Sample records for chemically modified p-type

  1. Analyte chemisorption and sensing on n- and p-channel copper phthalocyanine thin-film transistors.

    PubMed

    Yang, Richard D; Park, Jeongwon; Colesniuc, Corneliu N; Schuller, Ivan K; Royer, James E; Trogler, William C; Kummel, Andrew C

    2009-04-28

    Chemical sensing properties of phthalocyanine thin-film transistors have been investigated using nearly identical n- and p-channel devices. P-type copper phthalocyanine (CuPc) has been modified with fluorine groups to convert the charge carriers from holes to electrons. The sensor responses to the tight binding analyte dimethyl methylphosphonate (DMMP) and weak binding analyte methanol (MeOH) were compared in air and N(2). The results suggest that the sensor response involves counterdoping of pre-adsorbed oxygen (O(2)). A linear dependence of chemical response to DMMP concentration was observed in both n- and p- type devices. For DMMP, there is a factor of 2.5 difference in the chemical sensitivity between n- and p-channel CuPc thin-film transistors, even though it has similar binding strength to n- and p-type CuPc molecules as indicated by the desorption times. The effect is attributed to the difference in the analyte perturbation of electron and hole trap energies in n- and p-type materials.

  2. Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells.

    PubMed

    Chen, You-Jyun; Li, Ming-Hsien; Huang, Jung-Chun-Andrew; Chen, Peter

    2018-05-16

    Cu/Cu 2 O films grown by ion beam sputtering were used as p-type modified layers to improve the efficiency and stability of perovskite solar cells (PSCs) with an n-i-p heterojunction structure. The ratio of Cu to Cu 2 O in the films can be tuned by the oxygen flow ratio (O 2 /(O 2  + Ar)) during the sputtering of copper. Auger electron spectroscopy was performed to determine the elemental composition and chemical state of Cu in the films. Ultraviolet photoelectron spectroscopy and photoluminescence spectroscopy revealed that the valence band maximum of the p-type Cu/Cu 2 O matches well with the perovskite. The Cu/Cu 2 O film not only acts as a p-type modified layer but also plays the role of an electron blocking buffer layer. By introducing the p-type Cu/Cu 2 O films between the low-mobility hole transport material, spiro-OMeTAD, and the Ag electrode in the PSCs, the device durability and power conversion efficiency (PCE) were effectively improved as compared to the reference devices without the Cu/Cu 2 O interlayer. The enhanced PCE is mainly attributed to the high hole mobility of the p-type Cu/Cu 2 O film. Additionally, the Cu/Cu 2 O film serves as a protective layer against the penetration of humidity and Ag into the perovskite active layer.

  3. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  4. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  5. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  6. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  7. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  8. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  9. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.

    2013-09-01

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  10. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  11. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  12. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6498 Modified polyisocyanates (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified polyisocyanates (PMN P...

  13. Correction to: Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-04-01

    In the preceding article "Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate" by Oyler et al., an error in the J5 E. coli LPS chemical structure (Figs. 2 and 4) was introduced and propagated into the final revision.

  14. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors.

    PubMed

    Pichler, Werner J; Adam, Jacqueline; Watkins, Stephen; Wuillemin, Natascha; Yun, James; Yerly, Daniel

    2015-01-01

    Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions. © 2015 The Author(s) Published by S. Karger AG, Basel.

  15. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  16. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  17. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  18. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  19. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  20. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  1. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  2. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  3. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  4. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  7. 40 CFR 721.5908 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5908 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified phenolic resin (PMN P...

  8. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  9. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  10. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  11. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  12. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  13. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  14. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418) is...

  15. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  16. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  17. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  18. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  19. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  20. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  1. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  2. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  3. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  4. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  5. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  6. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

  7. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids.

    PubMed

    Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C

    2016-02-20

    We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.

  8. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  9. 40 CFR 721.10533 - Amine-modified urea-formaldehyde polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10533 Section 721.10533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10533 Amine-modified urea-formaldehyde polymer (generic). (a) Chemical... as amine-modified urea-formaldehyde polymer (PMN P-12-182) is subject to reporting under this section...

  10. Optimization of calcium phosphate fine ceramic powders preparation

    NASA Astrophysics Data System (ADS)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  11. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    PubMed

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE PAGES

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  13. Probing structural differences between PrPC and PrPSc by surface nitration and acetylation: evidence of conformational change in the C-terminus

    USDA-ARS?s Scientific Manuscript database

    We used two chemical modifiers, tetranitromethane (TNM) and acetic anhydride, which specifically target accessible tyrosine and lysine residues, respectively, to modify Syrian hamster recombinant PrP(90-231) (rPrP) and PrP27-30, aiming at finding locations of conformational change. Modified proteins...

  14. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry.

    PubMed

    Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Yang, Yang; Jariwala, Deep; Marks, Tobin J; Schatz, George C; Hersam, Mark C

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  15. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  16. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  17. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to those contained in the corresponding section 5(e) consent order. (ii) Hazard communication program...) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under...

  18. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  19. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE PAGES

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...

    2015-03-16

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  20. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels

    PubMed Central

    Sinkó, Katalin

    2010-01-01

    Silica or various silicate aerogels can be characterized by highly porous, open cell, low density structures. The synthesis parameters influence the three-dimensional porous structures by modifying the kinetics and mechanism of hydrolysis and condensation processes. Numerous investigations have shown that the structure of porous materials can be tailored by variations in synthesis conditions (e.g., the type of precursors, catalyst, and surfactants; the ratio of water/precursor; the concentrations; the medium pH; and the solvent). The objectives of this review are to summarize and elucidate the effects of chemical conditions on the nanoporous structure of sol-gel derived silicate aerogels.

  1. Different Interfacial Behaviors of Peptides Chemically Immobilized on Surfaces with Different Linker Lengths and via Different Termini

    DTIC Science & Technology

    2014-02-20

    spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial ...modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics...applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin

  2. Quantum chemical characterization of zwitterionic structures: Supramolecular complexes for modifying the wettability of oil-water-limestone system.

    PubMed

    Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul

    2014-06-01

    In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    NASA Astrophysics Data System (ADS)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  4. T cell reactivity with allergoids: influence of the type of APC.

    PubMed

    Kahlert, H; Grage-Griebenow, E; Stüwe, H T; Cromwell, O; Fiebig, H

    2000-08-15

    The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.

  5. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption.

    PubMed

    Ghorbanzadeh Mashkani, Saeid; Tajer Mohammad Ghazvini, Parisa

    2009-03-01

    The presence of Cs and Sr in culture medium of Azolla filiculoides caused about 27.4% and 46.3% inhibition of biomass growth, respectively, in comparison to A. filiculoides control weight which had not metals. Biosorption batch experiments were conducted to determine the Cs and Sr binding ability of native biomass and chemically modified biosorbents derived from Azolla namely ferrocyanide Azolla sorbents type 1 and type 2 (FAS1 and FAS2) and hydrogen peroxide Azolla sorbent (HAS). The best Cs and Sr removal results were obtained when A. filiculoides was treated by 2M MgCl(2) and 30ml H(2)O(2) 8mM at pH 7 for 12h and it was then washed by NaOH solution at pH 10.5 for 6h. Pretreatment of Azolla have been suggested to modify the surface characteristics which could improve biosorption process. The binding of Cs and Sr on the cell wall of Azolla was studied with micro-PIXE and FT-IR.

  6. Quality characteristics of low fat ostrich meat patties formulated with either pork lard or modified corn starch, soya isolate and water.

