Science.gov

Sample records for chemically modified oligonucleotides

  1. Automated parallel synthesis of 5'-triphosphate oligonucleotides and preparation of chemically modified 5'-triphosphate small interfering RNA.

    PubMed

    Zlatev, Ivan; Lackey, Jeremy G; Zhang, Ligang; Dell, Amy; McRae, Kathy; Shaikh, Sarfraz; Duncan, Richard G; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2013-02-01

    A fully automated chemical method for the parallel and high-throughput solid-phase synthesis of 5'-triphosphate and 5'-diphosphate oligonucleotides is described. The desired full-length oligonucleotides were first constructed using standard automated DNA/RNA solid-phase synthesis procedures. Then, on the same column and instrument, efficient implementation of an uninterrupted sequential cycle afforded the corresponding unmodified or chemically modified 5'-triphosphates and 5'-diphosphates. The method was readily translated into a scalable and high-throughput synthesis protocol compatible with the current DNA/RNA synthesizers yielding a large variety of unique 5'-polyphosphorylated oligonucleotides. Using this approach, we accomplished the synthesis of chemically modified 5'-triphosphate oligonucleotides that were annealed to form small-interfering RNAs (ppp-siRNAs), a potentially interesting class of novel RNAi therapeutic tools. The attachment of the 5'-triphosphate group to the passenger strand of a siRNA construct did not induce a significant improvement in the in vitro RNAi-mediated gene silencing activity nor a strong specific in vitro RIG-I activation. The reported method will enable the screening of many chemically modified ppp-siRNAs, resulting in a novel bi-functional RNAi therapeutic platform. PMID:23260577

  2. Design and applications of modified oligonucleotides.

    PubMed

    Gallo, M; Montserrat, J M; Iribarren, A M

    2003-02-01

    Oligonucleotides have a wide range of applications in fields such as biotechnology, molecular biology, diagnosis and therapy. However, the spectrum of uses can be broadened by introducing chemical modifications into their structures. The most prolific field in the search for new oligonucleotide analogs is the antisense strategy, where chemical modifications confer appropriate characteristics such as hybridization, resistance to nucleases, cellular uptake, selectivity and, basically, good pharmacokinetic and pharmacodynamic properties. Combinatorial technology is another research area where oligonucleotides and their analogs are extensively employed. Aptamers, new catalytic ribozymes and deoxyribozymes are RNA or DNA molecules individualized from a randomly synthesized library on the basis of a particular property. They are identified by repeated cycles of selection and amplification, using PCR technologies. Modified nucleotides can be introduced either during the amplification procedure or after selection.

  3. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  4. Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides

    DOEpatents

    Golova, Julia B.; Chernov, Boris K.

    2010-04-27

    New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.

  5. 2'-O-[2-(guanidinium)ethyl]-modified oligonucleotides: stabilizing effect on duplex and triplex structures

    SciTech Connect

    Prakash, T.P.; Puschl, A.; Lesnik, E.; Mohan, V.; Tereshko, V.; Egli, M.; Manoharan, M.

    2010-03-08

    Oligonucleotides with a novel 2'-O-[2-(guanidinium)ethyl] (2'-O-GE) modification have been synthesized using a novel protecting group strategy for the guanidinium group. This modification enhances the binding affinity of oligonucleotides to RNA as well as duplex DNA ({Delta}T{sub m} 3.2 C per modification). The 2'-O-GE modified oligonucleotides exhibited exceptional resistance to nuclease degradation. The crystal structure of a palindromic duplex formed by a DNA oligonucleotide with a single 2'-O-GE modification was solved at 1.16 {angstrom} resolution.

  6. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    PubMed

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  7. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  8. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  9. 2-O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analog of 2-O-[2-(Methoxy)ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNA

    SciTech Connect

    Prakash, T.P.; Manoharan, M.; Fraser, A.S.; Kawasaki, A.M.; Lesnik, E.; Sioufi, N.; Leeds, J.M.; Teplova, M.; Egli, M.

    2010-03-08

    A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.

  10. New aspects of the fragmentation mechanisms of unmodified and methylphosphonate-modified oligonucleotides.

    PubMed

    Monn, Selina T M; Schürch, Stefan

    2007-06-01

    A set of pentanucleotides was investigated by electrospray tandem mass spectrometry with the focus on the fragmentation mechanism. Results reveal new aspects of the fragmentation mechanism of modified and unmodified oligonucleotides and demonstrate the influence of the nucleobases on the decomposition of oligonucleotides. Adenine-rich oligonucleotides fragment easily resulting in abundant peaks corresponding to the DNA-typical a-B- and w-ions. On the other hand, thymine was found to have a stabilizing effect, which is reflected by the preferred formation of the w(4)-ions and the relatively low abundance of shorter w-ions upon dissociation of pentanucleotides. Data from investigation of the formation of w(4)-ions support a beta-elimination mechanism. Results obtained by investigation of oligonucleotides with an abasic site confirm this mechanism, which is independent of nucleobase loss. Experiments with methylphosphonate oligonucleotides show a remarkable change in the fragmentation pattern due to the modification. It was found that charges are located on the nucleobases and initiate the fragmentation mechanism. The stability of the oligonucleotide is reduced and no a-B-fragment ions are formed wherever there is a methylphosphonate group within the backbone. This fact also demonstrates that fragmentation is locally controlled.

  11. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.

    PubMed

    Kasuya, Takeshi; Hori, Shin-Ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer's gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  12. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

    PubMed Central

    Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer’s gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  13. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    PubMed

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye.

  14. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    PubMed

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye. PMID:26774580

  15. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion.

    PubMed

    Wang, Harris H; Xu, George; Vonner, Ashley J; Church, George

    2011-09-01

    Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2'-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5' and 3' termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes.

  16. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; van Hattum, Hilde; van Dongen, William D.; Murph, Mandi M.; Bartlett, Michael G.

    2016-09-01

    Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase.

  17. N-Branched acyclic nucleoside phosphonates as monomers for the synthesis of modified oligonucleotides.

    PubMed

    Hocková, Dana; Rosenbergová, Šárka; Ménová, Petra; Páv, Ondřej; Pohl, Radek; Novák, Pavel; Rosenberg, Ivan

    2015-04-21

    Protected N-branched nucleoside phosphonates containing adenine and thymine bases were prepared as the monomers for the introduction of aza-acyclic nucleotide units into modified oligonucleotides. The phosphotriester and phosphoramidite methods were used for the incorporation of modified and natural units, respectively. The solid phase synthesis of a series of nonamers containing one central modified unit was successfully performed in both 3'→5' and 5'→3' directions. Hybridization properties of the prepared oligoribonucleotides and oligodeoxyribonucleotides were evaluated. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a considerable destabilizing effect of the introduced units. We also examined the substrate/inhibitory properties of aza-acyclic nucleoside phosphono-diphosphate derivatives (analogues of nucleoside triphosphates) but neither inhibition of human and bacterial DNA polymerases nor polymerase-mediated incorporation of these triphosphate analogues into short DNA was observed. PMID:25766752

  18. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals.

    PubMed

    Seth, Punit P; Jazayeri, Ali; Yu, Jeff; Allerson, Charles R; Bhat, Balkrishen; Swayze, Eric E

    2012-01-01

    We report the structure activity relationships of short 14-mer phosphorothioate gapmer antisense oligonucleotides (ASOs) modified with α-L-locked nucleic acid (LNA) and related modifications targeting phosphatase and tensin homologue (PTEN) messenger RNA in mice. α-L-LNA represents the α-anomer of enantio-LNA and modified oligonucleotides show LNA like binding affinity for complementary RNA. In contrast to sequence matched LNA gapmer ASOs which showed elevations in plasma alanine aminotransferase (ALT) levels indicative of hepatotoxicity, gapmer ASOs modified with α-L-LNA and related analogs in the flanks showed potent downregulation of PTEN messenger RNA in liver tissue without producing elevations in plasma ALT levels. However, the α-L-LNA ASO showed a moderate dose-dependent increase in liver and spleen weights suggesting a higher propensity for immune stimulation. Interestingly, replacing α-L-LNA nucleotides in the 3'- and 5'-flanks with R-5'-Me-α-L-LNA but not R-6'-Me- or 3'-Me-α-L-LNA nucleotides, reversed the drug induced increase in organ weights. Examination of structural models of dinucleotide units suggested that the 5'-Me group increases steric bulk in close proximity to the phosphorothioate backbone or produces subtle changes in the backbone conformation which could interfere with recognition of the ASO by putative immune receptors. Our data suggests that introducing steric bulk at the 5'-position of the sugar-phosphate backbone could be a general strategy to mitigate the immunostimulatory profile of oligonucleotide drugs. In a clinical setting, proinflammatory effects manifest themselves as injection site reactions and flu-like symptoms. Thus, a mitigation of these effects could increase patient comfort and compliance when treated with ASOs.Molecular Therapy - Nucleic Acids (2012) 1, e47; doi:10.1038/mtna.2012.34; published online 18 September 2012. PMID:23344239

  19. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.

    PubMed

    Sochacka, E

    2001-01-01

    In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine. PMID:11720000

  20. Physico-chemical analysis of G-quadruplex containing bunch-oligonucleotides.

    PubMed

    Petraccone, Luigi; Martino, Luigi; Duro, Ida; Oliviero, Giorgia; Borbone, Nicola; Piccialli, Gennaro; Giancola, Concetta

    2007-02-20

    A growing number of evidences suggest that DNA G-quadruplex structures play an important role in many relevant biological processes. The introduction of chemical modifications in quadruplex structures could enhance the in vivo biological activity. The correlation between the physico-chemical properties and chemical modifications represents an essential step toward the de novo design of quadruplex forming oligonucleotides for biomedical applications. We report the physico-chemical characterisation of a quadruplex formed by a bunch of four d(TG4T) oligonucleotides whose 3'-ends are linked together by a tetra-branched linker. The study was performed by circular dichroism, gel electrophoresis and molecular modelling techniques. The data indicate an high stability for this kind of quadruplex and add some information on the role of the tetra-branched linker on the quadruplex stability.

  1. Chemically modified polypyrrole

    SciTech Connect

    Inagaki, T.; Skotheim, T.A.; Lee, H.S.; Okamoto, Y.; Samuelson, L.; Tripathy, S.

    1988-01-01

    Polypyrrole (PPy) films have been systematically modified with electroactive groups in the ..beta..-position to design electrode materials with specific electrochemical and surface active properties. Electrochemical copolymerization of pyrrole and 3-(6-ferrocenyl,6-hydroxyhexyl)pyrrole (P-6-Fc) yields a ferrocene functionalized polypyrrole with a controlled amount to ferrocene functionalization. And also, copolymers of pyrrole and 3-(4-(2,5- dimethoxyphenyl)butyl)pyrrole (P-MP) can be made by electrochemical polymerization and converted to the copolymers containing pH dependent electroactive hydroquinone moieties. Derivatized pyrroles have also been incorporated into Langmuir-Blodgett film structures. The surface pressure-area isotherms of 3-(13-ferrocenyl,13-hydroxytridecy)pyrrole (P-13-Fc) and the mixed monolayer of P-13-Fc and 3-n-hexadecylpyrrole (HDP) are shown. 17 refs., 4 figs.

  2. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  3. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A–T phosphoramidite building blocks

    PubMed Central

    Schmidtgall, Boris; Höbartner, Claudia

    2015-01-01

    Summary Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T–T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X–T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A–T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues. PMID:25670992

  4. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides

    PubMed Central

    Burdick, Andrew D.; Sciabola, Simone; Mantena, Srinivasa R.; Hollingshead, Brett D.; Stanton, Robert; Warneke, James A.; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Makarov, Sergei S.; Reed, Lori A.; Davis, John W.; Whiteley, Laurence O.

    2014-01-01

    Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure–toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure–toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing. PMID:24550163

  5. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    PubMed Central

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  6. Aptamer-modified PLGA nanoparticle delivery of triplex forming oligonucleotide for targeted prostate cancer therapy.

    PubMed

    Jiao, J; Zou, Q; Zou, M H; Guo, R M; Zhu, S; Zhang, Y

    2016-01-01

    Presented study aimed to prepare A10 aptamer-modified poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with triplex forming oligonucleotides(TFO) for targeted prostate cancer therapy. We first synthesized a PLGA-PEG-Apt copolymer. The PLGA-PEG-Apt nanoparticles (NP-Apt) were loaded with TFO using double emulsion solvent evaporation method. Carboxy-fluorescein labeled TFO-NP-Apt, TFO-NP and TFO were prepared for cellular uptake experiments. Cell counting kit-8 (CCK-8) test was used to determine the ability of TFO-NP-Apt to inhibit LNCaP cell proliferation. RT-PCR and Western blot was conducted to analyze AR gene expressing. Then, a mouse model of prostate cancer was used to evaluate the anti-cancer effect of TFO-NP-Apt in vivo. We confirmed that the PLGA-PEG-Apt conjugation was successful. The TFO encapsulation efficiency and drug loading percentage were 46.1± 3.6% and 40.8±5.3%, respectively. TFO-NP-Apt showed a more efficient cellular uptake than TFO-NP or TFO in LNCaP cells. TFO-NP-Apt was significantly more cytotoxic than TFO-NP and TFO in the CCK-8 test (p<0.001). TFO-NP-Apt silenced the AR gene better than unconjugated Apt, naked TFO, NP or saline. TFO-NP-Apt were more effective than TFO-NP, naked TFO, NP and saline at inhibiting prostate cancer growth in vivo (p<0.05). Aptamer-modified TFO-loaded PLGA nanoparticles may prove useful in targeted therapy for advanced prostate cancer. PMID:27268920

  7. Exploiting protected maleimides to modify oligonucleotides, peptides and peptide nucleic acids.

    PubMed

    Paris, Clément; Brun, Omar; Pedroso, Enrique; Grandas, Anna

    2015-04-10

    This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  8. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.

    PubMed

    Carpini, Guido; Lucarelli, Fausto; Marrazza, Giovanna; Mascini, Marco

    2004-09-15

    An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.

  9. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale

    PubMed Central

    Matthes, Hans W.D.; Zenke, W. Martin; Grundström, Thomas; Staub, Adrien; Wintzerith, Marguerite; Chambon, Pierre

    1984-01-01

    An inexpensive, extremely rapid manual method for simultaneous synthesis of large numbers of oligodeoxyribonucleotides on 50 or 150 nanomole scale is described. The oligonucleotides are assembled in parallel by the phosphotriester method on small cellulose paper disks in a simple gas pressure-controlled continuous-flow system. For each addition of a nucleotide the disks are sorted into four sets which are placed in four columns for addition of A, C, G and T, respectively. During one 2-week period, three rounds of synthesis by this method yielded 254 oligomers (8- to 22-mers), many of which were also purified during this time. Using 50 nanomole scale reactions the yields for 17-mers, for example, were in the range of 0.5 O.D.260 units (˜5 nmol, i.e., ˜10% yield), an amount sufficient for most purposes. The equipment required is relatively inexpensive and for the most part usually already available in molecular biology laboratories. All chemicals are commercially available and the current reagent cost per oligonucleotide (25 μg, average length 17-mer) is ˜3 US dollars. ImagesFig. 1.Fig. 3.Fig. 4.Fig. 5. PMID:16453516

  10. Guanine-modified inhibitory oligonucleotides efficiently impair TLR7- and TLR9-mediated immune responses of human immune cells.

    PubMed

    Römmler, Franziska; Hammel, Monika; Waldhuber, Anna; Müller, Tina; Jurk, Marion; Uhlmann, Eugen; Wagner, Hermann; Vollmer, Jörg; Miethke, Thomas

    2015-01-01

    Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, is thought to contribute to the complicated pathophysiology of systemic lupus erythematosus (SLE). These ligands induce the release of type-I interferons by plasmacytoid dendritic cells and autoreactive antibodies by B-cells, both responses being key events in perpetuating SLE. We recently described the development of inhibitory oligonucleotides (INH-ODN), which are characterized by a phosphorothioate backbone, a CC(T)XXX3-5GGG motif and a chemical modification of the G-quartet to avoid the formation of higher order structures via intermolecular G-tetrads. These INH-ODNs were equally or significantly more efficient to impair TLR7- and TLR9-stimulated murine B-cells, macrophages, conventional and plasmacytoid dendritic cells than the parent INH-ODN 2088, which lacks G-modification. Here, we evaluate the inhibitory/therapeutic potential of our set of G-modified INH-ODN on human immune cells. We report the novel finding that G-modified INH-ODNs efficiently inhibited the release of IFN-α by PBMC stimulated either with the TLR7-ligand oligoribonucleotide (ORN) 22075 or the TLR9-ligand CpG-ODN 2216. G-modification of INH-ODNs significantly improved inhibition of IL-6 release by PBMCs and purified human B-cells stimulated with the TLR7-ligand imiquimod or the TLR9-ligand CpG-ODN 2006. Furthermore, inhibition of B-cell activation analyzed by expression of activation markers and intracellular ATP content was significantly improved by G-modification. As observed with murine B-cells, high concentrations of INH-ODN 2088 but not of G-modified INH-ODNs stimulated IL-6 secretion by PBMCs in the absence of TLR-ligands thus limiting its blocking efficacy. In summary, G-modification of INH-ODNs improved their ability to impair TLR7- and TLR9-mediated signaling in those human immune cells which are considered as crucial in the pathophysiology of SLE.

  11. Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Zhu, Shuifang; Miao, Haizhen; Huang, Wensheng; Qiu, Minyan; Huang, Yan; Fu, Xuping; Li, Yao

    2007-07-11

    With the increasing development of genetically modified organism (GMO) detection techniques, the polymerase chain reaction (PCR) technique has been the mainstay for GMO detection. An oligonucleotide microarray is a glass chip to the surface of which an array of oligonucleotides was fixed as spots, each containing numerous copies of a sequence-specific probe that is complementary to a gene of interest. So it is used to detect ten or more targets synchronously. In this research, an event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity using multiplex-PCR together with oligonucleotide microarray. A commercial GM soybean (GTS 40-3-2) and six GM maize events (MON810, MON863, Bt176, Bt11, GA21, and T25) were detected by this method. The results indicate that it is a suitable method for the identification of these GM soybean and maizes. PMID:17559227

  12. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.

    PubMed

    Xiao, Yi; Lai, Rebecca Y; Plaxco, Kevin W

    2007-01-01

    Recent years have seen the development of a number of reagentless, electrochemical sensors based on the target-induced folding or unfolding of electrode-bound oligonucleotides, with examples reported to date, including sensors for the detection of specific nucleic acids, proteins, small molecules and inorganic ions. These devices, which are often termed electrochemical DNA (E-DNA) and E-AB (electrochemical, aptamer-based) sensors, are comprised of an oligonucleotide probe modified with a redox reporter (in this protocol methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of an analyte to the oligonucleotide probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. This class of sensors perform well even when challenged directly with blood serum, soil and other complex, multicomponent sample matrices. This protocol describes the fabrication of E-DNA and E-AB sensors. The protocol can be completed in 12 h.

  13. Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Zhu, Shuifang; Miao, Haizhen; Huang, Wensheng; Qiu, Minyan; Huang, Yan; Fu, Xuping; Li, Yao

    2007-07-11

    With the increasing development of genetically modified organism (GMO) detection techniques, the polymerase chain reaction (PCR) technique has been the mainstay for GMO detection. An oligonucleotide microarray is a glass chip to the surface of which an array of oligonucleotides was fixed as spots, each containing numerous copies of a sequence-specific probe that is complementary to a gene of interest. So it is used to detect ten or more targets synchronously. In this research, an event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity using multiplex-PCR together with oligonucleotide microarray. A commercial GM soybean (GTS 40-3-2) and six GM maize events (MON810, MON863, Bt176, Bt11, GA21, and T25) were detected by this method. The results indicate that it is a suitable method for the identification of these GM soybean and maizes.

  14. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    SciTech Connect

    Prhavc, M.; Prakash, T.P.; Minasov, G.; Egli, M.; Manoharan, M.

    2010-03-08

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  15. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides.

    PubMed

    van der Meulen, Stef A J; Dubacheva, Galina V; Dogterom, Marileen; Richter, Ralf P; Leunissen, Mirjam E

    2014-06-10

    Decorating lipid bilayers with oligonucleotides has great potential for both fundamental studies and applications, taking advantage of the membrane properties and the specific Watson-Crick base pairing. Here, we systematically studied the binding of DNA oligonucleotides with the frequently used hydrophobic anchors cholesterol, stearyl, and distearyl to supported lipid bilayers made of dioleoylphosphatidylcholine (DOPC) by quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry (SE). All three anchors were found to incorporate well into DOPC lipid membranes, yet only the distearyl-based anchor remained stable in the bilayer when it was rinsed. The unstable anchoring of the cholesterol- and stearyl-based oligonucleotides can, however, be stabilized by hybridization of the oligonucleotides to complementary DNA modified with a second hydrophobic anchor of the same type. In all cases, the incorporation into the lipid bilayer was found to be limited by mass transport, although micelle formation likely reduced the effective concentration of available oligonucleotides in some samples, leading to substantial differences in binding rates. Using a viscoelastic model to determine the thickness of the DNA layer and elucidating the surface coverage by SE, we found that at equal bulk concentrations double-stranded DNA constructs attached to the lipid bilayer establish a layer that is thicker than that of single-stranded oligonucleotides, whereas the DNA surface densities are similar. Shortening the length of the oligonucleotides, on the other hand, does alter both the thickness and surface density of the DNA layer. This indicates that at the bulk oligonucleotide concentrations employed in our experiments, the packing of the oligonucleotides is not affected by the anchor type, but rather by the length of the DNA. The results are useful for material and biomedical applications that require efficient linking of oligonucleotides to lipid membranes. PMID

  16. Studies on chemically modified fibrinogen.

    PubMed

    Kloczewiak, M; Wegrzynowicz, Z; Matthias, F R; Heene, D L; Zajdel, M

    1976-04-30

    Treatment of fibrinogen with maleic acid anhydride renders fibrinogen unclottable depending on the degree of modification of the molecule. According to radioactive studies the release of fibrinopeptides by thrombin or reptilase is undisturbed. The incoagulability is due to inhibition of the polymerization process of fibrinmonomers derived from modified fibronogen, mainly caused by the increase of electronegative charges upon the fibrogen molecule. According to discelectrophoretic analysis modified fibrinogen fails to produce fragments D and E following plasmic digestion, however, may be degraded to high molecular weight products. Modified fibrinogen reveals some similarities to abnormal fibrinogens in congenital dysfibrinogenemia with regard to its functional properties.

  17. Invader Assisted Enzyme-Linked Immunosorbent Assay for Colorimetric Detection of Disease Biomarkers Using Oligonucleotide Probe-Modified Gold Nanoparticles.

    PubMed

    Song, Qinxin; Qi, Xiemin; Jia, Huning; He, Liang; Kumar, Shalen; Pitman, Janet L; Zou, Bingjie; Zhou, Guohua

    2016-04-01

    We successfully developed an invader assisted ELISA assay (iaELISA) for sensitive detection of disease biomarkers. The method includes three key steps as follows; biotinylated detection antibody was at first used to capture targeted antigen by sandwich ELISA. The biotinylated oligonucleotide was then attached to detection antibody via streptavidin. Finally, the cascade invader reactions were employed to amplify the biotinylated oligonucleotide specific to the antigen so that detection of the antigen was transformed into signal amplification of the antigen-specific DNA. To achieve colorimetric detection, oligonucleotide probe and modified gold nanoparticles (AuNPs) were coupled with the invader assay. Utilization of the hairpin probes in the invader reaction brought about free AuNPs, resulting in the positive read-out (red color). On the other hand, aggregation of the AuNPs occurred when the hairpin probes were not utilized in the reaction. This method was successfully used to detect as low as 2.4 x 10(-11) g/mL of HBsAg by both naked eye and spectrophotometer. This sensitivity was about 100 times higher than that of conventional ELISA method. The method was also used to assay 16 serum specimens from HBV-infected patients and 8 serum specimens from HBV-negative donors and results were in good agreement with those obtained from the conventional ELISA. As the invader assay is sensitive to one base sequence, a good specificity was also obtained by detecting other antigens like hepatitis A virus (HAV) and BSA. The method has therefore much potential for ultrasensitive and cost-effective detection of targeted proteins that have clinical importance.

  18. Invader Assisted Enzyme-Linked Immunosorbent Assay for Colorimetric Detection of Disease Biomarkers Using Oligonucleotide Probe-Modified Gold Nanoparticles.

    PubMed

    Song, Qinxin; Qi, Xiemin; Jia, Huning; He, Liang; Kumar, Shalen; Pitman, Janet L; Zou, Bingjie; Zhou, Guohua

    2016-04-01

    We successfully developed an invader assisted ELISA assay (iaELISA) for sensitive detection of disease biomarkers. The method includes three key steps as follows; biotinylated detection antibody was at first used to capture targeted antigen by sandwich ELISA. The biotinylated oligonucleotide was then attached to detection antibody via streptavidin. Finally, the cascade invader reactions were employed to amplify the biotinylated oligonucleotide specific to the antigen so that detection of the antigen was transformed into signal amplification of the antigen-specific DNA. To achieve colorimetric detection, oligonucleotide probe and modified gold nanoparticles (AuNPs) were coupled with the invader assay. Utilization of the hairpin probes in the invader reaction brought about free AuNPs, resulting in the positive read-out (red color). On the other hand, aggregation of the AuNPs occurred when the hairpin probes were not utilized in the reaction. This method was successfully used to detect as low as 2.4 x 10(-11) g/mL of HBsAg by both naked eye and spectrophotometer. This sensitivity was about 100 times higher than that of conventional ELISA method. The method was also used to assay 16 serum specimens from HBV-infected patients and 8 serum specimens from HBV-negative donors and results were in good agreement with those obtained from the conventional ELISA. As the invader assay is sensitive to one base sequence, a good specificity was also obtained by detecting other antigens like hepatitis A virus (HAV) and BSA. The method has therefore much potential for ultrasensitive and cost-effective detection of targeted proteins that have clinical importance. PMID:27301208

  19. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  20. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  1. Nucleotide replacement at two sites can be directed by modified single-stranded oligonucleotides in vitro and in vivo.

    PubMed

    Agarwal, Sheba; Gamper, Howard B; Kmiec, Eric B

    2003-01-01

    Studies involving the alteration of DNA sequences by modified single-stranded oligonucleotides in vitro and in vivo have revealed potential applications for functional genomics. Repair of a replacement, deletion, or insertion mutation has already been achieved with molecules having lengths between 25 and 74 bases. But, other vector parameters still remain to be explored. Here, the position of the single base in the vector directing the alteration was examined and the optimal site was found to be at or near the center of the vector. If that position is staggered 3' or 5', the frequencies of gene repair in vitro decreases. The potential of a single vector to direct two nucleotide changes at a specific site in a target sequence was also examined. Both targeted bases are corrected together at the same frequency if the sites are separated by three bases, but conversion linkage decreases precipitously when the distance is expanded to 15 and 27 nucleotides, respectively. These results suggest that single oligonucleotides can be used to direct nucleotide exchange at two independent sites, a reaction characteristic that may be useful for many genomics applications.

  2. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    PubMed Central

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  3. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides.

    PubMed

    Kel'in, Alexander V; Zlatev, Ivan; Harp, Joel; Jayaraman, Muthusamy; Bisbe, Anna; O'Shea, Jonathan; Taneja, Nate; Manoharan, Rajar M; Khan, Saeed; Charisse, Klaus; Maier, Martin A; Egli, Martin; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2016-03-18

    Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.

  4. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides.

    PubMed

    Kel'in, Alexander V; Zlatev, Ivan; Harp, Joel; Jayaraman, Muthusamy; Bisbe, Anna; O'Shea, Jonathan; Taneja, Nate; Manoharan, Rajar M; Khan, Saeed; Charisse, Klaus; Maier, Martin A; Egli, Martin; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2016-03-18

    Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers. PMID:26940174

  5. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. PMID:23768590

  6. Utilization of chemically modified lignin

    SciTech Connect

    Chem, M.J.

    1996-10-01

    A chemical modification method has been developed to convert lignin into lignin graft copolymers. The graft products are macromolecular surface active agents because, within each molecule, a hydrocarbon sidechain has been gown off of a natural oxyphenylpropyl backbone. Surface activity of the graft copolymers was indicated by their capacity to form stable emulsions between incompatible fluid phases and to adhesively bond to wood surfaces. Lignin has been grafted with ethenylbenzene (styrene), 4-methyl-2-oxy-3-oxopent-4-ene (methylmethacrylate), 2-propenamide(acrylamide), 2-propene nitrile (acrylonitrile), cationic monomers, and anionic monomers. Synthesis with anionic, cationic, or polar nonionic monomers produced water soluble, lignin copolymers that were effective dispersing, flocculating, and surface active agents. The nonionic polymers and their hydrolysis products are effective thinners and suspending agents for drilling mud formulations. In reactions with ethenylbenzene, lignin was used to make thermoplastic materials. These products have been shown to be poly(lignin-g-(1-phenylethylene))-containing materials by a series of solubility and extraction tests and are formed with 90% or more grafting efficiency for lignin. These materials have been shown to be thermoplastics, coupling agents for wood and plastic, and biodegradable plastics.

  7. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes.

    PubMed Central

    Connolly, B A; Rider, P

    1985-01-01

    Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448

  8. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    PubMed

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  9. Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases.

    PubMed

    Wheeler, Megan; Chardon, Antoine; Goubet, Astrid; Morihiro, Kunihiko; Tsan, Sze Yee; Edwards, Stacey L; Kodama, Tetsuya; Obika, Satoshi; Veedu, Rakesh N

    2012-11-18

    Enzymatic recognition of SeLNA nucleotides was investigated. KOD XL DNA polymerase was found to be an efficient enzyme in primer extension reactions. Polymerase chain reaction (PCR) amplification of SeLNA-modified DNA templates was also efficiently achieved by Phusion and KOD XL DNA polymerases. PMID:23042489

  10. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Miao, Haizhen; Wu, Houfei; Huang, Wensheng; Tang, Rong; Qiu, Minyan; Wen, Jianguo; Zhu, Shuifang; Li, Yao

    2006-07-15

    In this research, we developed a multiplex polymerase chain reaction (multiplex-PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a consecutive reaction to detect a genetically modified organism (GMO). There are a total of 20 probes for detecting a GMO in a DNA microarray which can be classified into three categories according to their purpose: the first for screening GMO from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes; the second for specific gene confirmation based on the target gene sequences such as herbicide-resistance or insect-resistance genes; the third for species-specific genes which the sequences are unique for different plant species. To ensure the reliability of this method, different kinds of positive and negative controls were used in DNA microarray. Commercial GM soybean, maize, rapeseed and cotton were identified by means of this method and further confirmed by PCR analysis and sequencing. The results indicate that this method discriminates between the GMOs very quickly and in a cost-saving and more time efficient way. It can detect more than 95% of currently commercial GMO plants and the limits of detection are 0.5% for soybean and 1% for maize. This method is proved to be a new method for routine analysis of GMOs.

  11. Molecular beacon modified sensor chips for oligonucleotide detection with optical readout.

    PubMed

    Su, Qiang; Wesner, Daniel; Schönherr, Holger; Nöll, Gilbert

    2014-12-01

    Three different surface bound molecular beacons (MBs) were investigated using surface plasmon fluorescence spectroscopy (SPFS) as an optical readout technique. While MB1 and MB2, both consisting of 36 bases, differed only in the length of the linker for surface attachment, the significantly longer MB3, consisting of 56 bases, comprised an entirely different sequence. For sensor chip preparation, the MBs were chemisorbed on gold via thiol anchors together with different thiol spacers. The influence of important parameters, such as the length of the MBs, the length of the linker between the MBs and the gold surface, the length and nature of the thiol spacers, and the ratio between the MBs and the thiol spacers was studied. After hybridization with the target, the fluorophore of the longer MB3 was oriented close to the surface, and the shorter MBs were standing more or less upright, leading to a larger increase in fluorescence intensity. Fluorescence microscopy revealed a homogeneous distribution of the MBs on the surface. The sensor chips could be used for simple and fast detection of target molecules with a limit of detection in the larger picomolar range. The response time was between 5 and 20 min. Furthermore, it was possible to distinguish between fully complementary and singly mismatched targets. While rinsing with buffer solution after hybridization with target did not result in any signal decrease, complete dehybridization could be carried out by intense rinsing with pure water. The MB modified sensor chips could be prepared in a repeatable manner and reused many times without significant decrease in performance.

  12. Chemically modified electrodes and related solution studies

    SciTech Connect

    Elliott, C.M.

    1990-01-01

    This report briefly discusses work done in the following areas of chemically modified electrodes: Spectroscopic studies of the modes of interactions of pyridine containing ligands with metal surfaces; attempted synthesis of gem-dihalide containing polymers for attachment of Mo{sub 2}S{sub 4} clusters; Synthesis of oxo-ruthenium dimer complexes as catalysts for H{sub 2} oxidation; and, studies of porphyrin based polymers which catalyze the oxidation (oxygenation) of olefins and benzylic carbons. (JDL)

  13. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    NASA Astrophysics Data System (ADS)

    Rull, Jordi; Nonglaton, Guillaume; Costa, Guillaume; Fontelaye, Caroline; Marchi-Delapierre, Caroline; Ménage, Stéphane; Marchand, Gilles

    2015-11-01

    The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO2) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric contrast optical technique, atomic force microscopy, multiple internal reflection infrared spectroscopy and X-ray photoelectron spectroscopy. The shelf life of the 3,4-epoxybutyltrimethoxysilane coating layer has also been studied. Finally, two different strategies of NH2-oligonucleotide grafting on EBTMOS coating layer have been compared, i.e. reductive amination and nucleophilic substitution, SN2. This EBTMOS based coating layer can be used for a wide range of applications

  14. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  15. Quality of chemically modified hemp fibers.

    PubMed

    Kostic, Mirjana; Pejic, Biljana; Skundric, Petar

    2008-01-01

    Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.

  16. Encoded libraries of chemically modified peptides.

    PubMed

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries.

  17. Chemically modified carbonic anhydrases useful in carbon capture systems

    SciTech Connect

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  18. Hydroxyapatite growth on cotton fibers modified chemically

    NASA Astrophysics Data System (ADS)

    Varela Caselis, J. L.; Reyes Cervantes, E.; Landeta Cortés, G.; Agustín Serrano, R.; Rubio Rosas, E.

    2014-09-01

    We have prepared carboxymethyl cellulose fibers (CMC) by chemically modifying cotton cellulose with monochloroacetic acid and calcium chloride solution. This modification favored the growth of hydroxyapatite (HAP) on the surface of the CMC fibers in contact with simulated body fluid solutions (SBF). After soaking in SBF for periods of 7, 14 and 21 days, formation of HAP was observed. Analysis by scanning electron microscopy and X-ray diffraction showed that crystallinity, crystallite size, and growth of HAP increased with the soaking time. The amount of HAP deposited on CMC fibers increased greatly after 21 days of immersion in the SBF, while the substrate surface was totally covered with hemispherical aggregates with the size of the order of 2 microns. Elemental analysis showed the presence of calcium and phosphate, with calcium/phosphate atomic ratio of 1.54. Fourier transform infrared spectroscopy bands confirmed the presence of HAP. The results suggest that cotton modified by calcium treatment has a nucleating ability and can accelerate the nucleation of HAP crystals.

  19. Quantitation of a low level coeluting impurity present in a modified oligonucleotide by both LC-MS and NMR.

    PubMed

    Smith, Marco; Beck, Tony

    2016-01-25

    This paper describes the use of two complementary techniques, LC-MS and NMR, to quantify a low level mono phosphate substituted impurity in an oligonucleotide drug substance. This impurity is the result of a sulphurisation failure, leading to the production of a sequence where a phosphorothioate linkage is replaced by a phosphate. Few quantitative methods are possible to analyse these challenging molecules especially if reversed phase ion pair chromatography, one of the most commonly used techniques for the separation of oligonucleotides, is unable to resolve the impurity in question. With the use of a standard addition method it could be demonstrated that both analytical techniques show equivalency and furthermore, the LC-MS method alone with additional validation has the potential to perform this quantitative assay with a high degree of accuracy. PMID:26512997

  20. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g.

  1. Pentopyranosyl Oligonucleotide Systems

    NASA Technical Reports Server (NTRS)

    Reck, Folkert; Kudick, Rene; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert; Wippo, Harald

    2001-01-01

    To determine whether the remarkable chemical properties of the pyranosyl isomer of RNA as an informational Watson-Crick base-pairing system are unique to the pentopyranosyl-(4 + 2)-oligonucleotide isomer derived from the RNA-building block D-ribose, studies on the entire family of diastereoisomeric pyranosyL(4 - Z)-oligonucleotide systems deriving from D-ribose. L-lyxose. D-xylose, and L-arabinose were carried out. The result of these extended studies is unambiguous: not only pyranosyl-RNA, but all members of the pentopyranosyl(4 + 2)-oligonucleotide family are highly efficient Watson-Crick base-pairing systems. Their synthesis and pairing properties will be described in a series of publications in this journal.

  2. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    SciTech Connect

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.; Prakash, Thazha P.; Berdeja, Andres; Yu, Jinghua; Lee, Sam; Watt, Andrew; Gaus, Hans; Bhat, Balkrishen; Swayze, Eric E.; Seth, Punit P.

    2012-03-16

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structures of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.

  3. Reliable and fast allele-specific extension of 3'-LNA modified oligonucleotides covalently immobilized on a plastic base, combined with biotin-dUTP mediated optical detection.

    PubMed

    Michikawa, Yuichi; Fujimoto, Kentaro; Kinoshita, Kenji; Kawai, Seiko; Sugahara, Keisuke; Suga, Tomo; Otsuka, Yoshimi; Fujiwara, Kazuhiko; Iwakawa, Mayumi; Imai, Takashi

    2006-12-01

    In the present work, a convenient microarray SNP typing system has been developed using a plastic base that covalently immobilizes amino-modified oligonucleotides. Reliable SNP allele discrimination was achieved by using allelic specificity-enhanced enzymatic extension of immobilized oligonucleotide primer, with a locked nucleic acid (LNA) modification at the SNP-discriminating 3'-end nucleotide. Incorporation of multiple biotin-dUTP molecules during primer extension, followed by binding of alkaline phosphatase-conjugated streptavidin, allowed optical detection of the genotyping results through precipitation of colored alkaline phosphatase substrates onto the surface of the plastic base. Notably, rapid primer extension was demonstrated without a preliminary annealing step of double-stranded template DNA, allowing overall processes to be performed within a couple of hours. Simultaneous evaluation of three SNPs in the genes TGFB1, SOD2 and APEX1, previously investigated for association with radiation sensitivity, in 25 individuals has shown perfect assignment with data obtained by another established technique (MassARRAY system).

