sequence. The parent and modified PNA-peptide conjugates were labeled with (64)Cu and evaluated in biodistribution studies and high resolution PET/CT imaging of SCID mice bearing bcl-2-positive Mec-1 xenografts as well as bcl-2-negative Ramos xenografts. Mice were administered the (64)Cu-labeled conjugates for biodistribution and imaging studies. Biodistributions were obtained from 1 to 48 h post-injection. Mice were imaged from 1 to 48 h post-injection. The parent glycine conjugate and two modified conjugates all showed selective tumor uptake in Mec-1 xenografts. The liver uptake of the serine conjugate was significantly reduced compared to the two other PNA conjugates. Its kidney uptake was highest of the three at 47.1% ID/g at 1h and dropped to 20.6% ID/g at 24h. [Copper-64]DOTA-anti-bcl-2-TS-PNA-Tyr(3)-octreotate showed tumor uptake of 1.38% ID/g at 1h and 1.06% ID/g at 24h. The tumor-to-blood ratio was increased by factor of 2 from 1h to 24h. This compound detected Mec-1 tumors by micro-PET/CT as early as 1h post-injection and at time points out to 48 h. However, the negative control Ramos tumor could not be detected. These (64)Cu-labeled, amino acid-modified PNA conjugates showed selective tumor targeting in vivo, and tumor xenografts were detected by micro-PET/CT as early as 1h post-injection, suggesting that bcl-2 expression at the mRNA level can detected by PET in mouse models of NHL. Advances in knowledge and implications for patient care Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism to reverse chemotherapy resistance in humans with NHL. Thus, bcl-2 overexpression might be considered a new independent prognostic parameter in NHL, aiding in the identification of patients at risk for treatment failure. We have developed [(64)Cu]DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate conjugates for targeted antisense PET imaging. Our preclinical studies identified an effective combination of antisense and radionuclide imaging, with the goal of future clinical trials in patients. This imaging modality may improve clinical care by identifying patients who might respond better to conventional chemotherapy. Copyright © 2015. Published by Elsevier Inc.

  3. Fluorous Peptide Nucleic Acids: PNA Analogues with Fluorine in Backbone (γ-CF2-apg-PNA) Enhance Cellular Uptake.

    PubMed

    Ellipilli, Satheesh; Ganesh, Krishna N

    2015-09-18

    Fluorous PNA analogues possessing fluorine as inherent part of aminopropylglycine (apg) backbone (γ-CF2-apg PNA) have been synthesized and evaluated for biophysical and cell penetrating properties. These form duplexes of higher thermal stability with cRNA than cDNA, although destabilized compared to duplexes of standard aeg-PNA. Cellular uptake of the fluorinated γ-CF2-apg PNAs in NIH 3T3 and HeLa cells was 2-3-fold higher compared to that of nonfluorinated apg PNA, with NIH 3T3 cells showing better permeability compared to HeLa cells. The backbone fluorinated PNAs, which are first in this class, when combined with other chemical modifications may have potential for future PNA-based antisense agents.

  4. Integration of multi-omics data of a genome-reduced bacterium: Prevalence of post-transcriptional regulation and its correlation with protein abundances

    PubMed Central

    Chen, Wei-Hua; van Noort, Vera; Lluch-Senar, Maria; Hennrich, Marco L.; H. Wodke, Judith A.; Yus, Eva; Alibés, Andreu; Roma, Guglielmo; Mende, Daniel R.; Pesavento, Christina; Typas, Athanasios; Gavin, Anne-Claude; Serrano, Luis; Bork, Peer

    2016-01-01

    We developed a comprehensive resource for the genome-reduced bacterium Mycoplasma pneumoniae comprising 1748 consistently generated ‘-omics’ data sets, and used it to quantify the power of antisense non-coding RNAs (ncRNAs), lysine acetylation, and protein phosphorylation in predicting protein abundance (11%, 24% and 8%, respectively). These factors taken together are four times more predictive of the proteome abundance than of mRNA abundance. In bacteria, post-translational modifications (PTMs) and ncRNA transcription were both found to increase with decreasing genomic GC-content and genome size. Thus, the evolutionary forces constraining genome size and GC-content modify the relative contributions of the different regulatory layers to proteome homeostasis, and impact more genomic and genetic features than previously appreciated. Indeed, these scaling principles will enable us to develop more informed approaches when engineering minimal synthetic genomes. PMID:26773059

  5. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that, while both cytokines are over-expressed within the first day following injury, CTGF protein levels could not be correlated with observed adhesion development. In addition, we synthesized linear triblock copolymers of polyethylene glycol (PEG) and poly(D,L-lactide-co-glycolide) (PLGA), two of the most widely studied biodegradable polymers in use today. Bulk gels and microparticles of the copolymers were then evaluated for gelling behavior, temperature stability, and drug loading and release kinetics in order assess their suitability as potential carriers of antisense therapeutics. A novel approach to affecting the antisense oligonucleotide release kinetics by varying the relative concentrations of co-encapsulated cationic lipid transfection agents was also presented.

  6. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  7. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  8. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  9. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  10. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  11. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  12. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  13. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  14. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  15. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  16. [Anti-HBV effects of genetically engineered replication-defective HBV with combined expression of antisense RNA and dominant negative mutants of core protein and construction of first-generation packaging cell line for HBV vector].

    PubMed

    Sun, Dian Xing; Hu, Da Rong; Wu, Guang Hui; Hu, Xue Ling; Li, Juan; Fan, Gong Ren

    2002-08-01

    To explore the possibility of using HBV as a gene delivery vector, and to test the anti-HBV effects by intracellular combined expression of antisense RNA and dominant negative mutants of core protein. Full length of mutant HBV genome, which expresses core-partial P fusion protein and/or antisense RNA, was transfected into HepG2.2.15 cell lines. Positive clones were selected and mixed in respective groups with hygromycin in the culture medium. HBsAg and HBeAg, which exist in the culture medium, were tested by ELISA method. Intracellular HBc related HBV DNA was examined by dot blot hybridization. The existence of recombinant HBV virion in the culture medium was examined by PCR. Free of packaging signal, HBV genome, which express the HBV structural proteins including core, pol and preS/S proteins, was inserted into pCI-neo vector. HepG2 cell lines were employed to transfect with the construct. G418 selection was done at the concentration of 400mug/ml in the culture medium. The G418-resistant clones with the best expression of HBsAg and HBcAg were theoretically considered as packaging cell lines and propagated under the same conditions. It was transfected with plasmid pMEP-CPAS and then selected with G418 and hygromycin in the culture medium. The existence of recombinant HBV virion in the culture medium was examined by PCR. The mean inhibitory rates of HBsAg were 2.74% 3.83%, 40.08 2.05% (t=35.5, P<0.01), 66.54% 4.45% (t=42.3, P<0.01), and 73.68% 5.07% (t=51.9, P<0.01) in group 2.2.15-pMEP4, 2.2.15-CP, 2.2.15-SAS, and 2.2.15-CPAS, respectively. The mean inhibitory rates of HBeAg were 4.46% 4.25%, 52.86% 1.32% (t=36.2, P<0.01), 26.36% 1.69% (t=22.3, P<0.01), and 59.28% 2.10% (t=39.0, P<0.01), respectively. The inhibitory rates of HBc related HBV DNA were 0, 82.0%, 59.9%, and 96.6%, respectively. Recombinant HB virion was detectable in the culture medium of all the three treatment groups. G418-resistant HBV packaging cell line, which harbored an HBV mutant whose packaging signal had been deleted, was generated. Expression of HBsAg and HBcAg was detectable. Transfected with plasmid pMEP-CPAS, it was found to secrete recombinant HB virion and no wild-type HBV was detectable in the culture medium. It has stronger anti-HBV effects by combined expression of antisense RNA and dominant negative mutants than by individual expression of them. With the help of wild-type HBV, the modified HBV genome can form and secret HBV like particles, which provides evidence that the antiviral gene will be hepatotropic expression and the antiviral effects will be amplified. The packaging cell line can provide packaging for replication-defective HBV, but with low efficiency.

  17. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  18. Oligonucleotides as antivirals: dream or realistic perspective?

    PubMed

    Van Aerschot, Arthur

    2006-09-01

    Many reports have been published on antiviral activity of synthetic oligonucleotides, targeted to act either by a true antisense effect or via non-sequence specific interactions. This short review will try to evaluate the current status of the field by focusing on the effects as reported for inhibition of either HSV-1, HCMV or HIV-1. Following an introduction with a historical background and a brief discussion on the different types of constructs and mechanisms of action, the therapeutic potential of antisense oligonucleotides as antivirals, as well as possible pitfalls upon their evaluation will be discussed.

  19. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  20. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains.

    PubMed

    Pansuwan, Haruthai; Ditmangklo, Boonsong; Vilaivan, Chotima; Jiangchareon, Banphot; Pan-In, Porntip; Wanichwecharungruang, Supason; Palaga, Tanapat; Nuanyai, Thanesuan; Suparpprom, Chaturong; Vilaivan, Tirayut

    2017-09-20

    Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH 2 , and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense and antigene therapy.

  1. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  2. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  3. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  4. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Knockdown of synaptic scaffolding protein Homer 1b/c attenuates secondary hyperalgesia induced by complete Freund's adjuvant in rats.