    PubMed

    Hoffman, L C; Mellett, F D

    2003-10-01

    A trained taste panel could not distinguish (P>0.05) between ostrich meat patties containing either 10% pork lard or 10% of a modified starch/protein isolate (fat replacer) mixture. The panel could distinguish between the types of ostrich muscle/meat cuts used with a significant (P<0.05) number preferring ostrich patties made from meat containing a higher collagen content (±3% vs <1%). The chemical analysis of the patties showed that within the meat classes (Class fillet-de-membraned, Class A-very lean off-cuts and Class B-off-cuts containing visual connective tissue and some fat), the patties containing the pork fat had a +6% higher total fat content than those containing the fat replacer. The fatty acid profiles of the various products were in accordance with the meat type and fat or fat replacer used. The mineral profile was as expected for lean ostrich meat that had spices added. It is concluded that fat replacers can be used successfully for the production of low fat ostrich patties without any negative quality attributes being perceived.

  7. Comparison of enamel discoloration associated with bonding with three different orthodontic adhesives and cleaning-up with four different procedures.

    PubMed

    Ye, Cui; Zhao, Zhihe; Zhao, Qing; Du, Xi; Ye, Jun; Wei, Xing

    2013-11-01

    The aim of this study was to compare whether there was any difference in the enamel discoloration after staining when three orthodontic adhesives and four enamel clean-up methods were tested. Three types of orthodontic adhesives were used: chemically cured resin, light-cured resin and resin-modified glass-ionomer cement. A total of 120 human extracted premolars were included. 10 teeth of each orthodontic adhesive were randomly cleaned-up with one of four different procedures and stained in coffee for seven days: (1) carbide bur (TC); (2) carbide bur; Sof-Lex polishers (TC+SL); (3) carbide bur and one gloss polishers (TC+OG); and (4) carbide bur and PoGo polishers (TC+PG). Color measurements were made with Crystaleye dental spectrophotometer at baseline and after storage in a coffee solution one week. Two-way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The color change values of the adhesive materials in the TC groups were the greatest. The lowest ΔE* values were obtained from the TC+SL groups. However, there were no significant difference between the TC+SL and TC+PG groups (P>0.05). The resin-modified glass-ionomer cement groups showed the lowest color differences and chemically cured resin groups showed the highest ΔE* values among all the orthodontic adhesives (P<0.05). The color change of enamel surface was affected by the type of adhesive materials and cleanup procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    NASA Astrophysics Data System (ADS)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  9. Modified spectrophotometer for multi-dimensional circular dichroism/fluorescence data acquisition in titration experiments: application to the pH and guanidine-HCI induced unfolding of apomyoglobin.

    PubMed

    Ramsay, G; Ionescu, R; Eftink, M R

    1995-08-01

    In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI.

  10. Modified spectrophotometer for multi-dimensional circular dichroism/fluorescence data acquisition in titration experiments: application to the pH and guanidine-HCI induced unfolding of apomyoglobin.

    PubMed Central

    Ramsay, G; Ionescu, R; Eftink, M R

    1995-01-01

    In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI. Images FIGURE 2 PMID:8527683

  11. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  12. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE PAGES

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  13. 40 CFR 721.10603 - Epoxy modified alkyd resin, partially neutralized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy modified alkyd resin, partially... Specific Chemical Substances § 721.10603 Epoxy modified alkyd resin, partially neutralized (generic). (a... generically as epoxy modified alkyd resin, partially neutralized (PMN P-11-280) is subject to reporting under...

  14. 40 CFR 721.10603 - Epoxy modified alkyd resin, partially neutralized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy modified alkyd resin, partially... Specific Chemical Substances § 721.10603 Epoxy modified alkyd resin, partially neutralized (generic). (a... generically as epoxy modified alkyd resin, partially neutralized (PMN P-11-280) is subject to reporting under...

  15. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods.

    PubMed

    Chiang, Kung-Yuh; Tsai, Chen-Chiu; Wang, Kuen-Sheng

    2009-01-01

    This study investigates four extraction methods (water extraction, toxicity characteristics leaching procedure (TCLP), modified TCLP with pH control, and sequential chemical extraction (SCE)), each representing different liquid-to-solid (L/S) ratios, pH controls, and types of leachant, and their effects on the leaching concentration of heavy metals in municipal solid waste (MSW) incinerator air pollution control (APC) residue. The results indicated that for extraction with distilled water, the heavy metal leaching concentration (mg/l) decreased with L/S ratio, but the amount of heavy metal released (AHMR), defined as the leached amount of heavy metals to the weight of the tested sample (mg/kg), increased with an increase in L/S ratio, in the range of 2-100. The results also showed that both the leaching concentration and the amount of released metals were strongly pH-dependent in the TCLP and modified TCLP tests. In the case of pHs lower than 6.5, the leaching concentrations of Cd, Pb, Cu, Zn, and Cr decreased with an increase in pH. As pH increased higher than 6.5, Cr and Zn were almost insoluble. Meanwhile, Cd and Cu also showed a similar trend but at pHs of 8.5 and 7.5, respectively. Due to the nature of amphoteric elements, in the case of pHs higher than 7, the Pb leaching concentration increased with increasing pH. In modified TCLP tests with the pH value controlled at the same level as in the SCE test, the heavy metal speciation approached the extractable carbonate bound fraction by the SCE. Both amounts of targeted metals leached from the SCE and modified TCLP tests were much higher than those for the regular TCLP and water extraction tests.

  16. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.

    PubMed

    Zhang, Jun; Qiao, Shi Zhang; Qi, Lifang; Yu, Jiaguo

    2013-08-07

    Production of hydrogen from photocatalytic water splitting has become an attractive research area due to the possibility of converting solar energy into green chemical energy. In this study, novel NiS nanoparticle (NP) modified CdS nanorod (NR) p-n junction photocatalysts were prepared by a simple two-step hydrothermal method. Even without the Pt co-catalyst, the as-prepared NiS NP-CdS NR samples exhibited enhanced visible-light photocatalytic activity and good stability for H2-production. The optimal NiS loading content was determined to be 5 mol%, and the corresponding H2-production rate reached 1131 μmol h(-1) g(-1), which is even higher than that of the optimized Pt-CdS NRs. It is believed that the assembly of p-type NiS NPs on the surface of n-type CdS NRs could form a large number of p-n junctions, which could effectively reduce the recombination rates of electrons and holes, thus greatly enhancing the photocatalytic activity. This work not only shows a possibility for the utilization of low cost NiS nanoparticles as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also provides a new insight into the design and fabrication of other new p-n junction photocatalysts for enhancing H2-production activity.

  17. Optoelectronic investigation of nanodiamond interactions with human blood

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  18. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  19. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    DTIC Science & Technology

    2013-04-02

    photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model

  20. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.

    PubMed

    Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  1. Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates.

    PubMed

    Wang, Mengjing; Lahti, Gabriella; Williams, David; Koski, Kristie J

    2018-06-07

    Silicon telluride (Si 2 Te 3 ) is a two-dimensional, layered, p-type semiconductor that shows broad near-infrared photoluminescence. We show how, through various means of chemical modification, Si 2 Te 3 can have its optoelectronic properties modified in several independent ways without fundamentally altering the host crystalline lattice. Substitutional doping with Ge strongly redshifts the photoluminescence while substantially lowering the direct and indirect band gaps and altering the optical phonon modes. Intercalation with Ge introduces a sharp 4.3 eV ultraviolet resonance and shifts the bulk plasmon even while leaving the infrared response and band gaps virtually unchanged. Intercalation with copper strengthens the photoluminescence without altering its spectral shape. Thus silicon telluride is shown to be a chemically tunable platform of full spectrum optical properties promising for opto-electronic applications.

  2. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    PubMed

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  3. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  4. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

    PubMed

    Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo

    2011-04-15

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society

  5. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy.

    PubMed

    Timms, Nicole; Windle, Claire L; Polyakova, Anna; Ault, James R; Trinh, Chi H; Pearson, Arwen R; Nelson, Adam; Berry, Alan

    2013-03-04

    Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 40 CFR 721.10149 - Carbon black, (3-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, (3-methylphenyl... Significant New Uses for Specific Chemical Substances § 721.10149 Carbon black, (3-methylphenyl)-modified... substance identified generically as carbon black, (3-methylphenyl)-modified, substituted (PMN P-07-522) is...