  4. Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified ‘ultra-mild’ DNA synthesis

    PubMed Central

    Gillet, Ludovic C. J.; Alzeer, Jawad; Schärer, Orlando D.

    2005-01-01

    Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified ‘ultra-mild’ DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of β-mercaptoethanol) designed to remove protecting groups of commercially available ‘ultra-mild’ phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA. PMID:15814813

  5. Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha.

    PubMed

    Sewell, K Lea; Geary, Richard S; Baker, Brenda F; Glover, Josephine M; Mant, Timothy G K; Yu, Rosie Z; Tami, Joseph A; Dorr, F Andrew

    2002-12-01

    ISIS 104838 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that binds tumor necrosis factor-alpha (TNF-alpha) mRNA. It carries a 2'-methoxyethyl modification on the five 3' and 5' nucleotide sugars, with 10 central unmodified deoxynucleotides. ISIS 104838 was identified from a 264 ASO screen in phorbol myristate acetate-activated keratinocytes, and the dose response was assessed in lipopolysaccharide (LPS)-activated monocytes. Healthy males received multiple intravenous (i.v.) ISIS 104838 infusions in a placebo-controlled dose escalation trial (0.1-6 mg/kg). Additional volunteers received single or multiple subcutaneous (s.c.) injections. ISIS 104838 suppressed TNF-alpha protein by 85% in stimulated keratinocytes. The IC50 for TNF-alpha mRNA inhibition in stimulated monocytes was <1 microM. For i.v., C(max) occurred at the end of infusion. The effective plasma half-life was 15 to 45 min at 0.1 to 0.5 mg/kg and 1 to 1.8 h for higher doses. The apparent terminal plasma elimination half-life approximated 25 days. Obese subjects had higher plasma levels following equivalent mg/kg doses. For s.c. injections, C(max) occurred at 2 to 4 h and was lower than with equivalent i.v. dosing. Plasma bioavailability compared with i.v. was 82% following a 200 mg/ml s.c. injection. Transient activated partial thromboplastin time prolongation occurred after i.v. infusions and minimally after s.c. injections. Two subjects experienced rash, one a reversible platelet decrease, and mild injection site tenderness was noted. TNF-alpha production by peripheral blood leukocytes, induced ex vivo by LPS, was decreased by ISIS 104838 (p < 0.01). ISIS 104838, a second-generation antisense oligonucleotide, was generally well tolerated intravenously and subcutaneously. The pharmacokinetics support an infrequent dosing interval. Inhibition of TNF-alpha production ex vivo was demonstrated.

  6. Chemiresistive sensing with chemically modified metal and alloy nanoparticles.

    PubMed

    Ibañez, Francisco J; Zamborini, Francis P

    2012-01-23

    This review describes the use of chemically modified pure and alloyed metal nanoparticles for chemiresistive sensing applications. Chemically modified metal nanoparticles consist of a pure or alloyed metallic core with some type of chemical coating. Researchers have studied the electronic properties of 1D, 2D, and 3D assemblies of chemically modified metal nanoparticles, and even single individual nanoparticles. The interaction with the analyte alters the conductivity of the sensitive material, providing a signal to measure the analyte concentration. This review focuses on chemiresistive sensing of a wide variety of gas- and liquid-phase analytes with metal nanoparticles coated with organothiols, ions, polymers, surfactants, and biomolecules. Different strategies used to incorporate chemically modified nanoparticles into chemiresistive sensing devices are reviewed, focusing on the different types of metal and alloy compositions, coatings, methods of assembly, and analytes (vapors, gases, liquids, biological materials), along with other important factors.

  7. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes.

    PubMed Central

    Hanecak, R; Brown-Driver, V; Fox, M C; Azad, R F; Furusako, S; Nozaki, C; Ford, C; Sasmor, H; Anderson, K P

    1996-01-01

    Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and

  8. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays.

    PubMed

    Kakiuchi-Kiyota, Satoko; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2016-04-01

    Development of locked nucleic acid (LNA) gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by nontarget-mediated hepatotoxicity. Increased binding of hepatocellular proteins to toxic LNA gapmers may be one of the mechanisms contributing to LNA gapmer-induced hepatotoxicity in vivo. In the present study, we investigated the protein binding propensity of nontoxic sequence-1 (NTS-1), toxic sequence-2 (TS-2), and severely highly toxic sequence-3 (HTS-3) LNA gapmers using human protein microarrays. We previously demonstrated by the transcription profiling analysis of liver RNA isolated from mice that TS-2 and HTS-3 gapmers modulate different transcriptional pathways in mice leading to hepatotoxicity. Our protein array profiling demonstrated that a greater number of proteins, including ones associated with hepatotoxicity, hepatic system disorder, and cell functions, were bound by TS-2 and HTS-3 compared with NTS-1. However, the profiles of proteins bound by TS-2 and HTS-3 were similar and did not distinguish proteins contributing to severe in vivo toxicity. These results, together with the previous transcription profiling analysis, indicate that the combination of sequence-dependent transcription modulation and increased protein binding of toxic LNA gapmers contributes to hepatotoxicity. PMID:26643897

  9. Cytokines and therapeutic oligonucleotides.

    PubMed

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies.

  10. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    PubMed

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  11. Physical and Chemical Properties of Modified Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Bondar, V. S.; Bukayemsky, A. A.; Selyutin, G. E.; Kargin, V. F.

    A unique technology of nanodiamond surface modification is suggested which allows to separation of commercial nanodiamond powders into two fractions (F1 and F2), each possessing absolutely new properties as compared to the initial powder. Fl and F2 differ in size characteristics. Initial and modified nanodiamonds contain iron impurities and two types of nondiamond carbon. The color of the powders and hydrosols does not correlate with the content of non-diamond carbon. According to the EPR data, modified nanodiamonds possess a high level of diamond matrix shielding, and the extracted fractions differ in width of the basic transition area and in the SHF energy adsorption ratio. Due to this, Fl can be applied as precursors for CVD growth of nanocrystalline diamond and as field electron emission tips.

  12. Biopolymer synthesis on polypropylene supports. I. Oligonucleotides.

    PubMed

    Matson, R S; Rampal, J B; Coassin, P J

    1994-03-01

    We have modified polypropylene to serve as a new solid-phase support for oligonucleotide synthesis. The plastic is first surface aminated by exposure to an ammonia plasma generated by radiofrequency plasma discharge. The aminated polypropylene has been found to be useful as a support for the in situ synthesis of oligonucleotides from monomers. Furthermore, oligonucleotides synthesized on the surface of the plastic remain attached following deprotection and can be used directly for hybridization. PMID:8203760

  13. Chemically modified opals as thin permselective nanoporous membranes.

    PubMed

    Newton, Michael R; Bohaty, Andrew K; White, Henry S; Zharov, Ilya

    2005-05-25

    Thin-film opals comprising three layers of 440 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with amino groups on the silica surface. Diffusion of anionic, cationic, and neutral redox species through the opals was studied by cyclic voltammetry. The chemically modified opal membranes demonstrate high molecular throughput and, at low pH, selectively block transport of a cationic redox species relative to that of anionic and neutral redox species. This permselective behavior is attributed to the electrostatic interactions that are enhanced by the tortuous pathway within the opal and by the high surface area of the chemically modified spheres.

  14. Effects of Chemically Modified Messenger RNA on Protein Expression.

    PubMed

    Li, Bin; Luo, Xiao; Dong, Yizhou

    2016-03-16

    Chemically modified nucleotides play significant roles in the effectiveness of mRNA translation. Here, we describe the synthesis of two sets of chemically modified mRNAs [encoding firefly Luciferase (FLuc) and enhanced green fluorescent protein (eGFP), respectively], evaluation of protein expression, and correlation analysis of expression level under various conditions. The results indicate that chemical modifications of mRNAs are able to significantly improve protein expression, which is dependent on cell types and coding sequences. Moreover, eGFP mRNAs with N1-methylpseudouridine (me(1)ψ), 5-methoxyuridine (5moU), and pseudouridine (ψ) modifications ranked top three in cell lines tested. Interestingly, 5moU-modified eGFP mRNA was more stable than other eGFP mRNAs. Consequently, me(1)ψ, 5moU, and ψ are promising nucleotides for chemical modification of mRNAs. PMID:26906521

  15. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  16. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  17. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  18. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  19. Modified H5 real-time reverse transcriptase-PCR oligonucleotides for detection of divergent avian influenza H5N1 viruses in Egypt.

    PubMed

    Abdelwhab, E M; Abdelwhab, El-Sayed M; Arafa, Abdel-Satar; Erfan, Ahmed M; Aly, Mona M; Hafez, Hafez M

    2010-12-01

    The efforts exerted to prevent circulation of highly pathogenic avian influenza (HPAI) H5N1 virus in birds are the best way to prevent the emergence of a new virus subtype with pandemic potential. Despite the blanket vaccination strategy against HPAI H5N1 in Egypt, continuous circulation of the virus in poultry has increased since late 2007 as a result of the presence of genetic and antigenic distinct variant strains that have escaped during the immune response of vaccinated birds. Although the suspected poultry flocks have had signs and lesions commonly seen in HPAI H5N1-infected birds, escape of variant strains from detection by real-time reverse transcriptase-PCR (RRT-PCR) was observed. Sequence analysis of these variants revealed multiple single nucleotide substitutions in the primers and probe target sequences of the H5 gene by real-time RT-PCR. This study describes the results of RRT-PCR, modified from an existing protocol with regard to the detection of the partial H5 gene segment of the Egyptian H5N1 divergent viruses and applied to nationwide surveillance. The modified RRT-PCR assay was more sensitive than the original one in the detection of Egyptian isolates, with 104% amplification efficiency. Sixty-one field samples were found to be positive in our assay, but only 51 samples tested positive by the original protocol and were more sensitive than matrix gene RRT-PCR detection assay. A detection limit of 10 mean embryo infective dose (EID50) with the updated oligonucleotides primers and probe set was found. For the foreseeable future, mutation of H5N1 viruses and the endemic situation in developing countries require continuous improvement of current diagnostics to aid in the containment of the H5N1 virus in poultry sectors and to lower the threat of influenza virus spread. PMID:21313854

  20. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  1. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  2. Lubricant base stock potential of chemically modified vegetable oils.

    PubMed

    Erhan, Sevim Z; Sharma, Brajendra K; Liu, Zengshe; Adhvaryu, Atanu

    2008-10-01

    The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment can be avoided by either preventing undesirable losses, reclaiming and recycling mineral oil lubricants, or using environmentally friendly lubricants. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environment friendly lubricants. Lubricants based on vegetable oils display excellent tribological properties, high viscosity indices, and flash points. To compete with mineral-oil-based lubricants, some of their inherent disadvantages, such as poor oxidation and low-temperature stability, must be corrected. One way to address these problems is chemical modification of vegetable oils at the sites of unsaturation. After a one-step chemical modification, the chemically modified soybean oil derivatives were studied for thermo-oxidative stability using pressurized differential scanning calorimetry and a thin-film micro-oxidation test, low-temperature fluid properties using pour-point measurements, and friction-wear properties using four-ball and ball-on-disk configurations. The lubricants formulated with chemically modified soybean oil derivatives exhibit superior low-temperature flow properties, improved thermo-oxidative stability, and better friction and wear properties. The chemically modified soybean oil derivatives having diester substitution at the sites of unsaturation have potential in the formulation of industrial lubricants.

  3. Polymer materials as modified optical fiber cladding for chemical sensors

    NASA Astrophysics Data System (ADS)

    Yuan, Jianming

    An intrinsic fiber optic chemical sensor has been designed and developed by using a polymer material as a modified fiber cladding. The sensor is constructed by replacing a certain portion of the original cladding with a chemically sensitive material, specifically, polyaniline or polypyrrole. Both the light absorption coefficient and the refractive index of the polymers change upon the exposure to different chemical vapors. These changes induce the optical intensity modulation of the fiber optic sensor. Polyaniline or polypyrrole is coated as the modified cladding by either spin-cast or in-situ deposition method for sensing HCl, NH3, H 2O2, and H4N2 vapors. All sensors show rapid and strong response to the chemical vapors. Thus, these sensors demonstrate that polyaniline and polypyrrole are viable candidate materials for the detection of volatile toxic gases. Sensors exhibit better performance when correct parameters, such as modification area, in-situ deposition time, and spin-rate, are used in the cladding modification process. The reversibility of the sensor depends on the reaction between the modified cladding material and the chemical vapors. Polyaniline cladding has better reversibility than polypyrrole. The optimized sensor response and sensitivity can be achieved by selecting an incident light with suitable wavelength, power, and incident angle.

  4. Design and Application of an Easy to Use Oligonucleotide Mass Calculation Program

    NASA Astrophysics Data System (ADS)

    Yang, Jiong; Leopold, Peter; Helmy, Roy; Parish, Craig; Arvary, Becky; Mao, Bing; Meng, Fanyu

    2013-08-01

    With the development of new synthesis procedures, an ever increasing number of chemical modifications can now be incorporated into synthetic oligonucleotides, representing new challenges for analytical chemists to efficiently identify and characterize such molecules. While conventional mass spectrometry (MS) has proven to be a powerful tool to study nucleic acids, new and improved methods and software are now needed to address this emerging challenge. In this report, we describe a simple yet powerful program that affords great flexibility in the calculation of theoretical masses for conventional as well as modified oligonucleotide molecules. This easy to use program can accept input oligonucleotide sequences and then calculate the theoretical mass values for full length products, process impurities, potential metabolites, and gas phase fragments. We intentionally designed this software so that modified nucleotide residues can be incorporated into oligonucleotide sequences, and corresponding mass values can be rapidly calculated. To test the utility of this program, two oligonucleotides that contain a large number of chemical modifications were synthesized. We have analyzed these samples using a Q-TOF mass spectrometer and compared the calculated masses to the observed ones. We found that all of the data matched very well with less than 30 ppm mass errors, well within the expectation for our instrument operated in its current mode. These data confirmed the validity of calculations performed with this new software.

  5. ZnS nanoflakes deposition by modified chemical method

    SciTech Connect

    Desai, Mangesh A. Sartale, S. D.

    2014-04-24

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase.

  6. Impedimetric thrombin aptasensor based on chemically modified graphenes

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Pumera, Martin

    2011-12-01

    Highly sensitive biosensors are of high importance to the biomedical field. Graphene represents a promising transducing platform for construction of biosensors. Here for the first time we compare the biosensing performance of a wide set of graphenes prepared by different methods. In this work, we present a simple and label-free electrochemical impedimetric aptasensor for thrombin based on chemically modified graphene (CMG) platforms such as graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO). Disposable screen-printed electrodes were first modified with chemically modified graphene (CMG) materials and used to immobilize a DNA aptamer which is specific to thrombin. The basis of detection relies on the changes in impedance spectra of redox probe after the binding of thrombin to the aptamer. It was discovered that graphene oxide (GO) is the most suitable material to be used as compared to the other three CMG materials. Furthermore, the optimum concentration of aptamer to be immobilized onto the modified electrode surface was determined to be 10 μM and the linear detection range of thrombin was 10-50 nM. Lastly, the aptasensor was found to demonstrate selectivity for thrombin. Such simply fabricated graphene oxide aptasensor shows high promise for clinical diagnosis of biomarkers and point-of-care analysis.

  7. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics. PMID:19000610

  8. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  9. Synthesis, thermal stability and reactivity towards 9-aminoellipticine of double-stranded oligonucleotides containing a true abasic site.

    PubMed Central

    Bertrand, J R; Vasseur, J J; Rayner, B; Imbach, J L; Paoletti, J; Paoletti, C; Malvy, C

    1989-01-01

    A 13 mers abasic oligonucleotide was synthetized. It was therefore possible to compare thermal stability and reactivity of duplex oligonucleotides either with an apurinic/apyrimidinic site or without any lesion. An important decrease in the melting temperature appeared for duplexes with an abasic site. The chemical reaction of these modified oligonucleotides with the intercalating agent 9-aminoellipticine was studied by gel electrophoresis and by fluorescence. The formation of a Schiff base between 9-aminoellipticine and abasic sites was rapid and complete with duplexes at 11 degrees C. Schiff base related fluorescence and beta-elimination cleavage were more important with the apyrimidinic sites than with the apurinic ones. When compared to previous results obtained with the model d(TprpT) some unexpected behaviours appeared with longer and duplex oligonucleotides. For instance only partial beta-elimination cleavage was observed. It is likely that stacking parameters in the double helix play a great role in the studied reaction. Images PMID:2602153

  10. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Gongming

    Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify

  11. Chemically modified cellulose paper as a thin film microextraction phase.

    PubMed

    Saraji, Mohammad; Farajmand, Bahman

    2013-11-01

    In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%.

  12. Chemically modified tetracyclines: The novel host modulating agents

    PubMed Central

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  13. Chemically modified tetracyclines: The novel host modulating agents.

    PubMed

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  14. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    PubMed

    Hocek, Michal

    2014-11-01

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  15. Reduced chemically modified graphene oxide for supercapacitor electrode

    PubMed Central

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g-1 at 0.2 A g-1 in 2 M H2SO4 compared to a value of 141 F g-1 for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode. PMID:25298756

  16. Gene Assembly from Chip-Synthesized Oligonucleotides

    PubMed Central

    Eroshenko, Nikolai; Kosuri, Sriram; Marblestone, Adam H; Conway, Nicholas; Church, George M.

    2012-01-01

    De novo synthesis of long double-stranded DNA constructs has a myriad of applications in biology and biological engineering. However, its widespread adoption has been hindered by high costs. Cost can be significantly reduced by using oligonucleotides synthesized on high-density DNA chips. However, most methods for using off-chip DNA for gene synthesis have failed to scale due to the high error rates, low yields, and high chemical complexity of the chip-synthesized oligonucleotides. We have recently demonstrated that some commercial DNA chip manufacturers have improved error rates, and that the issues of chemical complexity and low yields can be solved by using barcoded primers to accurately and efficiently amplify subpools of oligonucleotides. This article includes protocols for computationally designing the DNA chip, amplifying the oligonucleotide subpools, and assembling 500-800 basepair (bp) constructs. PMID:25077042

  17. Chemically modified solid state nanopores for high throughput nanoparticle separation

    NASA Astrophysics Data System (ADS)

    Prabhu, Anmiv S.; Jubery, Talukder Zaki N.; Freedman, Kevin J.; Mulero, Rafael; Dutta, Prashanta; Kim, Min Jun

    2010-11-01

    The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.

  18. Modified chemical route for deposition of molybdenum disulphide thin films

    SciTech Connect

    Vyas, Akshay N. Sartale, S. D.

    2014-04-24

    Molybdenum disulphide (MoS{sub 2}) thin films were deposited on quartz substrates using a modified chemical route. Sodium molybdate and sodium sulphide were used as precursors for molybdenum and sulphur respectively. The route involves formation of tetrathiomolybdate ions (MoS{sub 4}{sup 2−}) and further reduction by sodium borohydride to form MoS{sub 2}. The deposition was performed at room temperature. The deposited films were annealed in argon atmosphere at 1073 K for 1 hour to improve its crystallinity. The deposited films were characterized using scanning electron microscopy (SEM) for morphology, UV-Vis absorption spectroscopy for optical studies and X-ray diffraction (XRD) for structure determination.

  19. Mesoscale assembly of chemically modified graphene into complex cellular networks

    NASA Astrophysics Data System (ADS)

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; Do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-07-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm-3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities.

  20. Mesoscale assembly of chemically modified graphene into complex cellular networks

    PubMed Central

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-01-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766

  1. Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Poh, Hwee Ling; Pumera, Martin

    2012-01-01

    Immunosensors which display high sensitivity and selectivity are of utmost importance to the biomedical field. Graphene is a material which has immense potential for the fabrication of immunosensors. For the first time, we evaluate the immunosensing capabilities of various graphene surfaces in this work. We propose a simple and label-free electrochemical impedimetric immunosensor for immunoglobulin G (IgG) based on chemically modified graphene (CMG) surfaces such as graphite oxide, graphene oxide, thermally reduced graphene oxide and electrochemically reduced graphene oxide. Disposable electrochemical printed electrodes were first modified with CMG materials before anti-immunoglobulin G (anti-IgG), which is specific to IgG, was immobilized. The principle of detection lies in the changes in impedance spectra of the redox probe after the attachment of IgG to the immobilized anti-IgG. It was found that thermally reduced graphene oxide has the best performance when compared to the other CMG materials. In addition, the optimal concentration of anti-IgG to be deposited onto the modified electrode surface is 10 μg ml-1 and the linear range of detection of the immunosensor is from 0.3 μg ml-1 to 7 μg ml-1. Finally, the fabricated immunosensor also displays selectivity for IgG.Immunosensors which display high sensitivity and selectivity are of utmost importance to the biomedical field. Graphene is a material which has immense potential for the fabrication of immunosensors. For the first time, we evaluate the immunosensing capabilities of various graphene surfaces in this work. We propose a simple and label-free electrochemical impedimetric immunosensor for immunoglobulin G (IgG) based on chemically modified graphene (CMG) surfaces such as graphite oxide, graphene oxide, thermally reduced graphene oxide and electrochemically reduced graphene oxide. Disposable electrochemical printed electrodes were first modified with CMG materials before anti-immunoglobulin G (anti

  2. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    NASA Astrophysics Data System (ADS)

    Zhou, Liang-Chun; Meng, Xiang-Guang; Fu, Jing-Wei; Yang, Yu-Chong; Yang, Peng; Mi, Chun

    2014-02-01

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer-Emmett-Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m2/g), pore volume (7.29 × 10-3 mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m2/g, 2.00 × 10-3 mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and sbnd OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80-91% adsorption efficiency.

  3. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    PubMed

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  4. Modifying steam generator corrosion behavior via chemical cleaning

    SciTech Connect

    Sweeney, K.; Neese, K.

    1994-12-31

    A steam generator chemical cleaning program was conducted in Palo Verde nuclear generating station (PVNGS) units 2 and 3 in 1994. This effort represented the first full-bundle chemical cleaning of a recirculating steam generator in the United States. The objectives of the process were: (1) to remove deposits in the upper bundle regions, which were identified by eddy-current analysis and linked to a free-span outside-diameter stress corrosion cracking (ODSCC) condition; (2) to remove tube scale deposits that interfere with heat transfer and may contain undesirable contaminants; (3) to remove deposits from the surface of the tube sheet and the flow distribution plate; and (4) to remove deposits from the drilled hole crevices in the FDP, which may be contributing to low recirculation ratios and upper bundle transition boiling. The Electric Power Research Institute/Steam Generator Owners` Group low-temperature process, modified to include {open_quotes}crevice cleaning{close_quotes} and {open_quotes}passivation{close_quotes} steps, was selected as the best method. Babock & Wilcox Nuclear Technologies was selected as the vendor.

  5. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE PAGES

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; Jacobs, Stephen D.; Lambropoulos, John C.

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  6. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids.

    PubMed

    Stoop, Matthias; Meher, Geeta; Karri, Phaneendrasai; Krishnamurthy, Ramanarayanan

    2013-11-01

    Under potentially prebiotic scenarios, ribose (pentose), the component of RNA is formed in meager amounts, as opposed to ribulose and xylulose (pentuloses). Consequently, replacement of ribose in RNA, with pentulose sugars, gives rise to prospective oligonucleotide candidates that are potentially prebiotic structural variants of RNA that could be formed by the same type of chemical pathways that gave rise to RNA from ribose. The potentially natural alternative (1'→3')-ribulo oligonucleotides and (4'→3')- and (1'→3')-xylulo oligonucleotides consisting of adenine and thymine were synthesized and found to exhibit no self-pairing or cross-pairing with RNA. This signifies that even though pentulose sugars may have been abundant in a prebiotic scenario, the pentulose nucleic acids (NAs), if and when formed, would not have been competitors of RNA, or interfered with the emergence of RNA as a functional informational system. The reason for the lack of base pairing in pentulose NA highlights the contrasting and central role played by the furanosyl ring in RNA and pentulose NA, enabling and optimizing the base pairing in RNA, while impeding it in pentulose NA.

  7. Chemically modified RNA activated matrices enhance bone regeneration.

    PubMed

    Elangovan, Satheesh; Khorsand, Behnoush; Do, Anh-Vu; Hong, Liu; Dewerth, Alexander; Kormann, Michael; Ross, Ryan D; Sumner, D Rick; Allamargot, Chantal; Salem, Aliasger K

    2015-11-28

    There exists a dire need for improved therapeutics to achieve predictable bone regeneration. Gene therapy using non-viral vectors that are safe and efficient at transfecting target cells is a promising approach to overcoming the drawbacks of protein delivery of growth factors. Here, we investigated the transfection efficiency, cytotoxicity, osteogenic potential and in vivo bone regenerative capacity of chemically modified ribonucleic acid (cmRNA) (encoding BMP-2) complexed with polyethylenimine (PEI) and made comparisons with PEI complexed with conventional plasmid DNA (encoding BMP-2). The polyplexes were fabricated at an amine (N) to phosphate (P) ratio of 10 and characterized for transfection efficiency using human bone marrow stromal cells (BMSCs). The osteogenic potential of BMSCs treated with these polyplexes was validated by determining the expression of bone-specific genes, osteocalcin and alkaline phosphatase as well as through the detection of bone matrix deposition. Using a calvarial bone defect model in rats, it was shown that PEI-cmRNA (encoding BMP-2)-activated matrices promoted significantly enhanced bone regeneration compared to PEI-plasmid DNA (BMP-2)-activated matrices. Our proof of concept study suggests that scaffolds loaded with non-viral vectors harboring cmRNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation. PMID:26415855

  8. Engineering chemically modified viruses for prostate cancer cell recognition.

    PubMed

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease. PMID:26463253

  9. Enzymatic Synthesis of Single-Stranded Clonal Pure Oligonucleotides.

    PubMed

    Ducani, Cosimo; Högberg, Björn

    2017-01-01

    Single-stranded oligonucleotides, or oligodeoxyribonucleotides (ODNs), are very important in several fields of science such as molecular biology, diagnostics, nanotechnology, and gene therapy. They are usually chemically synthesized. Here we describe an enzymatic method which enables us to synthesize pure oligonucleotides which can be up to several hundred long bases. PMID:27671934

  10. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  11. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    PubMed

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.

  12. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu 2S) thin films

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Desai, J. D.; Lokhande, C. D.

    2002-12-01

    Semiconducting stoichiometric copper sulphide (Cu 2S) thin films were deposited using modified chemical deposition method. The preparative conditions such as concentration, pH of cationic and anionic precursors, adsorption, reaction and rinsing time durations, complextant, etc. were optimized to get stoichiometric Cu 2S thin films. The structural, surface morphological, compositional, optical and electrical characterization were carried out with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Rutherford back scattering (RBS), optical absorbance/transmittance, electrical resistivity and thermoemf studies. The films were found to be nanocrystalline. Absorbance of the film was high (10 4 cm -1) with optical band gap of 2.35 eV. The electrical resistivity was of the order of 10 -2 Ω cm with p-type electrical conductivity.

  13. Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-04-01

    Semiconducting stoichiometric copper(I) selenide (Cu 2Se) thin films were deposited onto glass substrate using a modified chemical method. The deposition conditions such as concentration and pH of cation and anionic precursor solutions, immersion and rinsing times and number of immersions, etc. were optimized for Cu 2Se films. The characterization of Cu 2Se films was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmittance, electrical resistivity and thermoemf measurement techniques. The XRD shows the formation of copper(I) selenide with monoclinic crystal structure. Absorbance of the Cu 2Se thin film is found to be high (10 4 cm -1) with optical band gap of 2.35 eV. The electrical resistivity is of the order of 10 -1 Ω cm. Film exhibits p-type electrical conductivity.

  14. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    PubMed

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  15. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  16. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.

    PubMed

    Goubet, Astrid; Chardon, Antoine; Kumar, Pawan; Sharma, Pawan K; Veedu, Rakesh N

    2013-02-01

    C5-Ethynylbenzenesulfonamide-modified nucleotide (EBNA) was investigated as substrate of various DNA polymerases. The experiments revealed that KOD, Phusion and Klenow DNA polymerases successfully accepted EBNA-T nucleotide as a substrate and yielded the fully extended DNA. KOD DNA polymerase was found to be the most efficient enzyme to furnish EBNA-T containing DNA in good yields. Phusion DNA polymerase efficiently amplified the template containing EBNA-T nucleotides by PCR. PMID:23265899

  17. Atomic force microscopy of DNA on mica and chemically modified mica.

    PubMed

    Thundat, T; Allison, D P; Warmack, R J; Brown, G M; Jacobson, K B; Schrick, J J; Ferrell, T L

    1992-12-01

    Atomic force microscopy (AFM) was used to image circular DNA adsorbed on freshly cleaved mica and mica chemically modified with Mg(II), Co(II), La(III), and Zr(IV). Images obtained on unmodified mica show coiling of DNA due to forces involved during the drying process. The coiling or super twisting appeared to be right handed and the extent of super twisting could be controlled by the drying conditions. Images of DNA observed on chemically modified surfaces show isolated open circular DNA that is free from super twisting, presumably due to strong binding of DNA on chemically modified surfaces.

  18. Synthesis of 5'-Aldehyde Oligonucleotide.

    PubMed

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  19. Poly(dG) spacers lead to increased surface coverage of DNA probes: an XPS study of oligonucleotide binding to zirconium phosphonate modified surfaces.

    PubMed

    Lane, Sarah M; Monot, Julien; Petit, Marc; Tellier, Charles; Bujoli, Bruno; Talham, Daniel R

    2008-07-15

    A spacer is often employed between the surface linking group and the probe sequence to improve the performance of DNA microarrays. Previous work demonstrated that a consecutive stretch of guanines as a spacer increased target capture during hybridization relative to probes with either no spacer or a similar stretch of one of the other nucleotides. Using zirconium phosphonate modified surfaces with 5'-phosphorylated ssDNA probes, the present study compares the surface coverage of ssDNA probes containing either a poly(dG) spacer or a poly(dA) spacer. Surface coverages are quantified by XPS using a modified overlayer model. The results show that after treatment to mimic conditions of the passivation and hybridization steps the probe with the poly(dG) spacer has about twice the surface coverage as the probe with the poly(dA) spacer, indicating that increased target capture is due to higher probe coverage. When monitoring the surface coverage after each rinsing step, it is observed that the probe with the poly(dA) spacer is more susceptible to rinsing, suggesting the interaction with the surface is different for the two probes. It is suggested that the formation of G quadruplexes causes an increased avidity of the probe for the zirconium phosphonate surface.

  20. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.

    PubMed

    Sheehan, J P; Lan, H C

    1998-09-01

    Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide

  1. Safety evaluation of chemically modified beta-lactoglobulin administered intravaginally.

    PubMed

    Guo, Xuetao; Qiu, Lixia; Wang, Yonghong; Wang, Yue; Meng, Yuanguang; Zhu, Yun; Lu, Lu; Jiang, Shibo

    2016-06-01

    Currently, there is no specific antiviral therapy for treatment of HPV infection. Jiang and colleagues previously reported that anhydride-modified proteins have inhibitory activities against multiple viruses including HPV. Here, we evaluated the safety of 3-hydroxyphthalic anhydride-modified bovine beta-lactoglobulin, designated JB01, vaginally applied in women infected by high-risk HPV. After the vaginal application of JB01 in 38 women for 3 months, no serious adverse events were reported, and normalization of the vaginal micro-environment has been observed. It can be concluded that JB01-BD is safe for vaginal use in HPV-infected women, suggesting its potential application for the treatment of HPV infection.

  2. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  3. Chemical reactivity of twin-modified copper nanowire surfaces

    SciTech Connect

    Huang, Chun-Lung; Liao, Chien-Neng

    2015-07-13

    Effect of twin boundary (TB) spacing on atomic surface structure and chemical reactivity of nanotwinned Cu nanowires (NWs) is investigated. Post-etching surface structure and wire diameter of Cu NWs were examined by transmission electron microscopy. When TB spacing is less than 10 nm, the Cu NWs remain almost intact after chemical attack and show faceted surface structures with low atomic step density. A mechanism based on surface tension torque acting on TB/surface triple junctions is proposed to explain the faceted structure formation and enhanced corrosion resistance of nanotwinned Cu NWs.

  4. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered...

  5. Mthfd1 is a modifier of chemically induced intestinal carcinogenesis

    PubMed Central

    MacFarlane, Amanda J.; Perry, Cheryll A.; McEntee, Michael F.; Lin, David M.; Stover, Patrick J.

    2011-01-01

    The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1gt/+ mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1gt/+ and Apcmin/+ mice and azoxymethane (AOM)-induced colon cancer in Mthfd1gt/+ mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apcmin/+ mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1gt/+ mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene–nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression. PMID:21156972

  6. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  7. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    NASA Astrophysics Data System (ADS)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  8. Interfacial characterization and analytical applications of chemically-modified surfaces

    SciTech Connect

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  9. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  10. siRNAmod: A database of experimentally validated chemically modified siRNAs

    PubMed Central

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  11. Gold Binding by Native and Chemically Modified Hops Biomasses

    DOE PAGES

    López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage bindingmore » at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less

  12. Equilibrium and thermodynamic studies of Cd (II) biosorption by chemically modified orange peel.

    PubMed

    Kumar, Arbind; Kumar, Vipin

    2016-03-01

    Agricultural wastes have great potential of removing heavy metal ions from aqueous solution. Removal of Cd (II) from aqueous solutions onto chemically modified orange peel was studied at different pH, contact time, initial metal concentrations, adsorbent doses and temperature. Batch experiments were carried out under optimized conditions to evaluate the adsorption capacity of orange peel chemically modified with NaOH. The results showed that maximum adsorption capacity of modified orange peel, approximately 97.0%, was observed 3 mg 1⁻¹ of initial Cd(II) concentration pH 6 for 4 g 1⁻¹ adsorbent dosage, 200 min contact time and 298 K temperature. Adsorption efficiency of modified orange peel decreased with increase in temperature indicated exothermic nature of adsorption. A negative value of ΔG⁰(-8.59 kJ mol⁻¹) confirmed the feasibility of adsorption process and spontaneous nature of adsorption. A negative value of ΔH⁰ (-28.08 kJ mol⁻¹) indicated exothermic nature while a negative ΔS⁰ (-66.86 J K⁻¹ mol⁻¹) value suggested decrease in degree of freedom of the adsorbed species. The results showed that biosorption process of Cd(II) ions by chemically modified orange peel is feasible, spontaneous and exothermic under studied conditions. Chemically by modified orange peel investigated in the present study showed good potential for the removal of cadmium from aqueous solutions. PMID:27097438

  13. Sequence-dependent theory of oligonucleotide hybridization kinetics

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-05-07

    A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions.

  14. [Preliminary study on HLA-B genotyping by oligonucleotide chips].

    PubMed

    Lan, Ke; Hu, Shou-Wang; Zhang, Fan; Wang, Hui; Guan, Wei; Ding, Yu; Sun, Ou-Jun; Wang, Sheng-Qi

    2003-04-01

    HLA genes constitute a highly polymorphic multigene system. In the present study, HLA-B oligonucleotide chips were manufactured by using a set of sequence-specific oligonucleotide probes derived from polymorphic regions in exon 2 and exon 3 of HLA-B gene spotted by microarrayer onto the aldehyde modified glass slides. In addition, the sequenced HLA-B gene clones used as standard samples were amplified from exon 2 and exon 3 by PCR. Together with the correct hybridization and wash conditions, the PCR products were bound with the array probes on the chip, and the hybridization patterns were transformed to HLA-B genotypes. The results showed that the genotypes of standard samples by the HLA-B oligonucleotide chips were completely identical with the sequenced clones. In conclusion, the oligonucleotide chip method presented here for HLA-B genotyping is a rapid, accurate, sensitive and attractive high throughput biochemical way.

  15. Chitosan and chemically modified chitosan beads for acid dyes sorption.

    PubMed

    Azlan, Kamari; Wan Saime, Wan Ngah; Lai Ken, Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment. PMID:19634439

  16. Remediation of Hydrocarbon-Contaminated Soil by Washing with Novel Chemically Modified Humic Substances.

    PubMed

    García-Díaz, César; Nebbioso, Antonio; Piccolo, Alessandro; Barrera-Cortés, Josefina; Martínez-Palou, Rafael

    2015-11-01

    In this work, humic (HA) and fulvic acid (FA) were chemically modified by esterification and etherification with alkanes under microwave (MW) irradiation to improve their surfactant properties for the remediation of total petroleum hydrocarbons (TPHs)-contaminated soil. Humic acid and FA were evaluated as surfactant for the remediation of soil by means of washing an aged highly TPH-contaminated soil (50,000 mg TPH kg) sampled from a Mexican petrochemical area. The efficiency of chemical modification of HA and FA was increased and accelerated under MW irradiation with respect to that of conventional heating. Results showed that modified HA and FA were able to considerably reduce the contamination of TPH-polluted soils. The best results were obtained with HA modified by esterification with -dodecanol and FA modified with -decanol, which increased the hydrocarbon removal by 24 and 18%, respectively, with respect to amounts removed by the unmodified derivatives.

  17. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    NASA Astrophysics Data System (ADS)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  18. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  19. Antisense oligonucleotides, microRNAs, and antibodies.

    PubMed

    Dávalos, Alberto; Chroni, Angeliki

    2015-01-01

    The specificity of Watson-Crick base pairing and the development of several chemical modifications to oligonucleotides have enabled the development of novel drug classes for the treatment of different human diseases. This review focuses on promising results of recent preclinical or clinical studies on targeting HDL metabolism and function by antisense oligonucleotides and miRNA-based therapies. Although many hurdles regarding basic mechanism of action, delivery, specificity, and toxicity need to be overcome, promising results from recent clinical trials and recent approval of these types of therapy to treat dyslipidemia suggest that the treatment of HDL dysfunction will benefit from these unique clinical opportunities. Moreover, an overview of monoclonal antibodies (mAbs) developed for the treatment of dyslipidemia and cardiovascular disease and currently being tested in clinical studies is provided. Initial studies have shown that these compounds are generally safe and well tolerated, but ongoing large clinical studies will assess their long-term safety and efficacy.