    PubMed

    Yao, Yong-Xing; Jiang, Zhen; Zhao, Zhi-Qi

    2011-12-01

    Previous studies have demonstrated that Homer 1b/c, a postsynaptic molecular scaffolding protein that binds and clusters metabotropic glutamate receptors at neuronal synapses, has an important role in the metabotropic glutamate receptor signaling process. In the current study, we investigated the possible involvement of Homer 1b/c in secondary hyperalgesia induced by complete Freund's adjuvant (CFA). Chronic inflammation was induced by injecting CFA into the left hind ankle of Wistar rats. Homer 1b/c antisense or missense oligonucleotides were intrathecally administrated (antisense, 10 μg/10 μL, 5 μg/10 μL, or 2.5 μg/10 μL, once a day; missense, 10 μg/10 μL) from 5 to 8 days after the onset of inflammation. The withdrawal threshold and withdrawal latency to mechanical or thermal stimuli were determined before and after the intrathecal administration. The expression and distribution of Homer 1b/c were examined in the spinal cord using immunological techniques. Mechanical allodynia and thermal hyperalgesia were induced within 24 hours and maintained for >2 weeks after the CFA injection. The expression of Homer 1b/c reached the highest level 7 days after inflammation and returned to baseline at day 28. Intrathecal administration of Homer 1b/c antisense oligonucleotides markedly reduced the expression of Homer 1b/c protein in the spinal cord. Additionally, administration of Homer 1b/c antisense oligonucleotides attenuated secondary mechanical hypersensitization on days 2 to 5 and reduced thermal hypersensitization on days 3 to 4. There were no effects of missense oligonucleotides on hypersensitization and the expression of Homer 1b/c. In the naïve rats, Homer 1b/c antisense oligonucleotides did not affect the mechanical and thermal responses or locomotor activity. These novel results demonstrate that Homer 1b/c in the spinal cord contributes to the maintenance of secondary hyperalgesia induced by CFA and suggest that Homer 1b/c may be a novel target for pain therapy.

  6. Secretion of prebeta HDL increases with the suppression of cholesteryl ester transfer protein in Hep G2 cells.

    PubMed

    Sawada, S; Sugano, M; Makino, N; Okamoto, H; Tsuchida, K

    1999-10-01

    Prebeta HDL are small, protein rich lipoproteins that are predominantly composed of apo A-I, without apo A-II. Prebeta HDL are secreted from the liver as nascent HDL and/or are produced in the incubated plasma by cholesteryl ester transfer protein (CETP). However, the role of CETP in the secretion of HDL from the liver has yet to be determined. In the present study, we examined the effect of the suppression of hepatic CETP by antisense oligodeoxynucleotides (ODNs) against CETP targeted to the liver on the secretion of apo A-I using a Hep G2 cell culture. The ODNs against CETP were coupled to asialoglycoprotein (ASOR) carrier molecules, which serve as an important method for the regulation of liver gene expression. Hep G2 cells were cultured in DMEM supplemented with 10 FBS. After 2 days, the medium was changed to DMEM with EGF and the cells were divided into three groups. The control group received saline, while the sense group was mixed with the sense ODNs complex and the antisense group was mixed with the antisense ODNs complex, respectively, for 2 days. Both the hepatic CETP mRNA and the CETP mass in the medium in the antisense group decreased significantly more than in the sense and the control groups (CETP mass: 1.697 + /- 0.410 ng/mg cell protein vs. 2.367 + /- 0.22 and 2.360 + /- 0.139, n = 3 in each determination). In contrast, both the hepatic apo A-I mRNA and the apo A-I mass in the medium in the antisense group were significantly higher than those in the sense and the control groups (apo A-I mass; 1.877 + /- 0.215 micro/mg cell protein vs. 1.213 + /- 0.282 and 1.097 + /- 0.144, n = 3 in each determination). The increase in apo A-I was mainly due to the increase in prebeta apo A-I. These findings may partly explain why HDL and apo A-I increase in patients with CETP deficiency, while also indicating the possibility that the original level of prebeta HDL is sufficient in such patients.

  7. Fusogenic pH sensitive liposomal formulation for rapamycin: improvement of antiproliferative effect.

    PubMed

    Ghanbarzadeh, Saeed; Khorrami, Arash; Mohamed Khosroshahi, Leila; Arami, Sanam

    2014-07-01

    Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets. The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line. Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50 nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72 h. The particle size, zeta potential, and EE% of the liposomes were 165 ± 12.3 and 178 ± 15.4 nm, -39.6 ± 1.3, and -41.2 ± 2.1 mV as well as 76.9 ± 2.6 and 76.9 ± 2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4 °C than 25 °C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.

  8. Audiogenic seizure activity following HSV-1 GAD65 sense or antisense injection into inferior colliculus of Long-Evans rat.

    PubMed

    Coleman, James R; Thompson, Karen C; Wilson, Marlene A; Wilson, Steven P

    2017-06-01

    Herpes virus technology involving manipulation of GAD65 was used to study effects on audiogenic seizures (AGS). Audiogenic seizure behaviors were examined following injections of replication-defective herpes simplex virus (HSV-1) vectors incorporating sense or antisense toward GAD65 along with 10% lac-Z into the central nucleus of inferior colliculus (CNIC) of Long-Evans rats. In seizure-sensitive animals developmentally primed by intense sound exposure, injection of GAD65 in the sense orientation increased wild running latencies and reduced incidence of clonus compared with lac-Z only, unoperated, and vehicle seizure groups. In contrast, infection of CNIC with GAD65 antisense virus resulted in 100% incidence of wild running and clonus behaviors in AGS animals. Unprimed animals not operated continued to show uniform absence of seizure activity. Administration of GAD65 antisense virus into CNIC produced novel wild running and clonus behaviors in some unprimed animals. Staining for β-galactosidase in all vector animals revealed no differences in pattern or numbers of immunoreactive cells at injection sites. Qualitatively, typical small and medium multipolar/stellate and medium fusiform neurons appeared in the CNIC of vector animals. These results demonstrate that HSV-1 vector constructs implanted into the CNIC can predictably influence incidence and severity of AGS and suggest that viral vectors can be useful in studying GABA mechanisms with potential for therapeutic application in epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit.

    PubMed Central

    D'Aoust, M A; Yelle, S; Nguyen-Quoc, B

    1999-01-01

    The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development. PMID:10590167

  11. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Takamitsu; Omura-Minamisawa, Motoko; Chao Cheng

    Purpose: Bcl-2, an inhibitor of apoptosis frequently shows elevated expression in human tumors, thus resulting in resistance to radiation therapy. Therefore, inhibiting Bcl-2 function may enhance the radiosensitivity of tumor cells. Tetrocarcin A (TC-A) and bcl-2 antisense oligonucleotides exhibit antitumor activity by inhibiting Bcl-2 function and transcription, respectively. We investigated whether these antitumor agents would enhance the cytotoxic effects of radiation in tumor cells overexpressing Bcl-2. Methods and materials: We used HeLa/bcl-2 cells, a stable Bcl-2-expressing cell line derived from wild-type HeLa (HeLa/wt) cells. Cells were incubated with TC-A and bcl-2 antisense oligonucleotides for 24 h after irradiation, and cellmore » viability was then determined. Apoptotic cells were quantified by flow cytometric assay. Results: The HeLa/bcl-2 cells were more resistant to radiation than HeLa/wt cells. At concentrations that are not inherently cytotoxic, both TC-A and bcl-2 antisense oligonucleotides increased the cytotoxic effects of radiation in HeLa/bcl-2 cells, but not in HeLa/wt cells. However, in HeLa/bcl-2 cells, additional treatment with TC-A in combination with radiation did not significantly increase apoptosis. Conclusions: The present results suggest that TC-A and bcl-2 antisense oligonucleotides reduce radioresistance of tumor cells overexpressing Bcl-2. Therefore, a combination of radiotherapy and Bcl-2 inhibitors may prove to be a useful therapeutic approach for treating tumors that overexpress Bcl-2.« less

  12. Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system

    PubMed Central

    Ross, Joseph A.; Ellis, Michael J.; Hossain, Shahan; Haniford, David B.

    2013-01-01

    Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements. PMID:23510801

  13. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes.

    PubMed

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-09-30

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation

    PubMed Central

    Kozhuharova, Ana; Sharma, Harshita; Ohyama, Takako; Fasolo, Francesca; Yamazaki, Toshio; Cotella, Diego; Santoro, Claudio; Zucchelli, Silvia; Gustincich, Stefano; Carninci, Piero

    2018-01-01

    SINEUPs are antisense long noncoding RNAs, in which an embedded SINE B2 element UP-regulates translation of partially overlapping target sense mRNAs. SINEUPs contain two functional domains. First, the binding domain (BD) is located in the region antisense to the target, providing specific targeting to the overlapping mRNA. Second, the inverted SINE B2 represents the effector domain (ED) and enhances translation. To adapt SINEUP technology to a broader number of targets, we took advantage of a high-throughput, semi-automated imaging system to optimize synthetic SINEUP BD and ED design in HEK293T cell lines. Using SINEUP-GFP as a model SINEUP, we extensively screened variants of the BD to map features needed for optimal design. We found that most active SINEUPs overlap an AUG-Kozak sequence. Moreover, we report our screening of the inverted SINE B2 sequence to identify active sub-domains and map the length of the minimal active ED. Our synthetic SINEUP-GFP screening of both BDs and EDs constitutes a broad test with flexible applications to any target gene of interest. PMID:29414979

  15. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    PubMed Central

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  16. Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides.