  7. 40 CFR 721.10150 - Carbon black, (4-methylphenyl)-modified, substituted (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon black, (4-methylphenyl... Significant New Uses for Specific Chemical Substances § 721.10150 Carbon black, (4-methylphenyl)-modified... substance identified generically as carbon black, (4-methylphenyl)-modified, substituted (PMN P-07-523) is...

  8. On-chip surface modified nanostructured ZnO as functional pH sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  9. Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate.

    PubMed

    Li, Ying; Yang, Cunman; Bao, Yijun; Ma, Xueru; Lu, Guanghua; Li, Yi

    2016-08-01

    A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples.

  10. Stimuli-sensitive polymeric micelles as anticancer drug carriers.

    PubMed

    Na, Kun; Sethuraman, Vijay T; Bae, You Han

    2006-11-01

    Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.

  11. Synthesis and physico-chemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy

    2017-01-01

    This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP)

    PubMed Central

    Shah, Dinen D.; Singh, Surinder M.; Dzieciatkowska, Monika

    2017-01-01

    Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell. PMID:28886061

  13. Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition

    PubMed Central

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D.; Folkman, Lindsay M.; Foroozesh, Maryam K.; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e. the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2’,5’-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2’-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2’-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest. PMID:23432429

  14. Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang

    2013-09-01

    Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.

  15. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    PubMed

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P < 0.01) lower water activity (a(w)) levels were found in samples packaged under MA1, in contrast to samples packaged under MA2 where water activity values showed considerable fluctuation. Variations in pH values in the two types of MA showed similar trends. Sample pH gradually decreased until day 9 of storage. On day 11, muscle tissue pH increased markedly and then began to decrease again. The overall decrease in pH values was more profound in samples packaged under MA1. TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P < 0.01) higher levels of both parameters were found in muscle tissues packaged under MA1. FFA concentrations in silver carp samples in MA1 were significantly lower (P < 0.01) throughout the experiment. The PV increased significantly in both muscle samples tested. Greater fluctuations in this parameter's values throughout the experiment were observed in samples packaged under MA2. Faster rates of oxidation (P < 0.01) were found in samples packaged under MA1 starting on day 9. Maximum TBA values in MA1 and MA2 were observed on days 14 and 18 of the experiment, respectively. From the course of proteolytic and oxidative changes point of view, the more appropriate combination of gases for silver carp storage seems to be the mixture of 70% N2 and 30% CO2 (MA2), which allows for muscle storage of up to 9 days. We recommend TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes.

  16. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  17. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    PubMed Central

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268

  18. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  19. Modified Rice Straw as Adsorbent Material to Remove Aflatoxin B1 from Aqueous Media and as a Fiber Source in Fino Bread

    PubMed Central

    Mohamed, Sherif R.; El-Desouky, Tarek A.; Hussein, Ahmed M. S.; Mohamed, Sherif S.; Naguib, Khayria M.

    2016-01-01

    The aims of the current work are in large part the benefit of rice straw to be used as adsorbent material and natural source of fiber in Fino bread. The rice straw was subjected to high temperature for modification process and the chemical composition was carried out and the native rice straw contained about 41.15% cellulose, 20.46% hemicellulose, and 3.91% lignin while modified rice straw has 42.10, 8.65, and 5.81%, respectively. The alkali number was tested and showed an increase in the alkali consumption due to the modification process. The different concentrations of modified rice straw, aflatoxin B1, and pH were tested for removal of aflatoxin B1 from aqueous media and the maximum best removal was at 5% modified rice straw, 5 ng/mL aflatoxin B1, and pH 7. The modified rice straw was added to Fino bread at a level of 5, 10, and 15% and the chemical, rheological, baking quality, staling, and sensory properties were studied. Modified rice straw induced an increase of the shelf life and the produced Fino bread has a better consistency. PMID:26989411

  20. Effect of DNA type on response of DNA biosensor for carcinogens

    NASA Astrophysics Data System (ADS)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  1. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOEpatents

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  2. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  3. Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Yu, Han; Yu, Hongbing

    2017-01-01

    Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.

  4. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications.

    PubMed

    Supper, Stephanie; Anton, Nicolas; Seidel, Nina; Riemenschnitter, Marc; Curdy, Catherine; Vandamme, Thierry

    2014-02-01

    Thermogelling chitosan (CS)/glycerophosphate (GP) solutions have been reported as a new type of parenteral in situ forming depot system. These free-flowing solutions at ambient temperature turn into semi-solid hydrogels after parenteral administration. Formulation parameters such as CS physico-chemical characteristics, CS/gelling agent ratio or pH of the system, were acknowledged as key parameters affecting the solution stability, the sol/gel transition behavior and/or the final hydrogel structure. We discuss also the use of the standard CS/GP thermogels for various biomedical applications, including drug delivery and tissue engineering. Furthermore, this manuscript reviews the different strategies implemented to improve the hydrogel characteristics such as combination with carrier particles, replacement of GP, addition of a second polymer and chemical modification of CS. The recent advances in the formulation of CS-based thermogelling systems already overcame several challenges faced by the standard CS/GP system. Dispersion of drug-loaded carrier particles into the thermogels allowed achieving prolonged release profiles for low molecular weight drugs; incorporation of an additional polymer enabled to strengthen the network, while the use of chemically modified CS led to enhanced pH sensitivity or biodegradability of the matrix.

  5. Mold Pectinase Modified with Dialdehyde Derivatives of Dextran and Cellulose.

    PubMed

    Kobayashi, M; Chiba, Y; Funane, K; Ohya, S; Kato, Y

    1996-01-01

    Chemical modification of mold pectinase with dextran- and cellulose-dialdehydes was examined to improve the enzyme characteristics. The modified pectinase with dextran-dialdehyde retained about 50% of the original activity, and more than 80% of the total amino groups were modified. HPLC gel filtration analysis showed an increase in molecular weight of the reaction product. Reaction with cellulose-dialdehyde provided an immobilized form of pectinase. The immobilized pectinase was resistant to both acidic and alkaline pHs, and also acquired heat stability at 60°C. The optimum pH of the modified enzyme shifted from pH 4.5 to 5.0-5.5, and this enzyme had higher activity at neutral pH regions than the native enzyme. A rather low recovery of immobilized enzyme (14.5%) should be improved by the combination with various methods hitherto established.

  6. Ionizing radiation in the field of hydrogels used for agriculture and medicine

    NASA Astrophysics Data System (ADS)

    Radoiu, M.; Martin, D.; Oproiu, C.; Toma, M.; Popescu, A. S.; Bestea, V.; Dragusin, M.; Moraru, R.; Calinescu, I.; Manea, A.

    1999-01-01

    Some hydrogel types, obtained by gamma ray and electron beam irradiation, such as homopolymers of acrylamide (pAA type), co-polymers of acrylamide and sodium acrylate (pAANA type), homo-polymers of sodium acrylate (pNA type) and homo-polymers of 2-hydroxyethylmethacrylate (pHEMA type), are presented. The effects of the solution's chemical composition, swelling medium nature, radiation absorbed dose and radiation absorbed dose rate upon the swelling degree and mechanical strength of pAA, pAANA, pNA types are discussed. For the pHEMA type, which are reinforced in the polyester network, the studies concerning the influence of the irradiation parameters and chemical composition upon the shape stability after swelling and surface's roughness are also discussed.

  7. Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Ćwiertnia, Magdalena S.; Wiśniewski, Marek; Gauden, Piotr A.; Rychlicki, Gerhard; Szymański, Grzegorz S.

    2007-02-01

    We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.