  20. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  1. Discrimination of DNA hybridization using chemical force microscopy.

    PubMed Central

    Mazzola, L T; Frank, C W; Fodor, S P; Mosher, C; Lartius, R; Henderson, E

    1999-01-01

    Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a heterogeneous substrate. The strength of the interaction between the modified tip and the substrate is governed by the molecular affinity. We have used CFM to probe the interactions between short segments of single-strand DNA (oligonucleotides). First, a latex microparticle was modified with the sequence 3'-CAGTTCTACGATGGCAAGTC and epoxied to a standard AFM cantilever. This DNA-modified probe was then used to scan substrates containing the complementary sequence 5'-GTCAAGATGCTACCGTTCAG. These substrates consisted of micron-scale, patterned arrays of one or more distinct oligonucleotides. A strong friction interaction was measured between the modified tip and both elements of surface-bound DNA. Complementary oligonucleotides exhibited a stronger friction than the noncomplementary sequences within the patterned array. The friction force correlated with the measured strength of adhesion (rupture force) for the tip- and array-bound oligonucleotides. This result is consistent with the formation of a greater number of hydrogen bonds for the complementary sequence, suggesting that the friction arises from a sequence-specific interaction (hybridization) of the tip and surface DNA. PMID:10354420

  2. Enhanced synergistic denitrification and chemical precipitation in a modified BAF process by using Fe2+.

    PubMed

    Wang, Hongjie; Dong, Wengyi; Li, Ting; Liu, Tongzhou

    2014-01-01

    A series of laboratory-scale experiments for examining the feasibility and suitability of using Fe(2+) as the precipitant dosed in the pre-denitrification stage of a modified BAF process employing simultaneous chemical precipitation of TSS and phosphorus were carried out. The effects of dosing Fe(2+) on effluent quality and sludge characteristics of the pre-denitrification stage were assessed with comparing to the cases of no additional chemical dosing and dosing Fe(3+). Results obtained demonstrated a sound performance of synergistic denitrification and chemical precipitation in pre-denitrification of the modified BAF process when dosing Fe salts, which showed enhanced by using Fe(2+) as the dosed precipitant in increasing the denitrification loading rate, exhibiting a better controlling of the residual phosphorus in pre-denitrification effluent, and improving sludge settleability. Dosing Fe salt showed no adverse impact in removing COD, but resulted in a relatively higher SS content in the pre-denitrification effluent.

  3. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    PubMed

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  4. Optical characterization of pure and chemically modified chitosan bio-films

    NASA Astrophysics Data System (ADS)

    Nosal, William H.

    The purpose of this work was to apply spectroscopic ellipsometry (SE) to the study of monolayer thick chemically modified surfaces and then study the protein attachment or rejection of these films. Optical properties of spin-cast pure and chemically modified chitosan films have been determined in the infrared (IR), visible (vis), ultraviolet (UV), and vacuum ultraviolet (VUV) regions of the spectrum using spectroscopic ellipsometry (SE). Vis-SE data were used to monitor protein attachment or nonattachment to the surface of the chemically modified chitosan using real-time SE. Optical constants for the UV-Vis-near IR spectra from 130nm to 1700nm were determined on dried samples. Optical constants were modeled using Cauchy dispersion forms combined with Lorentzian oscillator models in the absorptive shorter wavelength regions. Infrared refraction index and extinction coefficients from 750cm -1 to 4000cm-1 were determined using ellipsometric data fits to dispersion models based on harmonic oscillators. This modeling determined that optical anisotropy was present and measurable over all wavelength regions of ellipsometric data. VUV adsorption was accounted for by including Gaussian and Tauc-Lorentz shaped oscillators in the optical model. IR-SE and VUV-SE data were used to confirm that chemical modifications to the surface occurred. IR spectra are well known for identifying resonant chemical bonds. However, VUV-SE simultaneously offers resonances for chemical identifications and high surface sensitivity due to shallow depth of optical penetration. To obtain additional information on the micro-scale and nano-scale surface structure, tapping mode AFM imaging was employed to determine morphology and roughness information of dry modified and pure spin-cast chitosan films.

  5. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    NASA Astrophysics Data System (ADS)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  6. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  7. Modified Nucleoside Triphosphates for In-vitro Selection Techniques

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  8. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  9. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOEpatents

    Yates, Stephen Frederic; DeFilippi, Irene; Gaita, Romulus; Clearfield, Abraham; Bortun, Lyudmila; Bortun, Anatoly

    2000-09-05

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  10. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Sun, Hong; Tanowitz, Michael; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release. PMID:27378781

  11. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  12. Radiation-grafted, chemically modified membranes part I - Synthesis of a selective aluminum material

    NASA Astrophysics Data System (ADS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, José E.; Geraldo, Aurea B. C.

    2014-01-01

    Polymeric membranes were styrene grafted by irradiation methods and the obtained material was chemically modified to become aluminum selective. For this purpose, polymeric substrates of PVC (polyvinyl chloride) and PP (polypropylene) were styrene grafted mutually by gamma and electron beam irradiation. The modification process includes three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation to achieve aluminum selectivity. Although this specific chemical modification in derivatives of polystyrene is not new, the new challenge is to obtain a selective material where original membrane characteristics (physical shape and mechanical resistance) are minimally conserved after such an aggressive treatment.

  13. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  14. Physico-chemical changes in tomato with modified atmosphere storage and UV treatment.

    PubMed

    Vunnam, R; Hussain, A; Nair, G; Bandla, R; Gariepy, Y; Donnelly, D J; Kubow, S; Raghavan, G S V

    2014-09-01

    Physico-chemical changes in ripe tomato (Lycopersicon esculentum Mill.) were analyzed on day 0 and 2 weeks after ultraviolet-C (UV-C) light treatment or modified atmosphere (MA) storage and combined UV-C + MA storage at 10 °C. Modified atmosphere packaging (MAP) film was used to create MA conditions. The tomatoes were evaluated for surface colour, mass loss, firmness, respiration rate, total soluble solids and antioxidant capacity. The tomatoes treated with UV-C and MA storage underwent least changes in their physico-chemical properties, indicating that combination of UV-C and MA storage was successful in retaining the attributes of the fresh product. The increase in antioxidant capacity of the tomatoes during UV-C treatment suggested that UV treatment during post harvest handling may be successfully combined with MA storage, resulting in a product with better nutritive value. PMID:25190870

  15. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  16. High-performance NO2 sensors based on chemically modified graphene.

    PubMed

    Yuan, Wenjing; Liu, Anran; Huang, Liang; Li, Chun; Shi, Gaoquan

    2013-02-01

    Covalently grafting reduced graphene oxide (rGO) sheets with sulfophenyl or ethylenediamine groups can produce chemically modified graphene (CMG) for fabricating high-performance gas sensors. The NO(2) sensors based on these CMGs exhibit sensitivities 4 to 16 times higher than that of a sensor based on rGO. They also show excellent selectivity and repeatability without the aid of UV-light or thermal treatment. PMID:23139053

  17. Physical and water sorption properties of chemically modified pectin with an environmentally friendly process.

    PubMed

    Monfregola, Luca; Bugatti, Valeria; Amodeo, Pietro; De Luca, Stefania; Vittoria, Vittoria

    2011-06-13

    A synthetic process was developed to modify pectin samples under solvent free conditions, obtaining pectin at increasing concentration of palmitic, oleic, and linoleic acids. The weight loss of the modified powders showed a degradation path very similar to the pure pectin, indicating that the pristine structure was preserved after the chemical modification. A decreasing mass of evaporating water on increasing the fatty acid concentration, in particular for the palmitic acid modification, indicated a reduced water sorption by the modified powders. Differential scanning calorimetry confirmed the thermogravimetric results and in addition indicated the crystallization of the lateral chains in the case of palmitic-acid-modified pectins. This result was confirmed by X-ray diffractograms of the palmitic acid samples, indicating the main crystallization of the form C, although possible orientation phenomena can be inferred. The sorption curves of either the pristine pectin or the modified samples showed a dual sorption behavior. The sorption curves were interpreted by the BET and GAB equations, both giving very similar results. Palmitic acid modification was very effective in reducing all sorption parameters, whereas in the case of oleic and linoleic acids, only at high concentrations was the hydrophobic influence detected.

  18. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    NASA Astrophysics Data System (ADS)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  19. A novel catechol-based universal support for oligonucleotide synthesis.

    PubMed

    Anderson, Keith M; Jaquinod, Laurent; Jensen, Michael A; Ngo, Nam; Davis, Ronald W

    2007-12-21

    A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.

  20. Gene-modified embryonic stem cell test to characterize chemical risks.

    PubMed

    Kitada, Kohei; Kizu, Akane; Teramura, Takeshi; Takehara, Toshiyuki; Hayashi, Masami; Tachibana, Daisuke; Wanibuchi, Hideki; Fukushima, Shoji; Koyama, Masayasu; Yoshida, Kayo; Morita, Takashi

    2015-11-01

    A high-throughput test of cell growth inhibition was performed using mouse embryonic stem (ES) cells to assess chemical toxicities. We herein demonstrated using a 96-well culture plate approach and the MTT assay that this method was suitable for prioritization of chemicals for their cytotoxic properties. In order to categorize chemicals, we used p53 gene-modified mouse ES cells as well as wild-type ES cells. The p53 gene is a well-known tumor suppressor and controls programmed cell death (apoptosis) and cellular senescence that is triggered by DNA-damaging agents such as alkylating agents and radiation. In the present study, p53-deficient ES cells were found to be more resistant to a tumor initiator, diethylnitrosamine (DEN), than wild-type ES cells, suggesting the inhibition of apoptosis or senescence by a dysfunction in p53. Chromosome aberrations were more frequently detected in p53-deficient ES cells than in wild-type cells, indicating genomic instability due to the deletion of p53. Other tumor initiators, methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (NMU), did not reveal apparent differences in cytotoxicity between wild-type and p53-deficient ES cells. Thus, ES test system using gene-modified ES cells may be used to categorize chemicals by detecting their characteristic effects on apoptosis, genotoxic potentials as well as general cytotoxicity.

  1. Chemically modified Si(111) surfaces simultaneously demonstrating hydrophilicity, resistance against oxidation, and low trap state densities

    NASA Astrophysics Data System (ADS)

    Brown, Elizabeth S.; Hlynchuk, Sofiya; Maldonado, Stephen

    2016-03-01

    Chemically modified Si(111) surfaces have been prepared through a series of wet chemical surface treatments that simultaneously show resistance towards surface oxidation, selective reactivity towards chemical reagents, and areal defect densities comparable to unannealed thermal oxides. Specifically, grazing angle attenuated total reflectance infrared and X-ray photoelectron (XP) spectroscopies were used to characterize allyl-, 3,4-methylenedioxybenzene-, or 4-[bis(trimethylsilyl)amino]phenyl-terminated surfaces and the subsequently hydroxylated surfaces. Hydroxylated surfaces were confirmed through reaction with 4-(trifluoromethyl)benzyl bromide and quantified by XP spectroscopy. Contact angle measurements indicated all surfaces remained hydrophilic, even after secondary backfilling with CH3sbnd groups. Surface recombination velocity measurements by way of microwave photoconductivity transients showed the relative defect-character of as-prepared and aged surfaces. The relative merits for each investigated surface type are discussed.

  2. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.

    PubMed

    Wan Ngah, W S; Hanafiah, M A K M

    2008-07-01

    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.

  3. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  4. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  5. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    PubMed

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  6. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    SciTech Connect

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  7. Retention of Proteins and Metalloproteins in Open Tubular Capillary Electrochromatography with Etched Chemically Modified Columns

    PubMed Central

    Pesek, Joseph J.; Matyska, Maria T.; Salgotra, Vasudha

    2010-01-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1 to 8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. PMID:18850653

  8. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  9. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    SciTech Connect

    Bell, Gavin R. Dawson, Peter M.; Pandey, Priyanka A.; Wilson, Neil R.; Mulheran, Paul A.

    2014-01-01

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  10. An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5'-Triphosphates.

    PubMed

    Shanmugasundaram, Muthian; Senthilvelan, Annamalai; Xiao, Zejun; Kore, Anilkumar R

    2016-07-01

    A simple, reliable, and an efficient "one-pot, three step" chemical method for the synthesis of modified nucleoside triphosphates such as 5-methylcytidine-5'-triphosphate (5-MeCTP), pseudouridine-5'-triphosphate (pseudoUTP) and N(1)-methylpseudouridine-5'-triphosphate (N(1)-methylpseudoUTP) starting from the corresponding nucleoside is described. The overall reaction involves the monophosphorylation of nucleoside, followed by the reaction with pyrophosphate and subsequent hydrolysis of the cyclic intermediate to furnish the corresponding NTP in moderate yields with high purity (>99.5%).

  11. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants.

    PubMed

    Quinn, R C; Zent, A P

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  12. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  13. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  14. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  15. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    SciTech Connect

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  16. One Step Synthesis of Inverted Aspartame Type Sweetener, Ac-Phe-Lys, Using Chemically Modified Chymotrypsin.

    PubMed

    Oaki, J; Nakahara, K; Tamura, M; Okai, H

    1999-01-01

    To search for techniques of simplified peptide synthesis, benzyloxycarbonyl chymotrypsin was prepared by a water-soluble acylating reagent and used to make Ac-Phe-Lys, an artificial peptide sweetener, which was selected as a target compound. As a result of using chemically modified chymotrypsin, Lys can be coupled directly with Ac-Phe and Ac-Phe-Lys made virtually in one step. Moreover, the total yield from preparation and purification steps for Ac-Phe-Lys was 13%. The value corresponds to that of the chemical synthesis method. On the contrary, enzymatic synthesis using native chymotrypsin cannot reach the level of the new method. It is expected that the method is more effective for simplified peptide synthesis as compared with other methods, especially on a large scale.

  17. Free-radical-promoted conversion of graphite oxide into chemically modified graphene.

    PubMed

    Chai, Na-Na; Zeng, Jing; Zhou, Kai-Ge; Xie, Yu-Long; Wang, Hang-Xing; Zhang, Hao-Li; Xu, Chen; Zhu, Ji-Xin; Yan, Qing-Yu

    2013-05-01

    The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free-radical-promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl-functionalized CMG. This pseudo-"reduction" process is attributed to a free-radical-mediated elimination of the surface-attached oxygen-containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl-functionalized graphene shows an excellent performance as an electrode material for lithium-battery applications.

  18. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  19. Chemically and Biologically Synthesized CPP-Modified Gelonin for Enhanced Anti-tumor Activity

    PubMed Central

    Shin, Meong Cheol; Zhang, Jian; David, Allan E.; Trommer, Wolfgang E.; Kwon, Young Min; Min, Kyoung Ah; Kim, Jin H.; Yang, Victor C.

    2013-01-01

    The ineffectiveness of small molecule drugs against cancer has generated significant interest in more potent macromolecular agents. Gelonin, a plant-derived toxin that inhibits protein translation, has attracted much attention in this regard. Due to its inability to internalize into cells, however, gelonin exerts only limited tumoricidal effect. To overcome this cell membrane barrier, we modified gelonin, via both chemical conjugation and genetic recombination methods, with low molecular weight protamine (LMWP), a cell-penetrating peptide (CPP) which was shown to efficiently ferry various cargos into cells. Results confirmed that gelonin-LMWP chemical conjugate (cG-L) and recombinant gelonin-LMWP chimera (rG-L) possessed N-glycosidase activity equivalent to that of unmodified recombinant gelonin (rGel); however, unlike rGel, both gelonin-LMWPs were able to internalize into cells. Cytotoxicity studies further demonstrated that cG-L and rG-L exhibited significantly improved tumoricidal effects, with IC50 values being 120-fold lower than that of rGel. Moreover, when tested against a CT26 s.c. xenograft tumor mouse model, significant inhibition of tumor growth was observed with rG-L doses as low as 2 μg/tumor, while no detectable therapeutic effects were seen with rGel at 10-fold higher doses. Overall, this study demonstrated the potential of utilizing CPP-modified gelonin as a highly potent anticancer drug to overcome limitations of current chemotherapeutic agents. PMID:23973813

  20. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    PubMed

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  1. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-06-04

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides.

  2. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  3. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers

    PubMed Central

    Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2015-01-01

    Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects. PMID:26578964

  4. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    PubMed Central

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  5. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.

    PubMed

    Kusano, Miyako; Redestig, Henning; Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  6. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    PubMed

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  7. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.

    PubMed

    Kusano, Miyako; Redestig, Henning; Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.

  8. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw.

    PubMed

    Mahmood-ul-Hassan, M; Suthar, V; Rafique, E; Ahmad, R; Yasin, M

    2015-07-01

    In this study, cadmium (Cd), chromium (Cr), and lead (Pb) adsorption potential of unmodified and modified sugarcane bagasse and ground wheat straw was explored from aqueous solution through batch equilibrium technique. Both the materials were chemically modified by treating with sodium hydroxide (NaOH) alone and in combination with nitric acid (HNO3) and sulfuric acid (H2SO4). Two kinetic models, pseudo-first order and pseudo-second order were used to follow the adsorption process and reaction fallowed the later model. The Pb removal by both the materials was highest and followed by Cr and Cd. The chemical treatment invariably increased the adsorption capacity and NaOH treatment proved more effective than others. Langmuir maximum sorption capacity (q m) of Pb was utmost (12.8-23.3 mg/g of sugarcane bagasse, 14.5-22.4 mg/g of wheat straw) and of Cd was least (1.5-2.2 mg/g of sugarcane bagasse, 2.5-3.8 mg/g of wheat straw). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. Results demonstrate that agricultural waste materials used in this study could be used to remediate the heavy metal-polluted water.

  9. Sustained Delivery of Chemokine CXCL12 from Chemically Modified Silk Hydrogels.

    PubMed

    Atterberry, Paige N; Roark, Travis J; Severt, Sean Y; Schiller, Morgan L; Antos, John M; Murphy, Amanda R

    2015-05-11

    A delivery platform was developed using silk-based hydrogels, and sustained delivery of the cationic chemokine CXCL12 at therapeutically relevant doses is demonstrated. Hydrogels were prepared from plain silk and silk that had been chemically modified with sulfonic acid groups. CXCL12 was mixed with the silk solution prior to gelation, resulting in 100% encapsulation efficiency, and both hydrated and lyophilized gels were compared. By attaching a fluorescein tag to CXCL12 using a site-specific sortase-mediated enzymatic ligation, release was easily quantified in a high-throughput manner using fluorescence spectroscopy. CXCL12 continually eluted from both plain and acid-modified silk hydrogels for more than 5 weeks at concentrations ranging from 10 to 160 ng per day, depending on the gel preparation method. Notably, acid-modified silk hydrogels displayed minimal burst release yet had higher long-term release rates compared to those of plain silk hydrogels. Similar release profiles were observed over a range of loading capacities, allowing dosage to be easily varied.

  10. [Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16].

    PubMed

    Kong, Xiangping; He, Aiyong; Chen, Jianan; Chen, Wufang; Yin, Chunyan; Chen, Pan; Wu, Hao; Jiang, Min

    2014-02-01

    Sugarcane bagasse modified by polyethylenimine (PEI) and glutaraldehyde (GA) was used as a carrier to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. The effects of chemically modified sugarcane bagasse on batch and repeat-batch fermentations were investigated. Batch fermentation was conducted with an addition of 10 g/L modified sugarcane bagasse and 60 g/L glucose, resulting in a high solvent concentration of 21.67 g/L and productivity of 0.60 g/(L x h) with the treatment of 4 g/L PEI and 1 g/L GA. Compared to the fermentations by free cells and immobilized cells on unmodified sugarcane bagasse, the productivity increased 130.8% and 66.7%, respectively. The fibrous-bed bioreactor also maintained a stable butanol production during repeat-batch fermentations, achieving a maximum productivity of 0.83 g/(L x h) with a high yield of 0.42 g/g.

  11. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates.

    PubMed

    Humenik, Martin; Scheibel, Thomas

    2014-02-25

    Self-assembling protein nanofibrils are promising structures for the "bottom-up" fabrication of bionanomaterials. Here, the recombinant protein eADF4(C16), a variant of Araneus diadematus dragline silk ADF4, which self-assembles into nanofibrils, and short oligonucleotides were modified for site-specific azide-alkyne coupling. Corresponding oligonuleotide-eADF4(C16) "click" conjugates were hybridized in linear or branched fashion according to the designed complementarities of the DNA moieties. Self-assembly properties of higher ordered structures of the spider silk-DNA conjugates were dominated by the silk component. Assembled β-sheet rich conjugate fibrils were similar in appearance to fibrils of unmodified eADF4(C16) but enabled the specific attachment of neutravidin-modified gold nanoparticles on their surface directed by complementary biotin-oligonucleotides, providing the basis for functionalization of such conjugates.

  12. Chemical force titrations of amine- and sulfonic acid-modified poly(dimethylsiloxane).

    PubMed

    Wang, Bin; Oleschuk, Richard D; Horton, J Hugh

    2005-02-15

    Chemical force titrations-measurements of the adhesive interaction between a pair of suitably chemically modified atomic force microscopy (AFM) tip and sample surfaces as a function of pH-have been carried out for various combinations of silanol, amine, carboxylic acid, and sulfonic acid functional groups on both tip and sample. The primary surface material studied was poly(dimethylsiloxane) (PDMS). Surface modification was carried out using a plasma oxidation process to form silanol sites; further modification with amine or sulfonic acid sites was carried out by reaction of the silanol sites with the appropriate trialkoxysilane derivative. AFM tips were also modified using trialkoxysilane compounds. In the cases of tip/sample combinations with the same functional group on each, surface pK(1/2) values could be determined. In several "mixed" tip/sample combinations, a peak appeared in the titration curve midway between the surface pK(1/2) values of the tip and sample, consistent with an ionic H-bonding model for the interactions. The amine/sulfonic acid pair showed more complex behavior; the amine-terminated tip/sulfonic acid-terminated PDMS surface force titration curve consisted of two peaks centered at pH 4 and pH 8. Reversing the tip/sample pair resulted in the peak positions being shifted upward by 1.0 pH unit. The peak appearing at lower pH is assigned to electrostatic interactions between the two oppositely charged surfaces, whereas the higher pH peak is believed to arise due to ionic H-bonding interactions. AFM images show the effects on surface patterning of amine- and sulfonic acid-modified PDMS surfaces that have undergone two different oxidation methods (air plasma oxidation and Tesla coil oxidation). The surface morphologies of freshly prepared and 24 h aged air plasma oxidized PDMS are also discussed in this study.

  13. Chemically crosslinked alginate porous microcarriers modified with bioactive molecule for expansion of human hepatocellular carcinoma cells.

    PubMed

    Li, Chunge; Zhao, Shuang; Zhao, Yanyan; Qian, Yufeng; Li, Junjie; Yin, Yuji

    2014-11-01

    Microcarrier is an essential matrix for the large-scale culture of anchorage-dependent cells. In this study, chemical cross-linked alginate porous microcarriers (AMC) were prepared using microemulsion and freeze-drying technology. Moreover, chitosan was coated on the surface of microcarriers (AMC-CS) via electrostatic interactions to improve the mechanical strength. The size of AMC can be modulated through adjusting the concentration of alginate, amount of dispersant and stirring rate. The surface chemical characteristics and morphology of AMC-CS were evaluated by Fourier transformed infrared, X-ray photoelectron spectroscopy, and scanning electron microscope. Fibronectin (Fn) or heparin/basic fibroblast growth factor (bFGF) was then immobilized on the surface of microcarriers via layer-by-layer technology to improve the cytocompatibility. Our data suggested that the size of AMC can be accurately modulated from 90 μm to 900 μm with a narrow size distribution. Micropore structures of AMC-CS were relatively disordered and the pore size ranged between 20 μm and 100 μm. Using AMC after modified with Fn or bFGF as the cell expansion microcarriers, we showed that the proliferation rates of HepG2 cells increased significantly, reaching to more than 30-fold of cell expansion after 10 days of culture, with minor cellular damage caused by the microcarriers. Moreover, the AMC microcarriers modified with Fn or bFGF can increase albumin secretion of HepG2. We suggest that our new modified AMC-based microcarriers will be an attractive candidate for the large-scale cell culture of therapeutic cells.

  14. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Biella, Serena; Cesura, Federico; Levi, Marinella; Turri, Stefano

    2013-05-01

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  15. [Study toward practical use of oligonucleotide therapeutics].

    PubMed

    Inoue, Takao; Yoshida, Tokuyuki

    2014-01-01

    Over the past decade, oligonucleotide-based therapeutics such as antisense oligonucleotides and small interfering RNAs (siRNAs) have been developed extensively. For example, mipomersen (Kynamro; ISIS Pharmaceuticals), which is a second-generation antisense oligonucleotide administered by subcutaneous injection, has recently been approved by the FDA for the treatment of homozygous familial hypercholesterolemia. On the other hands, methods for the evaluation of quality, efficacy and safety of oligonucleotide therapeutics have not been fully discussed. Furthermore, the regulatory guidance specific for oligonucleotide therapeutics has not been established yet. Under these circumstances, we started to collaborate with Osaka University and PMDA to discuss regulatory science focused on oligonucleotide therapeutics. Through the collaboration, we would like to propose the possible design of quality evaluation and preclinical safety-evaluation of oligonucleotide therapeutics. PMID:25707197

  16. Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA

    PubMed Central

    Sato, Shinobu; Takenaka, Shigeori

    2014-01-01

    Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types. PMID:25019631

  17. Dual-tracer method to estimate coral reef response to a plume of chemically modified seawater

    NASA Astrophysics Data System (ADS)

    Maclaren, J. K.; Caldeira, K.

    2013-12-01

    We present a new method, based on measurement of seawater samples, to estimate the response of a reef ecosystem to a plume of an additive (for example, a nutrient or other chemical). In the natural environment, where there may be natural variability in concentrations, it can be difficult to distinguish between changes in concentrations that would occur naturally and changes in concentrations that result from a chemical addition. Furthermore, in the unconfined natural environment, chemically modified water can mix with waters that have not been modified, making it difficult to distinguish between effects of dilution and effects of chemical fluxes or transformations. We present a dual-tracer method that extracts signals from observations that may be affected by both natural variability and dilution. In this dual-tracer method, a substance (in our example case, alkalinity) is added to the water in known proportion to a passive conservative tracer (in our example case, Rhodamine WT dye). The resulting plume of seawater is allowed to flow over the study site. Two transects are drawn across the plume at the front and back of the study site. If, in our example, alkalinity is plotted as a function of dye concentration for the front transect, the slope of the resulting mixing line is the ratio of alkalinity to dye in the added fluid. If a similar mixing line is measured and calculated for the back transect, the slope of this mixing line will indicate the amount of added alkalinity that remains in the water flowing out of the study site per unit of added dye. The ratio of the front and back slopes indicates the fraction of added alkalinity that was taken up by the reef. The method is demonstrated in an experiment performed on One Tree Reef (Queensland, Australia) aimed at showing that ocean acidification is already affecting coral reef growth. In an effort to chemically reverse some of the changes to seawater chemistry that have occurred over the past 200 years, we added

  18. Fabrication and long-wavelength characterization of neat and chemically modified graphene

    SciTech Connect

    Kalugin, Nikolai G.

    2014-03-31

    Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at elevated temperatures. Chemical modification of graphene opens up many new applications of this material in electronics, in new composite materials, and in new catalysts for different chemical processes. Chemical vapor deposition-grown large-area graphene can be successfully modified with the creation of benzyne attachments. The investigation of microwave properties is an important part of graphene research. Two variants of near-field long wavelength microscopy were found efficient with graphene. Measurements with a probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator allow the implementation of an electrodynamic model of graphene microwave impedance. The results of near-field scanning superconducting quantum interference device (SQUID) RF microscopy of graphite and graphene at 200 MHz shed light on mechanisms of AC graphene response: screening currents induced in graphene by an external RF magnetic field tend to localize near structural defects.

  19. Fabrication and long-wavelength characterization of neat and chemically modified graphene

    NASA Astrophysics Data System (ADS)

    Kalugin, Nikolai G.

    2014-03-01

    Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at elevated temperatures. Chemical modification of graphene opens up many new applications of this material in electronics, in new composite materials, and in new catalysts for different chemical processes. Chemical vapor deposition-grown large-area graphene can be successfully modified with the creation of benzyne attachments. The investigation of microwave properties is an important part of graphene research. Two variants of near-field long wavelength microscopy were found efficient with graphene. Measurements with a probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator allow the implementation of an electrodynamic model of graphene microwave impedance. The results of near-field scanning superconducting quantum interference device (SQUID) RF microscopy of graphite and graphene at 200 MHz shed light on mechanisms of AC graphene response: screening currents induced in graphene by an external RF magnetic field tend to localize near structural defects.

  20. A modified next reaction method for simulating chemical systems with time dependent propensities and delays.

    PubMed

    Anderson, David F

    2007-12-01

    Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.

  1. Optical porous-silicon-based sensors with chemically modified surface for detection of organic vapors

    NASA Astrophysics Data System (ADS)

    Chvojka, T.; Holec, T.; Jelinek, I.; Nemec, I.; Jindrich, J.; Lorenc, M.; Koutnikova, J.; Kral, V.; Dian, Juraj

    2003-07-01

    Photoluminescence quenching response of as prepared and surface modified porous silicon sensors in presence of organic analytes in gas phase was studied. Surface modification aimed at increasing of operational stability and modification of sensoric response was performed by a hydrosilylation reaction with various organic compounds - methyl 10-undecenoate, haemin, cinchonine and quinine. These sensors were tested for a homological set of aliphatic alcohols from methanol to hexanol. We have systematically measured changes in porous silicon photoluminescence intensity as a function of concentration of detected analytes and evaluated sensitivity, detection limit and linear dynamic range of our sensors. Speed of the sensoric response was of the order of seconds. The obtained sensoric parameters were correlated with chemical and physical properties of both the compounds used for derivatization and the detected analytes.

  2. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    PubMed

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications. PMID:23911585

  3. Chemical and hemolytic properties of sphingolipids modified by ozonolysis and reduction.

    PubMed

    Uemura, K; Hara, A; Taketomi, T

    1976-06-01

    Various sphingolipids were chemically modified in their sphingosine base by ozonolysis and reduction. The derivatives obtained from Forssman globoside, globoside I, galactosyl ceramide, and sphingomyelin were purified and all were found to be hemolytic. The presence of cholesterol could inhibit this activity. The simultaneous cleavage at a double bond in the fatty acid as well as in the sphingosine of Forssman globoside resulted in the formation of a more polar compound with no detectable hemolytic activity. The haptenic reactivity was retained after ozonolysis and reduction of Forssman globoside, as shown by precipitin line formation in agar gel with appropriate antibodies. The results indicate that this modification procedure may be useful in studies of the physiological and immunological properties of sphingolipids.

  4. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  5. Synchrotron Infrared Confocal Microspectroscopical Detection of Heterogeneity Within Chemically Modified Single Starch Granules

    SciTech Connect

    Wetzel, D.; Shi, Y; Reffner, J

    2010-01-01

    This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plant producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.

  6. The characteristics of phenanthrene biosorption by chemically modified biomass of Phanerochaete chrysosporium.

    PubMed

    Gu, Haiping; Luo, Xiaoyan; Wang, Haizhen; Wu, Laosheng; Wu, Jianjun; Xu, Jianming

    2015-08-01

    The natural (S0) and chemically modified Phanerochaete chrysosporium including the methylation of amino groups (S1), acetylation of hydroxyl groups (S2), lipid removal (S3), esterification of carboxyl groups (S4), and base hydrolysis (S5) were characterized, and their sorption for phenanthrene (PHE) was investigated. The sorption isotherm of PHE on natural biomasses was apparently linear, while it was nonlinear for the modified ones. The partition coefficient (K d ) describing the sorption affinity of PHE by biomasses followed the order of S0 (9.24 L g(-1)) > S5 (8.94 L g(-1)) > S1 (7.13 L g(-1)) > S2 (6.97 L g(-1)) > S3 (6.38 L g(-1)) > S4 (3.51 L g(-1)) and decreased as temperature increased. The PHE adsorption fitted well to the pseudo-second-order kinetic model, and the sorption capacity was in the order of S5 (2041.5 μg g(-1)) > S0 (1768.8 μg g(-1)) > S2 (1570.9 μg g(-1)) > S1 (1552.9 μg g(-1)) > S3 (1346.4 μg g(-1)) > S4 (991.0 μg g(-1)). Moreover, the π-π and electron donor-acceptor interactions may govern PHE sorption which processed spontaneously and exothermally. The natural and modified biomasses, especially the base hydrolysis treated ones, were economical and effective biosorbents for PHE removal. PMID:25860550

  7. Influence of ionizing radiation on physical properties of native and chemically modified starches

    NASA Astrophysics Data System (ADS)

    Henry, F.; Costa, L. C.; Aymes-Chodur, C.

    2010-01-01

    Cationic and anionic starches (chemically modified) and native starch (non-modified) were exposed to electron-beam irradiation at doses of 25, 75 and 150 kGy. The increasing solubility in water, due to chain scission and creation of polar groups as already mentioned in the literature, has been confirmed using several physical methodologies. Impedance Spectroscopy (IS) on water solutions was carried out in order to calculate the relaxation parameters of the Cole-Cole model and α and β parameters of the Jones-Dole equation, which show the influence of radiation dose on increasing polarity, decreasing of molecular mass and increasing of electrostatic attraction between chains. Infra-red spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) confirm the formation of polar groups that retain water. The aim of this work was to confirm that the control of chain scission and functionalization of starches with irradiation could then be used in a future work to create nanoparticles by complex coacervation in an aqueous base.

  8. Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabrics.

    PubMed

    Hebeish, A; El-Shafei, A; Sharaf, S; Zaghloul, S

    2014-11-26

    Cationization of cotton fabric form was effected by reacting the cellulose with 3-chloro-2 hydroxypropyl trimethyl ammonium chloride in presence of sodium hydroxide as per the pad dry cure method. Thus obtained cationized cotton cellulose was reacted with a reactive copolymer, namely, reactive β-cyclodextrin grafted with polyacrylic acid (MCT-βCD-g-PAA).Bridging of another copolymer, namely, β-cyclodextrin grafted with polyacrylic acid (βCD-g-PAA) to the cationized fabric using epichlorohydrin crosslinker was also performed. Inclusion of Ag nanoparticles in these three cotton substrates via treatment of the latter with colloid of Ag nanoparticles or through in situ formation of the former was exercised. Characterization of cotton fabric before and after being chemically modified was carried out using FTIR, XRD and SEM. Bacterial examination of the cationized cotton containing either (MCT-βCD-g-PAA) or (βCD-g-PAA) incorporated with Ag nanoparticles showed these substrates function against G+ve and G-ve bacteria. Ability of (MCT-βCD-g-PAA) modified cotton to include hydrophobic molecules was examined.

  9. Study of permeability changes induced by external stimuli on chemically modified electrodes

    NASA Astrophysics Data System (ADS)

    Perera, Dingiri Mudiyanselage Neluni T.

    This research was focused on understanding how external stimuli affect the permeability of the chemically modified electrodes, and how the materials used in modifying the working electrodes respond to the changes in the surface charge. We adopted a voltammetric type electrochemical sensor to investigate the permeability effects induced by pH and organic solvents. The working electrodes used in this research were chemically modified with thioctic acid self assembled monolayer (TA SAM), track etched polycarbonate membranes (TEPCM) and PS-b-PMMA nanoporous films (polystyrene-block-polymethylmethacrylate). We studied the permeability behavior of each of the material upon application of external stimuli. In chapter 3, the permeability changes induced by change in surface charge of thioctic acid SAM was investigated. The surface charge of the monolayer was tuned by changing pH of the medium, which resulted in decrease of redox current of a negatively charged marker due to deprotonation of the surface --COOH groups of TA SAM. Decrease in redox current reflected a decrease in the reaction rate, and by using closed form equations the effective rate constants at several pKa values were extracted. In chapter 4, permeability changes induced by pH in TEPCM were investigated. We assessed the surface charge of these membranes via cyclic voltammetry generated for neutral and charged redox molecules. Limiting current of charged markers were affected by the surface charge induced by pH, where as the redox current for the neutral marker was not affected. Experimental redox currents were larger than the theoretical current, indicating that redox molecules preferentially distributed in a surface layer on the nanopore. Organic solvent induced permeability changes of PS-b-PMMA nanoporous films were investigated via electrochemical impedance spectroscopy and AFM. Higher response of pore resistance in the presence of organic solvents indicated either swelling of the nanoporous film or

  10. In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis.

    PubMed

    Björses, Katarina; Faxälv, Lars; Montan, Carl; Wildt-Persson, Katarina; Fyhr, Peter; Holst, Jan; Lindahl, Tomas L

    2011-06-01

    Degradable starch microspheres (DSMs) are starch chains cross-linked with epichlorhydrin, forming glycerol-ether links. DSMs have been used for many years for temporary vascular occlusion and drug delivery in treatment of malignancies. They are also approved and used for topical haemostasis by absorbing excess fluid from the blood and concentrating endogenous coagulation factors, thereby facilitating haemostasis. This mechanism of action is not sufficient for larger bleedings in current chemical formulations of DSMs, and modification of DSMs to trigger activation of platelets or coagulation would be required for use in such applications. Chemical modifications of DSMs with N-octenyl succinic anhydride, chloroacetic acid, acetic anhydride, diethylaminoethyl chloride and ellagic acid were performed and evaluated in vitro with thrombin generation and platelet adhesion tests, and in vivo using an experimental renal bleeding model in rat. DSMs modified to activate platelets in vitro were superior in haemostatic capacity in vivo. Further studies with non-toxic substances are warranted to confirm these results and develop the DSM as a more effective topical haemostatic agent.