    PubMed Central

    Akagi, H; Patton, D E; Miledi, R

    1989-01-01

    Three synthetic oligodeoxynucleotides complementary to different parts of an RNA encoding a glycine receptor subunit were used to discriminate heterogenous mRNAs coding for glycine receptors in adult and neonatal rat spinal cord. Injection of the three antisense oligonucleotides into Xenopus oocytes specifically inhibited the expression of glycine receptors by adult spinal cord mRNA. In contrast, the antisense oligonucleotides were much less potent in inhibiting the expression of glycine receptors encoded by neonatal spinal cord mRNA. Northern blot analysis revealed that the oligonucleotides hybridized mostly to an adult cord transcript of approximately 10 kilobases in size. This band was also present in neonatal spinal cord mRNA but its density was about one-fourth of the adult cord message. There was no intense band in the low molecular weight position (approximately 2 kilobases), the existence of which was expected from electrophysiological studies with size-fractionated mRNA of neonatal spinal cord. Our results suggest that in the rat spinal cord there are at least three different types of mRNAs encoding functional strychnine-sensitive glycine receptors. Images PMID:2479016

  17. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice.

    PubMed

    Zinker, Bradley A; Rondinone, Cristina M; Trevillyan, James M; Gum, Rebecca J; Clampit, Jill E; Waring, Jeffrey F; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E; Reilly, Regina M; Koterski, Sandra; Opgenorth, Terry J; Ulrich, Roger G; Crosby, Seth; Butler, Madeline; Murray, Susan F; McKay, Robert A; Bhanot, Sanjay; Monia, Brett P; Jirousek, Michael R

    2002-08-20

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50alpha, were increased and PI3-kinase p85alpha expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes.

  18. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    PubMed Central

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  19. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity.

    PubMed

    Kadakkuzha, Beena M; Liu, Xin-An; Narvaez, Maria; Kaye, Alexandra; Akhmedov, Komolitdin; Puthanveettil, Sathyanarayanan V

    2014-01-01

    Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  20. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    PubMed

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase.

    PubMed

    Coetzer, C; Corsini, D; Love, S; Pavek, J; Tumer, N

    2001-02-01

    Polyphenol oxidase (PPO) activity of Russet Burbank potato was inhibited by sense and antisense PPO RNAs expressed from a tomato PPO cDNA under the control of the 35S promoter from the cauliflower mosaic virus. Transgenic Russet Burbank potato plants from 37 different lines were grown in the field. PPO activity and the level of enzymatic browning were measured in the tubers harvested from the field. Of the tubers from 28 transgenic lines that were sampled, tubers from 5 lines exhibited reduced browning. The level of PPO activity correlated with the reduction in enzymatic browning in these lines. These results indicate that expression of tomato PPO RNA in sense or antisense orientation inhibits PPO activity and enzymatic browning in the major commercial potato cultivar. Expression of tomato PPO RNA in sense orientation led to the greatest decrease in PPO activity and enzymatic browning, possibly due to cosuppression. These results suggest that expression of closely related heterologous genes can be used to prevent enzymatic browning in a wide variety of food crops without the application of various food additives.

  2. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B.

    PubMed

    Crooke, Stanley T; Geary, Richard S

    2013-08-01

    Mipomersen is a second generation antisense oligonucleotide that targets apolipoprotein B. It has been studied thoroughly in clinical trials (more than 800 subjects), including four randomized double-blind placebo controlled phase 3 studies involving 391 patients, and is in registration for the treatment of severe hypercholesterolaemia. The pharmacokinetic and pharmacodynamic properties of mipomersen are well characterized. Mipomersen is rapidly and extensively absorbed after subcutaneous administration and has an elimination half-life of approximately 30 days across species. It is cleared by nuclease metabolism and renal excretion of the metabolites. Mipomersen reduces all apolipoprotein B containing atherogenic particles and displays dose dependent reductions between 50-400 mg week⁻¹ , both as a single agent and in the presence of maximal lipid lowering therapy. No drug-drug interactions have been identified. Mipomersen is a representative of second generation antisense drugs, all of which have similar properties, and is thus representative of the behaviour of the class of drugs. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  3. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  4. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  5. Chemical modification of citrus pectin: Structural, physical and rheologial implications.

    PubMed

    Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro

    2018-04-01

    The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Stimulated-single fiber electromyography monitoring of anti-sense induced changes in experimental autoimmune myasthenia gravis.

    PubMed

    Boneva, Neli; Hamra-Amitay, Yasmine; Wirguin, Itzhak; Brenner, Talma

    2006-05-01

    The neuromuscular weakness associated with myasthenia gravis (MG) can be transiently relieved by pharmacological inhibitors of acetylcholinesterase (AChE). Here, we expand the anticholinesterase repertoire to include 2'-O-methyl-protected antisense oligonucleotides targeted to AChE mRNA (EN101). Using stimulated-single fiber electromyography, we show that EN101 treatment of rats with experimental autoimmune myasthenia gravis (EAMG), improved the mean consecutive difference (MCD) and blocking for 24h. This treatment was more efficient than pyridostigmine and was accompanied by marked improvement in stamina and clinical profile.

  7. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    PubMed

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  8. Correction to: Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-04-01

    In the preceding article "Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate" by Oyler et al., an error in the J5 E. coli LPS chemical structure (Figs. 2 and 4) was introduced and propagated into the final revision.

  9. Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA).

    PubMed

    Bendifallah, Nadia; Rasmussen, Frank Winther; Zachar, Vladimir; Ebbesen, Peter; Nielsen, Peter E; Koppelhus, Uffe

    2006-01-01

    Cell-penetrating peptides (CPPs) are characterized by their ability to be internalized in mammalian cells. To investigate the relative potency of CPPs as carriers of medicinally relevant cargo, a positive read-out assay based on the ability of a peptide nucleic acid (PNA) oligomer to promote correct expression of a recombinant luciferase gene was employed. Seven different CPPs were included in the study: Transportan, oligo-arginine (R7-9), pTat, Penetratin, KFF, SynB3, and NLS. The CPP-PNA conjugates were synthesized by different conjugation chemistries: continuous synthesis, maleimide coupling, and ester or disulfide linkage. Under serum-free conditions PNA-SS-Transportan-amide (ortho)-PNA was found to be the most potent conjugate, resulting in maximum luciferase signal at a concentration of 1-2 microM. (D-Arg)9-PNA showed optimal efficacy at 5 microM but gave rise to only one-third of the luciferase signal obtained with the Transportan conjugate. The pTat- and KFF-PNA conjugates showed significantly lower efficacy. The penetratin-, SynB3-. and NLS-PNA conjugates showed only minimal or no activity. Serum was found to have a drastic negative impact on CPP-driven cellular uptake. PNA-SS-Transportan-acid (ortho) and (D-Arg)9-PNA were least sensitive to the presence of serum. Both the chemical nature and, in the case of Transportan, the position of the peptide PNA coupling were found to have a major impact on the transport capacity of the peptides. However, no simple relationship between linker type and antisense activity of the conjugates could be deduced from the data.

  10. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  11. Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells.

    PubMed

    Moulding, D A; Giles, R V; Spiller, D G; White, M R; Tidd, D M; Edwards, S W

    2000-09-01

    Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 beta-myristate 13 alpha-acetate), Mcl-1 is transiently induced. The purpose of this investigation was to determine the functional role played by Mcl-1 in this differentiation program. Mcl-1 expression was specifically disrupted by chimeric methylphosphonate/phosphodiester antisense oligodeoxynucleotides to just 5% of control levels. The depletion of Mcl-1 messenger RNA (mRNA) and protein was both rapid and specific, as indicated by the use of control oligodeoxynucleotides and analysis of the expression of other BCL2 family members and PMA-induced tumor necrosis factor-alpha (TNF-alpha). Specific depletion of Mcl-1 mRNA and protein, in the absence of changes in cellular levels of Bcl-2, results in a rapid entry into apoptosis. Levels of the proapoptotic protein Bax remained unchanged during differentiation, while Bak expression doubled within 24 hours. Apoptosis was detected within 4 hours of Mcl-1 antisense treatment by a variety of parameters including a novel live cell imaging technique allowing correlation of antisense treatment and apoptosis in individual cells. The induction of Mcl-1 is required to prevent apoptosis during differentiation of U937 cells, and the constitutive expression of Bcl-2 is unable to compensate for the loss of Mcl-1. (Blood. 2000;96:1756-1763)

  12. A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA.

    PubMed Central

    Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L

    1996-01-01

    Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 PMID:8632983

  13. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle

    PubMed Central

    Jiang, Weihua; Qin, Anqi X.; Bodell, Paul W.; Baldwin, Kenneth M.; Haddad, Fadia

    2012-01-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development. PMID:22262309

  14. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.

    PubMed

    Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia

    2012-04-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.

  15. Natural antisense transcripts are significantly involved in regulation of drought stress in maize.

    PubMed

    Xu, Jie; Wang, Qi; Freeling, Micheal; Zhang, Xuecai; Xu, Yunbi; Mao, Yan; Tang, Xin; Wu, Fengkai; Lan, Hai; Cao, Moju; Rong, Tingzhao; Lisch, Damon; Lu, Yanli

    2017-05-19

    Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth1[W

    PubMed Central

    Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.

    2011-01-01

    The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489

  17. Assessment of new biocompatible poly(N-(morpholino)ethyl methacrylate)-based copolymers by transfection of immortalized keratinocytes.