  8. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    USDA-ARS?s Scientific Manuscript database

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  9. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    PubMed

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  10. Investigation of gas surface interactions at self-assembled silicon surfaces acting as gas sensors

    NASA Astrophysics Data System (ADS)

    Narducci, Dario; Bernardinello, Patrizia; Oldani, Matteo

    2003-05-01

    This paper reports the results of an investigation aimed at using self-assembled monolayers to modify the supramolecular interactions between Si surfaces and gaseous molecules. The specific goal is that of employing molecularly imprinted silicon surfaces to develop a new class of chemical sensors capable to detect species with enhanced selectivity. Single-crystal p-type (0 0 1) silicon has been modified by grafting organic molecules onto its surface by using wet chemistry synthetic methods. Silicon has been activated toward nucleophilic attack by brominating its surface using a modified version of the purple etch, and aromatic fragments have been bonded through the formation of direct Si-C bonds onto it using Grignard reagents or lithium aryl species. Formation of self-assembled monolayers (SAMs) was verified by using vibrational spectroscopy. Porous metal-SAM-Si diodes have been successfully tested as resistive chemical sensors toward NO x, SO x, CO, NH 3 and methane. Current-voltage characteristics measured at different gas compositions showed that the mechanism of surface electron density modulation involves a modification of the junction barrier height upon gas adsorption. Quantum-mechanical simulations of the interaction mechanism were carried out using different computational methods to support such an interaction mechanism. The results obtained appear to open up new relevant applications of the SAM techniques in the area of gas sensing.

  11. Different Interfacial Behaviors of N- and C-Terminus Cysteine-Modified Cecropin P1 Chemically Immobilized onto Polymer Surface

    DTIC Science & Technology

    2013-08-06

    naturally occurring antimicrobial peptides (AMPs) have been studied as an alternative with a broad range of activity and binding affinity toward...microorganisms.10−16 For example, chemically immo- bilized cecropin P1, cecropin A, cecropin B, and other antimicrobial peptides have demonstrated promise for...Autom. 2006, 11 (6), 341−351. (10) Gregory, K.; Mello, C. M. Immobilization of Escherichia coli cells by use of the antimicrobial peptide cecropin P1

  12. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes

    PubMed Central

    Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

    2013-01-01

    Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly proportional to the pupal mortality. Conclusion These results suggest that the P. cablin chemical compositions have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent and pupicidal activities of the reported P. cablin chemical compositions.

  13. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide.

    PubMed

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao

    2018-05-30

    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  15. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  16. Poly(aspartic acid) with adjustable pH-dependent solubility.

    PubMed

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Research on the chemical mechanism in the polyacrylate latex modified cement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min; Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn; Zheng, Shuirong

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in themore » formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.« less

  18. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  19. Development of low-fat and low-calorie beef sausage using modified starch as fat replacement agent.

    PubMed

    Mohammadi, Mehrdad; Oghabi, Firouz

    2012-04-01

    The effects of modified waxy maize starch (MWMS, 10-32.5 g kg(-1)) as a replacement for varying levels of oil or both oil and wheat flour (WF) on the chemical and technological characteristics of 60% beef sausages were investigated. Addition of MWMS increased water-holding capacity and decreased moisture content and both cooking and purge losses. Incorporation of MWMS improved organoleptic acceptance compared with control sausages. Sausage formula 5 (F5), containing 20 g kg(-1) MWMS and 50 g kg(-1) WF, was better (P < 0.05) than all other formulae. The total caloric content of the sausages decreased significantly with decreasing fat level (P < 0.05); for example, the decrease in fat content of 57.4% in F5 led to a significant decrease in energy value of 34.9% (P < 0.05). Copyright © 2011 Society of Chemical Industry.

  20. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  1. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOEpatents

    Tarasevich, B.J.; Rieke, P.C.

    1998-06-02

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.

  2. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOEpatents

    Tarasevich, Barbara J.; Rieke, Peter C.

    1998-01-01

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.

  3. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  4. Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, Ronald L; Shingledecker, John P

    2006-04-01

    A modified 9Cr-1Mo feedwater (condensate) line at an Eastman Chemical Company plant failed in January 2005. The line was in continuous service since start-up December 2001 until failure. The Plant Superintendent estimated there were three thermal cycles since start-up, although there may have been as many as 25 thermal cycles during commissioning. Normal operating temperature was 325 F (163 C) and pressure was 1762 psig. The line was steam traced with the tracing activated only when ambient outdoor temperature dropped to 40 F (5 C). A modified 9Cr-1Mo steel (P91) pipe failure in a feedwater line in a chemical plantmore » was investigated. The failure occurred in the vicinity of an elbow produced with socket welds of the pipe to the elbow. Based on metallography and hardness measurements, it was concluded that failure occurred because of an improper post-weld heat treatment of the socket weldment.« less

  5. Recent sedimentary history of Lake Monona, Wisconsin

    USGS Publications Warehouse

    Bortleson, Gilbert C.; Lee, G.F.

    1975-01-01

    Chemical analyses from two short cores in Lake Monona show that pronounced changes in chemical stratigraphy have occurred since white man moved into Madison and southern Wisconsin and began modifying the area. Since the mid to late 1800's, there has been an appreciable increase in P, Fe, Mn, Al, and K in the uppermost sediments. Maximum concentrations of P were observed near the turn of the century and in the most recent sediment layers. ?? 1975 D. Reidel Publishing Company.

  6. Cross-protection of a new type 2 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccine (Fostera PRRS) against heterologous type 1 PRRSV challenge in growing pigs.

    PubMed

    Park, Changhoon; Choi, Kyuhyung; Jeong, Jiwoon; Chae, Chanhee

    2015-05-15

    The objective of the present study was to determine the cross-protection of a new type 2 porcine reproductive and respiratory syndrome virus (PRRSV) modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs. The mean rectal temperature and respiratory score was significantly (P<0.05) lower in vaccinated challenged pigs than in unvaccinated challenged pigs. Vaccination of pigs with type 2 PRRSV reduced the levels of type 1 PRRSV viremia after challenge with type 1 PRRSV. Vaccinated challenged pigs had significantly (P<0.05) higher frequency of interferon-γ secreting cells and lower levels of interleukin-10 compared to unvaccinated challenged pigs. Vaccination of pigs with the type 2 PRRSV effectively reduced the macroscopic and microscopic lung lesion and the type 1 PRRSV antigens within lung lesions in vaccinated challenged pigs. This study demonstrates partial cross-protection of a new type 2 PRRSV modified live vaccine against heterologous type 1 PRRSV challenge in growing pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types

    PubMed Central

    Phalen, Robert N.; Wong, Weng kee

    2012-01-01

    Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

  8. Tensile properties and integrity of clean room and low-modulus disposable nitrile gloves: a comparison of two dissimilar glove types.

    PubMed

    Phalen, Robert N; Wong, Weng Kee

    2012-05-01

    The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm(-2) were about four times less likely to leak. On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break.

  9. 40 CFR 720.30 - Chemicals not subject to notification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... modifier, pH neutralizer, sequesterant, coagulant, flocculant, fire retardant, lubricant, chelating agent... plastic or rubber molding compounds, inks, drying oils, metal finishing compounds, adhesives, or paints...

  10. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less

  11. Semi-synthesis of murine prion protein by native chemical ligation and chemical activation for preparation of polypeptide-α-thioester.

    PubMed

    Shi, Lei; Chen, Huai; Zhang, Si-Yu; Chu, Ting-Ting; Zhao, Yu-Fen; Chen, Yong-Xiang; Li, Yan-Mei

    2017-06-01

    Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three-dimensional structure domain was constructed from three segments murine PrP (mPrP)(90-177), mPrP(178-212), and mPrP(213-230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C-terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  12. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  13. Chemical-free n-type and p-type multilayer-graphene transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less

  14. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  15. Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier

    PubMed Central

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses. PMID:23431260

  16. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier.

    PubMed

    Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji

    2013-01-01

    The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses.

  17. Surface modification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer films for promoting interaction with bladder urothelial cells.