  11. Biodistribution profiling of the chemical modified hyaluronic acid derivatives used for oral delivery system.

    PubMed

    Hsieh, Chien-Ming; Huang, Yu-Wen; Sheu, Ming-Thau; Ho, Hsiu-O

    2014-03-01

    A series of adipic acid dihydrazide (ADH)-modified hyaluronic acid (HA-ADH) compounds were synthesized and conjugated with QDots (QDots-HA conjugates) to assess the effects of the molecular weight (MW) and extent of chemical modification of HA on its biodistribution. Their physicochemical structures were confirmed by complementary application of GPC, (1)H NMR, FTIR, and UV-vis spectroscopic methods. In vivo imaging of QDots-HA conjugates after oral administration was analyzed to investigate their biodistribution in nude mice. Simultaneously, real-time bioimaging was confirmed by an anatomical analysis to investigate the organ-specific accumulation of conjugates. QDot-HA conjugates with a higher MW of HA or high modification presented relatively slow clearance leading to an extension of the retention time for up to 10 days, whereas those with lower MWs of HA or a low modification extent exhibited quick absorption and elimination after oral administration. Taken together, HA derivatives with suitable MWs and chemical modification extents can be used to design new, more-sophisticated, and intelligent HA-based vehicles for oral delivery with diverse characteristics. PMID:24315950

  12. Toxicology of chemically modified graphene-based materials for medical application.

    PubMed

    Nezakati, Toktam; Cousins, Brian G; Seifalian, Alexander M

    2014-11-01

    This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.

  13. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    NASA Astrophysics Data System (ADS)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  14. The effects of space radiation on a chemically modified graphite-epoxy composite material

    NASA Technical Reports Server (NTRS)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  15. Photolithographic strategy for patterning preformed, chemically modified, porous silicon photonic crystal using click chemistry.

    PubMed

    Zhu, Ying; Gupta, Bakul; Guan, Bin; Ciampi, Simone; Reece, Peter J; Gooding, J Justin

    2013-07-24

    Porous silicon (PSi) is an ideal platform for label-free biosensing, and the development of porous silicon patterning will open a pathway to the development of highly parallel PSi biochips for detecting multiple analytes. The optical response of PSi photonic crystal is determined by the changes in the effective bulk refractive index resulting from reactions/events occurring within the internal pore space. Therefore, introducing precise chemical functionalities in the pores of PSi is essential to ensure device selectivity. Here we describe the fabrication of PSi patterns that possess discrete chemical functionalities that are restricted to precise locations. The key difference to previous patterning protocols for PSi is that the entire porous material is first modified with a self-assembled monolayer of a α,ω-diyne adsorbate prior to patterning using a microfabricated titanium mask. The distal alkyne moieties in the monolayer are then amenable to further selective modification by the archetypal "click" reaction, the copper catalyzed alkyne-azide cycloaddition (CuAAC), using the titanium mask as a resist. This type of patterning is suitable for further immobilization of biological recognition elements, and presents a new platform for highly parallel PSi biosensor for multiple detections.

  16. Chemical composition and resistance-modifying effect of the essential oil of Lantana camara Linn

    PubMed Central

    Sousa, Erlânio O.; Silva, Natálya F.; Rodrigues, Fabiola F. G.; Campos, Adriana R.; Lima, Sidney G.; Costa, José Galberto M.

    2010-01-01

    In this work, the chemical constituents, antibacterial and modulatory activities of the essential oil of Lantana camara Linn were studied. The essential oil was extracted from the leaves of L. camara by hydrodistillation method using Clevenger's apparatus and its chemical constituents were separated and identified by GC-MS, and the relative content of each constituent was determined by area normalization. Among the 25 identified components, bicyclogermacrene (19.42%), isocaryophyllene (16.70%), valecene (12.94%) and germacrene D (12.34%) were the main constituents. The oil was examined to antibacterial and modulatory activities against the multiresistant strains of Escherichia coli and Staphylococcus aureus by microdilution test. The results show an inhibitory activity to E. coli (MIC 512 μg/ml) and S. aureus (MIC 256 μg/ml). The synergism of the essential oil and aminoglycosides was verified too, with significant reduction of MICs (7 ×, 1250-5 μg/ml) against E. coli. It is suggested that the essential oil of Lantana camara Linn could be used as a source of plant-derived natural products with resistance-modifying activity. PMID:20668570

  17. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  18. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall. PMID:25332072

  19. Targeted Intracellular Delivery of Antisense Oligonucleotides Via Conjugation With Small Molecule Ligands

    PubMed Central

    Nakagawa, Osamu; Ming, Xin; Huang, Leaf; Juliano, Rudolph L.

    2010-01-01

    Selective delivery of antisense or siRNA oligonucleotides to cells and tissues via receptor-mediated endocytosis is becoming an important approach for oligonucleotide-based pharmacology. In most cases receptor targeting has been attained using antibodies or peptide-type ligands. Thus there are few examples of delivering oligonucleotides using the plethora of small-molecule receptor-specific ligands that currently exist. In this report we describe a facile approach to the generation of mono- and multi-valent conjugates of oligonucleotides with small molecule ligands. Using the sigma receptor ligand anisamide as an example, we describe conversion of the ligand to a phosphoramidite and direct incorporation of this moiety into the oligonucleotide by solid phase DNA synthesis. We generated mono- and tri-valent conjugates of anisamide with a splice switching antisense oligonucleotide (SSO) and tested their ability to modify splicing of a reporter gene (luciferase) in tumor cells in culture. The tri-valent anisamide-SSO conjugate displayed enhanced cellular uptake and was markedly more effective than an unconjugated SSO or the mono-valent conjugate in modifying splicing of the reporter. Significant biological effects were attained in the sub-100 nM concentration range. PMID:20550198

  20. Mechanism of Oligonucleotide Uptake by Cells: Involvement of Specific receptors?

    NASA Astrophysics Data System (ADS)

    Yakubov, Leonid A.; Deeva, Elena A.; Zarytova, Valentina F.; Ivanova, Eugenia M.; Ryte, Antonina S.; Yurchenko, Lyudmila V.; Vlassov, Valentin V.

    1989-09-01

    We have investigated the interaction of oligonucleotides and their alkylating derivatives with mammalian cells. In experiments with L929 mouse fibroblast and Krebs 2 ascites carcinoma cells, it was found that cellular uptake of oligodeoxynucleotide derivatives is achieved by an endocytosis mechanism. Uptake is considerably more efficient at low oligomer concentration (< 1 μ M), because at this concentration a significant percentage of the total oligomer pool is absorbed on the cell surface and internalized by a more efficient absorptive endocytosis process. Two modified proteins were detected in mouse fibroblasts that were treated with the alkylating oligonucleotide derivatives. The binding of the oligomers to the proteins is inhibited by other oligodeoxynucleotides, single- and double-stranded DNA, and RNA. The polyanions heparin and chondroitin sulfates A and B do not inhibit binding. These observations suggest the involvement of specific receptor proteins in binding of oligomers to mammalian cells.

  1. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  2. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  3. Structure and magnetic properties of detonation nanodiamond chemically modified by copper

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Panich, A. M.; Osipov, V. Yu.; Aleksenskiy, A. E.; Vul', A. Ya.; Enoki, T.; Takai, K.

    2010-01-01

    We report on detailed study of detonation nanodiamonds (DNDs) whose surface has been chemically modified by copper with the aid of ion exchange in water DND suspension. High resolution transmission electron microscopy, Raman, IR, electron magnetic resonance (EMR), nuclear magnetic resonance (NMR), and superconducting quantum interference device techniques were used for the characterization of DND. Carboxyl groups, appearing on the surface of a nanodiamond particle during its synthesis and purification processes, provide an effective binding of divalent copper ions to the surface. The binding results from the ion exchange between metal cations and protons of surface carboxyl groups in water solutions. IR data evidence the presence of multiple COC groups in the dried copper-modified DND product. Both EMR and C13 NMR provide direct evidences of the appearance of isolated Cu2+ ions on the surface of the 5 nm nanodiamond particles. EMR spectra reveal well-pronounced hyperfine structure due to C63,65u nuclear spin I =3/2 with the spectral pattern which is typical for mononuclear axially distorted Cu2+ complexes in polycrystals. Using Cu2+ ions as paramagnetic probes two-component model of carbon inherited paramagnetic centers in DND is suggested. Magnetic susceptibility for all samples follows the Curie-Weiss law above 30 K. The concentration of magnetically observable copper ions Cu2+ (spin S =1/2) localized on the nanodiamonds surface increases up to approximately 1.5-3.5 ions per nanoparticle with increasing concentration of copper acetate in starting solutions.

  4. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    NASA Technical Reports Server (NTRS)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  5. A Chemically Modified Tetracycline (CMT-3) Is a New Antifungal Agent

    PubMed Central

    Liu, Yu; Ryan, Maria E.; Lee, Hsi-Ming; Simon, Sanford; Tortora, George; Lauzon, Carol; Leung, Michael K.; Golub, Lorne M.

    2002-01-01

    Several chemically modified tetracycline analogs (CMTs), which were chemically modified to eliminate their antibacterial efficacy, were unexpectedly found to have antifungal properties. Of 10 CMTs screened in vitro, all exhibited antifungal activities, although their efficacies varied. Among these compounds, CMT-315, -3, and -308 were found to be the most potent as antifungal agents. The MICs of CMT-3 against 47 strains of fungi in vitro were determined by using amphotericin B (AMB) and doxycycline as positive and negative controls, respectively. The MICs of CMT-3 were generally found to be between 0.25 and 8.00 μg/ml, a range that approximates the blood levels of this drug when administrated orally to humans. Of all the yeast species tested to date, Candida albicans showed the greatest sensitivity to CMT-3. The filamentous species most susceptible to CMT-3 were found to be Epidermophyton floccosum, Microsporum gypseum, Pseudallescheria boydii, a Penicillium sp., Scedosporium apiospermum, a Tricothecium sp., and Trichophyton rubrum. Growth inhibition of C. albicans by CMT-3, determined by a turbidity assay, indicated a 50% inhibitory concentration of 1 μg/ml. Thirty-nine strains, including 20 yeasts and 19 molds, were used to measure viability (the ability to grow after treatment with a drug) inhibition by CMT-3 and AMB. CMT-3 exhibited fungicidal activity against most of these fungi, especially the filamentous fungi. Eighty-four percent (16 of 19) of the filamentous fungi tested showed more than 90% inhibition of viability by CMT-3. In contrast, AMB showed fungicidal activity against all yeasts tested. However, most of the filamentous fungi (16 of 19) showed less than 50% inhibition of viability by AMB, indicating that AMB is fungistatic against most of these filamentous fungi. To begin to identify the sites in fungal cells affected by CMT-3, C. albicans and a Penicillium sp. were incubated with the compound at 35°C, and then the fluorescence of CMT-3 was

  6. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  7. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    SciTech Connect

    Kumbhar, V.S.; Jagadale, A.D.; Gaikwad, N.S.; Lokhande, C.D.

    2014-08-15

    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  8. Kinetic and thermodynamic study of a chemically modified highly active xylanase from Scopulariopsis sp: existence of an essential amino group.

    PubMed

    Afzal, Ahmed Jawaard; Bokhari, Saleem Ahmed; Siddiqui, Khawar Sohail

    2007-01-01

    The amino groups of purified least acidic xylanase (LAX) isomer and carboxyl groups of purified highly acidic xylanase (HAX) isomer from Scopulariopsis sp. were chemically modified, resulting in charge neutralization and reversal. Modification of the second amino group was accompanied by the complete loss of enzyme activity in both the absence and presence of xylose. Multiple alignments of family 10 and 11 xylanases revealed that there is a pair of fully conserved Lys residues only in family 10 members. Xylanase structures from family 10 members showed that one of the conserved Lys residues is found near the active-site cleft that makes an H-bond with the substrate. The LAX and HAX isoenzymes in which one amino and three to four carboxyl groups were modified were subjected to kinetic and thermodynamic characterization. There were no differences in pH optima between the native and modified HAX, but there was a broadening of pH optimum toward the alkaline range for charge-neutralized LAX and a double pH optimum for charge-reversed LAX. TheV max/K m of both modified LAX and HAX decreased relative to the native species. The thermodynamics of xylan hydrolysis showed that the decrease in the catalytic activity of modified LAX enzymes was entropically driven. When compared with native enzyme, the thermostabilities of modified LAX enzymes increased in the presence and decreased in the absence of substrate. The thermodynamics of kinetic stability for modified LAX enzymes revealed that this increase in thermolability was owing to the decrease in DeltaH# with a concomitant increase in DeltaS# compared with native LAX. The thermostabilities of all the modified HAX species decreased except that of charge-neutralized HAX, whose half-life significantly increased in 50% (v/v) aqueous dioxan. These results suggest that the altered properties of the modified enzymes were a result of the conformational changes brought about by chemical modification. PMID:18025557

  9. Cellular Uptake and Intracellular Trafficking of Oligonucleotides: Implications for Oligonucleotide Pharmacology

    PubMed Central

    Ming, Xin; Carver, Kyle; Laing, Brian

    2014-01-01

    One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed. PMID:24383421

  10. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.

    PubMed

    Severo, Elias Taylor Durgante; Calonego, Fred Willians; Sansígolo, Cláudio Angeli; Bond, Brian

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood.

  11. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber.

    PubMed

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang

    2015-12-15

    In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29±0.28 mg/g, 505.64±0.21 mg/g, and 123.08±0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  12. A Novel Chemically Modified Curcumin Reduces Severity of Experimental Periodontal Disease in Rats: Initial Observations

    PubMed Central

    Elburki, Muna S.; Rossa, Carlos; Guimaraes, Morgana R.; Goodenough, Mark; Lee, Hsi-Ming; Curylofo, Fabiana A.; Zhang, Yu; Johnson, Francis; Golub, Lorne M.

    2014-01-01

    Tetracycline-based matrix metalloproteinase- (MMP-) inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS) was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control) side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar) bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot) and for cytokines (e.g., IL-1β; ELISA); serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P = 0.003) or μ-CT (P = 0.008) analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations. PMID:25104884

  13. Removal of methylene blue from aqueous solutions by chemically modified bamboo.

    PubMed

    Guo, Jian-Zhong; Li, Bing; Liu, Li; Lv, Kangle

    2014-09-01

    Chemically modified bamboo (CMB) was utilized for removing methylene blue (MB) from aqueous media in the present study. The adsorbent was characterized by Fourier transform infrared (FTIR) spectra and elemental analysis, which confirms that carboxyl groups and diethylenetriamine were successfully introduced into the surface of bamboo. The effects of initial MB concentration (100-900mgL(-1)), contact time (15-315min), the pH of the solution (3-10), temperature (298-318K), adsorbent dosage (0.4-2.6gL(-1)) and salt concentration on the adsorption efficiency of CMB towards MB were investigated. It was found that the adsorption of MB in CMB fits Langmuir mode well, and the maximum adsorption capacity of CMB achieved 606mgg(-1) at 298K, which is much higher than those obtained from previously investigated bioadsorbents. The adsorption kinetics can be described by pseudo-second-order kinetic model, and the adsorption of MB on CMB was an exothermic process. The results of the present study suggest that CMB is an effective biosorbent for removal of organic pollutants from aqueous solutions.

  14. The effects of chemically modifying serum apolipoproteins on their ability to activate lipoprotein lipase.

    PubMed Central

    Dodds, P F; Lopez-Johnston, A; Welch, V A; Gurr, M I

    1987-01-01

    Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis. PMID:3593262

  15. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.

    PubMed

    Severo, Elias Taylor Durgante; Calonego, Fred Willians; Sansígolo, Cláudio Angeli; Bond, Brian

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  16. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood

    PubMed Central

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  17. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  18. Reaction of atomically clean aluminum and chemically modified aluminum with alkyl halides

    SciTech Connect

    Chen, J.G.; Beebe, T.P. Jr.; Crowell, J.E.; Yates, J.T. Jr.

    1987-03-18

    The interaction of methyl halides with an atomically clean A(111) surface has been investigated using high-resolution electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD). CH/sub 3/I adsorbs on A(111) both molecularly and dissociatively at 150 K; adsorbed CH/sub 3/I decomposes to CH/sub (a)/ and I/sub (a)/ in the temperature range of 250-450 K. No surface reaction of CH/sub 3/Cl or CH/sub 3/Br with clean or chemically modified Al(111) was observed, and a reactive sticking coefficient of < 10/sup -5/ was estimated in the temperature range of 135-500 K (CH/sub 3/Cl) or at 150 K (CH/sub 3/Br). Reasons for the reactivity differences of the methyl halides toward the Al(111) surface are discussed. These findings on Al, and their implication in Grignard reaction mechanisms, are compared with recent studies by another group on a Mg surface.

  19. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  20. Progress in chemical treatment of LEU targets by the modified Cintichem process

    SciTech Connect

    Wu, D.; Landsberger, S.; Vandegrift, G.F.

    1996-12-31

    Presented here are recent experimental results on tests of a modified Cintichem process for producing {sup 99}Mo from low enriched uranium (LEU). Studies were focused in three areas: (1) testing the effects on {sup 99}Mo recovery and purity of dissolving LEU foil in nitric acid alone, rather than in the sulfuric/nitric acid mixture currently used, (2) measuring decontamination factors for radionuclide impurities in each purification step, and (3) testing the effects on processing of adding barrier materials to the LEU metal-foil target. The experimental results show that switching from dissolving the target in the sulfuric/nitric mixture to using nitric acid alone should cause no significant difference in {sup 99}Mo product yield or purity. Further, the results show that overall decontamination factors for gamma emitters in the LEU-target processing are high enough to meet the purity requirements for the {sup 99}Mo product. The results also show that the selected barrier materials, Cu, Fe, and Ni, do not interfere with {sup 99}Mo recovery and can be removed during chemical processing of the LEU target.

  1. Chemically modified graphene films for high-performance optical NO2 sensors.

    PubMed

    Xing, Fei; Zhang, Shan; Yang, Yong; Jiang, Wenshuai; Liu, Zhibo; Zhu, Siwei; Yuan, Xiaocong

    2016-08-01

    Various graphene-based gas sensors that operate based on the electrical properties of graphene have been developed for accurate detection of gas components. However, electronic graphene-based gas sensors are unsafe under explosive atmospheres and sensitive to electromagnetic interference. Here, a novel optical graphene-based gas sensor for NO2 detection is established based on surface chemical modification of high-temperature-reduced graphene oxide (h-rGO) films with sulfo groups. Sulfo group-modified h-rGO (S-h-rGO) films with a thickness of several nanometers exhibit excellent performance in NO2 detection at room temperature and atmospheric pressure based on the polarization absorption effect of graphene. Initial slope analysis of the S-h-rGO sensor indicates that it has a limit of detection of 0.28 ppm and a response time of 300 s for NO2 gas sensing. Furthermore, the S-h-rGO sensor also possesses the advantages of good linearity, reversibility, selectivity, non-contact operation, low cost and safety. This novel optical gas sensor has the potential to serve as a general platform for the selective detection of a variety of gases with high performance. PMID:27265308

  2. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers.

    PubMed

    Dobrowolski, Ryszard; Dobrzyńska, Joanna; Gawrońska, Barbara

    2015-01-01

    Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂ was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5% (w/v) slurry concentration.

  3. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    PubMed

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts. PMID:24846604

  4. Oligonucleotide therapeutics: chemistry, delivery and clinical progress.

    PubMed

    Sharma, Vivek K; Watts, Jonathan K

    2015-01-01

    Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.

  5. Electron Transfer Dissociation of Oligonucleotide Cations.

    PubMed

    Smith, Suncerae I; Brodbelt, Jennifer S

    2009-06-01

    Electron transfer dissociation (ETD) of multi-protonated 6 - 20-mer oligonucleotides and 12- and 14-mer duplexes is compared to collision activated dissociation (CAD). ETD causes efficient charge reduction of the multi-protonated oligonucleotides in addition to limited backbone cleavages to yield sequence ions of low abundance. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), results in rich fragmentation in terms of w, a, z, and d products, with a marked decrease in the abundance of base loss ions and internal fragments. Complete sequencing was possible for nearly all oligonucleotides studied. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. PMID:20161288

  6. Selective release of multiple DNA oligonucleotides from gold nanorods.

    PubMed

    Wijaya, Andy; Schaffer, Stefan B; Pallares, Ivan G; Hamad-Schifferli, Kimberly

    2009-01-27

    Combination therapy, or the use of multiple drugs, has been proven to be effective for complex diseases, but the differences in chemical properties and pharmacokinetics can be challenging in terms of the loading, delivering, and releasing multiple drugs. Here we demonstrate that we can load and selectively release two different DNA oligonucleotides from two different gold nanorods. DNA was loaded on the nanorods via thiol conjugation. Selective releases were induced by selective melting of gold nanorods via ultrafast laser irradiation at the nanorods' longitudinal surface plasmon resonance peaks. Excitation at one wavelength could selectively melt one type of gold nanorods and selectively release one type of DNA strand. Releases were efficient (50-80%) and externally tunable by laser fluence. Released oligonucleotides were still functional. This proof of concept is potentially a powerful method for multiple-drug delivery strategies.

  7. Selective release of multiple DNA oligonucleotides from gold nanorods.

    PubMed

    Wijaya, Andy; Schaffer, Stefan B; Pallares, Ivan G; Hamad-Schifferli, Kimberly

    2009-01-27

    Combination therapy, or the use of multiple drugs, has been proven to be effective for complex diseases, but the differences in chemical properties and pharmacokinetics can be challenging in terms of the loading, delivering, and releasing multiple drugs. Here we demonstrate that we can load and selectively release two different DNA oligonucleotides from two different gold nanorods. DNA was loaded on the nanorods via thiol conjugation. Selective releases were induced by selective melting of gold nanorods via ultrafast laser irradiation at the nanorods' longitudinal surface plasmon resonance peaks. Excitation at one wavelength could selectively melt one type of gold nanorods and selectively release one type of DNA strand. Releases were efficient (50-80%) and externally tunable by laser fluence. Released oligonucleotides were still functional. This proof of concept is potentially a powerful method for multiple-drug delivery strategies. PMID:19206252

  8. Chemical ligation methods for the tagging of DNA-encoded chemical libraries.

    PubMed

    Keefe, Anthony D; Clark, Matthew A; Hupp, Christopher D; Litovchick, Alexander; Zhang, Ying

    2015-06-01

    The generation of DNA-encoded chemical libraries requires the unimolecular association of multiple encoding oligonucleotides with encoded chemical entities during combinatorial synthesis processes. This has traditionally been achieved using enzymatic ligation. We discuss a range of chemical ligation methods that provide alternatives to enzymatic ligation. These chemical ligation methods include the generation of modified internucleotide linkages that support polymerase translocation and other modified linkages that while not supporting the translocation of polymerases can also be used to generate individual cDNA molecules containing encoded chemical information specifying individual library members. We also describe which of these approaches have been successfully utilized for the preparation of DNA-encoded chemical libraries and those that were subsequently used for the discovery of inhibitors.

  9. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS

    PubMed Central

    Østergaard, Michael E.; Southwell, Amber L.; Kordasiewicz, Holly; Watt, Andrew T.; Skotte, Niels H.; Doty, Crystal N.; Vaid, Kuljeet; Villanueva, Erika B.; Swayze, Eric E.; Frank Bennett, C.; Hayden, Michael R.; Seth, Punit P.

    2013-01-01

    Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders. PMID:23963702

  10. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  11. Oligonucleotide and Long Polymeric DNA Encoding

    SciTech Connect

    Miller, E; Mariella Jr., R P; Christian, A T; Gardner, S N; Williams, J M

    2003-11-24

    This report summarizes the work done at Lawrence Livermore National Laboratory for the Oligonucleotide and Long Polymeric DNA Encoding project, part of the Microelectronic Bioprocesses Program at DARPA. The goal of the project was to develop a process by which long (circa 10,000 base-pair) synthetic DNA molecules could be synthesized in a timely and economic manner. During construction of the long molecule, errors in DNA sequence occur during hybridization and/or the subsequent enzymatic process. The work done on this project has resulted in a novel synthesis scheme that we call the parallel pyramid synthesis protocol, the development of a suit of computational tools to minimize and quantify errors in the synthesized DNA sequence, and experimental proof of this technique. The modeling consists of three interrelated modules: the bioinformatics code which determines the specifics of parallel pyramid synthesis for a given chain of long DNA, the thermodynamics code which tracks the products of DNA hybridization and polymerase extension during the later steps in the process, and the kinetics model which examines the temporal and spatial processes during one thermocycle. Most importantly, we conducted the first successful syntheses of a gene using small starting oligomers (tetramers). The synthesized sequence, 813 base pairs long, contained a 725 base pair gene, modified green fluorescent protein (mGFP), which has been shown to be a functional gene by cloning into cells and observing its green fluorescent product.

  12. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    PubMed

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-01

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. PMID:27236069

  13. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.

    PubMed

    Rytkönen, Jussi; Arukuusk, Piret; Xu, Wujun; Kurrikoff, Kaido; Langel, Ulo; Lehto, Vesa-Pekka; Närvänen, Ale

    2014-02-01

    The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.

  14. Conjugation of γ-Fe 2O 3 nanoparticles with single strand oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, C. W.; Huang, K. T.; Wei, P. K.; Yao, Y. D.

    2006-09-01

    Following the thermodecomposition synthetic route, water soluble γ-Fe 2O 3 nanoparticles have been successfully prepared, with average size 8.8±1.3 nm. Based on the process we developed, the magnetic particles have carboxyl group on their surfaces. By using 1-ethyl-3-(3-dimrthylaminopropyl)carbodiimide hydrochloride [EDC] as a liker reagent, we successfully modified a protein, streptavidin, on the surface of γ-Fe 2O 3 nanoparticles. With the strong affinity between biotin with streptavidin, we could use the streptavidin-modified magnetic nanoparticles to separate the rare biotin functionalized molecules from the mixed solution. On the other hand, streptavidin functionalized Fe 2O 3 can catch a biotin labeled single strand oligonucleotides through the strong affinity between streptavidin and biotin. The oligonucleotides functionalized magnetic nanoparticle would separate a specific oligonucleotide from a mixture. This design may be used to create a technique to detect diseases in the future.

  15. Redesigned and chemically-modified hammerhead ribozymes with improved activity and serum stability

    PubMed Central

    Hendry, Philip; McCall, Maxine J; Stewart, Tom S; Lockett, Trevor J

    2004-01-01

    Background Hammerhead ribozymes are RNA-based molecules which bind and cleave other RNAs specifically. As such they have potential as laboratory reagents, diagnostics and therapeutics. Despite having been extensively studied for 15 years or so, their wide application is hampered by their instability in biological media, and by the poor translation of cleavage studies on short substrates to long RNA molecules. This work describes a systematic study aimed at addressing these two issues. Results A series of hammerhead ribozyme derivatives, varying in their hybridising arm length and size of helix II, were tested in vitro for cleavage of RNA derived from the carbamoyl phosphate synthetase II gene of Plasmodium falciparum. Against a 550-nt transcript the most efficient (t1/2 = 26 seconds) was a miniribozyme with helix II reduced to a single G-C base pair and with twelve nucleotides in each hybridising arm. Miniribozymes of this general design were targeted to three further sites, and they demonstrated exceptional cleavage activity. A series of chemically modified derivatives was prepared and examined for cleavage activity and stability in human serum. One derivative showed a 103-fold increase in serum stability and a doubling in cleavage efficiency compared to the unmodified miniribozyme. A second was almost 104-fold more stable and only 7-fold less active than the unmodified parent. Conclusion Hammerhead ribozyme derivatives in which helix II is reduced to a single G-C base pair cleave long RNA substrates very efficiently in vitro. Using commonly available phosphoramidites and reagents, two patterns of nucleotide substitution in this derivative were identified which conferred both good cleavage activity against long RNA targets and good stability in human serum. PMID:15588292

  16. Chemical force titrations of antigen- and antibody-modified poly(methylmethacrylate).

    PubMed

    Wang, Bin; Oleschuk, Richard D; Petkovich, P Martin; Horton, J Hugh

    2007-03-15

    Poly(methylmethacrylate) (PMMA) is a versatile polymer that displays desirable properties for development of cheap and disposable microfluidic devices for sensing biomolecular interactions. Atomic force microscopy (AFM) and chemical force titrations were used to determine the efficacy of surface modifications made to accommodate protein-substrate linkage. AFM images show the effects on surface morphology of carboxylated-, amine-, hCG antigen- and anti-hCG antibody-modified PMMA substrates. Confocal microscopy was used to determine the fluorescent intensity of labeled antibody species on the PMMA substrate, confirming the success of surface antigen/antibody immobilization. Surface pK(1/2) value for carboxylic acid and amine species grafted on PMMA were determined. When carboxylic acid or amine-terminated tips were titrated against PMMA samples terminated with the hCG antigen and anti-hCG antibody, peaks appeared in the force titration curve consistent with the pI range of the antigen or antibody species. Strong adhesive forces were present at pH values above 7.0 when the antigen was present on the PMMA substrate, and these were attributed to hydrophobic interactions between the antigen and the alkane "linker" chain attaching the amine or carboxylate group to the AFM tip. Such hydrophobic interactions were not observed with the carboxylic acid or amine/antibody combinations suggesting that the surface-linked antibody was more resistant to denaturation under higher pH. The results demonstrated the feasibility of using AFM approaches for interrogating protein grafting strategies in the fabrication of PMMA-based microsystems.

  17. Adsorptive separation of rhodium(III) using Fe(III)-templated oxine type of chemically modified chitosan

    SciTech Connect

    Alam, M.S.; Inoue, Katsutoshi; Yoshizuka, Kazuharu; Ishibashi, Hideaki

    1998-03-01

    The oxine type of chemically modified chitosan was prepared by the template crosslinking method using Fe(III) as a template ion. Batchwise adsorption of rhodium(III) on this chemically modified chitosan was examined from chloride media in the absence and presence of a large amount of tin(II). It was observed that the Fe(III)-templated oxine type of chemically modified chitosan shows better performance for rhodium adsorption than that of the original chitosan. When Sn(II) is absent from the solution, Rh(III) is hardly adsorbed on the modified chitosan and the order of selectivity of the adsorption of Rh(III), Pt(IV), and Cu(II) was found to be Pt(IV) > Cu(II) {approx} Rh(III). On the other hand, adsorption of rhodium is significantly increased in the presence of Sn(II) and the selectivity order of the adsorption was drastically changed to Rh(III) > Pt(IV) {much_gt} Cu(II), which ensures selective separation of Rh(III) from their mixture. Adsorption of Rh(III) increases with an increase in the concentration of Sn(II) in the aqueous solution, and maximum adsorption is achieved at a molar ratio, [Sn]/[Rh], of >6. The adsorption of Rh(III) decreases at a high concentration of hydrochloric acid. The maximum adsorption capacity was evaluated to be 0.92 mol/kg-dry adsorbent. Stripping tests of rhodium from the loaded chemically modified chitosan were carried out using different kinds of stripping agents containing some oxidizing agent. The maximum stripping of rhodium under these experimental conditions was found to be 72.5% by a single contact with 0.5 M HCl + 8 M HNO{sub 3}.

  18. Tandem oligonucleotide synthesis using linker phosphoramidites

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2005-01-01

    Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated. PMID:15814811

  19. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia

    PubMed Central

    Zhao, Nianxi; Pei, Sung-Nan; Qi, Jianjun; Zeng, Zihua; Iyer, Swaminathan P.; Pei, Lin; Tung, Ching-Hsuan; Zu, Youli

    2015-01-01

    Oligonucleotide aptamers can specifically bind biomarkers on cancer cells and can be readily chemically modified with different functional molecules for personalized medicine. To target acute myeloid leukemia (AML) cells, we developed a single-strand DNA aptamer specific for the biomarker CD117, which is highly expressed on AML cells. Sequence alignment revealed that the aptamer contained a G-rich core region with a well-conserved functional G-quadruplex structure. Functional assays demonstrated that this synthetic aptamer was able to specifically precipitate CD117 proteins from cell lysates, selectively bound cultured and patient primary AML cells with high affinity (Kd < 5 nM), and was specifically internalized into CD117-expressing cells. For targeted AML treatment, aptamer-drug conjugates were fabricated by chemical synthesis of aptamer (Apt) with methotrexate (MTX), a central drug used in AML chemotherapy regimens. The formed Apt-MTX conjugates specifically inhibited AML cell growth, triggered cell apoptosis, and induced cell cycle arrest in G1 phase. Importantly, Apt-MTX had little effect on CD117-negative cells under the same treatment conditions. Moreover, exposure of patient marrow specimens to Apt-MTX resulted in selective growth inhibition of primary AML cells and had no toxicity to off-target background normal marrow cells within the same specimens. These findings indicate the potential clinical value of Apt-MTX for targeted AML therapy with minimal to no side effects in patients, and also open an avenue to chemical synthesis of new, targeted biotherapeutics. PMID:26204224

  20. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing

    PubMed Central

    Rigo, Frank; Hua, Yimin; Chun, Seung J; Prakash, Thazha P; Krainer, Adrian R; Bennett, C Frank

    2016-01-01

    We describe a new technology for recruiting specific proteins to RNA through selective recognition of heteroduplexes formed with chemically modified antisense oligonucleotides (ASOs). Typically, ASOs function by hybridizing to their RNA targets and blocking the binding of single-stranded RNA–binding proteins. Unexpectedly, we found that ASOs with 2′-deoxy-2′-fluoro (2′-F) nucleotides, but not with other 2′ chemical modifications, have an additional property: they form heteroduplexes with RNA that are specifically recognized by the interleukin enhancer-binding factor 2 and 3 complex (ILF2/3). 2′-F ASO–directed recruitment of ILF2/3 to RNA can be harnessed to control gene expression by modulating alternative splicing of target transcripts. ILF2/3 recruitment to precursor mRNA near an exon results in omission of the exon from the mature mRNA, both in cell culture and in mice. We discuss the possibility of using chemically engineered ASOs that recruit specific proteins to modulate gene expression for therapeutic intervention. PMID:22504300

  1. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  2. Site-specific synthesis of oligonucleotides containing malondialdehyde adducts of deoxyguanosine and deoxyadenosine via a postsynthetic modification strategy.

    PubMed

    Wang, Hao; Kozekov, Ivan D; Kozekova, Albena; Tamura, Pamela J; Marnett, Lawrence J; Harris, Thomas M; Rizzo, Carmelo J

    2006-11-01

    Malondialdehyde (MDA) and its reactive equivalent, base propenal, are products of oxidative damage to lipids and DNA, respectively; they are mutagenic in bacterial and mammalian systems, and MDA is carcinogenic in rats. MDA adducts of deoxyguanosine (M1dG), deoxyadenosine (OPdA), and deoxycytidine (OPdC) have been characterized. We have developed site-specific syntheses of M1dG and OPdA adducted oligonucleotides that rely on a postsynthetic modification strategy. This work provides an alternative route to the M1dG adducted oligonucleotide and, to date, the only viable strategy for the site-specific synthesis of OPdA-modified oligonucleotides. The stability of the modified oligonucleotides was examined by UV thermal melting studies (Tm). In contrast to the M1dG adduct, OPdA caused very little change in the Tm.

  3. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization.

  4. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization. PMID:26454462

  5. Quantitation of phosphorothioate oligonucleotides in human plasma.

    PubMed

    Leeds, J M; Graham, M J; Truong, L; Cummins, L L

    1996-03-01

    Methods are presented for the extraction of phosphorothioate oligonucleotides from human plasma to permit quantitation by capillary gel electrophoresis. Extraction of the phosphorothioate oligonucleotides from plasma was accomplished using two solid-phase extraction columns, a strong anion-exchange column to remove plasma proteins and lipids, followed by a reverse-phase column to remove salts. A second desalting step, achieved by dialysis utilizing a membrane with a molecular weight cutoff of 2500 Da floating on distilled water, was required to remove residual ionic material from the extracted sample. This method should be generally applicable to the analysis and quantitation of phosphorothioate oligonucleotides. PMID:8850544

  6. Highly parallel microbial diagnostics using oligonucleotide microarrays.

    PubMed

    Loy, Alexander; Bodrossy, Levente

    2006-01-01

    Oligonucleotide microarrays are highly parallel hybridization platforms, allowing rapid and simultaneous identification of many different microorganisms and viruses in a single assay. In the past few years, researchers have been confronted with a dramatic increase in the number of studies reporting development and/or improvement of oligonucleotide microarrays for microbial diagnostics, but use of the technology in routine diagnostics is still constrained by a variety of factors. Careful development of microarray essentials (such as oligonucleotide probes, protocols for target preparation and hybridization, etc.) combined with extensive performance testing are thus mandatory requirements for the maturation of diagnostic microarrays from fancy technological gimmicks to robust and routinely applicable tools.

  7. Quantum chemical characterization of zwitterionic structures: Supramolecular complexes for modifying the wettability of oil-water-limestone system.

    PubMed

    Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul

    2014-06-01

    In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes.

  8. Electrochemical impedance spectroscopy for graphene surface modification and protein translocation through the chemically modified graphene nanopore

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam; Shan, Yuping; Wang, Xuewen; Darici, Yesim; He, Jin

    2014-03-01

    The multilayer graphene surface has been modified using mercaptohexadecanoic acid (MHA) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] (DPPE-PEG750). The surface modifications are evaluated using electrochemical impedance spectroscopy (EIS). EIS measurements show the better graphene surface passivation with DPPE-PEG750 than with MHA. After modification with ferritin, the MHA modified surface shows greater charge transfer resistance (Rct) change than DPPE-PEG750 modified surface. Based on these results the translocations of ferritin through modified graphene nanopore with diameter 5-20 nm are studied. The translocation is more successful through DPPE-PEG750 modified graphene nanopore. This concludes that that the attachment of ferritin to DPPE-PEG750 modified graphene nanopore is not significant compared to MHA modified pore for the ferritin translocation hindrance. These results nicely correlate with the EIS data for respective Rct change of ferritin modified surfaces. P. Tiwari would like to thank FIU School of Integrated Science & Humanity, College Arts & Sciences for the research assistantship.

  9. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  10. Chemically modified polymeric resins for high performance liquid chromatography, solid-phase extraction and organic separation by LC and GC

    SciTech Connect

    Sun, Jeffrey Jiafang.