    PubMed

    Van Overstraeten-Schlögel, Nancy; Shim, Yong-Ho; Tevel, Virginie; Piel, Géraldine; Piette, Jacques; Dubois, Philippe; Raes, Martine

    2012-02-01

    Skin carcinomas are among the most commonly diagnosed tumors in the world. In this study, we investigated the transfection of immortalized keratinocytes, used as an in vitro model for skin carcinoma, using the antisense technology and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)-based copolymers. In order to improve the transfection efficiency of the classic PDMAEMA polymers, copolymers were synthesized including a poly(N-morpholino)ethylmethacrylate) (PMEMA) moiety for an improved proton-sponge effect, intended to favour the release of the oligonucleotide from the acidic endosome. These copolymers were synthesized either statistically (with alternating PDMAEMA and PMEMA fragments) or in blocks (one PDMAEMA block followed by one PMEMA block). MTT assays were performed using the PDMAEMA-PMEMA copolymers and revealed no significant cytotoxicity of these polymers at an N/P ratio of 7.3. Using fluorescent oligonucleotides and analyzing transfection efficiency by flow cytometry, we noticed no significant differences between the two kinds of copolymers. However copolymers with a higher DMAEMA content and a higher Mn were also those displaying the highest vectorization efficiency. Confocal microscopy showed that these copolymers induced a fine granular distribution of the transfected antisense oligonucleotides inside the cells. We also assessed the functionality of the transfected antisense oligonucleotide by transfecting immortalized GFP expressing keratinocytes with a GFP antisense oligonucleotide using these copolymers. A significant silencing was achieved with a PDMAEMA-PMEMA in block copolymer (Mn=41,000, 89 % PDMAEMA). Together, these results suggest that PDMAEMA-PMEMA copolymers combining low toxicity, vectorization and proton sponge properties, can be efficiently used to transfect immortalized keratinocytes and so open new perspectives in the therapy of skin carcinomas as well as of other skin diseases of genetic or immunological origin. © 2012 Informa Healthcare USA, Inc.

  18. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice.

    PubMed

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-09-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1-10 mg kg(-1) ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg(-1)). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.1-1 mg kg(-1)) as well as ICAM-1 antibodies (10 mg kg(-1)), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3-10 mg kg(-1)). Similarly, ISIS-3082 (0.1-1 mg kg(-1)) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3-10 mg kg(-1)), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus.

  19. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    PubMed

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  20. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium

    PubMed Central

    Darsonval, Maud; Msadek, Tarek; Alexandre, Hervé

    2015-01-01

    Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni. PMID:26452552

  1. A riboswitch-regulated antisense RNA in Listeria monocytogenes.

    PubMed

    Mellin, J R; Tiensuu, Teresa; Bécavin, Christophe; Gouin, Edith; Johansson, Jörgen; Cossart, Pascale

    2013-08-06

    Riboswitches are ligand-binding elements located in 5' untranslated regions of messenger RNAs, which regulate expression of downstream genes. In Listeria monocytogenes, a vitamin B12-binding (B12) riboswitch was identified, not upstream of a gene but downstream, and antisense to the adjacent gene, pocR, suggesting it might regulate pocR in a nonclassical manner. In Salmonella enterica, PocR is a transcription factor that is activated by 1,2-propanediol, and subsequently activates expression of the pdu genes. The pdu genes mediate propanediol catabolism and are implicated in pathogenesis. As enzymes involved in propanediol catabolism require B12 as a cofactor, we hypothesized that the Listeria B12 riboswitch might be involved in pocR regulation. Here we demonstrate that the B12 riboswitch is transcribed as part of a noncoding antisense RNA, herein named AspocR. In the presence of B12, the riboswitch induces transcriptional termination, causing aspocR to be transcribed as a short transcript. In contrast, in the absence of B12, aspocR is transcribed as a long antisense RNA, which inhibits pocR expression. Regulation by AspocR ensures that pocR, and consequently the pdu genes, are maximally expressed only when both propanediol and B12 are present. Strikingly, AspocR can inhibit pocR expression in trans, suggesting it acts through a direct interaction with pocR mRNA. Together, this study demonstrates how pocR and the pdu genes can be regulated by B12 in bacteria and extends the classical definition of riboswitches from elements governing solely the expression of mRNAs to a wider role in controlling transcription of noncoding RNAs.

  2. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA

    PubMed Central

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.

    2013-01-01

    The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  3. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  4. RNA antitoxins.

    PubMed

    Gerdes, Kenn; Wagner, E Gerhart H

    2007-04-01

    Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaoling

    My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNAmore » activity in vivo.« less

  6. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.

    PubMed

    Sesto, Nina; Wurtzel, Omri; Archambaud, Cristel; Sorek, Rotem; Cossart, Pascale

    2013-02-01

    In recent years, non-coding RNAs have emerged as key regulators of gene expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly abundant, but in most cases the function and mechanism of action for a particular asRNA remains elusive. Here, we highlight a recently discovered paradigm termed the excludon, which defines a genomic locus encoding an unusually long asRNA that spans divergent genes or operons with related or opposing functions. Because these asRNAs can inhibit the expression of one operon while functioning as an mRNA for the adjacent operon, they act as fine-tuning regulatory switches in bacteria.

  7. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception.

    PubMed

    Bourinet, Emmanuel; Alloui, Abdelkrim; Monteil, Arnaud; Barrère, Christian; Couette, Brigitte; Poirot, Olivier; Pages, Anne; McRory, John; Snutch, Terrance P; Eschalier, Alain; Nargeot, Joël

    2005-01-26

    Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (CaV3.1, CaV3.2, and CaV3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting CaV3.2 induced a knockdown of the CaV3.2 mRNA and protein expression as well as a large reduction of 'CaV3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that CaV3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking CaV3.2 T-type channels to pain perception and suggest that CaV3.2 may offer a specific molecular target for the treatment of pain.

  8. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly

    PubMed Central

    Zapata, Juan C.; Campilongo, Federica; Barclay, Robert A.; DeMarino, Catherine; Iglesias-Ussel, Maria D.; Kashanchi, Fatah; Romerio, Fabio

    2017-01-01

    Various epigenetic marks at the HIV-1 5′LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3′LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5′LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5′LTR and proviral latency through the PRC2 pathway. PMID:28340355

  9. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly.

    PubMed

    Zapata, Juan C; Campilongo, Federica; Barclay, Robert A; DeMarino, Catherine; Iglesias-Ussel, Maria D; Kashanchi, Fatah; Romerio, Fabio

    2017-06-01

    Various epigenetic marks at the HIV-1 5'LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3'LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5'LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5'LTR and proviral latency through the PRC2 pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Achieving large dynamic range control of gene expression with a compact RNA transcription–translation regulator

    PubMed Central

    2017-01-01

    Abstract RNA transcriptional regulators are emerging as versatile components for genetic network construction. However, these regulators suffer from incomplete repression in their OFF state, making their dynamic range less than that of their protein counterparts. This incomplete repression causes expression leak, which impedes the construction of larger synthetic regulatory networks as leak propagation can interfere with desired network function. To address this, we demonstrate how naturally derived antisense RNA-mediated transcriptional regulators can be configured to regulate both transcription and translation in a single compact RNA mechanism that functions in Escherichia coli. Using in vivo gene expression assays, we show that a combination of transcriptional termination and ribosome binding site sequestration increases repression from 85% to 98%, or activation from 10-fold to over 900-fold, in response to cognate antisense RNAs. We also show that orthogonal repressive versions of this mechanism can be created through engineering minimal antisense RNAs. Finally, to demonstrate the utility of this mechanism, we use it to reduce network leak in an RNA-only cascade. We anticipate these regulators will find broad use as synthetic biology moves beyond parts engineering to the design and construction of more sophisticated regulatory networks. PMID:28387839

  11. Expression of Antisense Long Noncoding RNAs as Potential Regulators in Rainbow Trout with Different Tolerance to Plant-Based Diets.

    PubMed

    Abernathy, Jason; Overturf, Ken

    2018-01-04

    Reformulation of aquafeeds in salmonid diets to include more plant proteins is critical for sustainable aquaculture. However, increasing plant proteins can lead to stunted growth and enteritis. Toward an understanding of the regulatory mechanisms behind plant protein utilization, directional RNA sequencing of liver tissues from a rainbow trout strain selected for growth on an all plant-protein diet and a control strain, both fed a plant diet for 12 weeks, were utilized to construct long noncoding RNAs. Antisense long noncoding RNAs were selected for differential expression and functional analyses since they have been shown to have regulatory actions within a genome. A total of 142 unique antisense long noncoding RNAs were differentially expressed between strains, 60 of which could be mapped to a gene. Genes underlying these noncoding RNAs are indicated in lipid metabolism and immunity. Six noncoding transcripts were also found to overlap with differentially expressed protein-coding genes, all of which were co-expressed. Associating variation in regulatory elements between rainbow trout strains with differing tolerance to plant-protein diets will assist in future studies toward increased gains throughout carnivorous aquaculture.

  12. Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications

    PubMed Central

    Aartsma-Rus, Annemieke; van Ommen, Gert-Jan B.

    2007-01-01

    Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach. PMID:17684229

  13. Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in immunogenicity and differentiation.

    PubMed Central

    Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J

    1994-01-01

    Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120

  14. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana.

    PubMed

    Kaldenhoff, R; Grote, K; Zhu, J J; Zimmermann, U

    1998-04-01

    The plant plasma membrane intrinsic protein, PIP1b, facilitates water transport. These features were characterized in Xenopus oocytes and it has asked whether aquaporins are relevant for water transport in plants. In order to elucidate this uncertainty Arabidopsis thaliana was transformed with an anti-sense construct targeted to the PIP1b gene. Molecular analysis revealed that the anti-sense lines have reduced steady-state levels of PIP1b and the highly homologous PIP1a mRNA. The cell membrane water permeability was analyzed by swelling of protoplasts, which had been transferred into hypotonic conditions. The results indicate that the reduced expression of the specific aquaporins decreases the cellular osmotic water permeability coefficient approximately three times. The morphology and development of the anti-sense lines resembles that of control plants, with the exception of the root system, which is five times as abundant as that of control plants. Xylem pressure measurement suggests that the increase of root mass compensates the reduced cellular water permeability in order to ensure a sufficient water supply to the plant. The results obtained by this study, therefore, clearly demonstrate that aquaporins are important for plant water transport.