    PubMed

    García-García, José M; López, Laura; París, Rodrigo; Núñez-López, María Teresa; Quijada-Garrido, Isabel; de la Peña Zarzuelo, Enrique; Garrido, Leoncio

    2012-01-01

    Often bladder dysfunction and diseases lead to therapeutic interventions that require partial or complete replacement of damaged tissue. For this reason, the development of biomaterials to repair the bladder by promoting the adhesion and growth of urothelial cells is of interest. With this aim, a modified copolyester of biocompatible and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] was used as scaffold for porcine urothelial cell culture. In addition to good biocompatibility, the surface of P(HB-co-HV) substrates was modified to provide both, higher hydrophilicity and a better interaction with urothelial cells. Chemical treatments with ethylenediamine (ED) and sodium hydroxide (NaOH) led to substrate surfaces with decreasing hydrophobicity and provided functional groups that enable the grafting of bioactive molecules, such as a laminin derived YIGSR sequence. Physico-chemical properties of modified substrates were studied and compared with those of the pristine P(HB-co-HV). Urothelial cell morphology on treated substrates was studied. The results showed that focal attachment and cell-related properties were improved for peptide grafted polymer compared with both, the unmodified and functionalized copolyester. Copyright © 2011 Wiley Periodicals, Inc.

  18. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  19. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine.

    PubMed

    Khan, Huda; Shukla, R N; Bajpai, A K

    2016-04-01

    The aim of the present investigation was to design biocompatible gelatin nanoparticles, capable of releasing the cytarabine drug in a controllable way by regulating the extent of swelling of nanoparticles. In order to achieve the proposed objectives, gelatin (Type A, derived from acid cured tissue) was modified by crosslinking with genipin and nanoparticles of crosslinked gelatin were prepared using single water in oil (W/O) emulsion technique. The nanoparticles were characterized by techniques like FTIR, SEM, TEM, particles size analysis, and surface potential measurements. The nanoparticle chemical architecture was found to influence drug-releasing capacity. The influence of experimental conditions such as pH and simulated physiological fluids as the release medium was also investigated on the release profiles of cytarabine. It is possible to fabricate high-performance materials, by designing of controlled size gelatin nanoparticles with good biocompatible properties along with desired drug release profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    PubMed

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  1. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  2. Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu(II) in water

    NASA Astrophysics Data System (ADS)

    Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma

    2017-03-01

    Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.

  3. CONTRIBUTIONS OF CHEMICAL EXCHANGE TO T1ρ DISPERSION IN A TISSUE MODEL

    PubMed Central

    Cobb, Jared G.; Xie, Jingping; Gore, John C.

    2015-01-01

    Variations in T1ρ with locking-field strength (T1ρ dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of co-monomers, increasing stiffness, and in pH, modifying exchange rates. MR images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T1ρ at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T1ρ dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This paper demonstrates a new method to assess the structural and chemical effects on T1ρ relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. PMID:21590720

  4. The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces

    PubMed Central

    Al-Hilli, Safaa; Willander, Magnus

    2009-01-01

    Ever since the discovery of the pH-sensing properties of ZnO crystals, researchers have been exploring their potential in electrochemical applications. The recent expansion and availability of chemical modification methods has made it possible to generate a new class of electrochemically active ZnO nanorods. This reduction in size of ZnO (to a nanocrystalline form) using new growth techniques is essentially an example of the nanotechnology fabrication principle. The availability of these ZnO nanorods opens up an entire new and exciting research direction in the field of electrochemical sensing. This review covers the latest advances and mechanism of pH-sensing using ZnO nanorods, with an emphasis on the nano-interface mechanism. We discuss methods for calculating the effect of surface states on pH-sensing at a ZnO/electrolyte interface. All of these current research topics aim to explain the mechanism of pH-sensing using a ZnO bulk- or nano-scale single crystal. An important goal of these investigations is the translation of these nanotechnology-modified nanorods into potential novel applications. PMID:22423211

  5. The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces.

    PubMed

    Al-Hilli, Safaa; Willander, Magnus

    2009-01-01

    Ever since the discovery of the pH-sensing properties of ZnO crystals, researchers have been exploring their potential in electrochemical applications. The recent expansion and availability of chemical modification methods has made it possible to generate a new class of electrochemically active ZnO nanorods. This reduction in size of ZnO (to a nanocrystalline form) using new growth techniques is essentially an example of the nanotechnology fabrication principle. The availability of these ZnO nanorods opens up an entire new and exciting research direction in the field of electrochemical sensing. This review covers the latest advances and mechanism of pH-sensing using ZnO nanorods, with an emphasis on the nano-interface mechanism. We discuss methods for calculating the effect of surface states on pH-sensing at a ZnO/electrolyte interface. All of these current research topics aim to explain the mechanism of pH-sensing using a ZnO bulk- or nano-scale single crystal. An important goal of these investigations is the translation of these nanotechnology-modified nanorods into potential novel applications.

  6. Effects of soil properties on the uptake of pharmaceuticals into earthworms.

    PubMed

    Carter, Laura J; Ryan, Jim J; Boxall, Alistair B A

    2016-06-01

    Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    PubMed

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  8. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage.

    PubMed

    Wang, Gelin; Han, Ting; Nijhawan, Deepak; Theodoropoulos, Pano; Naidoo, Jacinth; Yadavalli, Sivaramakrishnan; Mirzaei, Hamid; Pieper, Andrew A; Ready, Joseph M; McKnight, Steven L

    2014-09-11

    The P7C3 class of aminopropyl carbazole chemicals fosters the survival of neurons in a variety of rodent models of neurodegeneration or nerve cell injury. To uncover its mechanism of action, an active derivative of P7C3 was modified to contain both a benzophenone for photocrosslinking and an alkyne for CLICK chemistry. This derivative was found to bind nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme involved in the conversion of nicotinamide into nicotinamide adenine dinucleotide (NAD). Administration of active P7C3 chemicals to cells treated with doxorubicin, which induces NAD depletion, led to a rebound in intracellular levels of NAD and concomitant protection from doxorubicin-mediated toxicity. Active P7C3 variants likewise enhanced the activity of the purified NAMPT enzyme, providing further evidence that they act by increasing NAD levels through its NAMPT-mediated salvage. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Conformational changes of a chemically modified HRP: formation of a molten globule like structure at pH 5

    PubMed Central

    Bamdad, Kourosh; Ranjbar, Bijan; Naderi-Manesh, Hossein; Sadeghi, Mehdi

    2014-01-01

    Horseradish peroxidase is an all alpha-helical enzyme, which widely used in biochemistry applications mainly because of its ability to enhance the weak signals of target molecules. This monomeric heme-containing plant peroxidase is also used as a reagent for the organic synthesis, biotransformation, chemiluminescent assays, immunoassays, bioremediation, and treatment of wastewaters as well. Accordingly, enhancing stability and catalytic activity of this protein for biotechnological uses has been one of the important issues in the field of biological investigations in recent years. In this study, pH-induced structural alterations of native (HRP), and modified (MHRP) forms of Horseradish peroxidase have been investigated. Based on the results, dramatic loss of the tertiary structure and also the enzymatic activity for both forms of enzymes recorded at pH values lower than 6 and higher than 8. Ellipticiy measurements, however, indicated very slight variations in the secondary structure for MHRP at pH 5. Spectroscopic analysis also indicated that melting of the tertiary structure of MHRP at pH 5 starts at around 45 °C, which is associated to the pKa of His 42 that has a serious role in keeping of the heme prostethic group in its native position through natural hydrogen bond network in the enzyme structure. According to our data, a molten globule like structure of a chemically modified form of Horseradish peroxidase at pH 5 with initial steps of conformational transition in tertiary structure with almost no changes in the secondary structure has been detected. Despite of some conformational changes in the tertiary structure of MHRP at pH 5, this modified form still keeps its catalytic activity to some extent besides enhanced thermal stability. These findings also indicated that a molten globular state does not necessarily preclude efficient catalytic activity. PMID:26417287

  10. Enzymatically Modified Starch Favorably Modulated Intestinal Transit Time and Hindgut Fermentation in Growing Pigs

    PubMed Central

    Newman, M. A.; Zebeli, Q.; Velde, K.; Grüll, D.; Molnar, T.; Kandler, W.; Metzler-Zebeli, B. U.