    1991-08-06

    Polystyrene divinylbenzene resins were chemically modified by introduction of various functional groups, which included polar, non-polar, ionic and metallic groups. These chemically modified polymeric resins were used successfully for high performance liquid chromatography, solid phase extraction and some special applications in liquid and gas chromatography. The introduced functional groups offer an additional selectivity parameter for liquid chromatographic separation. The polar derivatized polymeric resins dramatically increased the recoveries of solid phase extraction, especially for polar compounds. The sulfonated polystyrene resins were used for separation of neutral and basic compounds as well as basic and weaker basic compounds. The sulfonated non-porous resin was used amine abstracter and the polymeric-mercuric resin was used as mercaptan abstracter in capillary gas chromatograph. The researches in this dissertation has shown the very promising applications of polystyrene divinylbenzene resin in chromatographic field. 58 refs., 34 figs., 28 tabs.

  11. Direct determination of bismuth, indium and lead in sea water by Zeeman ETAAS using molybdenum containing chemical modifiers.

    PubMed

    Acar, O; Türker, A R; Kılıç, Z

    1999-06-01

    Direct determination of Bi, In and Pb in sea water samples has been carried out by ETAAS with Zeeman background correction using molybdenum containing chemical modifiers and tartaric acid as a reducing agent. Maximum pyrolysis temperatures and the effect of mass ratios of the mixed modifier components on analytes have been investigated. Mo+Pd+TA or Mo+Pt+TA mixture was found to be powerful for the determination of 50 mug l(-1) of Bi, In and Pb spiked into synthetic and real sea waters. The accuracy and precision of the determination were thereby enhanced. The recoveries of analytes spiked were 94-103% with Mo+Pd+TA or Mo+Pt+TA and they are only 49-61% without modifier.

  12. DNA-binding and oxidative properties of cationic phthalocyanines and their dimeric complexes with anionic phthalocyanines covalently linked to oligonucleotides.

    PubMed

    Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S

    2008-12-01

    Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.

  13. Aptamer-targeted oligonucleotide theranostics: a smarter approach for brain delivery and the treatment of neurological diseases.

    PubMed

    Sriramoju, Bhasker; Kanwar, Rupinder; Veedu, Rakesh N; Kanwar, Jagat R

    2015-01-01

    Aptamers represent the novel class of oligonucleotides holding multiple applications in the area of biomedicine. The advancements introduced with the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach further eased the scope of producing modified aptamers within a short span yet retaining the properties of stability and applicability. In the recent times, aptamers were identified to have the potential for penetrating into the deep human crevices and thus can be utilized in addressing the issues of complex neurological disorders. Considering the specificity and stability enhancement by chemical modifications, aptamer-based nanotechnologies may have great potential for future therapeutics and diagnostics (theranostics). The research community has already witnessed success with the approval of macugen (an anti-vascular endothelial growth factor aptamer) for treating degenerating eye disease, and hopefully those that are in the clinical trials will soon be translated for human application. Herein, we have summarized the aptamer chemistry, aptamer-nanoconjugates and their applications against neurological diseases.

  14. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis

    PubMed Central

    Sindrewicz, Paulina; Hughes, Ashley J.; French, Neil S.; Lian, Lu-Yun; Yates, Edwin A.; Pritchard, D. Mark; Rhodes, Jonathan M.; Turnbull, Jeremy E.; Yu, Lu-Gang

    2015-01-01

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs. PMID:26160844

  15. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis.

    PubMed

    Duckworth, Carrie A; Guimond, Scott E; Sindrewicz, Paulina; Hughes, Ashley J; French, Neil S; Lian, Lu-Yun; Yates, Edwin A; Pritchard, D Mark; Rhodes, Jonathan M; Turnbull, Jeremy E; Yu, Lu-Gang

    2015-09-15

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs. PMID:26160844

  16. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis.

    PubMed

    Duckworth, Carrie A; Guimond, Scott E; Sindrewicz, Paulina; Hughes, Ashley J; French, Neil S; Lian, Lu-Yun; Yates, Edwin A; Pritchard, D Mark; Rhodes, Jonathan M; Turnbull, Jeremy E; Yu, Lu-Gang

    2015-09-15

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs.

  17. Enzymatic electrochemical detection of epidemic-causing Vibrio cholerae with a disposable oligonucleotide-modified screen-printed bisensor coupled to a dry-reagent-based nucleic acid amplification assay.

    PubMed

    Yu, Choo Yee; Ang, Geik Yong; Chan, Kok Gan; Banga Singh, Kirnpal Kaur; Chan, Yean Yean

    2015-08-15

    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.

  18. Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5' terminus.

    PubMed Central

    Kremsky, J N; Wooters, J L; Dougherty, J P; Meyers, R E; Collins, M; Brown, E L

    1987-01-01

    A general method for the immobilization of DNA through its 5'-end has been developed. A synthetic oligonucleotide, modified at its 5'-end with an aldehyde or carboxylic acid, was attached to latex microspheres containing hydrazide residues. Using T4 polynucleotide ligase and an oligonucleotide splint, a single stranded 98mer was efficiently joined to the immobilized synthetic fragment. After impregnation of the latex microspheres with the fluorescent dye, Nile Red and attachment of an aldehyde 16mer, 5 X 10(5) bead-DNA conjugates could be detected with a conventional fluorimeter. Images PMID:3562241

  19. GenoMass software: a tool based on electrospray ionization tandem mass spectrometry for characterization and sequencing of oligonucleotide adducts

    PubMed Central

    Sharma, Vaneet K; Glick, James; Liao, Qing; Shen, Chang; Vouros, Paul

    2012-01-01

    The analysis of DNA adducts is of importance in understanding DNA damage, and in the last few years mass spectrometry (MS) has emerged as the most comprehensive and versatile tool for routine characterization of modified oligonucleotides. The structural analysis of modified oligonucleotides, although routinely analyzed using mass spectrometry, is followed by a large amount of data, and a significant challenge is to locate the exact position of the adduct by computational spectral interpretation, which still is a bottleneck. In this report, we present an additional feature of the in-house developed GenoMass software, which determines the exact location of an adduct in modified oligonucleotides by connecting tandem mass spectrometry (MS/MS) to a combinatorial isomer library generated in silico for nucleic acids. The performance of this MS/MS approach using GenoMass software was evaluated by MS/MS data interpretation for an unadducted and its corresponding N-acetylaminofluorene (AAF) adducted 17-mer (5′OH-CCT ACC CCT TCC TTG TA-3′OH) oligonucleotide. Further computational screening of this AAF adducted 17-mer oligonucleotide (5′OH-CCT ACC CCT TCC TTG TA-3′OH) from a complex oligonucleotide mixture was performed using GenoMass. Finally, GenoMass was also used to identify the positional isomers of the AAF adducted 15-mer oligonucleotide (5′OH-ATGAACCGGAGGCCC-3′OH). GenoMass is a simple, fast, data interpretation software that uses an in silico constructed library to relate the MS/MS sequencing approach to identify the exact location of adduct on oligonucleotides. PMID:22689626

  20. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  1. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids.

    PubMed

    Nåbo, Lina J; Madsen, Charlotte S; Jensen, Knud J; Kongsted, Jacob; Astakhova, Kira

    2015-05-26

    Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)-binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our results by electronic structure calculations.

  2. New protocol for oligonucleotide microarray fabrication using SU-8-coated glass microslides.

    PubMed

    Sethi, D; Kumar, A; Gandhi, R P; Kumar, P; Gupta, K C

    2010-09-15

    Microarray technology has become an important tool for detection and analysis of nucleic acid targets. Immobilization of modified and unmodified oligonucleotides on epoxy-functionalized glass surfaces is often used in microarray fabrication. Here, we demonstrate a protocol that employs coating of SU-8 (glycidyl ether of bisphenol A) onto glass microslides to obtain high density of epoxy functions for efficient immobilization of aminoalkyl-, thiophosphoryl-, and phosphorylated oligonucleotides with uniform spot morphology. The resulting microarrays exhibited high immobilization (∼65%) and hybridization efficiency (30-36%) and were sufficiently stable over a range of temperature and pH conditions. The prominent feature of the protocol is that spots can be visualized distinctly at 0.05 μM probe (a 20-mer oligonucleotide) concentration. The constructed microarrays were subsequently used for detection of base mismatches and bacterial diseases (meningitis and typhoid).

  3. Base-cleavable microarrays for the characterization of DNA and RNA oligonucleotides synthesized in situ by photolithography.

    PubMed

    Lietard, Jory; Kretschy, Nicole; Sack, Matej; Wahba, Alexander S; Somoza, Mark M; Damha, Masad J

    2014-11-01

    Assessing synthesis efficiency, errors, failed deprotections, and chemical and enzymatic degradation of oligonucleotides on microarrays is essential for improving existing in situ synthesis methods, and for the development of new chemistries. We describe the use of LC-MS to analyse DNA and RNA oligonucleotides deprotected and cleaved under basic conditions from microarrays fabricated using light-directed in situ chemistry. The data yield essential information on array quality and sequence identity.

  4. Guanine modification of inhibitory oligonucleotides potentiates their suppressive function.

    PubMed

    Römmler, Franziska; Jurk, Marion; Uhlmann, Eugen; Hammel, Monika; Waldhuber, Anna; Pfeiffer, Lavinia; Wagner, Hermann; Vollmer, Jörg; Miethke, Thomas

    2013-09-15

    Inhibitory TLR7 and/or TLR9 oligonucleotides (inhibitory oligonucleotide [INH-ODN]) are characterized by a phosphorothioate backbone and a CC(T)XXX₃₋₅GGG motif, respectively. INH-ODN 2088 is a prototypic member of this class of INH-ODN and acts as a TLR7 and TLR9 antagonist. It contains a G quadruple that leads to higher order structures by the formation of G tetrads. These structures are unfavorable for the prediction of their pharmacological and immunological behavior. We show in this study that modification of Gs within the G quadruple by 7-deaza-guanine or 7-deaza-2'-O-methyl-guanine avoids higher order structures and improves their inhibitory potential. Whereas TLR9-induced TNF-α secretion of bone marrow-derived macrophages and conventional dendritic cells was equally inhibited by INH-ODN 2088 and G-modified INH-ODNs such as INH-ODN 24888, TLR7-induced TNF-α release and TLR7- and TLR9-induced IL-12p40 release were significantly more impaired by G-modified INH-ODNs. Similarly, the IL-6 release of B cells from wild-type and autoimmune MRL/Mp-lpr/lpr mice was more efficiently impaired by G-modified INH-ODNs. Surprisingly, INH-ODN 2088 stimulated B cells to proliferate when used in higher doses. Finally, in vivo, in wild-type and autoimmune MRL/Mp-lpr/lpr mice, G-modified INH-ODN 24888 was significantly more efficient than unmodified INH-ODN 2088. In summary, G modification allows the development of INH-ODNs with superior inhibitory potency for inflammatory diseases with high medical need such as systemic lupus erythematosus. PMID:23966630

  5. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  6. Rheological monitoring of phase separation induced by chemical reaction in thermoplastic-modified epoxy

    SciTech Connect

    Vinh-Tung, C.; Lachenal, G.; Chabert, B.

    1996-12-31

    The phase separation induced by chemical reaction in blends of tetraglycidyl-diaminodiphenylmethane epoxy resin with an aromatic diamine hardener and a thermoplastic was monitored. Rheological measurements and morphologies are described.

  7. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    PubMed

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices.

  8. Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes.

    PubMed

    Kinberger, Garth A; Prakash, Thazha P; Yu, Jinghua; Vasquez, Guillermo; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Murray, Heather M; Gaus, Hans; Swayze, Eric E; Seth, Punit P

    2016-08-01

    Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.

  9. Caged oligonucleotides for studying biological systems

    PubMed Central

    Ruble, Brittani K.; Yeldell, Sean B.; Dmochowski, Ivan J.

    2015-01-01

    Light-activated (“caged”) compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq). PMID:25865001

  10. A noninterventional study documenting use and success of implants with a new chemically modified titanium surface in daily dental practice.

    PubMed

    Luongo, Giuseppe; Oteri, Giacomo

    2010-01-01

    A new chemically modified titanium surface, SLActive, has recently been developed. The results obtained in controlled clinical trials indicate that this implant can be safely used and that it offers predictable results. The goal of this noninterventional study was to verify that the success rates of implants used in daily dental practice are comparable to those reported in controlled clinical trials. This study was a prospective, noninterventional study using implants with a chemically modified surface according to the daily dental practice procedures applied by private practitioners. The choice of the implantation procedure and the loading protocol were the responsibility of the investigator and were chosen according to the patient's needs. Thirty clinical centers actively participated in this study, and 226 patients were treated, of which, 8 patients were lost to follow-up. Because of the noninterventional design of the study, the patients were not selected according to strictly defined inclusion/exclusion criteria. Thus, the study included individuals with risk factors such as smoking (24%), untreated gingivitis or periodontitis (9%), and bruxism (6%). The implants were equally distributed between mandible (46%) and maxilla (54%). A bone augmentation procedure was done in 31% of the cases. Early loading (functional loading between 48 hours and 3 months after implant insertion) was applied most frequently (48%), followed by the conventional loading protocol (3 to 6 months after implant placement, 34%). Immediate restoration and immediate loading were rare (7% and 2%, respectively). Of 276 implants inserted and documented, 5 implants failures were reported, all of which were associated with a sinus floor augmentation procedure. The survival rate was 98.2% at the 1-year follow-up visit. The results showed that implants with a chemically modified surface can be successfully restored with success rates similar to those reported in formal clinical trials under more

  11. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. PMID:25542168

  12. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions.

  13. Synthesis and Functionalization of Gold Nanoparticles Using Chemically Modified ssDNA

    NASA Astrophysics Data System (ADS)

    Calabrese, P. G.

    In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a model system for VEGF signaling. Binding constants for the modified aptamers were also determined using a fluorescence polarization anisotropy assay to determine KD and KOFF for the aptamers with their respective proteins. In the latter part of this thesis, a modied ssDNA SELEX protocol was also developed in order to evolve imidazole modied ssDNA sequences that assemble gold nanoparticles from Au3+ precursor ions in aqueous solution. Active sequences bound to nanoparticles were partitioned from inactive sequences based on density via ultracentrifugation through a discontinuous sucrose gradient. Colloidal gold solutions produced by the evolved pool had a distinct absorbance spectra and produced nanoparticles with a narrower distribution of sizes compared to colloidal gold solutions produced by the starting randomized pool of imidazole modified ssDNA. Sequencing data from the evolved pool shows that conserved 5 and 6 nt motifs were shared amongst many of the isolates, which indicates that these motifs could serve as chelation sites for gold atoms or help stabilize colloidal gold solutions in a base specific manner.

  14. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    PubMed Central

    Sun, Hongguang; Zhu, Xun; Lu, Patrick Y; Rosato, Roberto R; Tan, Wen; Zu, Youli

    2014-01-01

    Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy. PMID:25093706

  15. Physicochemical properties, morphological and X-ray pattern of chemically modified white sorghum starch. (Bicolor-Moench).

    PubMed

    Olayinka, O O; Adebowale, K O; Olu-Owolabi, I B

    2013-02-01

    Starch isolated from white sorghum was subjected to chemical modifications like oxidation, acetylation and acid thinning. Proximate composition of these, such as crude protein, crude fat, moisture content and ash content were studied. Wide angle X-ray diffractograms showed typical 'A' pattern characteristic of cereal starches, but significant differences were observed between the X-ray pattern of native and modified starches. Scanning electron microscopy revealed round and polygonal shapes for the starch granules with heterogeneous sizes and chemical modifications altered the starch granules morphology. Swelling power and solubility increased with increasing in temperature. Swelling power increased upon acetylation but decreased during acid thinning and oxidation. Solubility increased in these three modifications compared to the native starch.

  16. Application of pervaporation and vapor permeation processes to separate aqueous ethanol solution through chemically modified Nylon 4 membranes

    SciTech Connect

    Wang, Y.H.; Teng, M.Y.; Lee, K.R.; Wang, D.M.; Lai, J.Y.

    1998-08-01

    The pervaporation performance of a Nylon 4 membrane, chemically grafted by N,N-dimethylaminoethyl methacrylate (DMAEM), DMAEM-g-N4, was studied by measurement of the permeation ratio and the pervaporation separation index. It was found that the water permselectivity and permeation rate for the chemically modified Nylon 4 membrane were higher than those of the unmodified Nylon 4 membrane. Optimum pervaporation results, a separation factor of 28.3, and a permeation rate of 439 g/m{sup 2}{center_dot}h, were obtained when the degree of grafting was 12.7%. It was also found that all the permeation ratios at low temperature were less than unity. In addition, compared with pervaporation, vapor permeation effectively increases the permselectivity of water.

  17. Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales.

    PubMed

    Piszter, Gábor; Kertész, Krisztián; Vértesy, Zofia; Bálint, Zsolt; Biró, László Péter

    2014-09-22

    Butterfly wing scales containing photonic nanoarchitectures act as chemically selective sensors due to their color change when mixing vapors in the atmosphere. Based on butterfly vision, we built a model for efficient characterization of the spectral changes in different atmospheres. The spectral shift is vapor specific and proportional with the vapor concentration. Results were compared to standard principal component analysis. The modification of the chemical properties of the scale surface by the deposition of 5 nm of Al(2)O(3) significantly alters the character of the optical response. This is proof of the possibility to purposefully tune the selectivity of such sensors. PMID:25321733

  18. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.

  19. CD studies on ribonuclease A - oligonucleotides interactions.

    PubMed

    White, M D; Keren-Zur, M; Lapidot, Y

    1977-04-01

    The interaction of ApU, Aps4U, Aps4Up, ApAps4Up and Gps4U with RNase A was studied by CD difference spectroscopy. The use of 4-thiouridine (s4U) containing oligonucleotides enables to distinguish between the interaction of the different components of the ligand with the enzyme. The mode of binding of the oligonucleotides to the enzyme is described. From this mode of binding it is explained why Aps4U, for example, inhibits RNase A, while s4UpA serves as a substrate.

  20. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure. PMID:25509100

  1. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  2. Gas-phase Dissociation of homo-DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Stucki, Silvan R.; Désiron, Camille; Nyakas, Adrien; Marti, Simon; Leumann, Christian J.; Schürch, Stefan

    2013-12-01

    Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS3 of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.

  3. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    PubMed

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials.

  4. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column.

    PubMed

    Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N

    2016-07-01

    Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column. PMID:27312254

  5. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    SciTech Connect

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  6. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  7. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment. PMID:25409587

  8. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  9. Calorimetric and Spectroscopic Analysis of the Thermal Stability of Short Duplex DNA-Containing Sugar and Base-Modified Nucleotides.

    PubMed

    Fakhfakh, Kareem; Hughesman, Curtis B; Louise Creagh, A; Kao, Vincent; Haynes, Charles

    2016-01-01

    Base- and sugar-modified analogs of DNA and RNA are finding ever expanding use in medicine and biotechnology as tools to better tailor structured oligonucleotides by altering their thermal stability, nuclease resistance, base-pairing specificity, antisense activity, or cellular uptake. Proper deployment of these chemical modifications generally requires knowledge of how each affects base-pairing properties and thermal stabilities. Here, we describe in detail how differential scanning calorimetry and UV spectroscopy may be used to quantify the melting thermodynamics of short dsDNA containing chemically modified nucleosides in one or both strands. Insights are provided into why and how the presence of highly stable base pairs containing modified nucleosides can alter the nature of calorimetry or melting spectroscopy data, and how each experiment must therefore be conducted to ensure high-quality melting thermodynamics data are obtained. Strengths and weaknesses of the two methods when applied to chemically modified duplexes are also addressed.

  10. Aqueous Antibacterial Enhancement Using Kapok Fibers Chemically Modified in 3-D Crosslinked Structure.

    PubMed

    Wang, Runkai; Shin, Chul-Ho; Chang, Yungyu; Kim, Daeik; Park, Joon-Seok

    2016-07-01

    The surface of a kapok fiber was coated with Dopamine (DOPA) through a three-dimensional (3-D) polymerization. Such surface-modified kapok fiber was useful in deactivating microbial activity of microorganisms such as bacteria. The morphology of the surface-modified kapok fiber was analyzed with a field emission scanning electron microscope (FE-SEM). After a silver coating process along with DOPA functionalization, a strong antibacterial property was observed against Escherichia coli (E. coli), using a direct contact method. Almost 100% of bacterial cells were deactivated in 4 h, also showing a complete hindrance to a bacterial growth for 48 h. With the help of the images of FE-SEM and its analysis, the mechanism of an antibacterial assay was enlightened and reasonably estimated that silver ions from the poly-DOPA-coated kapok fiber with silver (KF-DOPA/Ag) led to alterations of cell morphology. This 3-D composite successfully interacted in vitro with functional groups in terms of bacterial deactivation. PMID:27329057

  11. The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining

    NASA Astrophysics Data System (ADS)

    Glawe, Henning; Sanna, Antonio; Gross, E. K. U.; Marques, Miguel A. L.

    2016-09-01

    Starting from the experimental data contained in the inorganic crystal structure database, we use a statistical analysis to determine the likelihood that a chemical element A can be replaced by another B in a given structure. This information can be used to construct a matrix where each entry (A,B) is a measure of this likelihood. By ordering the rows and columns of this matrix in order to reduce its bandwidth, we construct a one-dimension ordering of the chemical elements, analogous to the famous Pettifor scale. The new scale shows large similarities with the one of Pettifor, but also striking differences, especially in what comes to the ordering of the non-metals.

  12. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    PubMed

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  13. Effect of modified atmospheric packaging on chemical and microbial changes in dietetic rabri during storage.

    PubMed

    Ghayal, Gajanan; Jha, Alok; Kumar, Arvind; Gautam, Anuj Kumar; Rasane, Prasad

    2015-03-01

    Rabri is a dairy based sweet popular in the Indian subcontinent. The high sugar and fat content impose restrictions on its consumption due to health reasons. Dietetic rabri was prepared by the replacement of sugar with aspartame. Inulin was added to partially replace the milk fat and to improve the consistency of rabri. The rabri samples were packed in the polyethylene bags filled with different gaseous compositions (Air, 50 % CO2:50 % N2 and 100 % N2) and stored at 10 °C. The shelf life was evaluated on the basis of changes in the chemical quality parameters such as HMF, TBA and FFA and microbial content such as total plate count, yeast and molds and coliform counts. The chemical parameters and microbial spoilage increased in all the samples with the progression of storage period. The samples packed with air showed significantly higher chemical deterioration and microbial spoilage as compared to the other two combinations. The samples packed with 100 % N2 were more shelf stable than with air and 50 % CO2:50 % N2 combinations. PMID:25745264

  14. Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel.

    PubMed

    Huang, Kai; Zhu, Hongmin

    2013-07-01

    A cost-effective biosorbent was prepared by a green chemical modification process from muskmelon peel by saponification with alkaline solution of Ca(OH)2. Its adsorption behavior for lead ions was investigated and found to exhibit excellent adsorption properties. Results showed that the optimal equilibrium pH range for 100% adsorption is from 4 up to 6.4. Adsorption equilibrium was attained within 10 min. The adsorption process can be described well by Langmuir model and pseudo-second-order kinetics equation, respectively. The maximum adsorption capacity for lead ions was found to be 0.81 mol/kg. Pectic acid contained in the muskmelon peel is the main factor responsible for the uptake of lead ions onto the gel, and the chemical modification process presented in this study can be assumed effective to prepare other similar biomaterials. The large adsorption capacity and the fast adsorption rate indicated that chemically saponified muskmelon peel gel in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.

  15. Effect of modified atmospheric packaging on chemical and microbial changes in dietetic rabri during storage.

    PubMed

    Ghayal, Gajanan; Jha, Alok; Kumar, Arvind; Gautam, Anuj Kumar; Rasane, Prasad

    2015-03-01

    Rabri is a dairy based sweet popular in the Indian subcontinent. The high sugar and fat content impose restrictions on its consumption due to health reasons. Dietetic rabri was prepared by the replacement of sugar with aspartame. Inulin was added to partially replace the milk fat and to improve the consistency of rabri. The rabri samples were packed in the polyethylene bags filled with different gaseous compositions (Air, 50 % CO2:50 % N2 and 100 % N2) and stored at 10 °C. The shelf life was evaluated on the basis of changes in the chemical quality parameters such as HMF, TBA and FFA and microbial content such as total plate count, yeast and molds and coliform counts. The chemical parameters and microbial spoilage increased in all the samples with the progression of storage period. The samples packed with air showed significantly higher chemical deterioration and microbial spoilage as compared to the other two combinations. The samples packed with 100 % N2 were more shelf stable than with air and 50 % CO2:50 % N2 combinations.

  16. Synthesis of 4'-Methoxy 2'-Deoxynucleoside Phosphoramidites for Incorporation into Oligonucleotides.

    PubMed

    Petrová, Magdalena; Rosenberg, Ivan

    2016-09-01

    This unit contains detailed synthetic protocols for the preparation of 4'-methoxy 2'-deoxynucleoside phosphoramidite monomers for A, G, C, T, and U. First, 3'-silyl-protected 2'-deoxynucleosides (dNs) are converted in two steps to 4',5'-enol acetates as the key starting compounds. Next, 4'-methoxy dNs are prepared by a one-pot procedure comprising N-iodosuccinimide-promoted methoxylation, hydrolysis, and reduction of the formed intermediates. Finally, 3'-phosphoramidites of 4'-methoxy dNs are obtained by a routine three-step procedure. Title phosphoramidite monomers are suitable for the synthesis of oligonucleotides on solid phase according to conventional amidite chemistry. 4'-Methoxy substitution represents a simple modification of the sugar part of dNs, where β-D-erythro epimers preferentially adopt N-type (C3'-endo, RNA-like) conformation. Moreover, it imparts superior chemical stability, nuclease resistance, and excellent hybridization properties to modified 4'-methoxyoligodeoxynucleotides. The strong tendency toward RNA-selective hybridization suggests its potential utilization in antisense and/or RNAi technologies. © 2016 by John Wiley & Sons, Inc.

  17. Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Baik, Ja-Hyun; Song, Eun Joo

    2016-07-01

    MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA. To increase the binding affinity and specificity to target miRNA, AMOs with various chemical modifications have been developed. Evaluating the potency of these various types of AMOs is an essential step in their development. In this study, we developed a capillary electrophoresis with laser-induced fluorescence (CE-LIF) method to evaluate the potency of AMOs by measuring changes in miRNA levels with fluorescence-labeled ssDNA probes using AMO-miR-23a, which inhibits miR-23a related to lung cancer. In order to eliminate interference by excess AMOs during hybridization of the ssDNA probe with the miR-23a, the concentration of the ssDNA probe was optimized. This newly developed method was used to compare the potency of two different modified AMOs. The data were supported by the results of a luciferase assay. This study demonstrated that CE-LIF analysis could be used to accurately evaluate AMO potency in biological samples. PMID:27178549

  18. Synthesis of 4'-Methoxy 2'-Deoxynucleoside Phosphoramidites for Incorporation into Oligonucleotides.

    PubMed

    Petrová, Magdalena; Rosenberg, Ivan

    2016-01-01

    This unit contains detailed synthetic protocols for the preparation of 4'-methoxy 2'-deoxynucleoside phosphoramidite monomers for A, G, C, T, and U. First, 3'-silyl-protected 2'-deoxynucleosides (dNs) are converted in two steps to 4',5'-enol acetates as the key starting compounds. Next, 4'-methoxy dNs are prepared by a one-pot procedure comprising N-iodosuccinimide-promoted methoxylation, hydrolysis, and reduction of the formed intermediates. Finally, 3'-phosphoramidites of 4'-methoxy dNs are obtained by a routine three-step procedure. Title phosphoramidite monomers are suitable for the synthesis of oligonucleotides on solid phase according to conventional amidite chemistry. 4'-Methoxy substitution represents a simple modification of the sugar part of dNs, where β-D-erythro epimers preferentially adopt N-type (C3'-endo, RNA-like) conformation. Moreover, it imparts superior chemical stability, nuclease resistance, and excellent hybridization properties to modified 4'-methoxyoligodeoxynucleotides. The strong tendency toward RNA-selective hybridization suggests its potential utilization in antisense and/or RNAi technologies. © 2016 by John Wiley & Sons, Inc. PMID:27584701

  19. Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds.

    PubMed

    Schröder, Hendrik; Hoffmann, Linda; Müller, Joachim; Alhorn, Petra; Fleger, Markus; Neyer, Andreas; Niemeyer, Christof M

    2009-07-01

    A microfluidic polymer chip for the self-assembly of DNA conjugates through DNA-directed immobilization is developed. The chip is fabricated from two parts, one of which contains a microfluidic channel produced from poly(dimethylsiloxane) (PDMS) by replica-casting technique using a mold prepared by photolithographic techniques. The microfluidic part is sealed by covalent bonding with a chemically activated glass slide containing a DNA oligonucleotide microarray. The dimension of the PDMS-glass microfluidic chip is equivalent to standard microscope slides (76 x 26 mm(2)). The DNA microarray surface inside the microfluidic channels is configured through conventional spotting, and the resulting DNA patches can be conveniently addressed with compounds containing complementary DNA tags. To demonstrate the utility of the addressable surface within the microfluidic channel, DNA-directed immobilization (DDI) of DNA-modified gold nanoparticles (AuNPs) and DNA-conjugates of the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) are carried out. DDI of AuNPs is used to demonstrate site selectivity and reversibility of the surface-modification process. In the case of the DNA-enzyme conjugates, the patterned assembly of the two enzymes allows the establishment and investigation of the coupled reaction of GOx and HRP, with particular emphasis on surface coverage and lateral flow rates. The results demonstrate that this addressable chip is well suited for the generation of fluidically coupled multi-enzyme microreactors.

  20. A highly sensitive and selective viral protein detection method based on RNA oligonucleotide nanoparticle

    PubMed Central

    Roh, Changhyun; Lee, Ho-Young; Kim, Sang-Eun; Jo, Sung-Kee

    2010-01-01

    Globally, approximately 170 million people (representing approximately 3% of the population worldwide), are infected with hepatitis C virus (HCV) and at risk of serious liver disease, including chronic hepatitis. We propose a new quantum dots (QDs)-supported RNA oligonucleotide approach for the specific and sensitive detection of viral protein using a biochip. This method was developed by immobilizing a HCV nonstructural protein 5B (NS5B) on the surface of a glass chip via the formation of a covalent bond between an amine protein group and a ProLinker™ glass chip. The QDs-supported RNA oligonucleotide was conjugated via an amide formation reaction from coupling of a 5′-end-amine-modified RNA oligonucleotide on the surface of QDs displaying carboxyl groups via standard EDC coupling. The QDs-conjugated RNA oligonucleotide was interacted to immobilized viral protein NS5B on the biochip. The detection is based on the variation of signal of QDs-supported RNA oligonucleotide bound on an immobilized biochip. It was demonstrated that the value of the signal has a linear relationship with concentrations of the HCV NS5B viral protein in the 1 μg mL−1 to 1 ng mL−1 range with a detection limit of 1 ng mL−1. The major advantages of this RNA-oligonucleotide nanoparticle assay are its good specificity, ease of performance, and ability to perform one-spot monitoring. The proposed method could be used as a general method of HCV detection and is expected to be applicable to other types of diseases as well. PMID:20517476

  1. Oligonucleotide microarrays in constitutional genetic diagnosis.

    PubMed

    Keren, Boris; Le Caignec, Cedric

    2011-06-01

    Oligonucleotide microarrays such as comparative genomic hybridization arrays and SNP microarrays enable the identification of genomic imbalances - also termed copy-number variants - with increasing resolution. This article will focus on the most significant applications of high-throughput oligonucleotide microarrays, both in genetic diagnosis and research. In genetic diagnosis, the method is becoming a standard tool for investigating patients with unexplained developmental delay/intellectual disability, autism spectrum disorders and/or with multiple congenital anomalies. Oligonucleotide microarray have also been recently applied to the detection of genomic imbalances in prenatal diagnosis either to characterize a chromosomal rearrangement that has previously been identified by standard prenatal karyotyping or to detect a cryptic genomic imbalance in a fetus with ultrasound abnormalities and a normal standard prenatal karyotype. In research, oligonucleotide microarrays have been used for a wide range of applications, such as the identification of new genes responsible for monogenic disorders and the association of a copy-number variant as a predisposing factor to a common disease. Despite its widespread use, the interpretation of results is not always straightforward. We will discuss several unexpected results and ethical issues raised by these new methods.

  2. Oligonucleotides direct synthesis on porous silicon chip.

    PubMed

    De Stefano, Luca; De Tommasi, Edoardo; Rea, Ilaria; Rotiroti, Lucia; Giangrande, Luca; Oliviero, Giorgia; Borbone, Nicola; Galeone, Aldo; Piccialli, Gennaro

    2008-01-01

    A solid phase oligonucleotide (ON) synthesis on porous silicon (PSi) chip is presented. The prepared Si-OH surface were analyzed by FT-IR and the OH functions were quantified by reaction with 3'-phosphoramidite nucleotide building block. Short ONs were synthesized on the chip surface and the coupling yields evaluated. PMID:18776583

  3. Chemically modified electrodes by nucleophilic substitution of chlorosilylated platinum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.

    1994-07-01

    Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.

  4. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori.

    PubMed

    Martin, Judith A; Murphy, Richard A; Power, Ronan F G

    2006-09-01

    Two heterologous phytases from Aspergillus awamori and Aspergillus fumigatus obtained from submerged cultures of genetically modified fungal strains in addition to two commercially available phytase preparations (Allzyme and Natuphos phytases) were purified to homogeneity using a combination of ultrafiltration, gel filtration and ion exchange. The purified preparations were used in subsequent characterisation studies, in which Western Immunoblot analysis, pH and temperature optima, thermal stability and substrate specificity were assessed. A. fumigatus phyA phytase expressed in A. awamori exhibited activity over a broad pH range together with an increased temperature optimum, and slightly enhanced thermal stability compared to the other phytases tested, and is thus a promising candidate for animal feed applications. This particular phytase retains activity over a wide range of pH values characteristic of the digestive tract and could conceivably be more suited to the increasingly higher feed processing temperatures being utilised today, than the corresponding phytases from Aspergillus niger. PMID:16243522

  5. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  6. [Bio-based pharmaceutical polymers, possibility of their chemical modification and the applicability of modified polymers].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    Different types of polymers are widely used in biomedical, pharmaceutical and cosmetic purposes. Their applications are curbed, if the polymers can not break down by the body or if the polymer itself is harmful or decompose to harmful material. Authors provide an overview of different types of pharmaceutical polymers of various sources, of the structural characterization and possibilities of their chemical modification and of the classical and instrumental analytical examination methods. The paper deals with the limitations of the use of biopolymers, as well.

  7. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGES

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J. -S.; Kim, H.; Cirignano, L.; et al

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  8. [Bio-based pharmaceutical polymers, possibility of their chemical modification and the applicability of modified polymers].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    Different types of polymers are widely used in biomedical, pharmaceutical and cosmetic purposes. Their applications are curbed, if the polymers can not break down by the body or if the polymer itself is harmful or decompose to harmful material. Authors provide an overview of different types of pharmaceutical polymers of various sources, of the structural characterization and possibilities of their chemical modification and of the classical and instrumental analytical examination methods. The paper deals with the limitations of the use of biopolymers, as well. PMID:23444721

  9. Clean Transformation of Ethanol to Useful Chemicals. The Behavior of a Gold-Modified Silicalite Catalyst.

    PubMed

    Falletta, Ermelinda; Rossi, Michele; Teles, Joaquim Henrique; Della Pina, Cristina

    2016-01-01

    Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process. PMID:27007358

  10. Wrapping of a single bacterium with Functionalized - Chemically Modified Graphene (FCMG) sheets via highly specific protein-cell wall interaction

    NASA Astrophysics Data System (ADS)

    Mohanty, Nihar; Berry, Vikas

    2009-03-01

    Graphene has recently generated a lot of interest due to its unique structural and electrical properties. It's micro-scale area and sub-nano-scale thickness coupled with ballistic electronic transport at room temperature, low Johnston noise and low charge scattering, have made it a gold mine for novel applications. Since its discovery in 2004, there have been a plethora of studies on characterizing its unique physical, chemical and electrical properties of graphene as well as on integrating it with various physical/chemical systems to utilize these properties. But there have been limited or no studies on the integration of graphene with living microorganisms or mammalian cells. Here we describe the novel wrapping of a single live bacterium (Bacillus cereus) with a chemically modified graphene sheet functionalized with the protein Concanavalin-A (Con-A) via the highly specific Con-A - Teichoic acid interaction. We are investigating the structural and the electrical properties of these novel bacteria-FCMG ensembles. Further, we are also interested in characterizing this wrapping process in detail by studying the kinetics and the mechanism of action of bacterial-wrapping via 3D modelling. This is a first step towards the live-bio-nano-integration of graphene which would open up avenues for applications as diverse as bio-batteries using the Geobacter to recombinant enzyme compartmentalization.

  11. Chemosensitization by antisense oligonucleotides targeting MDM2.

    PubMed

    Bianco, Roberto; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-02-01

    The MDM2 oncogene is overexpressed in many human cancers, including sarcomas, certain hematologic malignancies, and breast, colon and prostate cancers. The p53-MDM2 interaction pathway has been suggested as a novel target for cancer therapy. To that end, several strategies have been explored, including the use of small polypeptides targeted to the MDM2-p53 binding domain, anti-MDM2 antisense oligonucleotides, and natural agents. Different generations of anti-human-MDM2 oligonucleotides have been tested in in vitro and in vivo human cancer models, revealing specific inhibition of MDM2 expression and significant antitumor activity. Use of antisense oligos potentiated the effects of growth inhibition, p53 activation and p21 induction by several chemotherapeutic agents. Increased therapeutic effectiveness of chemotherapeutic drugs in human cancer cell lines carrying p53 mutations or deletions have shown the ability of MDM2 inhibitors to act as chemosensitizers in various types of tumors through both p53-dependent and p53-independent mechanisms. Inhibiting MDM2 appears to also have a role in radiation therapy for human cancer, regardless of p53 status, providing a rationale for the development of a new class of radiosensitizers. Moreover, MDM2 antisense oligonucleotides potentiate the effect of epidermal growth factor receptor (EGFR) inhibitors by affecting in vitro and in vivo proliferation, apoptosis and protein expression in hormone-refractory and hormone-dependent human prostate cancer cells. These data support the development, among other MDM2 inhibitors, of anti-MDM2 antisense oligonucleotides as a novel class of anticancer agents, and suggest a potentially relevant role for the oligonucleotides when integrated with conventional treatments and/or other signaling inhibitors in novel therapeutic strategies.