  15. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides.

    PubMed

    Wu, Li; He, Yujian; Tang, Xinjing

    2015-06-17

    Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.

  16. Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis.

    PubMed

    Kim, Taeyoon; Zhang, Chun-fa; Sun, Ziqing; Wu, Heling; Loh, Y Peng

    2005-07-27

    The biogenesis of dense-core secretory granules (DCGs), organelles responsible for the storage and secretion of neurotransmitters and neuropeptides in chromaffin cells, is poorly understood. Chromogranin A (CgA), which binds catecholamines for storage in the lumen of chromaffin granules, has been shown to be involved in DCG biogenesis in neuroendocrine PC12 cells. Here, we report that downregulation of CgA expression in vivo by expressing antisense RNA against CgA in transgenic mice led to a significant reduction in DCG formation in adrenal chromaffin cells. The number of DCGs formed in CgA antisense transgenic mice was directly correlated with the amount of CgA present in adrenal medulla. In addition, DCGs showed an increase in size, with enlargement in the volume around the dense core, a phenomenon that occurs to maintain constant "free" catecholamine concentration in the lumen of these granules. The extent of DCG swelling was inversely correlated with the number of DCGs formed, as well as the amount of CgA present in the adrenal glands of CgA antisense transgenic mice. These data indicate an essential role of CgA in regulating chromaffin DCG biogenesis and catecholamine storage in vivo.

  17. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes

    PubMed Central

    Yu, Dongliang; Meng, Yijun; Zuo, Ziwei; Xue, Jie; Wang, Huizhong

    2016-01-01

    Nat-siRNAs (small interfering RNAs originated from natural antisense transcripts) are a class of functional small RNA (sRNA) species discovered in both plants and animals. These siRNAs are highly enriched within the annealed regions of the NAT (natural antisense transcript) pairs. To date, great research efforts have been taken for systematical identification of the NATs in various organisms. However, developing a freely available and easy-to-use program for NAT prediction is strongly demanded by researchers. Here, we proposed an integrative pipeline named NATpipe for systematical discovery of NATs from de novo assembled transcriptomes. By utilizing sRNA sequencing data, the pipeline also allowed users to search for phase-distributed nat-siRNAs within the perfectly annealed regions of the NAT pairs. Additionally, more reliable nat-siRNA loci could be identified based on degradome sequencing data. A case study on the non-model plant Dendrobium officinale was performed to illustrate the utility of NATpipe. Finally, we hope that NATpipe would be a useful tool for NAT prediction, nat-siRNA discovery, and related functional studies. NATpipe is available at www.bioinfolab.cn/NATpipe/NATpipe.zip. PMID:26858106

  18. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation

    PubMed Central

    Georg, Jens; Voß, Björn; Scholz, Ingeborg; Mitschke, Jan; Wilde, Annegret; Hess, Wolfgang R

    2009-01-01

    Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks. PMID:19756044

  19. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation.

    PubMed

    Georg, Jens; Voss, Björn; Scholz, Ingeborg; Mitschke, Jan; Wilde, Annegret; Hess, Wolfgang R

    2009-01-01

    Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5' UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, approximately 10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks.

  20. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.

    PubMed

    Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle

    2004-08-01

    Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.

  1. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased levels of the antioxidant transcriptional activity of Nrf2, and decreases tau phosphorylation. Our study supports the notion of GAO as a possible treatment for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  3. [Effects of adenoviral vector containing human angiotensin II type 1 receptor antisense cDNA on biological action of human pulmonary artery smooth muscle cells].

    PubMed

    Tu, Ming-li; Wang, Han-qin; Lei, Huai-ding; Luo, Guo-shi; Liu, Xian-jun; Liu, Wei-shun; Xiong, Chang; Liu, Yu-quan; Ren, Si-qun

    2005-04-01

    To investigate the effect of human angiotensin II (AngII) type 1 receptor (AT(1)R) antisense cDNA (ahAT(1)) on migration, proliferation, and apoptosis of cultured human pulmonary artery smooth muscle cells (PASMC). Two recombinant adenoviral vectors, AdCMVahAT(1) containing full length antisense cDNA targeting to human AT(1)R mRNA, and AdCMVLacZ containing LacZ, were constructed by orientation clone technology and homologous recombination. The PASMC was divided into 3 groups (DMEM, AdCMVLacZ, AdCMVahAT(1)) and different interventions were given to different groups. AT(1)R expression was detected by RT-PCR and immunohistochemistry method; migration of PASMC was measured by Boyden's Chamer method. Other PASMC was divided into 4 groups (DMEM, AngII, AdCMVLacZ + AngII and AdCMVahAT(1) + AngII), and only the last 2 groups were respectively transfected with AdCMVLacZ and AdCMVahAT(1) before administration of AngII. From 6 h to 96 h after stimulation by AngII (10(-7) mol/L), proliferation index (PI) and apoptosis of PASMC were determined by flow cytometry. At the 48 h the level of AT(1)R mRNA was significantly less in PASMC transfected AdCMVahAT(1) than that in group DMEM and in group AdCMVLacZ. The protein level showed a same difference (P < 0.01). At 24 h the migration distance of PASMC also was significantly less in group AdCMVahAT(1) than that in group DMEM and Group AdCMVLacZ (P < 0.01). Stimulated by AngII for 48 h, in group AngII the PI of PASMC markedly increased (P < 0.01 vs group DMEM). But in Group AdCMVahAT(1) + AngII PI of PASMC clearly decreased (P < 0.01 vs group AngII and group DMEM respectively). There was no statistic difference of PI between group AdCMVLacZ + AngII and group AngII. Moreover, apoptosis peak emerged only in group AdCMVahAT(1) + AngII. The rate of apoptosis in those PASMC used AdCMVahAT(1) and AngII was 24.70 +/- 4.04 (P < 0.01 vs the other 3 groups respectively). These results indicate that AngII stimulates proliferation via AT(1) receptors in human PASMC, and antisense cDNA targeting to human AT(1)R transfection mediated by adenoviral vector has powerful inhibitory effects on AngII-induced migration and proliferation of human PASMC by attenuating AT(1)R mRNA and protein expression. Also, it can promote apoptosis of human PASMC. That demonstrate that AT(1)R antisense cDNA is a potent inhibitors of the actions of AngII on PASMC. Antisense inhibition targeting to AT(1)R has therapeutic potential for the treatment of pulmonary vascular diseases.

  4. nlz gene family is required for hindbrain patterning in the zebrafish.

    PubMed

    Hoyle, Jacqueline; Tang, Yixin P; Wiellette, Elizabeth L; Wardle, Fiona C; Sive, Hazel

    2004-04-01

    This study describes the conserved nlz gene family whose members encode unusual zinc finger proteins. In the zebrafish neurectoderm, both nlz1 and the newly isolated nlz2 are expressed in the presumptive hindbrain and midbrain/hindbrain boundary, where expression of nlz1 is dependent on pax2a. In addition, nlz2 is uniquely expressed more anteriorly, in the presumptive midbrain and diencephalon. Overexpression of Nlz proteins during gastrula stages inhibits hindbrain development. In particular, ectopically expressed Nlz1 inhibits formation of future rhombomeres 2 and 3 (r2, r3), whereas neighboring r1 and r4 are not affected. Conversely, simultaneous reduction of Nlz1 and Nlz2 protein function by expression of antisense morpholino-modified oligomers leads to expansion of future r3 and r5, with associated loss of r4. These data indicate that one function of the nlz gene family is to specify or maintain r4 identity, and to limit r3 and r5 during hindbrain formation. Copyright 2004 Wiley-Liss, Inc.

  5. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  6. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.

    PubMed

    Zhang, Liangliang; Chen, Changmai; Fan, Xinli; Tang, Xinjing

    2018-06-18

    Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment.

    PubMed

    Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.

  8. Genetic therapies against HIV

    PubMed Central

    Rossi, John J; June, Carl H; Kohn, Donald B

    2015-01-01

    Highly active antiretroviral therapy prolongs the life of HIV-infected individuals, but it requires lifelong treatment and results in cumulative toxicities and viral-escape mutants. Gene therapy offers the promise of preventing progressive HIV infection by sustained interference with viral replication in the absence of chronic chemotherapy. Gene-targeting strategies are being developed with RNA-based agents, such as ribozymes, antisense, RNA aptamers and small interfering RNA, and protein-based agents, such as the mutant HIV Rev protein M10, fusion inhibitors and zinc-finger nucleases. Recent advances in T-cell–based strategies include gene-modified HIV-resistant T cells, lentiviral gene delivery, CD8+ T cells, T bodies and engineered T-cell receptors. HIV-resistant hematopoietic stem cells have the potential to protect all cell types susceptible to HIV infection. The emergence of viral resistance can be addressed by therapies that use combinations of genetic agents and that inhibit both viral and host targets. Many of these strategies are being tested in ongoing and planned clinical trials. PMID:18066041

  9. The global regulatory architecture of transcription during the Caulobacter cell cycle.

    PubMed

    Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.