    2016-01-01

    Aside from being used as stabilizing agents in many processed foods, chemically modified starches may act as functional dietary ingredients. Therefore, development of chemically modified starches that are less digestible in the upper intestinal segments and promote fermentation in the hindgut receives considerable attention. This study aimed to investigate the impact of an enzymatically modified starch (EMS) on nutrient flow, passage rate, and bacterial activity at ileal and post-ileal level. Eight ileal-cannulated growing pigs were fed 2 diets containing 72% purified starch (EMS or waxy cornstarch as control) in a cross-over design for 10 d, followed by a 4-d collection of feces and 2-d collection of ileal digesta. On d 17, solid and liquid phase markers were added to the diet to determine ileal digesta flow for 8 h after feeding. Reduced small intestinal digestion after the consumption of the EMS diet was indicated by a 10%-increase in ileal flow and fecal excretion of dry matter and energy compared to the control diet (P<0.05). Moreover, EMS feeding reduced ileal transit time of both liquid and solid fractions compared to the control diet (P<0.05). The greater substrate flow to the large intestine with the EMS diet increased the concentrations of total and individual short-chain fatty acids (SCFA) in feces (P<0.05). Total bacterial 16S rRNA gene abundance was not affected by diet, whereas the relative abundance of the Lactobacillus group decreased (P<0.01) by 50% and of Enterobacteriaceae tended (P<0.1) to increase by 20% in ileal digesta with the EMS diet compared to the control diet. In conclusion, EMS appears to resemble a slowly digestible starch by reducing intestinal transit and increasing SCFA in the distal large intestine. PMID:27936165

  11. Exploring effects of self-management on glycemic control using a modified information-motivation-behavioral skills model in type 2 diabetes mellitus patients in Shanghai, China: A cross-sectional study.

    PubMed

    Chen, Qi; Wang, Huwen; Wang, Yichen; Wang, Zezhou; Zhao, Daijun; Cai, Yong

    2018-02-19

    The original information-motivation-behavioral skills (IMB) model has been verified in type 2 diabetes mellitus (T2DM) patients, but the effects of the model on glycemic control remain unclear. The aim of this study was to modify the IMB model to explore the effects of self-management on glycemic control in T2DM patients in Shanghai, China. A cross-sectional study was conducted on participants recruited using a convenience sampling method between June and August 2015 in three tertiary hospitals and four community health service centers; 796 participants meeting the inclusion criteria (age ≥18 years and a diagnosis of T2DM) completed a questionnaire and blood test for glycemic control. Structural equation models were used to test the IMB framework. The modified model demonstrated an acceptable fit of the data. Paths from information to self-management behaviors (β = 0.119, P = 0.001) and HbA1c (β = -0.140, P < 0.001), from motivation to behavioral skills (β = 0.670, P < 0.001), from behavioral skills to self-management behaviors (β = 0.562, P < 0.001), and from self-management behaviors to HbA1c (β = -0.343, P < 0.001) were all significant and in the predicted direction. Information and motivation varied with each other (r = 0.350, P < 0.001). Glycemic control can be incorporated into the IMB model. The utility of the modified model in the study population is validated. Type 2 diabetes mellitus patients with poor control of glucose levels may be a better target population for application of the modified IMB model. © 2018 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  12. Effect of Surfaces on Amyloid Fibril Formation

    PubMed Central

    Moores, Bradley; Drolle, Elizabeth; Attwood, Simon J.; Simons, Janet; Leonenko, Zoya

    2011-01-01

    Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data. PMID:22016789

  13. Chemical Structure and Surface Modification of Dendritic Nanomaterials Tailored for Therapeutic and Diagnostic Applications.

    PubMed

    Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo

    2017-01-01

    Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Chemical methods for encoding and decoding of posttranslational modifications

    PubMed Central

    Chuh, Kelly N.; Batt, Anna R.; Pratt, Matthew R.

    2016-01-01

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full compliment of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. PMID:26933738

  15. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  16. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  17. In Vivo Evaluation of Chemical Composition of Eight Types of Urinary Calculi Using Spiral Computerized Tomography in a Chinese Population.

    PubMed

    Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun

    2015-09-01

    This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.

  18. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  19. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination

    NASA Astrophysics Data System (ADS)

    Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-08-01

    Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.

  20. Supramolecular structures on silica surfaces and their adsorptive properties.

    PubMed

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  1. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    PubMed

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  2. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  3. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    PubMed Central

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613

  4. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    PubMed

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  5. Modification of glass fibers to improve reinforcement: a plasma polymerization technique.

    PubMed

    Cökeliler, Dilek; Erkut, Selim; Zemek, Josef; Biederman, Hynek; Mutlu, Mehmet

    2007-03-01

    This study evaluates the effect of plasma treated E-glass fiber to improve the mechanical properties of acrylic resin denture base material, polymethylmethacrlyate (PMMA). Plasma surface treatment of fibers is used as reinforcement in composite materials to modify the chemical and physical properties of their surfaces with tailored fiber-matrix bonding strength. Three different types of monomer 2-hydroxyethyl methacrylate (HEMA), triethyleneglycoldimethylether (TEGDME) and ethylenediamine (EDA) were used in the plasma polymerization modification of glass fibers. A radiofrequency generator was used to sustain plasma in a glass vacuum chamber. Glass fibers were modified at the same glow-discharge power of 25 W and exposure time of 30 min for each monomer. Fibers were incorporated into the acrylic with 1% (w/w) loading except control group. Specimens were prepared using a standard mold of 3 cmx0.5 cmx0.8 cm in dimension with eight specimens in each group. Samples were subjected to a flexural strength test set up at a crosshead speed of 5mm/min. Scanning electron microscopy (SEM) was used to examine the microstructure and X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface. Data were analyzed by means of ANOVA and Duncan's tests. Test results revealed that fiber reinforcement had a significant effect on the flexural strength of the specimens (p<0.05). Among the fiber reinforced groups, plasma treatment with EDA monomer resulted in the most significant increase in flexural strength values (p<0.05). XPS results have shown an increasing number of nitrogenous compounds in EDA treated fibers. The chemical structure of the surface, especially with the increase in nitrogenous compounds could give an idea for the amine film deposition and SEM figures showed an increase in surface roughness. The results showed that plasma treatment with EDA monomer was an effective alternative method of increasing the flexural strength of PMMA based denture base polymers through fiber reinforcement.

  6. Silicon Cluster Tool | Photovoltaic Research | NREL

    Science.gov Websites

    Material Deposition/Device Fabrication Very-high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) for microcrystalline silicon (µc-Si:H) Combinatorial plasma-enhanced chemical vapor deposition (Combi-PECVD) for p-type a-Si:H Plasma-enhanced chemical vapor deposition (PECVD) for n-type a-Si:H

  7. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs.

    PubMed

    Schwarz, Frank; Sager, Martin; Kadelka, Ines; Ferrari, Daniel; Becker, Jürgen

    2010-05-01

    The aim of the present study was to compare bone regeneration in dehiscence-type defects at titanium implants with chemically modified sandblasted/acid-etched (modSLA) or dual acid-etched surfaces with a calcium phosphate nanometre particle modification (DCD/CaP). Buccal dehiscence-type defects were surgically created following implant site preparation in both the upper and the lower jaws of 12 fox hounds. Both types of implants were randomly allocated in a split-mouth design and left to heal in a submerged position for 2 and 8 weeks. Dissected blocks were processed for histomorphometrical analysis [e.g. new bone height (NBH), percentage of bone-to-implant contact (BIC), area of new bone fill (BF), and area of mineralized tissue (MT) within BF]. At 2 and 8 weeks, both groups revealed comparable mean BF (2.3+/-0.6 to 2.5+/-0.6 mm(2)versus 2.0+/-0.6 to 1.4+/-0.5 mm(2)) and MT (31.1+/-14.3-83.2+/-8.2%versus 38.9+/-15.9-84.4+/-6.3%) values. However, modSLA implants revealed significantly higher mean NBH (2.4+/-0.8 to 3.6+/-0.3 mm versus 0.9+/-0.8 to 1.8+/-1.4 mm) and BIC (53.3+/-11.3-79.5+/-6.6%versus 19.3+/-16.4-47.2+/-30.7%) values than DCD/CaP implants. ModSLA implants may have a higher potential to support osseointegration in dehiscence-type defects than DCD/CaP implants.