  12. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta1

    PubMed Central

    Jordon-Thaden, Ingrid E.; Chanderbali, Andre S.; Gitzendanner, Matthew A.; Soltis, Douglas E.

    2015-01-01

    Premise of the study: Here we present a series of protocols for RNA extraction across a diverse array of plants; we focus on woody, aromatic, aquatic, and other chemically complex taxa. Methods and Results: Ninety-one taxa were subjected to RNA extraction with three methods presented here: (1) TRIzol/TURBO DNA-free kits using the manufacturer’s protocol with the addition of sarkosyl; (2) a combination method using cetyltrimethylammonium bromide (CTAB) and TRIzol/sarkosyl/TURBO DNA-free; and (3) a combination of CTAB and QIAGEN RNeasy Plant Mini Kit. Bench-ready protocols are given. Conclusions: After an iterative process of working with chemically complex taxa, we conclude that the use of TRIzol supplemented with sarkosyl and the TURBO DNA-free kit is an effective, efficient, and robust method for obtaining RNA from 100 mg of leaf tissue of land plant species (Embryophyta) examined. Our protocols can be used to provide RNA of suitable stability, quantity, and quality for transcriptome sequencing. PMID:25995975

  13. A modified anaerobic digestion process with chemical sludge pre-treatment and its modelling.

    PubMed

    Hai, N M; Sakamoto, S; Le, V C; Kim, H S; Goel, R; Terashima, M; Yasui, H

    2014-01-01

    Activated Sludge Models (ASMs) assume an unbiodegradable organic particulate fraction in the activated sludge, which is derived from the decay of active microorganisms in the sludge and/or introduced from wastewater. In this study, a seasonal change of such activated sludge constituents in a municipal wastewater treatment plant was monitored for 1.5 years. The chemical oxygen demand ratio of the unbiodegradable particulates to the sludge showed a sinusoidal pattern ranging from 40 to 65% along with the change of water temperature in the plant that affected the decay rate. The biogas production in a laboratory-scale anaerobic digestion (AD) process was also affected by the unbiodegradable fraction in the activated sludge fed. Based on the results a chemical pre-treatment using H2O2 was conducted on the digestate to convert the unbiodegradable fraction to a biodegradable one. Once the pre-treated digestate was returned to the digester, the methane conversion increased up to 80% which was about 2.4 times as much as that of the conventional AD process, whilst 96% of volatile solids in the activated sludge was digested. From the experiment, the additional route of the organic conversion processes for the inert fraction at the pre-treatment stage was modelled on the ASM platform with reasonable simulation accuracy.

  14. Inhibition of certain strains of HIV-1 by cell surface polyanions in the form of cholesterol-labeled oligonucleotides

    SciTech Connect

    Ahn, Kwang-Soo; Ou, Wu; Silver, Jonathan . E-mail: jsilver@nih.gov

    2004-12-05

    Cholesterol-labeled oligonucleotides were found several years ago to inhibit HIV-1 in tissue culture at nanomolar concentrations. We present evidence that this is mainly due to an electrostatic interaction between polyanionic oligonucleotide concentrated at the cell surface and a positively charged region in the V3 loop of the HIV-1 envelope protein. When added to tissue culture, cholesterol-labeled oligonucleotides became concentrated at the plasma membrane and potently inhibited virus entry and cell fusion mediated by the envelope protein of some X4 strains of HIV-1, but had little effect on fusion mediated by R5 strains of HIV-1, amphotropic MLV envelope protein, or VSV-G protein. Noncholesterol-labeled oligonucleotides did not bind to the cell surface or inhibit fusion. The pattern of susceptibility to cholesterol-labeled oligonucleotides among HIV-1 strains was the same as reported for nonmembrane-associating polyanions such as dextran sulfate, but the cholesterol-labeled oligonucleotides were effective at lower concentrations. Substitution of a basic 33 amino acid V3 loop sequence from the envelope protein of a resistant strain into a susceptible strain made the envelope protein resistant to inhibition. Inhibition by cholesterol-labeled oligonucleotides was abrogated by the polycation DEAE-dextran. Cholesterol-labeled oligonucleotides bound to nonraft regions of the plasma membrane and did not inhibit HIV virus binding to cells. Many infectious agents first associate with target cells via relatively nonspecific charge interactions; our data suggest that molecules that combine a membrane-targeting motif with multiple negative charges might be useful to modify these interactions.

  15. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    NASA Astrophysics Data System (ADS)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  16. Removal of cadmium(II) from aqueous solutions by chemically modified maize straw.

    PubMed

    Guo, Hong; Zhang, Shufen; Kou, Zinong; Zhai, Shangru; Ma, Wei; Yang, Yi

    2015-01-22

    A new regenerable adsorbent was successfully prepared by modifying maize straw (MS) with succinic anhydride in xylene. The succinylated-maize straw (S-MS) was characterized by FTIR, solid-state MAS (13)C NMR spectroscopy, SEM-EDX and point of zero charge analysis. NaS-MS was successfully obtained after deprotonating the carboxylic acid groups of S-MS by Na2CO3 solution. Batch experiments were carried out with NaS-MS for the removal of Cd(II). The effects of pH, adsorbent dosage, contact time, initial concentration and temperature were investigated. The experimental data were best described by a pseudo-second-order kinetics and Langmuir adsorption models. Thermodynamic parameters (ΔG, ΔH, and ΔS) were also calculated from data obtained from experiments performed to study the effect of temperatures. NaS-MS could be regenerated at least five times in saturated NaCl solution without any loss. Furthermore, ∼97% of adsorbed Cd(II) ions could be recovered as the metal oxide. Finally, the adsorption mechanism of NaS-MS was discussed. PMID:25439883

  17. Ingestion and digestion studies in Tetrahymena pyriformis based on chemically modified microparticles.

    PubMed

    Dürichen, Hendrike; Siegmund, Lisa; Burmester, Anke; Fischer, Martin S; Wöstemeyer, Johannes

    2016-02-01

    Recognition of food and, in consequence, ingestion of digestible particles is a prerequisite for energy metabolism in Tetrahymena pyriformis. Understanding why some particles are ingested and digested, whereas others are not, is important for many fields of research, e.g. survival of pathogens in single-celled organisms or establishment of endosymbiotic relationships. We offered T. pyriformis synthetical bovine-serum-albumin (BSA)-methacrylate microparticles of approximately 5.5 μm diameter and studied the ciliates' ingestion and digestion behaviour. Different staining techniques as well as co-feeding with a transformant strain of Escherichia coli revealed that T. pyriformis considers these particles as natural food source and shows no feeding preference. Further, they are ingested at normal rates and may serve as sole food source. A pivotal advantage of these particles is the convenient modification of their surface by binding different ligands resulting in defined surface properties. Ingestion rate of modified microparticles either increased (additional BSA, enzymes) or decreased (amino acids). Furthermore, we investigated glycosylation patterns by lectin binding. By binding different substances to the surface in combination with various staining techniques, we provide a versatile experimental tool for elucidating details on food recognition and digestion that may allow to study evading digestion by pathogens or potential endosymbionts, too.

  18. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  19. Chemically Modified Interleukin-6 Aptamer Inhibits Development of Collagen-Induced Arthritis in Cynomolgus Monkeys

    PubMed Central

    Murakami, Ikuo; Ishikawa, Yuichi; Suzuki, Tomoki; Sumida, Shun-ichiro; Ibaragi, Shigeru; Kasai, Hayato; Horai, Naoto; Drolet, Daniel W.; Gupta, Shashi; Janjic, Nebojsa

    2016-01-01

    Interleukin-6 (IL-6) is a potent mediator of inflammatory and immune responses, and a validated target for therapeutic intervention of inflammatory diseases. Previous studies have shown that SL1026, a slow off-rate modified aptamer (SOMAmer) antagonist of IL-6, neutralizes IL-6 signaling in vitro. In the present study, we show that SL1026 delays the onset and reduces the severity of rheumatoid symptoms in a collagen-induced arthritis model in cynomolgus monkeys. SL1026 (1 and 10 mg/kg), administered q.i.d., delayed the progression of arthritis and the concomitant increase in serum IL-6 levels compared to the untreated control group. Furthermore, SL1026 inhibited IL-6-induced STAT3 phosphorylation ex vivo in T lymphocytes from human blood and IL-6-induced C-reactive protein and serum amyloid A production in human primary hepatocytes. Importantly, SOMAmer treatment did not elicit an immune response, as evidenced by the absence of anti-SOMAmer antibodies in plasma of treated monkeys. These results demonstrate that SOMAmer antagonists of IL-6 may be attractive agents for the treatment of IL-6-mediated diseases, including rheumatoid arthritis. PMID:26579954

  20. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  1. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-08-01

    Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10-12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45-55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5-8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  2. Directed assembly of nanodiamond nitrogen-vacancy centers on a chemically modified patterned surface.

    PubMed

    Rao, Saleem G; Karim, Altaf; Schwartz, Julian; Antler, Natania; Schenkel, Thomas; Siddiqi, Irfan

    2014-08-13

    Nitrogen-vacancy (NV) centers in nanodiamond (ND) particles are an attractive material for photonic, quantum information, and biological sensing technologies due to their optical properties-bright single photon emission and long spin coherence time. To harness these features in practical devices, it is essential to realize efficient methods to assemble and pattern NDs at the micro-/nanoscale. In this work, we report the large scale patterned assembly of NDs on a Au surface by creating hydrophobic and hydrophilic regions using self-assembled monolayer (SAM). Hydrophobic regions are created using a methyl (-CH3) terminated SAM of octadecanethiol molecules. Evaporating a water droplet suspension of NDs on the SAM patterned surface assembles the NDs in the bare Au, hydrophilic regions. Using this procedure, we successfully produced a ND structures in the shape of dots, lines, and rectangles. Subsequent photoluminescence imaging of the patterned NDs confirmed the presence of optically active NV centers. Experimental evidence in conjunction with computational analysis indicates that the surface wettability of the SAM modified Au surface plays a dominant role in the assembly of NDs as compared to van der Waals and other substrate-ND interactions. PMID:25029262

  3. Protein Adsorption on Chemically Modified Block Copolymer Nanodomains: Influence of Charge and Flow.

    PubMed

    Silverstein, Joshua S; Casey, Brendan J; Kofinas, Peter; Dair, Benita J

    2016-02-01

    Understanding the interactions of biomacromolecules with nanoengineered surfaces is vital for assessing material biocompatibility. This study focuses on the dynamics of protein adsorption on nanopatterned block copolymers (BCPs). Poly(styrene)-block-poly(1,2-butadiene) BCPs functionalized with an acid, amine, amide, or captopril moieties were processed to produce nanopatterned films. These films were characterized using water contact angle measurements and atomic force microscopy in air and liquid to determine how the modification process affected. wettability and swelling. Protein adsorption experiments were conducted under static and dynamic conditions via a quartz crystal microbalance with dissipation. Proteins of various size, charge, and stability were investigated to determine whether their physical characteristics affected adsorption. Significantly decreased contact angles were caused by selective swelling of modified BCP domains. The results indicate that nanopatterned chemistry and experimental conditions strongly impact adsorption dynamics. Depending on the structural stability of the protein, polyelectrolyte surfaces significantly increased adsorption over controls. Further analysis suggested that protein stability may correlate with dissipation versus frequency plots. PMID:27433605

  4. Modulation of the heterogeneous senescence of human mesenchymal stem cells on chemically-modified surfaces.

    PubMed

    Kim, Sung Hoon; Lee, Byung Man; Min, Seul Ki; Song, Sun U; Cho, Jeong Ho; Cho, Kilwon; Shin, Hwa Sung

    2012-02-01

    Human mesenchymal stem cells (hMSCs) are multipotent and have been recognized as a source for tissue engineering or cell therapy. It is, therefore, imperative to develop methods to acquire enough hMSCs that maintain self-renewal and differentiation potential. However, aged hMSCs are prone to have a gradual decline in differentiation and proliferation potential with continual cell cycle divisions during in vitro culture. The physiochemical properties of hMSCs are highly dependent on their micro-environment, i.e. the 'stem cell niche'. In this study, the heterogeneous aging of hMSC was examined on chemically defined self-assembly monolayer surfaces. Surface energy was shown to regulate aged hMSC morphology, survival, and proteoglycan expression. High surface energy supplied a preferable environment for hMSC survival and expression of proteoglycans. These results will prove valuable to the design of scaffolds for tissue engineering or for the modulation of implantation environments.

  5. Chemical and gamma-ray-modified bagasse as substrates for bioproduction of cellulases and protein

    SciTech Connect

    Lillehoj, E.B.; Han, Y.W.

    1983-08-01

    Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on basetreated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate. (14 Refs.)

  6. Bio-compatibility, surface & chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate

    NASA Astrophysics Data System (ADS)

    Bagra, Bhawna; Pimpliskar, Prashant; Agrawal, Narendra Kumar

    2014-04-01

    Bio compatibility is an important issue for synthesis of biomedical devices, which can be tested by bioadoptability and creations of active site to enhance the bacterial/cell growth in biomedical devices. Hence a systematic study was carried out to characterize the effects of Nitrogen ion plasma for creations of active site in nano composite polymer membrane. Nano particles of ZnO are synthesized by chemical root, using solution casting nano composite polymeric membranes were prepared and treated with Nitrogen ion plasma. These membranes were characterized by different technique such as optical microscopy, SEM- Scanning electron microscope, optical transmittance, Fourier transform infrared spectroscopy. Then biocompatibility for membranes was tested by testing of bio-adoptability of membrane.

  7. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    NASA Astrophysics Data System (ADS)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  8. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    PubMed Central

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  9. Surface Charge, Electroosmotic Flow and DNA Extension in Chemically Modified Thermoplastic Nanoslits and Nanochannels

    PubMed Central

    Uba, Franklin I.; Pullagurla, Swathi R.; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoonkyoung; Shin, Heungjoo; Soper, Steven A.

    2014-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  10. Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up.

    PubMed

    Nack, C; Raguse, J-D; Stricker, A; Nelson, K; Nahles, S

    2015-01-01

    The aim of this study is to evaluate the clinical and radiological parameters of standard SLA surface implants compared to chemically modified hydrophilic SLActive implants in irradiated patients after the initial 12-month loading period up to 5 years. Twenty patients with a mean age of 61·1 years were treated with dental implants after ablative surgery and radio-chemotherapy of oral cancer. All patients were non-smokers. The placement of 102 implants (50 SLA, 52 SLActive) was performed bilaterally according to a split-mouth design. Mean crestal bone changes were evaluated using standardised orthopantomographies and clinical parameters. Data were analysed using a Kaplan-Meier curve, Mann-Whitney U-test and two-factorial non-parametric analysis. The average observation period was 60 months. The amount of bone loss at the implant shoulder of SLA implants was mesial and distal 0·7 mm. The SLActive implants displayed a bone loss of mesial 0·6 mm as well as distal 0·7 mm after 5 years. Two SLA implants were lost before loading. One patient lost five implants due to recurrence of a tumour. The overall cumulative 12-month, 3-year and 5-year survival rate of SLA implants was 92%, 80% and 75·8% and of SLActive implants 94·2%, 78·8% and 74·4%, respectively. Eighteen implants were considered lost because the patients had died. Sandblasted acid-etched implants with or without a chemically modified surface can be used in irradiated patients with a high predictability of success. Lower implant survival rates in patients with irradiated oral cancer may be associated with systemic effects rather than peri-implantitis.

  11. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry.

    PubMed

    Silva, Sidnei G; Donati, George L; Santos, Luana N; Jones, Bradley T; Nóbrega, Joaquim A

    2013-05-30

    Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L(-1) Co, WCAES limit of detection for Cr (λ=425.4 nm) is calculated as 0.070 mg L(-1); a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr(+) by charge transfer reactions. In a second step, Cr(+)/e(-) recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25-10 mg L(-1) and repeatability of 3.8% (RSD, n=10) for a 2.0 mg L(-1) Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and 112%.

  12. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide.

    PubMed

    Cole-Strauss, A; Yoon, K; Xiang, Y; Byrne, B C; Rice, M C; Gryn, J; Holloman, W K; Kmiec, E B

    1996-09-01

    A chimeric oligonucleotide composed of DNA and modified RNA residues was used to direct correction of the mutation in the hemoglobin betaS allele. After introduction of the chimeric molecule into lymphoblastoid cells homozygous for the betaS mutation, there was a detectable level of gene conversion of the mutant allele to the normal sequence. The efficient and specific conversion directed by chimeric molecules may hold promise as a therapeutic method for the treatment of genetic diseases.

  13. Delivering Antisense Morpholino Oligonucleotides to Target Telomerase Splice Variants in Human Embryonic Stem Cells.

    PubMed

    Radan, Lida; Hughes, Chris S; Teichroeb, Jonathan H; Postovit, Lynne-Marie; Betts, Dean H

    2016-01-01

    Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) Δα and Δβ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.

  14. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    PubMed

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. PMID:27591654

  15. Development of Green Solvent Modified Zeolite (GSMZ) for the Removal of Chemical Contaminants and Pathogens from Water

    NASA Astrophysics Data System (ADS)

    Li, Z.; Stapleton, E. R.; Xu, S.

    2012-12-01

    Sorption represents an important strategy in the remediation of groundwater contamination. As a naturally-occurring mineral with large cation exchange capacity, zeolite is negatively charged and has been widely used as an inexpensive and effective sorbent for the removal of positively charged contaminants such as heavy metals from water. The negative charges of zeolite, however, make it generally ineffective in the sorption of anionic contaminants such as chromate and arsenate as well as many pathogens. In this research, we used the imidazolium group of chemicals, which are considered as "green solvents" and differ from the surfactants used in previous studies, to modify zeolite. Both batch and column experiments were performed to evaluate the effectiveness of GSMZ in the removal of representative anionic pollutant (i.e., Cr) and bacterium (i.e., Eschericha coli) under various water chemistry conditions. Our experimental results showed that the adsorption of Cr on GSMZ was fast (equilibrium was reached within ~5 min) and the capacity of GSMZ to remove chromate (>1000 mg/kg) was ~100% higher than surfactant modified zeolite (SMZ). GSMZ was also found to be very effective in the removal of E. coli. As pH was found to have minimal effects on the adsorption of chromium on GSMZ, higher ionic strength could lower the adsorption capacity of chromium by GSMZ.

  16. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    PubMed

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  17. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication.

    PubMed

    Umemura, Kazuo; Ishibashi, Yu; Oura, Shusuke

    2016-09-01

    We investigated the physisorption phenomenon of single-stranded DNA (ssDNA) molecules onto two types of commercially available chemically functionalized single-walled carbon nanotubes (SWNTs) by atomic force microscopy (AFM) and agarose gel electrophoresis. We found that DNA molecules can adsorb on the water-soluble SWNT surfaces without sonication, although sonication treatment has been used for hybridization of DNA and SWNTs in many previous studies. Using our method, damage of DNA molecules by sonication can be avoided. On the other hand, the amount of DNA molecules adsorbed on SWNT surfaces increased when the samples were sonicated. This fact suggests that the sonication is effective not only at debundling of SWNTs, but also at assisting DNA adsorption. Furthermore, DNA adsorption was affected by the types of functionalized SWNTs. In the case of SWNTs functionalized with polyethylene glycol (PEG-SWNT), physisorption of ssDNA molecules was confirmed only by agarose-gel electrophoresis. In contrast, amino-terminated SWNTs (NH2-SWNTs) showed a change in the height distribution profile based on AFM observations. These results suggest that DNA molecules tended to adsorb to NH2-SWNT surfaces, although DNA molecules can also adsorb on PEG-SWNT surfaces. Our results revealed fundamental information for developing nanobiodevices using hybrids of DNA and SWNTs.

  18. Chemical structures and physical properties of vanadium oxide films modified by single-walled carbon nanotubes.

    PubMed

    He, Qiong; Xu, Xiangdong; Wang, Meng; Sun, Minghui; Jiang, Yadong; Yao, Jie; Ao, Tianhong

    2016-01-21

    A series of vanadium oxide (VOx)-single-walled carbon nanotube (SWCNT) composite films with different SWCNT concentrations were prepared and systematically investigated. The results reveal that after SWCNT addition, the optical absorption and electrical conductivity of VOx are enhanced, but the crystallinity and temperature coefficient of resistance (TCR) are weakened. Consequently, either too low or too high CNT loading will lead to the degradation of the comprehensive properties. In contrast, the VOx-SWCNT composite film containing 4 wt% SWCNTs exhibits the optimal comprehensive properties such as high film uniformity, large optical absorption, and desirable sheet resistance (141 kΩ) and TCR (-1.73% K(-1)), favorable for applications in uncooled infrared detectors. Saturated interactions between SWCNTs and VOx are observed at 6 wt% SWCNTs, after which (≤10 wt% SWCNTs) the structures and properties are changed slightly. This work reveals the modification of the chemical structures and physical properties of VOx films by SWCNTs, whose results will be helpful not only for a better understanding of VOx, SWCNTs, and their composites, but also for seeking new versatile functional materials for device applications.

  19. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  20. Wetting Properties of Chemically Modified Surfaces: The role of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bekele, Selemon; Tsige, Mesfin

    2015-03-01

    Many industrial processing operations involve the spreading of a liquid on a solid material. Controlling the wetting of one material by another is of crucial importance in such applications as adhesion, coating and oil recovery. A strategy often employed to control the wettability of solid surfaces is a combination of surface patterning and chemical surface modification. In order to understand the effect of surface chemistry on the wetting process, we have carried out all-atom molecular dynamics (MD) simulations of a water droplet spreading on pure and oxidized polystyrene surfaces. Our previous results show that the contact angle generally decreases with increasing oxygen concentration and there is a correlation between the spreading and hydrogen bonding. In this talk, we will present results on the structure and dynamics of the hydrogen bonds in the interfacial region between water and the polystyrene substrate. We will discuss our findings on hydrogen bond lifetimes, time correlations functions and number of hydrogen bonds per water molecule for the hydrogen bonds around the water/polystyrene interface which are found to play a role in the spreading process. This work was supported by NSF Grant DMR0847580.

  1. Chemically modified diamond-like carbon (DLC) for protein enrichment and profiling by MALDI-MS.

    PubMed

    Najam-ul-Haq, M; Rainer, M; Huck, C W; Ashiq, M N; Bonn, G K

    2012-08-01

    The development of new high throughput methods based on different materials with chemical modifications for protein profiling of complex mixtures leads towards biomarkers; used particularly for early diagnosis of a disease. In this work, diamond-like carbon (DLC) is developed and optimized for serum protein profiling by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS). This study is carried out in connection with a material-based approach, termed as material-enhanced laser desorption ionization mass spectrometry. DLC is selected as carrier surface which provides large surface to volume ratio and offers high sensitivity. DLC has a dual role of working as MALDI target while acting as an interface for protein profiling by specifically binding peptides and proteins out of serum samples. Serum constituents are bound through immobilized metal ion affinity chromatography (IMAC) functionality, created through glycidyl methacrylate polymerization under ultraviolet light followed by further derivatization with iminodiacetic acid and copper ion loading. Scanning electron microscopy highlights the morphological characteristics of DLC surface. It could be demonstrated that IMAC functionalized DLC coatings represent a powerful material in trapping biomolecules for their further analysis by MALDI-MS resulting in improved sensitivity, specificity and capacity in comparison to other protein-profiling methods.

  2. Biomimetic Deposition of Apatite on Surface Chemically Modified Porous NiTi Shapememory Alloy

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Liu, X. M.; Chung, C. Y.; Chu, Paul K.; Chan, Y. L.; Yeung, K. W. K.; Chu, C. L.

    Porous NiTi shape memory alloy (SMA) with 48% porosity and an average pore size of 50-800 μm was synthesized by capsule-free hot isostatic pressing (CF-HIP). To enhance the surface bioactivity, the porous NiTi SMA was subjected to H2O2 and subsequent NaOH treatment. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses revealed that a porous sodium titanate (Na2TiO3) film had formed on the surface of the porous NiTi SMA. An apatite layer was deposited on this film after immersion in simulated body fluid at 37°C, while no apatite could be found on the surface of the untreated porous NiTi SMA. The formation of the apatite layer infers that the bioactivity of the porous NiTi SMA may be enhanced by surface chemical treatment, which is favorable for its application as bone implants.

  3. Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility

    PubMed Central

    Schleicher, Martina; Hansmann, Jan; Elkin, Bentsian; Kluger, Petra J.; Liebscher, Simone; Huber, Agnes J. T.; Fritze, Olaf; Schille, Christine; Müller, Michaela; Schenke-Layland, Katja; Seifert, Martina; Walles, Heike; Wendel, Hans-Peter; Stock, Ulrich A.

    2012-01-01

    In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene)) coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2) and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P < 0.05). Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization. PMID:22481939

  4. Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility.

    PubMed

    Schleicher, Martina; Hansmann, Jan; Elkin, Bentsian; Kluger, Petra J; Liebscher, Simone; Huber, Agnes J T; Fritze, Olaf; Schille, Christine; Müller, Michaela; Schenke-Layland, Katja; Seifert, Martina; Walles, Heike; Wendel, Hans-Peter; Stock, Ulrich A

    2012-01-01

    In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene)) coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m(2)) and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P < 0.05). Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization.

  5. Sequence analysis of phosphorothioate oligonucleotides via matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Schuette, J M; Pieles, U; Maleknia, S D; Srivatsa, G S; Cole, D L; Moser, H E; Afeyan, N B

    1995-09-01

    Modification of the natural phosphodiester backbone of deoxyribooligonucleotides can impart increased biostability via nuclease resistance. Further, uniform incorporation of phosphorothioate linkages renders oligonucleotides highly resistant to reagents traditionally used in sequencing reactions. As a consequence, analytical tests crucial for establishing the identity of such oligonucleotide drugs are less informative. To circumvent this problem, chemical oxidation has been employed for converting the phosphorothioate to the uniform phosphodiester, thereby facilitating enzymatic degradation. Following oxidation, exonucleases which sequentially cleave individual bases from the 3' or 5' terminus of the oligonucleotide or base-specific cleavage chemicals were used to facilitate sequence identification of the oligonucleotide. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), previously used to sequence natural phosphodiester DNA, was then used to sequence the chemically oxidized phosphorothioate. Sequential enzymatic cleavage of desulphurized phosphorothioates in combination with MALDI analysis not only provides a viable alternative to radiolabeling as used in conventional sequencing approaches (e.g. Maxam-Gilbert), but also enables rapid sequencing of phosphorothioate oligonucleotides, for routine drug analysis. PMID:8562591

  6. Determination of adeno-associated virus Rep68 and Rep78 binding sites by random sequence oligonucleotide selection.

    PubMed Central

    Chiorini, J A; Yang, L; Safer, B; Kotin, R M

    1995-01-01

    To further define the canonical binding site for the P5-promoted Rep proteins of the adeno-associated virus, a modified random oligonucleotide selection procedure was performed, using purified recombinant Rep protein. These results may explain the effects of Rep on cellular gene expression. PMID:7474165

  7. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    NASA Astrophysics Data System (ADS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  8. Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron.

    PubMed

    Fan, Dimin; Chen, Shengwen; Johnson, Richard L; Tratnyek, Paul G

    2015-09-01

    Nano zerovalent iron synthesized with carboxymethylcelluose (CMC-nZVI) is among the leading formulations of nZVI currently used for in situ groundwater remediation. The main advantage of CMC-nZVI is that it forms stable suspensions, which are relatively mobile in porous media. Rapid contaminant reduction by CMC-nZVI is well documented, but the fate of the CMC-nZVI (including "aging" and "reductant demand") is not well characterized. Improved understanding of CMC-nZVI fate requires methods with greater specificity for Fe(0), less vulnerability to sampling/recovery artifacts, and more practical application in the field. These criteria can be met with a simple and specific colorimetric approach using indigo-5,5'-disulfonate (I2S) as a chemical redox probe (CRP). The measured stoichiometric ratio for reaction between I2S and nZVI is 1.45 ± 0.03, suggesting complete oxidation of nZVI to Fe(III) species. However, near pH 7, reduction of I2S is diagnostic for Fe(0), because aqueous Fe(II) reduces I2S much more slowly than Fe(0). At that pH, adding Fe(II) increased I2S reduction rates by Fe(0), consistent with depassivation of nZVI, but did not affect the stoichiometry. Using the I2S assay to quantify changes in the Fe(0) content of CMC-nZVI, the rate of Fe(0) oxidation by water was found to be orders of magnitude faster than previously reported values for other types of nZVI.

  9. Induction of primary mixed leukocyte reactions with ultraviolet B or chemically modified stimulator cells

    SciTech Connect

    Mincheff, M.S.; Meryman, H.T. )

    1989-12-01

    Treatment of stimulator cells with paraformaldehyde for 60 sec or ultraviolet-B (UV-B) irradiation eliminates their ability to elicit T cell proliferation in a primary mixed leukocyte reaction. However, a T cell response equal to 20-40% of control value could be elicited by paraformaldehyde fixed or UV-B irradiated cells providing the latter are incubated at 37 degrees C for 18 hr prior to treatment. The incubation also induces a one-log increase in the density of fluorescence when the cells are stained with monoclonal antibodies against class II molecules DR and DP as well as the intercellular adhesion molecule -1. We interpret this as an increase in the membrane expression of these structures following incubation. Chloroquine and cerulenin, known to inhibit protein degradation and antigen processing and presentation do not influence the upregulation in membrane expression of these class II and adhesion molecules, but do prevent incubation from overriding the effect of paraformaldehyde treatment. Colchicine, which reduces the traffic through tubular lysosomes, also has no effect on the upregulation but enhances allopresentation. We propose that incubation of stimulator cells in the presence of chloroquine and cerulenin results in the membrane expression of class II molecules without associated peptides. The inability of stimulator cells expressing such nude MHC molecules to elicit T cell proliferation after chemical modification could be due to easier crosslinking of the allodeterminants by paraformaldehyde when the binding site is empty but could also mean that nude MHC molecules are not per se immunogenic and become so only after acquisition of a peptide. It is also possible that chloroquine, NH4Cl, and cerulenin block the expression of signals other than the class II and cell adhesion molecules that are essential for induction of T cell proliferation.

  10. A chemically modified [alpha]-amylase with a molten-globule state has entropically driven enhanced thermal stability

    SciTech Connect

    Siddiqui, Khawar Sohail; Poljak, Anne; De Francisci, Davide; Guerriero, Gea; Pilak, Oliver; Burg, Dominic; Raftery, Mark J.; Parkin, Don M.; Trewhella, Jill; Cavicchioli, Ricardo

    2010-11-15

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA{sub MOD} exhibited a 200% improvement in starch-hydrolyzing productivity at 60 C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA{sub MOD} had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 C. The X-ray crystal structure of TAA{sub MOD} revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA{sub MOD}, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA{sub MOD}. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.

  11. Phase Stability of Ce-Modified La2Zr2O7 Coatings and Chemical Compatibility with YSZ

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Ji, Xiaojuan; Peng, Haoran; Ren, Xianjing; Yu, Yueguang

    2016-04-01

    Ce-modified La2Zr2O7 powders, i.e., La2Zr2O7 (LZ), La2(Zr0.7Ce0.3)2O7 (LZ7C3), and La2(Zr0.3Ce0.7)2O7 (LZ3C7), were used to produce thermal barrier coatings by atmospheric plasma spray process. The chemical compatibility of the CeO2-doped La2Zr2O7 with the traditional YSZ was investigated in LZ-YSZ powder mixtures and LZ-YSZ bilayer coatings by x-ray diffraction and scanning electron microscope. The powder mixtures and coatings were aged at 1200 and 1300 °C for 100 h. The results showed that LZ and LZ7C3 presented single pyrochlore structure after the heat treatments at both 1200 and 1300 °C. For LZ3C7, however, fluorite structure was observed at 1300 °C, indicating a poor phase stability of LZ3C7 at the elevated temperature. The results further showed that La2(Zr0.3Ce0.7)2O7 reacted with YSZ in the bilayer ceramic coatings due to the diffusion of cerium, zirconium, and yttrium. While for La2Zr2O7(LZ) and La2(Zr0.7Ce0.3)2O7, a better chemical compatibility with YSZ was shown.

  12. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  13. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium.

    PubMed

    Jordan, Ingo; Horn, Deborah; John, Katrin; Sandig, Volker

    2013-01-21

    While vectored vaccines, based on hyperattenuated viruses, may lead to new treatment options against infectious diseases and certain cancers, they are also complex products and sometimes difficult to provide in sufficient amount and purity. To facilitate vaccine programs utilizing host-restricted poxviruses, we established avian suspension cell lines (CR and CR.pIX) and developed a robust, chemically defined, culturing process for production of this class of vectors. For one prominent member, modified vaccinia Ankara (MVA), we now describe a new strain that appears to replicate to greater yields of infectious units, especially in the cell-free supernatant of cultures in chemically defined media. The new strain was obtained by repeated passaging in CR suspension cultures and, consistent with reports on the exceptional genetic stability of MVA, sequencing of 135 kb of the viral genomic DNA revealed that only three structural proteins (A3L, A9L and A34R) each carry a single amino acid exchange (H639Y, K75E and D86Y, respectively). Host restriction in a plaque-purified isolate of the new genotype appears to be maintained in cell culture. Processing towards an injectable vaccine preparation may be simplified with this strain as a complete lysate, containing the main burden of host cell contaminants, may not be required anymore to obtain adequate yields.

  14. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  15. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    SciTech Connect

    Bergren, Adam Johan

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  16. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces

    SciTech Connect

    Barnes, George L.; Yang Li; Hase, William L.; Young, Kelsey

    2011-03-07

    Direct dynamics simulations are reported for quantum mechanical (QM)/molecular mechanical (MM) trajectories of N-protonated diglycine (gly{sub 2}-H{sup +}) colliding with chemically modified perfluorinated octanethiolate self-assembled monolayer (SAM) surfaces. The RM1 semiempirical theory is used for the QM component of the trajectories. RM1 activation and reaction energies were compared with those determined from higher-level ab initio theories. Two chemical modifications are considered in which a head group (-COCl or -CHO) is substituted on the terminal carbon of a single chain of the SAM. These surfaces are designated as the COCl-SAM and CHO-SAM, respectively. Fragmentation, peptide reaction with the SAM, and covalent linkage of the peptide or its fragments with the SAM surface are observed. Peptide fragmentation via concerted CH{sub 2}-CO bond breakage is the dominant pathway for both surfaces. HCl formation is the dominant species produced by reaction with the COCl-SAM, while for the CHO-SAM a concerted H-atom transfer from the CHO-SAM to the peptide combined with either a H-atom or radical transfer from the peptide to the surface to form singlet reaction products is the dominant pathway. A strong collision energy dependence is found for the probability of peptide fragmentation, its reactivity, and linkage with the SAM. Surface deposition, i.e., covalent linkage between the surface and the peptide, is compared to recent experimental observations of such bonding by Laskin and co-workers [Phys. Chem. Chem. Phys. 10, 1512 (2008)]. Qualitative differences in reactivity are seen between the COCl-SAM and CHO-SAM showing that chemical identity is important for surface reactivity. The probability of reactive surface deposition, which is most closely analogous to experimental observables, peaks at a value of around 20% for a collision energy of 50 eV.

  17. The prebiotic synthesis of deoxythymidine oligonucleotides

    NASA Technical Reports Server (NTRS)

    Stephen-Sherwood, E.; Odom, D. G.; Oro, J.

    1974-01-01

    Deoxythymidine 5 prime-triphosphate in the presence of deoxythymidine 5 prime-phosphate, cyanamide and 4-amino-5-imidazole carboxamide polymerizes under drying conditions at moderate temperatures (60 to 90 C) to yield oligonucleotides of up to four units in length. Enzymatic analysis indicated that the majority of these oligomers contained natural 3 prime-5 prime phosphodiester bonds. This reaction offers a possible method for the formation of deoxyoligonucleotides under primitive earth conditions.

  18. One-step insertion of oligonucleotide linkers or adapters to DNA using unphosphorylated oligonucleotides.

    PubMed

    Kang, C; Inouye, M

    1993-10-01

    A simple and efficient method was developed for insertion of oligonucleotide sequences into plasmids. In this method, an unphosphorylated oligonucleotide was ligated to the restriction-digested phagemid DNA. Only the single strand of the oligonucleotide was ligated at the 5' end of the phagemid, and this resulted in the creation of a long self-complementary single-strand overhang. These single-strand overhang-possessing phagemids were used to transform XL-1 cells. This simple ligation and transformation reaction rendered approximately 7.5 x 10(4) to 5 x 10(5) of white colonies per microgram DNA from the isopropyl-beta-D-thiogalactopyranoside and 5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside plate. This number is almost the same or even higher than the number of blue colonies from the control reaction in which ligase was used without the oligonucleotide. By this method we could mutate one enzyme site to another or create ribozyme and substrate phagemid very easily. Fidelity of this method was checked by restriction digestion, DNA sequencing and ribozyme reaction. By DNA sequencing, we observed that 100% of the white colonies contained a single oligonucleotide sequence.

  19. Synthesis and Characterization of Cell-Permeable Oligonucleotides Bearing Reduction-Activated Protecting Groups on the Internucleotide Linkages.