  10. Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery

    PubMed Central

    Fujita, Manabu; Ljubimov, Alexander V; Torchilin, Vladimir P; Black, Keith L; Holler, Eggehard

    2009-01-01

    Nanoconjugates are emerging as promising drug-delivery vehicles because of their multimodular structure enabling them to actively target discrete cells, pass through biological barriers and simultaneously carry multiple drugs of various chemical nature. Nanoconjugates have matured from simple devices to multifunctional, biodegradable, nontoxic and nonimmunogenic constructs, capable of delivering synergistically functioning drugs in vivo. This review mainly concerns the Polycefin family of natural-derived polymeric drug-delivery devices as an example. This type of vehicle is built by hierarchic conjugation of functional groups onto the backbone of poly(malic acid), an aliphatic polyester obtained from the microorganism Physarum polycephalum. Particular Polycefin variants target human brain and breast tumors implanted into animals specifically and actively and could be detected easily by noninvasive imaging analysis. Delivery of antisense oligonucleotides to a tumor-specific angiogenic marker using Polycefin resulted in significant inhibition of tumor angiogenesis and increase of animal survival. PMID:18373429

  11. Recent developments in nucleic acid delivery with polyethylenimines.

    PubMed

    Neuberg, Patrick; Kichler, Antoine

    2014-01-01

    Polyethylenimines (PEIs) have proven to be highly efficient and versatile agents for nucleic acid delivery in vitro and in vivo. Despite the low biodegradability of these polymers, they have been used in several clinical trials and the results suggest that the nucleic acid/PEI complexes have a good safety profile. The high transfection efficiency of PEIs probably relies on the fact that these polymers possess a stock of amines that can undergo protonation during the acidification of endosomes. This buffering capacity likely enhances endosomal escape of the polyplexes through the "proton sponge" effect. PEIs have also attracted great interest because the presence of many amino groups allow for easy chemical modifications or conjugation of targeting moieties and hydrophilic polymers. In the present chapter, we summarize and discuss the mechanism of PEI-mediated transfection, as well as the recent developments in PEI-mediated DNA, antisense oligonucleotide, and siRNA delivery.

  12. Biological Role and Therapeutic Targeting of TGF-β3 in Glioblastoma.

    PubMed

    Seystahl, Katharina; Papachristodoulou, Alexandros; Burghardt, Isabel; Schneider, Hannah; Hasenbach, Kathy; Janicot, Michel; Roth, Patrick; Weller, Michael

    2017-06-01

    Transforming growth factor (TGF)-β contributes to the malignant phenotype of glioblastoma by promoting invasiveness and angiogenesis and creating an immunosuppressive microenvironment. So far, TGF-β 1 and TGF-β 2 isoforms have been considered to act in a similar fashion without isoform-specific function in glioblastoma. A pathogenic role for TGF-β 3 in glioblastoma has not been defined yet. Here, we studied the expression and functional role of endogenous and exogenous TGF-β 3 in glioblastoma models. TGF-β 3 mRNA is expressed in human and murine long-term glioma cell lines as well as in human glioma-initiating cell cultures with expression levels lower than TGF-β 1 or TGF-β 2 in most cell lines. Inhibition of TGF-β 3 mRNA expression by ISTH2020 or ISTH2023, two different isoform-specific phosphorothioate locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, blocks downstream SMAD2 and SMAD1/5 phosphorylation in human LN-308 cells, without affecting TGF-β 1 or TGF-β 2 mRNA expression or protein levels. Moreover, inhibition of TGF-β 3 expression reduces invasiveness in vitro Interestingly, depletion of TGF-β 3 also attenuates signaling evoked by TGF-β 1 or TGF-β 2 In orthotopic syngeneic (SMA-560) and xenograft (LN-308) in vivo glioma models, expression of TGF-β 3 as well as of the downstream target, plasminogen-activator-inhibitor (PAI)-1 , was reduced, while TGF-β 1 and TGF-β 2 levels were unaffected following systemic treatment with TGF-β 3 -specific antisense oligonucleotides. We conclude that TGF-β 3 might function as a gatekeeper controlling downstream signaling despite high expression of TGF-β 1 and TGF-β 2 isoforms. Targeting TGF-β 3 in vivo may represent a promising strategy interfering with aberrant TGF-β signaling in glioblastoma. Mol Cancer Ther; 16(6); 1177-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  14. Different Interfacial Behaviors of Peptides Chemically Immobilized on Surfaces with Different Linker Lengths and via Different Termini

    DTIC Science & Technology

    2014-02-20

    spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial ...modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics...applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin

  15. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  16. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    PubMed Central

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; ROMIEU, Olivier; CRUZ, Roel; FLORES, Hector; CUISINIER, Frédéric; PÉREZ, Elías; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA). The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT). Results and Conclusions: Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system. PMID:23559114

  17. Gene Therapy for Hemophilia and Duchenne Muscular Dystrophy in China.

    PubMed

    Liu, Xionghao; Liu, Mujun; Wu, Lingqian; Liang, Desheng

    2018-02-01

    Gene therapy is a new technology that provides potential for curing monogenic diseases caused by mutations in a single gene. Hemophilia and Duchenne muscular dystrophy (DMD) are ideal target diseases of gene therapy. Important advances have been made in clinical trials, including studies of adeno-associated virus vectors in hemophilia and antisense in DMD. However, issues regarding the high doses of viral vectors required and limited delivery efficiency of antisense oligonucleotides have not yet been fully addressed. As an alternative strategy to classic gene addition, genome editing based on programmable nucleases has also shown promise to correct mutations in situ. This review describes the recent progress made by Chinese researchers in gene therapy for hemophilia and DMD.

  18. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Cheung, C L; Lin, T

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groupsmore » at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.« less

  19. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  20. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.

    PubMed

    Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F

    2017-03-16

    RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  1. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    NASA Astrophysics Data System (ADS)

    Pan, Bifeng; Cui, Daxiang; Xu, Ping; Ozkan, Cengiz; Feng, Gao; Ozkan, Mihri; Huang, Tuo; Chu, Bingfeng; Li, Qing; He, Rong; Hu, Guohan

    2009-03-01

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH2-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  2. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to those contained in the corresponding section 5(e) consent order. (ii) Hazard communication program...) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under...

  3. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10150 Carbon black, (4-methylphenyl)-modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, (4-methylphenyl...

  4. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10149 Carbon black, (3-methylphenyl)-modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon black, (3-methylphenyl...

  5. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster.

    PubMed Central

    Giordano, Ennio; Rendina, Rosaria; Peluso, Ivana; Furia, Maria

    2002-01-01

    Specific silencing of target genes can be induced in a variety of organisms by providing homologous double-stranded RNA molecules. In vivo, these molecules can be generated either by transcription of sequences having an inverted-repeat (IR) configuration or by simultaneous transcription of sense-antisense strands. Since IR constructs are difficult to prepare and can stimulate genomic rearrangements, we investigated the silencing potential of symmetrically transcribed sequences. We report that Drosophila transgenes whose sense-antisense transcription was driven by two convergent arrays of Gal4-dependent UAS sequences can induce specific, dominant, and heritable repression of target genes. This effect is not dependent on a mechanism based on homology-dependent DNA/DNA interactions, but is directly triggered by transcriptional activation and is accompanied by specific depletion of the endogenous target RNA. Tissue-specific induction of these transgenes restricts the target gene silencing to selected body domains, and spreading phenomena described in other cases of post-transcriptional gene silencing (PTGS) were not observed. In addition to providing an additional tool useful for Drosophila functional genomic analysis, these results add further strength to the view that events of sense-antisense transcription may readily account for some, if not all, PTGS-cosuppression phenomena and can potentially play a relevant role in gene regulation. PMID:11861567

  6. Gene-breaking: A new paradigm for human retrotransposon-mediated gene evolution

    PubMed Central

    Wheelan, Sarah J.; Aizawa, Yasunori; Han, Jeffrey S.; Boeke, Jef D.

    2005-01-01

    The L1 retrotransposon is the most highly successful autonomous retrotransposon in mammals. This prolific genome parasite may on occasion benefit its host through genome rearrangements or adjustments of host gene expression. In examining possible effects of L1 elements on host gene expression, we investigated whether a full-length L1 element inserted in the antisense orientation into an intron of a cellular gene may actually split the gene's transcript into two smaller transcripts: (1) a transcript containing the upstream exons and terminating in the major antisense polyadenylation site (MAPS) of the L1, and (2) a transcript derived from the L1 antisense promoter (ASP) that includes the downstream exons of the gene. Bioinformatic analysis and experimental follow-up provide evidence for this L1 “gene-breaking” hypothesis. We identified three human genes apparently “broken” by L1 elements, as well as 12 more candidate genes. Most of the inserted L1 elements in our 15 candidate genes predate the human/chimp divergence. If indeed split, the transcripts of these genes may in at least one case encode potentially interacting proteins, and in another case may encode novel proteins. Gene-breaking represents a new mechanism through which L1 elements remodel mammalian genomes. PMID:16024818

  7. Delayed Time-to-Treatment of an Antisense Morpholino Oligomer Is Effective against Lethal Marburg Virus Infection in Cynomolgus Macaques.

    PubMed

    Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Charleston, Jay S; Heald, Alison; Nichols, Donald K; Mattix, Marc E; Palacios, Gustavo; Kugleman, Jeffrey R; Iversen, Patrick L; Bavari, Sina

    2016-02-01

    Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.

  8. Using in-cell SHAPE-Seq and simulations to probe structure–function design principles of RNA transcriptional regulators

    PubMed Central

    Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.

    2016-01-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533

  9. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.