  8. Modification of semi-coke powder and its adsorption mechanisms for Cr(VI) and methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Linjiang; Liu, Zhuannian; Fan, Yidan; Fan, Aping; Han, Xiaogang

    2018-02-01

    In this paper, the semi-coke powder was modified by three kinds of physical or chemical methods and then modified semi-coke was used as adsorbent for removal of Cr6+ and methylene blue (MB) from aqueous solution. The effects of time, dosage and pH on removal rate were investigated using batch experiments. The process of Cr6+ and MB adsorption onto the modified semi-coke powder follows pseudo second-order kinetics. The analysis of SEM and BET showed the Specific surface area of modified semi-coke are 84.92 m2/g, which is higher than that of raw semi-coke powder.

  9. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation.

    PubMed

    Wu, Weidong; Li, Jianhong; Lan, Tian; Müller, Karin; Niazi, Nabeel Khan; Chen, Xin; Xu, Song; Zheng, Lirong; Chu, Yingchao; Li, Jianwu; Yuan, Guodong; Wang, Hailong

    2017-01-15

    In this study, we examined the efficacy of nine different types of coconut-fiber derived biochars (CFBs), prepared at different temperatures and chemically modified with ammonia, hydrogen peroxide and nitric acid, to remove lead (Pb 2+ ) from aqueous solutions. Langmuir-q m values of the biochars pyrolyzed at 300°C and modified with ammonia and nitric acid increased from 49.5 to 105.5 and 85.2mgg -1 , respectively, compared to control (unmodified), whereas hydrogen peroxide treatment had no effect. The maximum amount of Pb adsorbed on biochars was in the order of CFB-700>MCFB-300-NH 3 ·H 2 O>CFB-500>MCFB-300-HNO 3 >CFB-300. X-ray absorption fine structure (XAFS) spectroscopy results revealed that Pb-montmorillonite, Pb(C 2 H 3 O 2 ) 2 , PbSO 4 , Pb-Al 2 O 3 and Pb 3 (PO 4 ) 2 were the five most important Pb species observed in Pb-loaded biochars, and as such, favoring Pb immobilization in aqueous solutions. Overall, the sorption capacity of CFBs pyrolyzed at 300°C substantially increased for Pb 2+ with ammonia and nitric acid modification. However, these chemical modifications did not improve the sorption of Pb on CFBs pyrolyzed at temperatures ≥500°C, thereby highlighting a temperature dependent response of chemically modified biochars to Pb sorption in this study. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)

    EPA Science Inventory

    A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...

  11. Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction.

    PubMed

    Pereira, L; Pereira, R; Pereira, M F R; van der Zee, F P; Cervantes, F J; Alves, M M

    2010-11-15

    The surface chemistry of a commercial AC (AC(0)) was selectively modified, without changing significantly its textural properties, by chemical oxidation with HNO(3) (AC(HNO3)) and O(2) (AC(O2)), and thermal treatments under H(2) (AC(H2)) or N(2) (AC(N2)) flow. The effect of modified AC on anaerobic chemical dye reduction was assayed with sulphide at different pH values 5, 7 and 9. Four dyes were tested: Acid Orange 7, Reactive Red 2, Mordant Yellow 10 and Direct Blue 71. Batch experiments with low amounts of AC (0.1 g L(-1)) demonstrated an increase of the first-order reduction rate constants, up to 9-fold, as compared with assays without AC. Optimum rates were obtained at pH 5 except for MY10, higher at pH 7. In general, rates increased with increasing the pH of point zero charge (pH(pzc)), following the trend AC(HNO3) < AC(O2) < AC(0) < AC(N2) < AC(H2). The highest reduction rate was obtained for MY10 with AC(H2) at pH 7, which corresponded to the double, as compared with non-modified AC. In a biological system using granular biomass, AC(H2) also duplicated and increase 4.5-fold the decolourisation rates of MY10 and RR2, respectively. In this last experiment, reaction rate was independent of AC concentration in the tested range 0.1-0.6 g L(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  12. High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    PubMed Central

    McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470

  13. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    PubMed

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  14. An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Ok, Yong Sik; Hussain, Qaiser; Abduljabbar, Adel S; Al-Wabel, Mohammad I

    2018-07-01

    Bio-calcite (BC) derived from waste hen eggshell was subjected to thermal treatments (calcined bio-calcite (CBC)). The BC and CBC were further modified via magnesiothermal treatments to produce modified bio-calcite (MBC) and modified calcined bio-calcite (MCBC), respectively, and evaluated as a novel green sorbent for P removal from aqueous solutions in the batch experiments. Modified BC exhibited improved structural and chemical properties, such as porosity, surface area, thermal stability, mineralogy and functional groups, than pristine material. Langmuir and Freundlich models well described the P sorption onto both thermally and magnesiothermally sorbents, respectively, suggesting mono- and multi-layer sorption. Langmuir predicted highest P sorption capacities were in the order of: MCBC (43.33 mg g -1 ) > MBC (35.63 mg g- 1 ) > CBC (34.38 mg g -1 ) > BC (30.68 mg g -1 ). The MBC and MCBC removed 100% P up to 50 mg P L -1 , which reduced to 35.43 and 39.96%, respectively, when P concentration was increased up to 1000 mg L -1 . Dynamics of P sorption was well explained by the pseudo-second-order rate equation, with the highest sorption rate of 4.32 mg g -1  min -1 for the MCBC. Hydroxylapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] and brushite [CaH(PO 4 )·2H 2 O] were detected after P sorption onto the modified sorbents by X-ray diffraction analysis, suggesting chemisorption as the operating sorption mechanism.

  15. Contributions of chemical exchange to T1ρ dispersion in a tissue model.

    PubMed

    Cobb, Jared G; Xie, Jingping; Gore, John C

    2011-12-01

    Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.

  16. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  17. Modified nucleoside triphosphates exist in mammals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05472f

    PubMed Central

    Jiang, Han-Peng; Xiong, Jun; Liu, Fei-Long; Ma, Cheng-Jie; Tang, Xing-Lin; Feng, Yu-Qi

    2018-01-01

    DNA and RNA contain diverse chemical modifications that exert important influences in a variety of cellular processes. In addition to enzyme-mediated modifications of DNA and RNA, previous in vitro studies showed that pre-modified nucleoside triphosphates (NTPs) can be incorporated into DNA and RNA during replication and transcription. Herein, we established a chemical labeling method in combination with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis for the determination of endogenous NTPs in the mammalian cells and tissues. We synthesized 8-(diazomethyl)quinoline (8-DMQ) that could efficiently react with the phosphate group under mild condition to label NTPs. The developed method allowed sensitive detection of NTPs, with the detection limits improved by 56–137 folds. The results showed that 12 types of endogenous modified NTPs were distinctly determined in the mammalian cells and tissues. In addition, the majority of these modified NTPs exhibited significantly decreased contents in human hepatocellular carcinoma (HCC) tissues compared to tumor-adjacent normal tissues. Taken together, our study revealed the widespread existence of various modified NTPs in eukaryotes. PMID:29780546

  18. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    PubMed

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  19. Sorption of lead from aqueous solution by chemically modified carbon adsorbents.