    PubMed

    Saneyoshi, Hisao; Iketani, Koichi; Kondo, Kazuhiko; Saneyoshi, Takeo; Okamoto, Itaru; Ono, Akira

    2016-09-21

    Cell-permeable oligodeoxyribonucleotides (ODNs) bearing reduction-activated protecting groups were synthesized as oligonucleotide pro-drugs. Although these oligonucleotides were amenable to solid-phase DNA synthesis and purification, the protecting group on their phosphodiester moiety could be readily cleaved by nitroreductase and NADH. Moreover, these compounds exhibited good nuclease resistance against 3'-exonuclease and endonuclease and good stability in human serum. Fluorescein-labeled ODNs modified with reduction-activated protecting groups showed better cellular uptake compared with that of naked ODNs. PMID:27598574

  20. Four Ways to Oligonucleotides Without Phosphoimidazolides.

    PubMed

    Šponer, Judit E; Šponer, Jiří; Di Mauro, Ernesto

    2016-01-01

    Emergence of the very first RNA or RNA-like oligomers from simple nucleotide precursors is one of the most intriguing questions of the origin of life research. In the current paper, we analyse the mechanism of four non-enzymatic template-free scenarios suggested for the oligomerization of chemically non-modified cyclic and acyclic nucleotides in the literature. We show that amines may have a twofold role in these syntheses: due to their high affinity to bind protons they may activate the phosphorus of the phosphate group via proton transfer reactions, or indirectly they may serve as charge compensating species and influence the self-assembling of nucleotides to supramolecular architectures compatible with the oligomerization reactions. Effect of cations and pH on the reactions is also discussed. PMID:26520151

  1. Four Ways to Oligonucleotides Without Phosphoimidazolides.

    PubMed

    Šponer, Judit E; Šponer, Jiří; Di Mauro, Ernesto

    2016-01-01

    Emergence of the very first RNA or RNA-like oligomers from simple nucleotide precursors is one of the most intriguing questions of the origin of life research. In the current paper, we analyse the mechanism of four non-enzymatic template-free scenarios suggested for the oligomerization of chemically non-modified cyclic and acyclic nucleotides in the literature. We show that amines may have a twofold role in these syntheses: due to their high affinity to bind protons they may activate the phosphorus of the phosphate group via proton transfer reactions, or indirectly they may serve as charge compensating species and influence the self-assembling of nucleotides to supramolecular architectures compatible with the oligomerization reactions. Effect of cations and pH on the reactions is also discussed.

  2. Penetration of oligonucleotides into mouse organism through mucosa and skin.

    PubMed

    Vlassov, V V; Karamyshev, V N; Yakubov, L A

    1993-08-01

    Benzylamide 5'-32P-oligonucleotide derivatives were shown to penetrate into mice organism when administered by various routes; intranasally, per os, intravaginally and per rectum. In all cases, the compounds are rapidly accumulated in blood and guts. Analysis of the radioactive material from blood and pancreas revealed intact oligonucleotides. Although concentrations of oligonucleotides in tissues differ considerably by the various methods of administration, the efficiency of delivery is sufficient to consider all the routes as being of therapeutic value. Dose effect on the efficiency of oligonucleotide penetration into mice suggests the transport to be a saturable process. Application of an oligonucleotide lotion on mice ear helices results in reproducible accumulation of radioactivity in the animal tissues. Effectiveness of oligonucleotide delivery into mouse through skin can be improved by using electrophoretic procedure.

  3. Template-Directed Ligation of Peptides to Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  4. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    SciTech Connect

    Mesquita, Anderson Fuzer; Porto, Arilza de Oliveira; Magela de Lima, Geraldo; Paniago, Roberto; Ardisson, José Domingos

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  5. The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution.

    PubMed

    Abia, A A; Horsfall, M; Didi, O

    2003-12-01

    The use of different chemically modified cassava waste biomass for the enhancement of the adsorption of three metal ions Cd, Cu and Zn from aqueous solution is reported in this paper. Treating with different concentrations of thioglycollic acid modified the cassava waste biomass. The sorption rates of the three metals were 0.2303 min(-1) (Cd(2+)), 0.0051 min(-1) (Cu(2+)), 0.0040 min(-1) (Zn(2+)) and 0.109 min(-1) (Cd(2+)), 0.0069 min(-1) (Cu(2+)), 0.0367 min(-1) (Zn(2+)) for 0.5 and 1.00 M chemically modified levels, respectively. The adsorption rates were quite rapid and within 20-30 min of mixing, about 60-80% of these ions were removed from the solutions by the biomass and that chemically modifying the binding groups in the biomass enhanced its adsorption capacity towards the three metals. The results further showed that increased concentration of modifying reagent led to increased incorporation, or availability of more binding groups, in the biomass matrix, resulting in improved adsorptivity of the cassava waste biomass. The binding capacity study showed that the cassava waste, which is a serious environmental nuisance, due to foul odour released during decomposition, has the ability to adsorb trace metals from solutions.

  6. Oligonucleotide frequencies in DNA follow a Yule distribution.

    PubMed

    Martindale, C; Konopka, A K

    1996-03-01

    We show that ranked oligonucleotide frequencies in both protein-coding and non-coding regions from several genomes fit poorly to the Zipf distribution, but that the same frequency data give excellent fit to the Yule distribution. The parameters of the Yule distribution for oligonucleotide frequencies in exons are the same (within error limits) as the parameters for introns. This precludes application of Yule or Zipf distribution of ranked oligonucleotide frequencies to annotating new genomic sequences.

  7. Sequence-specific targeting of RNA with an oligonucleotide-neomycin conjugate.

    PubMed

    Charles, Irudayasamy; Xi, Hongjuan; Arya, Dev P

    2007-01-01

    The synthesis of neomycin covalently attached at the C5-position of 2'-deoxyuridine is reported. The synthesis outlined allows for incorporation of an aminoglycoside (neomycin) at any given site in an oligonucleotide (ODN) where a thymidine (or uridine) is present. Incorporation of this modified base into an oligonucleotide, which is complementary to a seven-bases-long alpha-sarcin loop RNA sequence, leads to enhanced duplex hybridization. The increase in Tm for this duplex (DeltaTm = 6 degrees C) suggests a favorable interaction of neomycin within the duplex groove. CD spectroscopy shows that the modified duplex adopts an A-type confirmation. ITC measurements indicate the additive effects of ODN and neomycin binding to the RNA target (Ka = 4.5 x 107 M-1). The enhanced stability of the hybrid duplex from this neomycin-ODN conjugate originates primarily from the enthalpic contribution of neomycin {DeltaDeltaHobs = -7.21 kcal/mol (DeltaHneomycin conjugated - DeltaH nonconjugated)} binding to the hybrid duplex. The short linker length allows for selective stabilization of the hybrid duplex over the hybrid triplex. The results described here open up new avenues in the design and synthesis of nucleo-aminoglycoside-conjugates (N-Ag-C) where the inclusion of any number of aminoglycoside (neomycin) molecules per oligonucleotide can be accomplished.

  8. Elucidation of gene function using C-5 propyne antisense oligonucleotides.

    PubMed

    Flanagan, W M; Su, L L; Wagner, R W

    1996-09-01

    Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells. PMID:9631067

  9. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition.

    PubMed

    Schultz, Hayley J; Gochi, Andrea M; Chia, Hannah E; Ogonowsky, Alexie L; Chiang, Sharon; Filipovic, Nedim; Weiden, Aurora G; Hadley, Emma E; Gabriel, Sara E; Leconte, Aaron M

    2015-09-29

    Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution. PMID:26334839

  10. Antigen presentation by chemically modified splenocytes induces antigen- specific T cell unresponsiveness in vitro and in vivo

    PubMed Central

    1987-01-01

    We investigated the antigen specificity and presentation requirements for inactivation of T lymphocytes in vitro and in vivo. In vitro studies revealed that splenocytes treated with the crosslinker 1-ethyl- 3-(3-dimethylaminopropyl)-carbodiimide (ECDI) and soluble antigen fragments failed to stimulate significant proliferation by normal pigeon cytochrome c-specific T cell clones, suggesting that the chemical treatment inactivated full antigen presentation function. However, T cell clones exposed to ECDI-treated splenocytes and antigen in vitro were rendered unresponsive for at least 8 d to subsequent antigen stimulation with normal presenting cells. As predicted by the in vitro results, specific T cell unresponsiveness was also induced in vivo in B10.A mice injected intravenously with B10.A, but not B10.A(4R), splenocytes coupled with pigeon cytochrome c via ECDI. The antigen and MHC specificity of the induction of this T cell unresponsiveness in vitro and in vivo was identical to that required for T cell activation. These results suggest that nonmitogenic T cell recognition of antigen/MHC on ECDI-modified APCs results in the functional inactivation of T cell clones. PMID:3029267

  11. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling.

    PubMed

    Zhao, Jianwei; Schols, Henk A; Chen, Zhenghong; Jin, Zhengyu; Buwalda, Piet; Gruppen, Harry

    2015-11-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter ≥ 20 μm) and small-size (diameter < 20 μm) fractions. Starch granules were surface gelatinized in a 4M calcium chloride solution at different levels. After the peeling step, the remaining starch granules were analysed for the content of phosphorus and hydroxypropyl groups. The phosphorus level of the parental starch gradually decreased from periphery to core of the granules. The increase in phosphorus content after cross-linking in periphery was higher than that in core. The subsequent hydroxypropylation reaction resulted in lower phosphate levels. Hydroxypropylation resulted in a gradient of hydroxypropyl group concentration from periphery to core. Cross-linking prior to the hydroxypropylation resulted in lower levels of hydroxypropyl groups and less pronounced differences between periphery and core.

  12. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling.

    PubMed

    Zhao, Jianwei; Schols, Henk A; Chen, Zhenghong; Jin, Zhengyu; Buwalda, Piet; Gruppen, Harry

    2015-11-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter ≥ 20 μm) and small-size (diameter < 20 μm) fractions. Starch granules were surface gelatinized in a 4M calcium chloride solution at different levels. After the peeling step, the remaining starch granules were analysed for the content of phosphorus and hydroxypropyl groups. The phosphorus level of the parental starch gradually decreased from periphery to core of the granules. The increase in phosphorus content after cross-linking in periphery was higher than that in core. The subsequent hydroxypropylation reaction resulted in lower phosphate levels. Hydroxypropylation resulted in a gradient of hydroxypropyl group concentration from periphery to core. Cross-linking prior to the hydroxypropylation resulted in lower levels of hydroxypropyl groups and less pronounced differences between periphery and core. PMID:26256390

  13. Evaluating Kinase ATP Uptake and Tyrosine Phosphorylation using Multiplexed Quantification of Chemically Labeled and Post-Translationally Modified Peptides

    PubMed Central

    Fang, Bin; Hoffman, Melissa A.; Mirza, Abu-Sayeef; Mishall, Katie M.; Li, Jiannong; Peterman, Scott M.; Smalley, Keiran S. M.; Shain, Kenneth H.; Weinberger, Paul M.; Wu, Jie; Rix, Uwe; Haura, Eric B.; Koomen, John M.

    2015-01-01

    Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease. PMID:25782629

  14. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  15. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    PubMed

    Edan, Rawan Abdulhameed; Luqmani, Yunus A; Masocha, Willias

    2013-01-01

    Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS) if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3), inhibits lipopolysaccharide (LPS)-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  16. Efficient Synthesis and Biological Evaluation of 5'-GalNAc Conjugated Antisense Oligonucleotides.

    PubMed

    Østergaard, Michael E; Yu, Jinghua; Kinberger, Garth A; Wan, W Brad; Migawa, Michael T; Vasquez, Guillermo; Schmidt, Karsten; Gaus, Hans J; Murray, Heather M; Low, Audrey; Swayze, Eric E; Prakash, Thazha P; Seth, Punit P

    2015-08-19

    Conjugation of triantennary N-acetyl galactosamine (GalNAc) to oligonucleotide therapeutics results in marked improvement in potency for reducing gene targets expressed in hepatocytes. In this report we describe a robust and efficient solution-phase conjugation strategy to attach triantennary GalNAc clusters (mol. wt. ∼2000) activated as PFP (pentafluorophenyl) esters onto 5'-hexylamino modified antisense oligonucleotides (5'-HA ASOs, mol. wt. ∼8000 Da). The conjugation reaction is efficient and was used to prepare GalNAc conjugated ASOs from milligram to multigram scale. The solution phase method avoids loading of GalNAc clusters onto solid-support for automated synthesis and will facilitate evaluation of GalNAc clusters for structure activity relationship (SAR) studies. Furthermore, we show that transfer of the GalNAc cluster from the 3'-end of an ASO to the 5'-end results in improved potency in cells and animals.

  17. In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication

    PubMed Central

    Phillips, Margaret F.; Lockett, Matthew R.; Rodesch, Matthew J.; Shortreed, Michael R.; Cerrina, Franco; Smith, Lloyd M.

    2008-01-01

    Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired. PMID:18084027

  18. Improvement of the specificity of a pan-viral microarray by using genus-specific oligonucleotides and reduction of interference by host genomes.

    PubMed

    Kang, Xiaoping; Qin, Chengfeng; Li, Yongqiang; Liu, Hong; Lin, Fang; Li, Yuchang; Li, Jing; Zhu, Qingyu; Yang, Yinhui

    2011-09-01

    Rapid detection of viral pathogens is crucial for antiviral therapy. High-density 60-70-mer oligonucleotide microarrays have been explored for broad detection of many viruses. However, relatively low specificity and the complex analytical processes are the major limitations when pan-viral oligonucleotide microarrays are used to detect viral pathogens. In this study, genus-specific oligonucleotides were used as probes and modified sample preparations were carried out to improve the specificity and accuracy of the pan-viral oligonucleotide microarray. Genus-specific 63-mer oligonucleotide probes were used for screening human pathogenic RNA viruses. A total of 628 oligonucleotide probes covering 32 RNA viral genera from 14 viral families were used. The number of oligonucleotide probes was decreased to simplify the analytical process of hybridization and to minimize cross-hybridization. Host genomes were removed by DNase I/RNase T1 digestion before viral nucleic acid extraction, and non-ribosomal hexanucleotides were used for reverse transcription to minimize interference of host genomes. Cultured viruses were used for microarray validation. The microarray was validated by cultured isolates that belonged to five viral genera. By using DNase I/RNase T1 digestion before viral nucleic acid extraction and non-ribosomal hexanucleotides for reverse transcription, the specificity of the microarray was improved. Furthermore, the analytical process of hybridization results was simplified. The specificity of pan-viral microarray could be improved by using genus-specific oligonucleotides as probes and by using non-ribosomal hexanucleotides for reverse transcription. Combined with subsequent degenerate reverse transcriptase-polymerase chain reaction and sequencing processes, this improved genus-specific oligonucleotides microarray provides a relatively flexible strategy for diagnosis of RNA virus diseases.

  19. Comparative oligonucleotide fingerprints of three plant viroids.

    PubMed Central

    Gross, H J; Domdey, H; Sänger, H L

    1977-01-01

    5' Phosphorylation in vitro with gamma-32P-ATP and T4 phage induced polynucleotide kinase was used to obtain RNAase A and RNAase T1 fingerprints of three plant viroids: Potato spindle tuber viroid from tomato (PSTV-tom), chrysanthemum stunt viroid from cineraria (ChSV-cin) and citrus exocortis viroid from Gynura aurantiaca (CEV-gyn). These three viroids differ significantly from each other as judged from their oligonucleotide patterns. This supports the concept of individual viroid species. Images PMID:896482

  20. Infrared optical properties and AFM of spin-cast chitosan films chemically modified with 1,2 Epoxy-3-phenoxy-propane.

    PubMed

    Nosal, W H; Thompson, D W; Yan, L; Sarkar, S; Subramanian, A; Woollam, J A

    2005-11-25

    Chemical modification of spin-cast chitosan films has been performed. This modification involves the attachment of 1,2 Epoxy-3-phenoxy-propane, commonly known as glycidyl phenyl ether (GPE), to the amine group of the chitosan molecule. Optical properties of modified films have been determined in the infrared region of the spectrum using spectroscopic ellipsometry, and are reported in this paper. Special attention is paid to the infrared region where the index of refraction and extinction coefficients from 750 to 4000 cm(-1) were determined. Difference plots of IR optical data before and after chemical modification were generated to confirm that modification had occurred. Optical modeling of infrared spectroscopic ellipsometry (IRSE) data with respect to chemical bond vibrations has also been performed. This modeling involved curve fitting of resonant chemical bond absorptions using Lorentz oscillators. These oscillator models allow for comparison of modified chitosan to unmodified chitosan. The purpose of this research was to determine infrared optical constants of chemically modified chitosan films This work shows that surface chemistry of biomaterials can be studied quite sensitively with spectroscopy ellipsometry, detecting as little as 100 ng/cm(2) of GPE.

  1. An imputation approach for oligonucleotide microarrays.

    PubMed

    Li, Ming; Wen, Yalu; Lu, Qing; Fu, Wenjiang J

    2013-01-01

    Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However, many CEL images may be blemished by noises from various sources, observed as "bright spots", "dark clouds", and "shadowy circles", etc. It is crucial that these image defects are correctly identified and properly processed. Existing approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based approach which does not require any biological replicate or between-array normalization. We further examine its performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is freely available upon request.

  2. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  3. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  4. In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR)

    PubMed Central

    2010-01-01

    Background While increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery. Results Here, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue. The broad dynamic range of this assay spans five orders of magnitude and can detect as little as 70 pg duplex in 1 g of liver or in 1 ml of plasma. We have used this assay to quantify intravenously administrated siRNA in rodents and have reliably correlated target reduction with tissue drug concentrations. We were able to detect siRNA in rat liver for at least 10 days post injection and determined that for a modified factor VII (FVII) siRNA, on average, approximately 500 siRNA molecules per cell are required to achieve a 50% target reduction. Conclusions HIT qRT-PCR is a novel approach that simplifies the in vivo quantification of siRNA and provides a highly sensitive and reproducible tool to measure the silencing efficiency of chemically modified and formulated siRNAs. PMID:20731861

  5. Preparation and Analysis of Oligonucleotides Containing the C4′-Oxidized Abasic Site and Related Mechanistic Probes

    PubMed Central

    Kim, Jaeseung; Kreller, Cortney R.; Greenberg, Marc M.

    2005-01-01

    The C4′-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3′,5′-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4′-oxidized abasic lesion, are also described. PMID:16277338

  6. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    PubMed

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  7. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    PubMed Central

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S.; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K.; Dikshit, Madhu; Barthwal, Manoj K.

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  8. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    PubMed

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  9. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  10. Disulfide-linked oligonucleotide phosphorothioates - Novel analogues of nucleic acids

    NASA Technical Reports Server (NTRS)

    Wu, Taifeng; Orgel, Leslie E.

    1991-01-01

    The synthesis of phosphorothioate analogs of oligonucleotides by the oxidation of deoxyadenosine 3',5'-bisphosphorothioate (3) was attempted. Cyclization of 3 is much more efficient than oligomerization under all the conditions investigated. However, a preformed oligonucleotide carrying a 5'-terminal phosphorotioate group undergoes efficient chain-extension when oxidized in the presence of 3.

  11. Antisense oligonucleotides: is the glass half full or half empty?

    PubMed

    Bennett, C F

    1998-01-01

    Antisense oligonucleotides are widely used as tools to explore the pharmacological effects of inhibiting expression of a selected gene product. In addition, they are being investigated as therapeutic agents for the treatment of viral infections, cancers, and inflammatory disorders. Proof that the pharmacological effects produced by the oligonucleotides are attributable to an antisense mechanism of action requires careful experimentation. Central to this problem is the finding that oligonucleotides are capable of interacting with and modulating function of specific proteins in both a sequence-independent and -dependent manner. Despite these undesired interactions, it has been possible to demonstrate that oligonucleotides are capable of binding to a specific RNA in cultured cells, or within tissues, resulting in selective reduction of the targeted gene product and pharmacological activity. In general, these oligonucleotides were identified after a selection process in which multiple oligonucleotides targeting different regions on the RNA were evaluated for direct inhibition of targeted gene product, resulting in the identification of a potent and selective oligonucleotide. Similar to other drug-receptor interactions, selection of the most potent inhibitor results in an increase in the signal-to-noise ratio, yielding increased confidence that activity observed is the result of a desired effect of the inhibitor. With careful selection, proper controls, and careful dose-response curves it is possible to utilize antisense oligonucleotides as effective research tools and potentially as therapeutic agents. PMID:9413924

  12. Preparation and characterization of carboxyl functionalization of magnetite nanoparticles for oligonucleotide immobilization

    NASA Astrophysics Data System (ADS)

    Kim, Min-Jung; Jang, Dae-Hwan; Choa, Yong-Ho

    2010-05-01

    Fe3O4 nanoparticles prepared by the co-precipitation of Fe2+ and Fe3+ with NH4OH were simply modified by the carboxylic acid group of 3-thiopheneacetic acid (3TA) and meso-2,3-dimercaptosuccinic acid (DMSA). These functionalized Fe3O4 nanoparticles when coated with 3TA and DMSA have increased hydrophilic properties, thus causing them to be well dispersed in aqueous solutions. Then oligonucleotides (5'-AGC T-Amine-3') were immobilized on the carboxylic acid group-modified Fe3O4 nanoparticles. They were characterized by using FT-IR, XRD and TEM. The concentration of the oligonucleotide-modified Fe3O4 nanoparticles was investigated using a UV-vis spectrometer and compared to that of Fe3O4 nanoparticles without any surface modification. The Fe3O4 nanoparticles were spherical and the particle sizes were approximately 10 nm. The immobilizing efficiencies of the Fe3O4 nanoparticles modified with 3TA and DMSA were higher than those of the non-functionalized Fe3O4 nanoparticles.

  13. Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

    SciTech Connect

    Alam, Todd M.; Henry, Marc

    1999-08-05

    Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

  14. Preparation of Intrastrand {G}O(6) -Alkylene-O(6) {G} Cross-Linked Oligonucleotides.

    PubMed

    O'Flaherty, Derek K; Wilds, Christopher J

    2016-01-01

    This unit describes the preparation O(6) -2'-deoxyguanosine-butylene-O(6) -2'-deoxyguanosine dimer phosphoramidites and precursors for incorporation of site-specific intrastrand cross-links (IaCL) into DNA oligonucleotides. Protected 2'-deoxyguanosine dimers are produced using the Mitsunobu reaction. IaCL DNA containing the intradimer phosphodiester are first chemically phosphorylated, followed by a ring-closing reaction using the condensing reagent 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole. Phosphoramidites are incorporated into oligonucleotides by solid-phase synthesis and standard deprotection and cleavage protocols are employed. This approach allows for the preparation of IaCL DNA substrates in amounts and purity amenable for biophysical characterization, and biochemical studies as substrates to investigate DNA repair and bypass pathways. © 2016 by John Wiley & Sons, Inc. PMID:27584704

  15. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  16. Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf

    PubMed Central

    Fisher, Michael; Abramov, Mikhail; Van Aerschot, Arthur; Rozenski, Jef; Dixit, Vidula; Juliano, Rudy L.; Herdewijn, Piet

    2009-01-01

    Increasing the effectiveness of siRNAs through chemical modification is an important task. Here we describe altritol and hexitol modified oligonucleotides targeting the B-Raf oncogene that is critical for the growth and survival of melanoma cells. Using assays for apoptosis, DNA synthesis, colony formation and B-Raf protein and message levels, we demonstrate that certain hexitol modifications can improve the effectiveness of B-Raf siRNAs and also increase duration of action. Altritol modified siRNAs were similar to or slightly less effective than unmodified B-Raf siRNA. Modifications at the 3′ or 5′ end of the sense strand, at the 3′ end of the antisense strand, or within either strand were well tolerated. The basis for the increased effectiveness of the hexitol-modified siRNAs is not fully understood but may be partly due to increased stability to nucleases. PMID:19374843

  17. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum. PMID:27427698

  18. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum.

  19. AFM and electroanalytical studies of synthetic oligonucleotide hybridization.

    PubMed

    Chiorcea Paquim, A-M; Diculescu, V C; Oretskaya, T S; Oliveira Brett, A M

    2004-11-15

    The first and most important step in the development and manufacture of a sensitive DNA-biosensor for hybridization detection is the immobilization procedure of the nucleic acid probe on the transducer surface, maintaining its mobility and conformational flexibility. MAC Mode AFM images were used to demonstrate that oligonucleotide (ODN) molecules adsorb spontaneously at the electrode surface. After adsorption, the ODN layers were formed by molecules with restricted mobility, as well as by superposed molecules, which can lead to reduced hybridization efficiency. The images also showed the existence of pores in the adsorbed ODN film that revealed large parts of the electrode surface, and enabled non-specific adsorption of other ODNs on the uncovered areas. Electrostatic immobilization onto a clean glassy carbon electrode surface was followed by hybridization with complementary sequences and by control experiments with non-complementary sequences, studied using differential pulse voltammetry. The data obtained showed that non-specific adsorption strongly influenced the results, which depended on the sequence of the ODNs. In order to reduce the contribution of non-specific adsorbed ODNs during hybridization experiments, the carbon electrode surface was modified. After modification, the AFM images showed an electrode completely covered by the ODN probe film, which prevented the undesirable binding of target ODN molecules to the electrode surface. The changes of interfacial capacitance that took place after hybridization or control experiments showed the formation of a mixed multilayer that strongly depended on the local environment of the immobilized ODN.

  20. Comparative gene expression profiling by oligonucleotide fingerprinting.

    PubMed Central

    Meier-Ewert, S; Lange, J; Gerst, H; Herwig, R; Schmitt, A; Freund, J; Elge, T; Mott, R; Herrmann, B; Lehrach, H

    1998-01-01

    The use of hybridisation of synthetic oligonucleotides to cDNAs under high stringency to characterise gene sequences has been demonstrated by a number of groups. We have used two cDNA libraries of 9 and 12 day mouse embryos (24 133 and 34 783 clones respectively) in a pilot study to characterise expressed genes by hybridisation with 110 hybridisation probes. We have identified 33 369 clusters of cDNA clones, that ranged in representation from 1 to 487 copies (0.7%). 737 were assigned to known rodent genes, and a further 13 845 showed significant homologies. A total of 404 clusters were identified as significantly differentially represented (P < 0.01) between the two cDNA libraries. This study demonstrates the utility of the fingerprinting approach for the generation of comparative gene expression profiles through the analysis of cDNAs derived from different biological materials. PMID:9547283

  1. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Érico

    2005-06-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g - 1 and 8 pg with citric acid and 0.1 μg g - 1 and 44 pg with the Pd modifier, respectively ( n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l - 1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium.

  2. Minimizing DNA microarrays to a single molecule per spot: using zero-mode waveguide technology to obtain kinetic data for a large number of short oligonucleotide hybridization reactions

    NASA Astrophysics Data System (ADS)

    Sobek, Jens; Rehrauer, Hubert; Kuhn, Gerrit; Schlapbach, Ralph

    2016-03-01

    We have shown recently that the hybridization of short oligonucleotides can be studied in a zero-mode waveguide nanostructure (ZMW) chip using a modified DNA sequencer.[1] Here we present an extension of this method enabling the parallel measurement of kinetic constants of a large number of hybridization reactions on a single chip. This can be achieved by immobilization of a mixture of oligonucleotides, which leads to a statistical and random distribution of single molecules in the 150'000 ZMWs of a SMRT™ cell. This setup is comparable to a classical microarray with ZMWs in place of spots but unknown allocation of probes. The probe surface density is reduced by a factor of ~1010 allowing the study of hybridization in the absence of interactions with neighboring probes. Hybridization with a dye labelled oligonucleotide results in trains of fluorescence pulses from which interpulse durations (IPDs) and pulse widths (PWs) can be extracted. Since the identity of a probe in a ZMW is unknown, the immobilized oligonucleotide is sequenced in a subsequent step. After mapping the fluorescence traces to the sequence, the association and dissociation rate constant for each oligonucleotide can be calculated. By selecting suitable probes, the method can be used to determine rate constants of hybridization for a large number of mismatch oligonucleotides in a single measurement and at single-molecule level.

  3. Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers

    PubMed Central

    Edwards, Paul C; Fantasia, John E

    2007-01-01

    Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as “redefining” dermal fillers in the fields of dermatology and cosmetic facial surgery. Although hyaluronic acid-based dermal fillers have a low overall incidence of long term side effects, occasional adverse outcomes, ranging from chronic lymphoplasmacytic inflammatory reactions to classic foreign body-type granulomatous reactions have been documented. These long-term adverse events are reviewed. PMID:18225451

  4. Sequence Verification of Oligonucleotides Containing Multiple Arylamine Modifications by Enzymatic Digestion and Liquid Chromatography Mass Spectrometry (LC/MS)

    PubMed Central

    Gao, Lan; Zhang, Li; Cho, Bongsup P.; Chiarelli, M. Paul

    2010-01-01

    An analytical method for the structure differentiation of arylamine modified oligonucleotides (ODNs) using on-line LC/MS analysis of raw exonuclease digests is described. Six different dodeca ODNs derived from the reaction of N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene with the dodeca oligonucleotide 5′-CTCGGCGCCATC-3′ are isolated and sequenced with this LC/MS method using 3′- and 5′-exonucleases. When the three products modified by a single aminofluorene (AF) are subjected to 3′-exonuclease digestion, the exonuclease will cleave a modified nucleotide but when di-AF modified ODNs are analyzed the 3′-exonuclease ceases to cleave nucleotides when the first modification is exposed at the 3′-terminus. Small abundances of ODN fragments formed by the cleavage of an AF-modified nucleotide were observed when two of the three di-AF modified ODNs were subjected to 5′-exonuclease digestion. The results of the 5′-exonuclease studies of the three di-AF modified ODNs suggest that as the number of unmodified bases between two modifications in an ODN sequence increases, the easier it becomes to sequence beyond the modification closest to the 5′-terminus. The results of this study indicate that the LC/MS method described here would be useful in sequencing ODNs modified by multiple arylamines to be used as templates for site-specific mutagenesis studies. PMID:18524623

  5. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  6. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides

    PubMed Central

    Hori, Shin-ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-01-01

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca2+ enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ∼100 nm in size are found in Ca2+-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory. PMID:26101258

  7. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    SciTech Connect

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  8. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides.

    PubMed

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-10-30

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca(2+) enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ~100 nm in size are found in Ca(2+)-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory.

  9. Individual RNA Base Recognition in Immobilized Oligonucleotides using a Protein Nanopore

    PubMed Central

    Ayub, Mariam; Bayley, Hagan

    2012-01-01

    Protein nanopores are under investigation as key components of rapid, low-cost platforms to sequence DNA molecules. Previously, it has been shown that the α-hemolysin (αHL) nanopore contains three recognition sites, capable of discriminating between individual DNA bases when oligonucleotides are immobilized within the nanopore. However, the direct sequencing of RNA is also of critical importance. Here, we achieve sharply defined current distributions that enable clear discrimination of the four nucleobases, guanine, cytosine, adenine and uracil, in RNA. Further, the modified bases, inosine, N6-methyladenosine and N5-methylcytosine, can be distinguished. PMID:23043363

  10. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    -methyl)phosphonate (CBMP) internucleotide group. Unmodified phosphodiester linkages were formed using a standard {beta}-cyanoethyl cycle and automated DNA synthesizer. Modified CBMP internucleotide linkage was produced using the phosphotriester method and 5'-O-monomethoxytritylthymidine 3'-O-[(o-carboran-1-yl-methyl)phosphonate] monomer. Several dodecathymidylic acids bearing modification at 3'- or 5'-end, or in the middle of oligonucleotide chain were synthesized. The resulting oligomers are being characterized by reverse phase high-pressure liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESIMS), ultraviolet spectroscopy (UV), and circular dichroism (CD). In collaboration with Cornell University, we employed a secondary ion mass spectrometry (SIMS) based subcellular isotopic imaging technique of ion microscopy for evaluating 4 carboranyl nucleosides. Nucleosides synthesized by our group, including CDU, HMCDU, CTU, and CFAU were tested for their boron delivery to the nuclear and cytoplasmic compartments of U251 human and F98 rat glioma cells. Quantitative SIMS analysis of boron was performed in cryogenically prepared cells. For all drugs, the cell cytoplasm revealed significantly higher boron than the nucleus. However, the boron partitioning between the cell nucleus and the nutrient medium indicated 6.4-10.6 times higher boron in the nucleus. The results suggested that these novel carboranyl nucleosides should provide efficient BNCT agents that accumulate in malignant cells and the need for further evaluations in vitro and in animal models.

  11. Method for the preparation of size marker for synthetic oligonucleotides

    SciTech Connect

    Jing, G.Z.; Liu, A.; Leung, W.C.

    1986-01-01

    Terminal deoxynucleotidyltransferase was used for the addition of (..cap alpha..-/sup 32/P)dCTP to the 3'-OH termini of oligo(dT)/sub 12-18/. A collection of oligonucleotides with chain lengths ranging continuously from 13-mer to over 100-mer was generated. The reaction mixture was then mixed with oligo(dT)/sub 12-18/ labeled with (..gamma..-/sup 32/P)ATP by T/sub 4/ polynucleotide kinase. A sequence ladder with the bottom base as 12-mer was then formed. These oligonucleotides served as size marker for the purification and identification of oligonucleotides on polyacrylamide gel.

  12. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes

    PubMed Central

    Zhang, Wendian; Peng, Fangqi; Zhou, Taotao; Huang, Yifei; Zhang, Li; Ye, Peng; Lu, Miao; Yang, Guang; Gai, Yongkang; Yang, Tan; Ma, Xiang; Xiang, Guangya

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221) to the transferrin (Tf) receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of −15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4°C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27kip1, and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27kip1, and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC. PMID:26251599

  13. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6.

    PubMed

    Kitazawa, Haruki; Watanabe, Hiroshi; Shimosato, Takeshi; Kawai, Yasushi; Itoh, Takatoshi; Saito, Tadao

    2003-08-15

    The present study was conducted to find an immunostimulatory oligonucleotide derived from yogurt starter cultures. The chromosomal DNA was purified from nine strains of Lactobacillus delbrueckii ssp. bulgaricus and six strains of Streptococcus thermophilus. An immunostimulatory ability of the DNA was examined in a proliferation of peyer's patch and splenic B cells. Only the DNA from L. bulgaricus NIAI B6 induced a significant proliferation of both cells. When the DNA was cloned and amplified using PCR, the mitogenic activities to B cells were significantly increased by 13 of 135 DNA clones. Ten homologous nucleotide sequences were found as possible oligonucleotide sequences of mitogens, and were then chemically synthesized (sOL-LB1 to sOL-LB10). One CpG-like motif (sOL-LB7; 5'-CGGCACGCTCACGATTCTTG-3') was identified as an immunostimulatory oligonucleotide, but it did not contain palindromic CpG structure known as a B cell-specific mitogen. The sOL-LB7 substantially bound to B cells and increased the CD69 positive cells in peyer's patch cells. This study demonstrated that L. bulgaricus NIAI B6 was a good candidate of a starter culture for the production of new functional foods, "Bio-Defense Foods".

  14. Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis

    PubMed Central

    Alwarappan, Subbiah; Cissell, Kyle; Dixit, Suraj; Mohapatra, Shyam; Li, Chen-Zhong

    2012-01-01

    Graphene has remarkable electrochemical properties that make it an ideal material for constructing biosensors,however it has not been explored for DNA biosensing. Herein, we report on a chitosan-modified graphene platform for the electrochemical detection of changes in DNA sequences. For this purpose, graphene synthesized chemically and characterized by Raman spectroscopy and Transmission electron microscopy, was covalently modified with positively charged chitosan to facilitate the immobilization of a single-stranded DNA `capture' oligonucleotide. The covalent attachment of chitosan to graphene was confirmed by FT-IR spectroscopy and then the capture DNA was immobilized on to the chitosan modified graphene electrode. Then, the target DNA (complementary or mismatched `mutant' DNA) was applied to the electrode and cyclic voltammetry was performed. The results of the voltammetric experiments indicate that the chitosan modified graphene electrodes immobilized with ssDNA+complementary DNA exhibit a significantly higher magnitude of redox peak current than the chitosan modified graphene electrodes immobilized with the non-complementary mutant DNAs. Together, these results demonstrate that the chitosan-graphene platform provides a rapid, stable and sensitive detection of mismatched DNA and has the potential to be used for point-of-care diagnostic tests for specific DNA mutations associated with disease conditions. PMID:23472058

  15. The Identification and Role of Non-Chemical Stressors as Modifiers of Chemical Exposures that Lead to Changes in Health and Well-Being in Children

    EPA Science Inventory

    Describe the Sustainable and Health Communities (SHC) Research Program at the U.S. EPA Discuss non-chemical stressors found in the social environment, What are they? Why are they important? Summarize current and planned work

  16. Role of rhBMP-2 and rhBMP-7 in the metabolism and differentiation of osteoblast-like cells cultured on chemically modified titanium surfaces.