    PubMed

    Thakkar, M M; Ramesh, V; Cape, E G; Winston, S; Strecker, R E; McCarley, R W

    1999-01-01

    Orexin (hypocretin)-containing neurons of the hypothalamus project to brainstem sites that are involved in the neural control of REM sleep, including the locus coeruleus, the dorsal raphe nucleus, the cholinergic zone of the mesopontine tegmentum, and the pontine reticular formation (PRF). Orexin knockout mice exhibit narcolepsy/cataplexy, and a mutant and defective gene for the orexin type II receptor is present in dogs with an inherited form of narcolepsy/cataplexy. However, the physiological systems mediating these effects have not been described. We reasoned that, since the effector neurons for the majority of REM sleep signs, including muscle atonia, were located in the PRF, this region was likely implicated in the production of these orexin-related abnormalities. To test this possibility, we used microdialysis perfusion of orexin type II receptor antisense in the PRF of rats. Ten to 24 hours after antisense perfusion, REM sleep increased two- to three-fold during both the light period (quiescent phase) and the dark period (active phase), and infrared video showed episodes of behavioral cataplexy. Moreover, preliminary data indicated no REM-related effects following perfusion with nonsense DNA, or when perfusion sites were outside the PRF. More work is needed to provide precise localization of the most effective site of orexin-induced inhibition of REM sleep phenomena.

  10. Antisense sequences of the nbl gene induce apoptosis in the human promyelocytic leukemia cell line HL-60.

    PubMed

    Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H

    1998-04-01

    Apoptosis is induced by the transcriptional inhibitor actinomycin D (Act D) in various cell types, particularly many leukemic cell lines such as HL-60. A common feature of these cell lines is their high constitutive expression level of the nbl gene, which was originally isolated by virtue of its abundance in a Namalwa Burkitt lymphoma cDNA library. In contrast, cell lines which constitutively express nbl at low levels appear not to undergo typical apoptotic death in response to Act D. Apoptotic induction by Act D in cells which normally express nbl at high levels was found in this study to be closely associated with a decline in nbl mRNA levels, raising the possibility that apoptosis could be induced by lowering nbl expression levels in such cells. Transient expression of nbl antisense sequences in HL-60 cells decreased cell viability, and induced typical apoptotic morphology such as cell shrinkage, chromatin condensation and nuclear fragmentation. Incubation with nbl antisense oligomers also induced similar features in HL-60 cells and in another high nb-expressing cell line, Jurkat, but had little effect in HepG2 cells which constitutively express nbl at low levels. These findings suggest that lowering constitutively high levels of nbl expression can induce apoptosis.

  11. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    PubMed

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

  12. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs.

    PubMed

    Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou

    2018-05-31

    Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.

  13. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  14. GROWTH OF HUMAN PANCREATIC CANCER IS INHIBITED BY DOWN-REGULATION OF GASTRIN GENE EXPRESSION

    PubMed Central

    Matters, Gail L.; Harms, John F.; McGovern, Christopher O.; Jayakumar, Calpurnia; Crepin, Keisha; Smith, Zachary P.; Nelson, Melissa C.; Stock, Heather; Fenn, Craig W.; Kaiser, James; Kester, Mark; Smith, Jill P.

    2009-01-01

    Objectives This study evaluated the effects of gastrin mRNA down-regulation on growth of human pancreatic cancer. Methods Gastrin expression was examined in human pancreatic cancer cell lines by RT-PCR and peptide expression was assessed by immunocytochemistry. Gastrin was down-regulated using either stable transfection of an antisense gastrin cDNA or one of three shRNA (short hairpin RNA) constructs. Tumor formation was evaluated following either subcutaneous or orthotopic injections into nude mice. The effect of nanoliposomes loaded with gastrin siRNA was tested in mice bearing pancreatic tumors. Results Stable transfection of gastrin antisense or shRNAs into BxPC-3 cells resulted in clones with >90% reduction in gastrin mRNA. Tumor growth rate and incidence of metastases in both wild type and transfected pancreatic cancer cells was directly proportional to the degrees of gastrin mRNA expression. Immunofluoresence analysis confirmed that gastrin peptide levels were decreased in antisense and shRNA tumors. Gastrin knockdown clones had lower Ki-67 and increased cleaved caspase-3 staining, consistent with known effects of gastrin on proliferation and apoptosis. Tumors in mice treated with gastrin siRNA were smaller than controls. Conclusions These results suggest that RNAi targeting of gastrin could serve as an effective treatment for pancreatic cancer. PMID:19465883

  15. Antisense RNAs transcribed from the upstream region of the precore/core promoter of hepatitis B virus.

    PubMed

    Moriyama, Kosei; Hayashida, Kazuhiro; Shimada, Mitsuo; Nakano, Shuji; Nakashima, Yoshiyuki; Fukumaki, Yasuyuki

    2003-07-01

    The bidirectional activity of the precore/core promoter of hepatitis B virus (HBV) has been demonstrated in cultured cell lines. However, HBV antisense transcripts (asRNAs) have not been demonstrated in vivo. In the present study using liver tissue from patients with chronic hepatitis, an anchored 5'RACE mapping the 5' ends at position 1680/1681, 1655 or 1609/1602 was carried out. In limited cases, RLM-3'RACE detected asRNAs to terminate at four or five consecutive dT residues in the 0.7 kb downstream region. PCR of oligo(dT)-primed cDNA did not amplify a typical polyadenylated asRNA. RT-PCR using various primers did not detect any spliced forms. Competitive RT-PCR estimated the copy numbers of the asRNAs to be 0.05-0.4 % of total sense RNAs. All sequenced asRNAs had ORF6 but, in one patient, the asRNA initiating at position 1680/1681 had additional initiation and termination codons in front of ORF6. Therefore, asRNAs are transcribed by RNA polymerase III at a low level, encompass a dispensable ORF6 gene and might be retained in the nucleus. The endogenous asRNAs complementary to the common ends of all sense RNAs suggest antisense-mediated self-regulation of hepadnavirus.

  16. A long antisense RNA in plant chloroplasts.

    PubMed

    Georg, J; Honsel, A; Voss, B; Rennenberg, H; Hess, W R

    2010-05-01

    Based on computational prediction of RNA secondary structures, a long antisense RNA (asRNA) was found in chloroplasts of Arabidopsis, Nicotiana tabacum and poplar, which occurs in two to three major transcripts. Mapping of primary 5' ends, northern hybridizations and quantitative real-time reverse transcription polymerase chain reaction (qPCR) experiments demonstrated that these transcripts originate from a promoter that is typical for the plastid-encoded RNA polymerase and are over their full length in antisense orientation to the gene ndhB and therefore were designated asRNA_ndhB. The asRNA_ndhB transcripts predominantly accumulate in young leaves and at physiological growth temperatures. Two nucleotide positions in the mRNA that are subject to C-to-U RNA editing and which were previously found to be sensitive to elevated temperatures are covered by asRNA_ndhB. Nevertheless, the correlation between the accumulation of asRNA_ndhB and RNA editing appeared weak in a temperature shift experiment. With asRNA_ndhB, we describe the first asRNA of plant chloroplasts that covers RNA editing sites, as well as a group II intron splice acceptor site, and that is under developmental control, raising the possibility that long asRNAs could be involved in RNA maturation or the control of RNA stability.

  17. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity maintenance that results in firmer ripe fruit. PMID:23873994

  19. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice

    PubMed Central

    The, Frans O; de Jonge, Wouter J; Bennink, Roel J; van den Wijngaard, Rene M; Boeckxstaens, Guy E

    2005-01-01

    Intestinal manipulation (IM) during abdominal surgery triggers the influx of inflammatory cells, leading to postoperative ileus. Prevention of this local muscle inflammation, using intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1-specific antibodies, has been shown to shorten postoperative ileus. However, the therapeutic use of antibodies has considerable disadvantages. The aim of the current study was to evaluate the effect of ISIS-3082, a mouse-specific ICAM-1 antisense oligonucleotide, on postoperative ileus in mice. Mice underwent a laparotomy or a laparotomy combined with IM after treatment with ICAM-1 antibodies, 0.1–10 mg kg−1 ISIS-3082, saline or ISIS-8997 (scrambled control antisense oligonucleotides, 1 and 3 mg kg−1). At 24 h after surgery, gastric emptying of a 99mTC labelled semi-liquid meal was determined using scintigraphy. Intestinal inflammation was assessed by myeloperoxidase (MPO) activity in ileal muscle whole mounts. IM significantly reduced gastric emptying compared to laparotomy. Pretreatment with ISIS-3082 (0.1–1 mg kg−1) as well as ICAM-1 antibodies (10 mg kg−1), but not ISIS-8997 or saline, improved gastric emptying in a dose-dependent manner. This effect diminished with higher doses of ISIS-3082 (3–10 mg kg−1). Similarly, ISIS-3082 (0.1–1 mg kg−1) and ICAM-1 antibodies, but not ISIS-8997 or higher doses of ISIS-3082 (3–10 mg kg−1), reduced manipulation-induced inflammation. Immunohistochemistry showed reduction of ICAM-1 expression with ISIS-3082 only. ISIS-3082 pretreatment prevents postoperative ileus in mice by reduction of manipulation-induced local intestinal muscle inflammation. Our data suggest that targeting ICAM-1 using antisense oligonucleotides may represent a new therapeutic approach to the prevention of postoperative ileus. PMID:15997238

  20. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  1. Roles of microRNA-34a in the pathogenesis of placenta accreta.