    PubMed

    Cirano, Fabiano Ribeiro; Togashi, Adriane Yaeko; Marques, Márcia Martins; Pustiglioni, Francisco Emílio; Lima, Luiz Antônio Pugliesi Alves

    2014-12-01

    This study analyzed the role of recombinant human bone morphogenetic protein 2 (rhBMP-2) and recombinant human bone morphogenetic protein 7 (rhBMP-7) in the adhesion and differentiation of rat osteoblast-like (osteo-1) cells cultured on chemically modified titanium surfaces. Osteo-1 cells were cultured on chemically modified (modified sandblasted and acid-etched) titanium surfaces in 3 different types of medium: control, medium supplemented with 20 ng/mL rhBMP-2, and medium supplemented with 20 ng/mL rhBMP-7. The following parameters were evaluated: cell adhesion after 24 hours; total protein content; collagen content and alkaline phosphatase (AP) activity after 7, 14, and 21 days; and calcified nodule formation after 21 days. The addition of rhBMP-2 or rhBMP-7 did not influence cell adhesion (P = .1175). Cell differentiation was influenced by rhBMP-2, as demonstrated by a significant increase in collagen content after 7 days of culture (P < .0001) and a significant decrease in AP activity after 21 days (P < .0001). The addition of rhBMP-7 only influenced AP activity, and a significant increase was observed after 21 days (P < .0001). Within the limitations of the study, we conclude that the presence of rhBMP-2 or rhBMP-7 did not influence cell adhesion to chemically modified titanium surfaces but provided an additional stimulus during the differentiation of rat osteo-1 cells cultured on this type of surface. PMID:25506660

  17. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  18. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  19. Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers

    PubMed Central

    Yu, Yuanyuan; Liang, Chao; Lv, Quanxia; Li, Defang; Xu, Xuegong; Liu, Baoqin; Lu, Aiping; Zhang, Ge

    2016-01-01

    Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the detailed advantages and disadvantages of antibodies and aptamers in therapeutic applications and summarize recent progress in aptamer selection and modification approaches. We will present therapeutic oligonucleotide aptamers in preclinical studies for skeletal diseases and further discuss oligonucleotide aptamers in different stages of clinical evaluation for various disease therapies including macular degeneration, cancer, inflammation and coagulation to highlight the bright commercial future and potential challenges of therapeutic oligonucleotide aptamers. PMID:26978355

  20. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    NASA Astrophysics Data System (ADS)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  1. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  2. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  3. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  4. Oligonucleotide Therapies: The Past and the Present

    PubMed Central

    Lundin, Karin E.; Gissberg, Olof; Smith, C.I. Edvard

    2015-01-01

    In this review we address the development of oligonucleotide (ON) medicines from a historical perspective by listing the landmark discoveries in this field. The various biological processes that have been targeted and the corresponding ON interventions found in the literature are discussed together with brief updates on some of the more recent developments. Most ON therapies act through antisense mechanisms and are directed against various RNA species, as exemplified by gapmers, steric block ONs, antagomirs, small interfering RNAs (siRNAs), micro-RNA mimics, and splice switching ONs. However, ONs binding to Toll-like receptors and those forming aptamers have completely different modes of action. Similar to other novel medicines, the path to success has been lined with numerous failures, where different therapeutic ONs did not stand the test of time. Since the first ON drug was approved for clinical use in 1998, the therapeutic landscape has changed considerably, but many challenges remain until the expectations for this new form of medicine are met. However, there is room for cautious optimism. PMID:26160334

  5. Potent Antiscrapie Activities of Degenerate Phosphorothioate Oligonucleotides

    PubMed Central

    Kocisko, David A.; Vaillant, Andrew; Lee, Kil Sun; Arnold, Kevin M.; Bertholet, Nadine; Race, Richard E.; Olsen, Emily A.; Juteau, Jean-Marc; Caughey, Byron

    2006-01-01

    Although transmissible spongiform encephalopathies (TSEs) are incurable, a key therapeutic approach is prevention of conversion of the normal, protease-sensitive form of prion protein (PrP-sen) to the disease-specific protease-resistant form of prion protein (PrP-res). Here degenerate phosphorothioate oligonucleotides (PS-ONs) are introduced as low-nM PrP-res conversion inhibitors with strong antiscrapie activities in vivo. Comparisons of various PS-ON analogs indicated that hydrophobicity and size were important, while base composition was only minimally influential. PS-ONs bound avidly to PrP-sen but could be displaced by sulfated glycan PrP-res inhibitors, indicating the presence of overlapping binding sites. Labeled PS-ONs also bound to PrP-sen on live cells and were internalized. This binding likely accounts for the antiscrapie activity. Prophylactic PS-ON treatments more than tripled scrapie survival periods in mice. Survival times also increased when PS-ONs were mixed with scrapie brain inoculum. With these antiscrapie activities and their much lower anticoagulant activities than that of pentosan polysulfate, degenerate PS-ONs are attractive new compounds for the treatment of TSEs. PMID:16495266

  6. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.

  7. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  8. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel

    PubMed Central

    Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution. PMID:26650843

  9. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    PubMed

    Tang, Weizhong; Zhou, Huafu; Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  10. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V).

    PubMed

    Vázquez Mejía, G; Martínez-Miranda, V; Fall, C; Linares-Hernández, I; Solache-Ríos, M

    2016-01-01

    The adsorption of fluoride and arsenic ions by modified natural materials may have an impact on the removal of F- and As(V) from waters. In this work, a zeolitic material and pozzolan (commonly known as pumicite) were modified with aluminium an iron by an electrochemical method and chemical precipitation, respectively. The adsorbents were characterized by X-ray diffraction, scanning electron microscopy with energy X-ray disperse spectroscopy analysis and the point of zero charge (pHzpc). F- and As(V) adsorption properties of both materials were investigated. Adsorption kinetic data were best fitted to pseudo-second-order model and equilibrium data to the Langmuir isotherm model. The highest F- and As(V) sorption capacities were obtained for modified zeolitic (0.866 mg/g) and pozzolan (3.35 mg/g) materials, respectively, with initial F- or As(V) concentrations of 10 mg/L. It was found that the unmodified materials did not show either adsorption of F- ions or As(V), which indicated that Al and Fe in the adsorbents are responsible for the adsorption of these ions. In general, both modified materials show similar capacities for the adsorption of F- and As(V).

  11. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    PubMed

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P < 0.05). An increase in moisture, water, and oil absorption capacity was observed for the acetylated starch and, which was less pronounced for the enzymatically hydrolysed starch but more pronounced for the enzymatically hydrolysed acetylated product. The latter product underwent an increase in resistant starch content, which is induced by a rise in hydrolysis time to attain about 67 % after 1 h of reaction. The modified starch samples were added to cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.

  12. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  13. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    PubMed

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P < 0.05). An increase in moisture, water, and oil absorption capacity was observed for the acetylated starch and, which was less pronounced for the enzymatically hydrolysed starch but more pronounced for the enzymatically hydrolysed acetylated product. The latter product underwent an increase in resistant starch content, which is induced by a rise in hydrolysis time to attain about 67 % after 1 h of reaction. The modified starch samples were added to cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch. PMID:26787967

  14. [On necessity to modify biochemical methods for detecting organophosphorus componds in chemical weapons extinction objects (review of literature)].

    PubMed

    Prokofieva, D S; Shmurak, V I; Sadovnikov, S V; Gontcharov, N V

    2015-01-01

    The article covers problems of biochemical methods assessing organophosphorus toxic compounds in objects of chemical weapons extinction. The authors present results of works developing new, more specific and selective biochemical methods.

  15. Use of phthaloyl protecting group for the automated synthesis of 3'-[(hydroxypropyl)amino] and 3'-[(hydroxypropyl)triglycyl] oligonucleotide conjugates.

    PubMed

    Vu, H; Joyce, N; Rieger, M; Walker, D; Goldknopf, I; Hill, T S; Jayaraman, K; Mulvey, D

    1995-01-01

    The chemical stability of oligonucleotides (ODNs) containing 3'-propanolamine was investigated. Invariably, all the ODNs synthesized from Fmoc-protected 3-aminopropane-1,2-diol-CPG support gave a mixture of three compounds at the end of automated synthesis as analyzed by denaturing PAGE and HPLC. On the basis of analytical procedures, these compounds were identified to be 3'-[N-acetyl-N-(hydroxypropyl)amino],3'-[(hydroxypropyl)amino], and 3'-hydroxyl ODNs. The instability of the amino protecting group under the synthesis conditions was responsible for this observed heterogeneity. In order to evaluate the stability, a comparative study on the chemical stability of the ODN containing amino-protecting groups such as [(9-fluorenylmethyl)oxy]carbonyl (Fmoc), trifluoroacetyl (TFA), and phthaloyl was undertaken. The results indicate that the phthaloyl group provided the best stability for the synthesis of 3' amine-modified ODNs, and the protecting group is cleaved and deprotected in concentrated ammonium hydroxide:40% aqueous methylamine, 1:1, for 5-10 min, at 56 degrees C. The 3'-hydroxypropyl)triglycyl] ODN conjugates were also synthesized from Fmoc- and phthaloyl-protected (hydroxypropyl)triglycine-CPG supports. PMID:8974460

  16. Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Kang, H. S.; Yoon, H. J.; Kim, C. O.; Hong, J. P.; Han, I. T.; Cha, S. N.; Song, B. K.; Jung, J. E.; Lee, N. S.; Kim, J. M.

    2001-11-01

    Well-aligned carbon nanotubes have been synthesized on Corning and silicon substrates at extremely low temperatures of 450 °C using a slightly modified conventional plasma enhanced chemical vapor deposition (PECVD). The deposition system was intentionally designed to impose mesh potential on the substrates through an external electrode that was a critical parameter for low temperature growth. Mixture gases of C 2H 2 and NH 3 with the imposed mesh potential of about 50 V effectively aligned multi-wall carbon nanotubes at 450 °C on Ni-coated substrates.

  17. Towards combined electrochemistry and surface-enhanced resonance Raman of heme proteins: Improvement of diffusion electrochemistry of cytochrome c at silver electrodes chemically modified with 4-mercaptopyridine.

    PubMed

    Millo, Diego; Ranieri, Antonio; Koot, Wynanda; Gooijer, Cees; van der Zwan, Gert

    2006-08-01

    To date, a successful combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry to study heme proteins is inhibited by the problems raised by the prerequisite to use silver as electrode metal. This paper indicates an approach to overcome these problems. It describes a quick and reproducible procedure to prepare silver electrodes chemically modified with 4-mercaptopyridine suitable to perform diffusion electrochemistry of cytochrome c (cyt c). The method involves the employment of a mechanical and a chemical treatment and avoids the use of alumina slurries and any electrochemical pretreatment. Cyclic voltammetry (CV) was used to test the electrochemical response of cyt c, and the CV signals were found identical with those obtained on gold electrodes under the same experimental conditions. Compared to previous literature, a significant improvement of the CV signal of cyt c at silver electrodes was achieved. Preliminary results show that this treatment can be also successfully employed for the preparation of SERRS-active electrodes.

  18. Mechanism of oligonucleotide release from cationic liposomes.

    PubMed Central

    Zelphati, O; Szoka, F C

    1996-01-01

    We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm. Images Fig. 1 Fig. 3 PMID:8876163

  19. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  20. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    PubMed

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  1. Surface characterization of oligonucleotides immobilized on polymer surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Duy K.; Ivanova, Elena P.; Wright, Jonathan P.; Grodzinski, Piotr A.; Lenigk, Ralf; Nicolau, Dan V.

    2002-11-01

    The immobilization and hybridization of amino-terminated oligonucleotide strands to cyclo-olefin-copolymer (COC) and polycarbonate (PC) surfaces have been investigated for potential application in micro-PCR devices. The oligonucleotides were covalently bound to the plasma-treated COC and PC surfaces via an N-hydroxy-sulfosuccinimide (NHSS) intermediate. Analysis by AFM showed that the oligonucleotides were present on the surfaces as lumps, and that the size, both vertically and laterally, of these lumps on the COC surface was larger compared to the PC surface. The immobilization efficiency of the former was also higher (15.8 x 1012 molecules / cm2) compared to the latter (3.3 x 1012 molecules / cm2). The higher efficiency of the COC surface is attributed to the more effective NHSS-functionalization and its higher surface roughness. Subsequent hybridization doubled the height of the lumps, while the lateral dimensions remained essentially unchanged. This is explained in terms of organization of the long probe strands used on the surface as flexible, coil-like polymer chains, which allow the complementary oligonucleotides to bind and increase the height of the lumps. The AFM frictional images showed that the hybridization had the effect of reversing hydrophilicity of the oligonucleotide lumps from being more hydrophilic to more hydrophobic, consistent with the hydrophilic bases of the probe strands being shielded as a result of hybridization.

  2. Structure and stability of the complex formed by oligonucleotides.

    PubMed

    Zheng, Cui; Niu, Lin; Yan, Jingjing; Liu, Jie; Luo, Ying; Liang, Dehai

    2012-05-28

    Polycations and cationic lipids have been widely used as non-viral vectors for the delivery of plasmid DNA, siRNA and anti-sense oligonucleotides. To demonstrate that one polycation can form a complex with several types of DNA, we conducted a comparative study on the complexation of poly(L-lysine) (PLL) with 2000 bp salmon testes DNA (dsDNA), 21 bp double-stranded oligonucleotides (ds-oligo), and 21 nt single-stranded oligonucleotides (ss-oligo) in PBS buffer. The complexes are prepared by a titration method and the process is monitored by laser light scattering. It was found that in most cases, ss-oligo and ds-oligo form complexes with higher molecular weights than the complex formed by dsDNA at the same +/- ratio immediately after mixing. More importantly, the complexes formed by oligonucleotides are not stable, the scattered intensity gradually decreases to the level of the solvent in weeks. Atomic force microscopy measurements also indicate that the freshly prepared complex is subject to environmental changes and could dissociate very quickly. The behaviour of oligonucleotides cannot be predicted by the classical polyelectrolyte theories.

  3. Characteristic archaebacterial 16S rRNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    McGill, T. J.; Jurka, J.; Sobieski, J. M.; Pickett, M. H.; Woese, C. R.; Fox, G. E.

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  4. Molecular beacon probes of photodamage in thymine and uracil oligonucleotides.

    PubMed

    Yarasi, Soujanya; McConachie, Cheryl; Loppnow, Glen R

    2005-01-01

    Molecular beacons (MB) are becoming more common as sequence-selective detectors of nucleic acids. Although they can easily detect single-base mismatches, they have never been used to directly detect DNA or RNA damage. To measure the degree of ultraviolet (UV) light damage in oligonucleotides, we report a novel MB approach for general detection of photoproducts in UV-irradiated rU17 and dT17 oligonucleotides. With monochromatic UV light irradiation at ca 280 nm under anoxic conditions, the oligonucleotide absorption decays with a single-exponential time constant of 123+/-1 min for rU17 and with double-exponential time constants of 78+/-0.5 min (99%) and 180+/-5 min (0.05%) for dT17 oligonucleotides. Under the same conditions, the MB fluorescence decays more quickly, with single-exponential time constants of 19+/-2 and 26+/-3 min for rU17 and dT17, respectively. Similar kinetics were observed with broadband UV light irradiation of oligonucleotides. The differences in the UV damage kinetics of dT17 and rU17 and their detection by absorption and fluorescence techniques will be discussed in the context of differential instabilities introduced in the nucleic acid-MB duplex by the different photoproducts formed.

  5. Development of a new chemically modified carbon paste electrode for selective determination of urinary and serum oxalate concentration.

    PubMed

    Soleymanpour, Ahmad; Shafaatian, Bita; Mirfakhraei, Homeira Sadat; Rezaeifard, Abdolreza

    2013-11-15

    The construction and evaluation of a novel modified carbon paste electrode with high selectivity toward oxalate ion are described. The constructed carbon paste potentiometric sensor for oxalate ion is based on the use of a zirconium salan complex as a good ionophore in the carbon paste matrix. The electrode exhibits a Nernstian slope of 29.1 mV/decade to oxalate ion over a wide concentration range from 1.5×10(-6) to 3.9 ×10(-2) mol L(-1) with a low detection limit of 7.0×10(-7) mol L(-1). The electrode possesses fast response time, satisfactory reproducibility, appropriate lifetime, and most importantly, good selectivity toward C2O4(2-) relative to a variety of common anions. The potentiometric response of the electrode is independent of the pH of the test solution in the pH range 2.5-8.0. The modified carbon paste electrode was successfully applied as an indicator electrode in potentiometric titration and potentiometric determination of oxalate ion in mineral water, blood serum and urine samples.

  6. Determination of nickel in saliva by electrothermal atomic absorption spectrometry using various chemical modifiers with Zeeman-effect background correction.

    PubMed

    Burguera, E; Sanchez de Briceño, A; Rondon, C E; Burguera, J L; Burguera, M; Carrero, P

    1998-07-01

    The profile of nickel signal using electrothermal atomic absorption spectrometry with deuterium and Zeeman-effect background correction is presented. The Zeeman effect system of background correction offered definitive advantages and therefore was used for the determination of nickel in saliva in the presence of various isomorphous metals. The highest nickel absorbance values corresponded at 200, 300, 300, 300, 600, and 200 ng of Tb, Mg, Sm, Lu, Tm, and Pd, respectively. On the other hand, the addition of Eu, Er, and Ho decreased the nickel signal. The presence on each modifier alone does not eliminate the matrix interference. However, the use of 200 ng of Pd in conjuction with 300 ng of Lu has a higher sensitivity, offers an advantage against interference from the background of saliva matrix and produces good recoveries (98 to 102% from unspiked and spiked saliva samples). The limit of detection was 0.11 micrograms/L for a characteristic mass of 16.6 pg of nickel using Pd-Lu as modifier. The within-batch precision varied between 0.8 and 1.5% relative standard deviations. The analysis of thirty samples of whole saliva gave an average of 0.81 +/- 0.30 of micrograms/L of Ni (range from 0.5 to 2.0 micrograms/L of Ni). The agreement between the observed and certified values obtained from a Seronorm Blood Serum Standard Reference Material was good.

  7. Affinity selection of chemically modified proteins: role of lysyl residues in the binding of calmodulin to calcineurin

    SciTech Connect

    Manalan, A.S.; Klee, C.B.

    1987-03-10

    In affinity selection, calcineurin selects from a population of randomly modified calmodulins those species with which it prefers to interact. The method shows that acetylation of lysines affects calmodulin so as to interfere with its ability to interact with calcineurin. Monoacetylation of any lysine of calmodulin reduces its affinity for calcineurin by 5-10-fold. Multiple acetylations amplify the loss of affinity; none of the modifications are incompatible with activity. The lack of selective of calcineurin against any particular modified lysine indicates that the loss of affinity reflects changes induced by the removal of the charged groups and suggests an important role for electrostatic interactions in the cooperative structural transitions which calmodulin undergoes upon binding its target proteins or calcium. In the presence of calcineurin, a large and specific decrease in the rate of acetylation of Lys-75 and -148 of calmodulin is observed. The reactivity of the same residues is greatly increased in the presence of calcium alone. Their reactivity changes in opposite directions in response to calcium-induced or calcineurin-induced structural changes. The reactivity of other residues such as Lys-21, decreased in the presence of calcineurin but not calcium, is also affected by a conformational change which is induced specifically by calcineurin. Radiolabelled calmodulin was purified by HPLC.

  8. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    NASA Astrophysics Data System (ADS)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  9. Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica.

    PubMed

    Wang, Chunfeng; Li, Yanjing; Zhou, Guowei; Jiang, Xiaojie; Xu, Yunqiang; Bu, Zhaosheng

    2014-12-01

    Lipase from Candida rugosa (CRL) was chemically and physically immobilized onto four types of rod-shaped mesoporous silica (RSMS). RSMS prepared using surfactant P123 and poly(ethylene glycol) as co-templates was functionalized with (3-aminopropyl)triethoxysilane (APTES) to obtain P-RSMS by post-synthesis grafting. Tetraethoxysilane was hydrothermally co-condensed with APTES to obtain C-RSMS. A two-step process using APTES and glutaraldehyde was also performed to obtain G-RSMS. The effects of modification methods (including post-synthesis grafting and co-condensation) and glutaraldehyde on the mesoscopic order, interplanar spacing d100, cell parameter a0, mesoporous structure, and wall thickness of RSMS were studied in detail. Results showed that all samples were mesoporous materials with 2D mesostructures (p6mm). Pore size and d100 decreased, whereas the wall thickness increased after different modifications. CRL was used as a model enzyme to determine the effect of physical and chemical adsorption on loading amount and enzymatic activity. The possible mechanism of CRL immobilization on G-RSMS by chemical adsorption was systematically investigated. The chemical immobilization of CRL on G-RSMS increased the loading amount, hydrolytic activity, thermal stability, and reusability. Moreover, immobilized CRL was employed to catalyze the resolution of 2-octanol by esterification with caprylic acid. The enantiomeric excess of 2-octanol was 45.8% when the reaction was catalyzed by G-RSMS-CRL and decreased to about 38%-39% using the physically immobilized CRL, after 48 h of reaction in hexane.

  10. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE PAGES

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; Samolyuk, German D.; Daene, Markus; Weber, William J.; Zhang, Yanwen; Bei, Hongbin

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  11. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    PubMed Central

    Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Daene, M.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-01-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T. PMID:26832223

  12. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  13. Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready® in Samples not Amplified by PCR

    PubMed Central

    Stobiecka, Magdalena; Cieśla, Jarosław M.; Janowska, Beata; Tudek, Barbara; Radecka, Hanna

    2007-01-01

    The chemically modified piezoelectrodes were utilized to develop relatively cheap and easy to use biosensor for determination of genetically modified Roundup Ready soybean (RR soybean). The biosensor relies on the immobilization onto gold piezoelectrodes of the 21-mer single stranded oligonucleotide (probes) related to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, which is an active component of an insert integrated into RR soybean genome. The hybridization reaction between the probe and the target complementary sequence in solution was monitored. The system was optimized using synthetic oligonucleotides, which were applied for EPSPS gene detection in DNA samples extracted from animal feed containing 30% RR soybean amplified by the PCR and nonamplified by PCR. The detection limit for genomic DNA was in the range of 4.7·105 numbers of genom copies contained EPSPS gene in the QCM cell. The properties such as sensitivity and selectivity of piezoelectric senor presented here indicated that it could be applied for the direct determination of genetically modified RR soybean in the samples non-amplified by PCR.

  14. Semisynthesis of 6-chloropurine-2'-deoxyriboside 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite and its use in the synthesis of fluorescently labeled oligonucleotides.

    PubMed

    Uddin, Md Jashim; Schulte, Michael I; Maddukuri, Leena; Harp, Joel; Marnett, Lawrence J

    2010-11-01

    An efficient enzymatic synthesis of 6-chloropurine-2'-deoxyriboside from the reaction of 6-chloropurine with 2'-deoxycytidine catalyzed by nucleoside-2'-deoxyribosyltransferase (E.C. 2.4.2.6) followed by chemical conversion into the 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidite derivative is described. The phosphoramidite derivative was incorporated site-specifically into an oligonucleotide and used for the introduction of a tethered tetramethylrhodamine-cadaverine conjugate. The availability of an efficient route to 6-chloropurine-2'-deoxyriboside 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite enables the facile synthesis of oligonucleotides containing a range of functional groups tethered to deoxyadenosine residues.

  15. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography

    SciTech Connect

    Schmidt, L.W.

    1993-07-01

    Polystyrene divinylbenzene was modified by acetyl, sulfonic acid, and quaternary ammonium groups. A resin functionalized with an acetyl group was impregnated in a PTFE membrane and used to extract and concentrate phenolic compounds from aqueous samples. The acetyl group created a surface easily wetted, making it an efficient adsorbent for polar compounds in water. The membrane stabilized the resin bed. Partially sulfonated high surface area resins are used to extract and group separate an aqueous mixture of neutral and basic organics; the bases are adsorbed electrostatically to the sulfonic acid groups, while the neutraons are adsorbed hydrophobically. A two-step elution is then used to separate the two fractions. A partially functionalized anion exchange resin is used to separate organic acids and phenols from neutrals in a similar way. Carboxylic acids are analyzed by HPLC and phenols by GC.

  16. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    PubMed

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  17. Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2'-O-Ribonucleic Acid Modifications

    SciTech Connect

    Egli, Martin; Minasov, George; Tereshko, Valentina; Pallan, Pradeep S.; Teplova, Marianna; Inamati, Gopal B.; Lesnik, Elena A.; Owens, Steve R.; Ross, Bruce S.; Prakash, Thazha P.; Manoharan, Muthiah

    2010-03-05

    The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the

  18. Chemical modification study of antisense gapmers.

    PubMed

    Stanton, Robert; Sciabola, Simone; Salatto, Christopher; Weng, Yan; Moshinsky, Debra; Little, Jeremy; Walters, Evan; Kreeger, John; DiMattia, Debra; Chen, Tracy; Clark, Tracey; Liu, Mei; Qian, Jessie; Roy, Marc; Dullea, Robert

    2012-10-01

    A series of insertion patterns for chemically modified nucleotides [2'-O-methyl (2'-OMe), 2'-fluoro (2'-F), methoxyethyl (MOE), locked nucleic acid (LNA), and G-Clamp] within antisense gapmers is studied in vitro and in vivo in the context of the glucocorticoid receptor. Correlation between lipid transfection and unassisted (gymnotic--using no transfection agent) in vitro assays is seen to be dependent on the chemical modification, with the in vivo results corresponding to the unassisted assay in vitro. While in vitro mRNA knockdown assays are typically reasonable predictors of in vivo results, G-Clamp modified antisense oligonucleotides have poor in vivo mRNA knockdown as compared to transfected cell based assays. For LNA gapmers, knockdown is seen to be highly sensitive to the length of the antisense and number of LNA insertions, with longer 5LNA-10DNA-5LNA compounds giving less activity than 3LNA-10DNA-3LNA derivatives. Additionally, the degree of hepatoxicity for antisense gapmers with identical sequences was seen to vary widely with only subtle changes in the chemical modification pattern. While the optimization of knockdown and hepatic effects remains a sequence specific exercise, general trends emerge around preferred physical properties and modification patterns.

  19. Oligonucleotide Array for Identification and Detection of Pythium Species†

    PubMed Central

    Tambong, J. T.; de Cock, A. W. A. M.; Tinker, N. A.; Lévesque, C. A.

    2006-01-01

    A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples

  20. Genome Engineering Using Targeted Oligonucleotide Libraries and Functional Selection

    PubMed Central

    Diner, Elie J.; Garza-Sánchez, Fernando; Hayes, Christopher S.

    2011-01-01

    The λ phage Red proteins greatly enhance homologous recombination in Escherichia coli. Red-mediated recombination or “recombineering” can be used to construct targeted gene deletions as well as to introduce point mutations into the genome. Here, we describe our method for scanning mutagenesis using recombineered oligonucleotide libraries. This approach entails randomization of specific codons within a target gene, followed by functional selection to isolate mutants. Oligonucleotide library mutagenesis has generated hundreds of novel antibiotic resistance mutations in genes encoding ribosomal proteins, and should be applicable to other systems for which functional selections exist. PMID:21815087

  1. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development.

    PubMed

    Wang, Hongjie; Dong, Wengyi; Li, Ting; Liu, Tongzhou

    2015-01-01

    The performance of a BAF system configuring simultaneous chemical phosphorus precipitation in the pre-denitrification stage was examined using a continuously operated setup to treat real domestic wastewater. The effects of using no chemical, dosing sole Fe(2+), and dosing combined Fe(2+), PAM, and NaHCO3 in the pre-denitrification tank were assessed by monitoring COD, nitrogen, and phosphorus removal and hydraulic headloss development in the BAF column. Though dosing sole Fe(2+) significantly enhanced phosphorus removal, it would consume alkalinity through hydrolysis and form smaller-sized sludge flocs in the pre-denitrification tank, and hence resulted in affected NH4(+)-N, insoluble COD, and SS removal in the BAF. Dosing combined Fe(2+), PAM, and NaHCO3 can enhance sludge flocculation to form larger flocs and compensate alkalinity consumption. It exhibited sound performance on COD, nitrogen, and phosphorus removal, and led to less frequent BAF backwashing by slowing clogging development in the BAF filter layer.

  2. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments.

    PubMed

    Lang, Kathrin; Micura, Ronald

    2008-01-01

    This protocol describes an efficient method for the preparation of riboswitch domains comprising up to approximately 200 nt containing site-specific nucleoside modifications. The strategy is based on enzymatic ligation of chemically synthesized RNA fragments. The design of ligation sites strictly follows the criterion that all fragments comprise less than approximately 50 nt. This allows the researcher to rely on custom synthesis services and to utilize the large pool of commercially available, functionalized nucleoside phosphoramidites for solid-phase RNA synthesis. Importantly, this design renders utmost flexibility to position a chemical modification (e.g., a fluorescence label) within the RNA. Selection of the appropriate ligation type (using T4 RNA or T4 DNA ligase) is subordinate to the criteria above and is detailed in the protocol. The whole concept is demonstrated for 2-aminopurine containing thiamine pyrophosphate responsive riboswitch domains that are applied in fluorescence spectroscopic folding studies. Labeled samples in 5-35 nmol quantities are obtained within 3-4 d, not including the time for fragment synthesis. PMID:18772873

  3. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    PubMed

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  4. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-01

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors. PMID:23214408

  5. Oligonucleotide-mediated gene modification and its promise for animal agriculture.

    PubMed

    Laible, Götz; Wagner, Stefan; Alderson, Jon

    2006-01-17

    One of the great aspirations in modern biology is the ability to utilise the expanding knowledge of the genetic basis of phenotypic diversity through the purposeful tailoring of the mammalian genome. A number of technologies are emerging which have the capacity to modify genes in their chromosomal context. Not surprisingly, the major thrust in this area has come from the evaluation of gene therapy applications to correct mutations implicated in human genetic diseases. The recent development of somatic cell nuclear transfer (SCNT) provides access to these technologies for the purposeful modification of livestock animals. The enormous phenotypic variety existent in contemporary livestock animals has in many cases been linked to quantitative trait loci (QTL) and their underlying point mutations, often referred to as single-nucleotide polymorphisms (SNPs). Thus, the ability for the targeted genetic modification of livestock animals constitutes an attractive opportunity for future agricultural applications. In this review, we will summarize attempts and approaches for oligonucleotide-mediated gene modification (OGM) strategies for the site-specific modification of the genome, with an emphasis on chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligonucletides (ssODNs). The potential of this approach for the directed genetic improvement of livestock animals is illustrated through examples, outlining the effects of point mutations on important traits, including meat and milk production, reproductive performance, disease resistance and superior models of human diseases. Current technological hurdles and potential strategies that might remove these barriers in the future are discussed.

  6. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH(2), CH(3), and OH functions.

    PubMed

    Hirata, Isao; Akamatsu, Mai; Fujii, Eri; Poolthong, Suchit; Okazaki, Masayuki

    2010-08-01

    Hydroxyapatite formation was examined at the surface of self-assembled monolayers (SAMs) modified with four functional groups, -COOH, -NH(2), -CH(3), and -OH. For COOH-SAM and NH(2)-SAM, scanning electron spectroscopic observation showed that flake-like sheet crystals covered the whole wafer and small broccoli-like crystals were observed occasionally on the flake-like crystal base layer. For CH(3)-SAM and OH-SAM, no flake-like sheet crystals were observed; broccoli-like crystals were observed in a dispersed manner for CH(3)-SAM, but in localized spots for OH-SAM. X-ray diffraction patterns showed a strong apatite pattern oriented toward the c-axis direction for COOH-SAM. ESCA analysis revealed distinct Ca, P, O peaks for COOH-, NH(2)-, CH(3)-, and OH-SAM. Surface plasmon resonance (SPR) analysis indicated that during the supply of supersaturated calcium phosphate solution, the deposition of precipitates increased monotonically with time for COOH-SAM, increased slightly for NH(2)-SAM, but little increase in deposition was detected for CH(3)-SAM and OH-SAM.

  7. Chemically modified tetracycline (COL-3) improves survival if given 12 but not 24 hours after cecal ligation and puncture.

    PubMed

    Halter, Jeffrey M; Pavone, Lucio A; Steinberg, Jay M; Gatto, Louis A; DiRocco, Joseph; Landas, Steve; Nieman, Gary F

    2006-12-01

    Sepsis can result in excessive and maladaptive inflammation that is responsible for more than 215,00 deaths per year in the United State alone. Current strategies for reducing the morbidity and mortality associated with sepsis rely on treatment of the syndrome rather than prophylaxis. We have been investigating a modified tetracycline, COL-3, which can be given prophylactically to patients at high risk for developing sepsis. Our group has shown that COL-3 is very effect at preventing the sequelae of sepsis if given before or immediately after injury in both rat and porcine sepsis models. In this study, we wanted to determine the "treatment window" for COL-3 after injury at which it remains protective. Sepsis was induced by cecal ligation and puncture (CLP). Rats were anesthetized and placed into five groups: CLP (n = 20) = CLP without COL-3, sham (n = 5) = surgery without CLP or COL-3, COL3@6h (n = 10) = COL-3 given by gavage 6 h after CLP, COL3@12h (n = 10) = COL-3 given by gavage 12 h after CLP, and COL3@24h (n = 20) = COL-3 given by gavage 24 h after CLP. COL-3 that was given at 6 and 12 h after CLP significantly improved survival as compared with the CLP and the CLP@24h groups. Improved survival was associated with a significant improvement in lung pathology assessed morphologically. These data suggest that COL-3 can be given up to 12 h after trauma and remain effective.

  8. The Role of Genotypes That Modify the Toxicity of Chemical Mutagens in the Risk for Myeloproliferative Neoplasms

    PubMed Central

    Gross-Davis, Carol Ann; Heavner, Karyn; Frank, Arthur L.; Newschaffer, Craig; Klotz, Judith; Santella, Regina M.; Burstyn, Igor

    2015-01-01

    Background: The etiology of myeloproliferative neoplasms (MPN) (polycythemia vera; essential thrombocythemia; primary myelofibrosis) is unknown, however they are associated with a somatic mutation—JAK2 V617F—suggesting a potential role for environmental mutagens. Methods: We conducted a population-based case-control study in three rural Pennsylvania counties of persons born 1921–1968 and residing in the area between 2000–2008. Twenty seven MPN cases and 292 controls were recruited through random digit dialing. Subjects were genotyped and odds ratios estimated for a select set of polymorphisms in environmentally sensitive genes that might implicate specific environmental mutagens if found to be associated with a disease. Results: The presence of NAT2 slow acetylator genotype, and CYP1A2, GSTA1, and GSTM3 variants were associated with an average 3–5 fold increased risk. Conclusions: Exposures, such as to aromatic compounds, whose toxicity is modified by genotypes associated with outcome in our analysis may play a role in the environmental etiology of MPNs. PMID:25719551

  9. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds.

    PubMed

    Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh

    2011-07-15

    Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified.

  10. Metalorganic chemical vapor deposition of anatase titanium dioxide on Si: Modifying the interface by pre-oxidation

    NASA Astrophysics Data System (ADS)

    Sandell, A.; Andersson, M. P.; Johansson, M. K.-J.; Karlsson, P. G.; Alfredsson, Y.; Schnadt, J.; Siegbahn, H.; Uvdal, P.

    2003-04-01

    The formation of TiO 2 films on clean and pre-oxidized Si(1 1 1) through chemical vapor deposition of titanium(IV) isopropoxide (TTIP) in ultra-high vacuum has been examined by synchrotron radiation photoelectron spectroscopy, X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy. In both cases, TTIP deposition at 500 °C eventually results in an anatase TiO 2 film with a carbon-free surface and the surface morphology of the anatase films is very similar. By using a novel way of combining photoemission and XAS data, it is demonstrated that the two situations have substantially different interfacial properties. Pre-oxidation of the surface at 500 °C passivates the surface so that the thickness of the amorphous TiSi xO y interface layer decreases from 30-35 to 15-25 Å and eliminates the formation of interfacial carbon completely.

  11. Bio-compatibility, surface and chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate

    SciTech Connect

    Bagra, Bhawna Pimpliskar, Prashant; Agrawal, Narendra Kumar

    2014-04-24

    Bio compatibility is an important issue for synthesis of biomedical devices, which can be tested by bioadoptability and creations of active site to enhance the bacterial/cell growth in biomedical devices. Hence a systematic study was carried out to characterize the effects of Nitrogen ion plasma for creations of active site in nano composite polymer membrane. Nano particles of ZnO are synthesized by chemical root, using solution casting nano composite polymeric membranes were prepared and treated with Nitrogen ion plasma. These membranes were characterized by different technique such as optical microscopy, SEM- Scanning electron microscope, optical transmittance, Fourier transform infrared spectroscopy. Then biocompatibility for membranes was tested by testing of bio-adoptability of membrane.

  12. A fluorescence turn-on detection of copper(II) based on the template-dependent click ligation of oligonucleotides.

    PubMed

    Wang, Fangyuan; Li, Yongxin; Li, Wenying; Chen, Jian; Zhang, Qingfeng; Anjum Shahzad, Sohail; Yu, Cong

    2015-01-01

    In this work, a fluorescence turn-on method for copper(II) detection is reported. A molecular beacon (MB) was designed as a template. Cu(2+) was reduced to Cu(+) in the presence of a reductant (ascorbic acid). Two short single-stranded oligonucleotides one was labeled with a 5'-alkyne and the other with 3'-azide group, proceeded a template-dependent chemical ligation through the Cu(I)-catalyzed azide-alkyne cycloaddition. The newly generated click-ligated long chain oligonucleotide, which was complementary to the MB, opened the MB hairpin structure and resulted in a turn on fluorescence. The increase in fluorescence intensity is directly proportional to the amount of Cu(2+) added to the assay solution. The present assay is quite sensitive and allows the detection of 2 nM Cu(2+). The described assay also exhibits high selectivity over other metal ions.

  13. Estimation of crystallization kinetics for an organic fine chemical using a modified continuous cooling mixed suspension mixed product removal (MSMPR) crystallizer

    NASA Astrophysics Data System (ADS)

    Kougoulos, E.; Jones, A. G.; Wood-Kaczmar, M. W.

    2005-01-01

    The crystallization kinetics of an important organic fine chemical was determined using a modified laboratory scale continuous cooling mixed suspension mixed product removal (MSMPR) crystallizer with a product recycle loop designed for use with limited quantities of available material. A convenient method of monitoring steady state in the MSMPR using lasentec focussed beam reflectance measurement (FBRM) is also described. The effect of supersaturation, suspension density of the crystallizer content, impeller velocity (turnover time) and configuration on the growth and nucleation rates was studied. An observed deviation from the McCabe Δ L law for small crystal sizes was attributed to either size-dependent growth (SDG) or growth rate dispersion (GRD) mechanisms and hence complicated the estimation of growth and nucleation rates. SDG was successfully modelled using a three-parameter exponential SDG model. Growth rates estimated from the SDG model were compared to a GRD model using discrete growth probability distributions.

  14. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol.

    PubMed

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3-taxol bioconjugate was confirmed by UV-vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC).

  15. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    PubMed

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis. PMID:18970248

  16. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    PubMed Central

    Khan, Shadab Ali; Gambhir, Sanjay

    2014-01-01

    Summary As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC). PMID:24778946

  17. Cysteine-10 on 17β-Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals

    PubMed Central

    Nashev, Lyubomir G.; Atanasov, Atanas G.; Baker, Michael E.

    2013-01-01

    17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17β-HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys10, in the Rossmann-fold NADPH binding region, for 17β-HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys10 with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17β-HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17β-HSD1 from inhibition by these chemicals. Cys10Ser mutant 17β-HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys10 in the cofactor binding region. Substitution of Cys10 with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys10 on 17β-HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme. PMID:24348564

  18. Cysteine-10 on 17 β -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals.

    PubMed

    Nashev, Lyubomir G; Atanasov, Atanas G; Baker, Michael E; Odermatt, Alex

    2013-01-01

    17 β -Hydroxysteroid dehydrogenase type 1 (17 β -HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17 β -HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys(10), in the Rossmann-fold NADPH binding region, for 17 β -HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys(10) with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17 β -HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17 β -HSD1 from inhibition by these chemicals. Cys(10)Ser mutant 17 β -HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys(10) in the cofactor binding region. Substitution of Cys(10) with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys(10) on 17 β -HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme. PMID:24348564

  19. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides.

    PubMed

    Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul

    2014-01-01

    Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

  20. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.