    PubMed

    Umemura, Kota; Ishioka, Shin-Ichi; Endo, Toshiaki; Ezaka, Yoshiaki; Takahashi, Madoka; Saito, Tsuyoshi

    2013-01-01

    MicroRNA-34a (miR-34a) is associated with invasion and metastasis of various cancers. The trophoblastic cells of placenta accreta invade into the myometrium in a similar way to the invasion of cancers. We studied the roles of miR-34a in the pathogenesis of placenta accreta. The human choriocarcinoma cell line JAR was used for in vitro experiments as a model of trophoblasts, and placental tissues from the operative specimen of patients with or without placenta accreta were used for experiments in vivo. Morpholino antisense oligomer against miR-34a (miR-34a Morpho/AS) was added to JAR, and the expression of miR-34a and plasminogen activator inhibitor-1 (PAI-1) was determined by real time PCR. The effects of antisense, interleukin (IL)-6 and IL-8 in the process of invasion were studied with an invasion assay. Expression of miR-34a in vivo was studied with the use of fluorescent in situ hybridization (FISH). Expression of miR-34a was inhibited by 65% with the administration of antisense, and a slight increase in miR-34a expression was observed with the addition of IL-6 and IL-8. PAI-1 expression decreased with the addition of IL-6 and IL-8, and increased with the administration of antisense. There was an increase in invasive capacity through the inhibition of miR-34a expression. Strong FISH expression of miR-34a was observed in trophoblast cells of non-placenta accreta, and a clear decrease in miR-34a expression was observed in those of placenta accreta. Expression of miR-34a was downregulated in placenta accreta. In vitro experiments also showed that the invasive potential of JAR increased by suppressing miR-34a, probably through the expression of PAI-1. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  2. A Phase I, Randomised, First-in-Human Study of an Antisense Oligonucleotide Directed Against SOD1 Delivered Intrathecally in SOD1-Familial ALS Patients

    PubMed Central

    Miller, Timothy; Pestronk, Alan; David, William; Rothstein, Jeffrey; Simpson, Ericka; Appel, Stanley H.; Andres, Patricia L.; Mahoney, Katy; Allred, Peggy; Alexander, Katie; Ostrow, Lyle W.; Schoenfeld, David; Macklin, Eric A.; Norris, Daniel A.; Manousakis, Georgios; Crisp, Matthew; Smith, Richard; Bennett, C.F.; Bishop, Kathie; Cudkowicz, Merit E

    2013-01-01

    Objective To evaluate the safety, tolerability, and pharmacokinetics of an antisense oligonucleotide designed to inhibit SOD1 expression (ISIS 333611) following intrathecal administration in patients with SOD1-related familial amyotrophic lateral sclerosis (ALS). Background Mutations in SOD1 cause 13% of familial ALS. In animal studies, ISIS 333611 delivered to the cerebrospinal fluid (CSF) distributed to the brain and spinal cord, decreased SOD1 mRNA and protein levels in spinal cord tissue, and prolonged survival in the SOD1G93A rat ALS model. Methods In a randomized, placebo controlled Phase 1 trial, ISIS 333611 was delivered by intrathecal infusion using an external pump over 11.5 hours at increasing doses to four cohorts of eight SOD1 positive ALS subjects (randomized 6 drug: 2 placebo/cohort). Subjects were allowed to re-enroll in subsequent cohorts. Safety and tolerability assessments were made during the infusion and periodically over 28 days following the infusion. CSF and plasma drug levels were measured. Findings No dose-limiting toxicities were identified at doses up to 3.0 mg. No safety or tolerability concerns related to ISIS 333611 were identified. There were no serious adverse events (AEs) in ISIS 333611-treated subjects. Re-enrollment and re-dosing of subjects with ISIS 333611 was also well tolerated. Dose-dependent CSF and plasma concentrations were observed. Interpretation In this first clinical study to report intrathecal delivery of an antisense oligonucleotide, ISIS 333611 was well tolerated when administered as an intrathecal infusion in subjects with SOD1 familial ALS. CSF and plasma drug levels were consistent with levels predicted from preclinical studies. These results suggest that antisense oligonucleotide delivery to the central nervous system may be a feasible therapeutic strategy for neurological disorders. Source of funding ALS Association, Muscular Dystrophy Association, Isis Pharmaceuticals PMID:23541756

  3. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice.

    PubMed

    Shan, Lin; Aster, Jon C; Sklar, Jeffrey; Sunday, Mary E

    2007-02-01

    The notch gene family encodes transmembrane receptors that regulate cell differentiation by interacting with surface ligands on adjacent cells. Previously, we demonstrated that tumor necrosis factor-alpha (TNF) induces neuroendocrine (NE) cell differentiation in H82, but not H526, undifferentiated small cell lung carcinoma lines. We now test the hypothesis that TNF mediates NE cell differentiation in part by altering Notch gene expression. First, using RT-PCR, we determined that TNF treatment of H82, but not H526, transiently decreases notch-1 mRNA in parallel with induction of gene expression for the NE-specific marker DOPA decarboxylase (DDC). Second, we treated H82 and H526 with notch-1 antisense vs. sense oligodeoxynucleotides. Using quantitative RT-PCR and Western analyses we demonstrate that DDC mRNA and protein are increased in H82 by notch-1 antisense, whereas notch-1 mRNA and activated Notch-1 protein are decreased. mRNA for Hes1, a transcription factor downstream from activated Notch, is also decreased by Notch-1 antisense in H82 but not H526. After 7 days of Notch-1 antisense treatment, neural cell adhesion molecule (NCAM) immunoreactivity is induced in H82 but not H526. Third, we generated transgenic mice bearing notch-1 driven by the neural/NE-specific calcitonin promoter, which express activated Notch-1 in developing lung epithelium. Newborn NotchCal mouse lungs have high levels of hes1 mRNA, reflecting increased activated Notch, compared with wild-type. NotchCal lungs have decreased CGRP-positive NE cells, decreased protein gene product 9.5 (PGP9.5)-positive NE cells, and decreased gastrin-releasing peptide (GRP), CGRP, and DDC mRNA levels compared with normal littermates. Cumulatively, these observations provide further support for a role for Notch-1 signaling in regulating pulmonary NE cell differentiation.

  4. Antisense oligonucleotides for the treatment of dyslipidaemia.

    PubMed

    Visser, Maartje E; Witztum, Joseph L; Stroes, Erik S G; Kastelein, John J P

    2012-06-01

    Antisense oligonucleotides (ASOs) are short synthetic analogues of natural nucleic acids designed to specifically bind to a target messenger RNA (mRNA) by Watson-Crick hybridization, inducing selective degradation of the mRNA or prohibiting translation of the selected mRNA into protein. Antisense technology has the ability to inhibit unique targets with high specificity and can be used to inhibit synthesis of a wide range of proteins that could influence lipoprotein levels and other targets. A number of different classes of antisense agents are under development. To date, mipomersen, a 2'-O-methoxyethyl phosphorothioate 20-mer ASO, is the most advanced ASO in clinical development. It is a second-generation ASO developed to inhibit the synthesis of apolipoprotein B (apoB)-100 in the liver. In Phase 3 clinical trials, mipomersen has been shown to significantly reduce plasma low-density lipoprotein cholesterol (LDL-c) as well as other atherogenic apoB containing lipoproteins such as lipoprotein (a) [Lp(a)] and small-dense LDL particles. Although concerns have been raised because of an increase in intrahepatic triglyceride content, preliminary data from long-term studies suggest that with continued treatment, liver fat levels tend to stabilize or decline. Further studies are needed to evaluate potential clinical relevance of these changes. Proprotein convertase subtilisin/kexin-9 (PCSK9) is another promising novel target for lowering LDL-c by ASOs. Both second-generation ASOs and ASOs using locked nucleic acid technology have been developed to inhibit PCSK9 and are under clinical development. Other targets currently being addressed include apoC-III and apo(a) or Lp(a). By directly inhibiting the synthesis of specific proteins, ASO technology offers a promising new approach to influence the metabolism of lipids and to control lipoprotein levels. Its application to a wide variety of potential targets can be expected if these agents prove to be clinically safe and effective.

  5. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, (3-methylphenyl)-modified, substituted (generic). 721.10149 Section 721.10149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  6. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, (3-methylphenyl)-modified, substituted (generic). 721.10149 Section 721.10149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  7. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon black, (4-methylphenyl)-modified, substituted (generic). 721.10150 Section 721.10150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  8. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon black, (4-methylphenyl)-modified, substituted (generic). 721.10150 Section 721.10150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substance...

  9. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  10. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  11. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  12. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...

  13. Optoelectronic investigation of nanodiamond interactions with human blood

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  14. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    NASA Astrophysics Data System (ADS)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  15. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    PubMed

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  16. Antibiotic Algae by Chemical Surface Engineering.

    PubMed

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes.

    PubMed

    Schultze, Tilman; Izar, Benjamin; Qing, Xiaoxing; Mannala, Gopala K; Hain, Torsten

    2014-01-01

    Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development.

  18. [Study toward practical use of oligonucleotide therapeutics].

    PubMed

    Inoue, Takao; Yoshida, Tokuyuki

    2014-01-01

    Over the past decade, oligonucleotide-based therapeutics such as antisense oligonucleotides and small interfering RNAs (siRNAs) have been developed extensively. For example, mipomersen (Kynamro; ISIS Pharmaceuticals), which is a second-generation antisense oligonucleotide administered by subcutaneous injection, has recently been approved by the FDA for the treatment of homozygous familial hypercholesterolemia. On the other hands, methods for the evaluation of quality, efficacy and safety of oligonucleotide therapeutics have not been fully discussed. Furthermore, the regulatory guidance specific for oligonucleotide therapeutics has not been established yet. Under these circumstances, we started to collaborate with Osaka University and PMDA to discuss regulatory science focused on oligonucleotide therapeutics. Through the collaboration, we would like to propose the possible design of quality evaluation and preclinical safety-evaluation of oligonucleotide therapeutics.

  19. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids.

    PubMed

    Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C

    2016-02-20

    We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.

  20. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

Top