    PubMed

    Nadeem, Muhammad; Mahmood, A; Shahid, S A; Shah, S S; Khalid, A M; McKay, G

    2006-12-01

    An indigenously prepared, steam activated and chemically modified carbon from husk and pods of Moringa oleifera (M. oleifera), an agricultural waste, was comparatively examined as an adsorbent for the removal of lead from aqueous solutions. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, agitation speed, particle size and pH. Maximum uptake capacities were found to be, 98.89, 96.58, 91.8, 88.63, 79.43% for cetyltrimethyl ammonium bromide (CTAB), phosphoric, sulfuric, hydrochloric acid treated and untreated carbon adsorbents, respectively. Bangham, pseudo-first- and second-order, intra-particle diffusion equations were implemented to express the sorption mechanism by utilized adsorbents. Adsorption rate of lead ions was found to be considerably faster for chemically modified adsorbents than unmodified. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between the metal uptake capacities by the adsorbents at different time intervals was expressed by the correlation coefficient (R(2)). The Langmuir model represented the sorption process better than the Freundlich one, with R(2) values ranging from 0.994 to 0.998.

  20. Geochemistry of the Shuksan greenschists and blueschists, North Cascades, Washington: Variably fractionated and altered metabasalts of oceanic affinity

    NASA Astrophysics Data System (ADS)

    Dungan, M. A.; Vance, J. A.; Blanchard, D. P.

    1983-06-01

    The Shuksan schist comprises a structurally coherent, metabasaltic member of the Easton Formation, the uppermost allochthon (Shuksan thrust plate) in the thrust system of the western North Cascades of Washington State. Late Jurassic metamorphism at moderately high P/T produced interlayering of actinolite-bearing greenschist assemblages with blue amphibole-bearing rocks. Major and trace element analyses of twelve greenschist and blueschist samples have been used to establish similarities between the basaltic protolith and moderately to strongly fractionated Type I MORB, to distinguish the effects of seafloor alteration superimposed on the primary igneous chemistry, and to evaluate the origin and nature of the chemical controls which produced the two mineral assemblages. The twelve analyzed samples exhibit moderate to strong LREE depletion, and characteristically low concentrations of other non-labile trace elements such as Nb, Th and Hf. The highly to moderately incompatible elements Ti, P, Nb, Zr, Hf, Y, Sc, and the REE vary by factors of 1.5 to 3.5 within the suite in a systematic pattern, increasing smoothly with increasing total iron. The relative enrichments of these elements are inversely proportional to bulk partition coefficients estimated for fractionation of basaltic magmas. The magnitude of the negative europium anomaly increases with overall incompatible element enrichment. These variations are consistent with the production of a wide spectrum of compositions by different degrees of low pressure fractionation of similar Type I MORB parent magmas. The concentrations of Sr, Rb, Na, and K vary irregularly and do not correlate with the non-labile trace elements. K and Rb are substantially elevated over typical MORB values in most samples and exhibit a consistently lower ratio (K/Rb=400 vs 1000) than fresh MORB. Concentrations of these four elements are believed to have been modified by low temperature seafloor alteration (pre-metamorphic) characterized by the formation of K-rich celadonitic clays, palagonite and minor potassium feldspar. The critical chemical variables that control the occurrence of actinolite and blue amphibole in the Shuksan schists are total iron, Fe2O3-content and Na/Ca (all high in blueschists). The chemical features were largely established by magmatic processes and inherited from the igneous parent rocks; the chemically more evolved samples are blueschists. The Fe2O3-content and Na/Ca, however, may be modified during alteration, rendering initial bulk compositions near the chemical boundary susceptible to changes which may shift rock compositions from one compatibility field to the other. Heterogeneous alteration of pillow lavas and other fragmental deposits, followed by intense flattening during metamorphism, provides a mechanism for generating blueschists and greenschists interlayered on the cm scale.

  1. Impact of laser anneal on NiPt silicide texture and chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feautrier, C.; Ozcan, A. S.; Lavoie, C.

    We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. Themore » laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.« less

  2. Impact of laser anneal on NiPt silicide texture and chemical composition

    NASA Astrophysics Data System (ADS)

    Feautrier, C.; Ozcan, A. S.; Lavoie, C.; Valery, A.; Beneyton, R.; Borowiak, C.; Clément, L.; Pofelski, A.; Salem, B.

    2017-06-01

    We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. The laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.

  3. Acid-base equilibria inside amine-functionalized mesoporous silica.

    PubMed

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  4. Effects of ultrathin oxides in conducting MIS structures on GaAs

    NASA Technical Reports Server (NTRS)

    Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.

    1978-01-01

    Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.

  5. Modeling gene-environment interactions in oral cavity and esophageal cancers demonstrates a role for the p53 R72P polymorphism in modulating susceptibility.

    PubMed

    Sarkar, Jayanta; Dominguez, Emily; Li, Guojun; Kusewitt, Donna F; Johnson, David G

    2014-08-01

    A large number of epidemiological studies have linked a common single-nucleotide polymorphism (SNP) in the human p53 gene to risk for developing a variety of cancers. This SNP encodes either an arginine or proline at position 72 (R72P) of the p53 protein, which can alter the apoptotic activity of p53 via transcriptional and non-transcriptional mechanisms. This SNP has also been reported to modulate the development of human papilloma virus (HPV)-driven cancers through differential targeting of the p53 variant proteins by the E6 viral oncoprotein. Mouse models for the p53 R72P polymorphism have recently been developed but a role for this SNP in modifying cancer risk in response to viral and chemical carcinogens has yet to be established experimentally. Here, we demonstrate that the p53 R72P polymorphism modulates the hyperprolferative, apoptotic and inflammatory phenotypes caused by expression of the HPV16 E6 and E7 oncoproteins. Moreover, the R72P SNP also modifies the carcinogenic response to the chemical carcinogen 4NQO, in the presence and absence of the HPV16 transgene. Our findings confirm several human epidemiological studies associating the codon 72 proline variant with increased risk for certain cancers but also suggest that there are tissue-specific differences in how the R72P polymorphism influences the response to environmental carcinogens. © 2013 Wiley Periodicals, Inc.

  6. Hepatocyte spheroid arrays inside microwells connected with microchannels

    PubMed Central

    Fukuda, Junji; Nakazawa, Kohji

    2011-01-01

    Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications. PMID:21799712

  7. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van

    2016-01-18

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySimore » was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R{sub sh n-type} = 95 Ω/□ and R{sub sh p-type} = 120 Ω/□). An efficiency of 19.2% (V{sub oc} = 673 mV, J{sub sc} = 38.0 mA/cm{sup 2}, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V{sub OC} of 696 mV was also measured.« less

  8. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    PubMed

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively.

  9. Effect of different gas stunning methods on Manchega suckling lamb meat packed under different modified atmospheres.

    PubMed

    Bórnez, R; Linares, M B; Vergara, H

    2010-04-01

    Forty-nine Manchega breed male suckling lambs were used in this experiment. The effect of CO(2) concentration and exposure time at stunning [80% CO(2) for 90 s (G1); 90% CO(2) for 90 s (G2); 90% CO(2) for 60 s (G3); 80% CO(2) for 60 s (G4)] plus an electrically stunned control group (G5) was assessed for pH, colour (L(*), a(*), b(*), C(*) and h(*)), water holding capacity (WHC), drip loss (DL), cooking loss (CL) and shear force (SF) in samples packed under two different types of modified atmospheres (MA: MA A: 70%O(2)+30%CO(2); MA B: 69.3%N(2)+30%CO(2)+0.7%CO) at 7, 14 and 21 d post-packaging. The lowest pH was found in G4 and in G5. The highest WHC and the lowest CL were found in G2 and G3 groups (P<0.05). Modified atmospheres did not affect on pH, WHC, CL and DL, although a significant effect (P<0.001) on colour was found at all the analysis times. Both the type of stunning and the modified atmosphere affected SF values. 2009 Elsevier Ltd. All rights reserved.

  10. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a

  11. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  12. Modeling hygroelastic properties of genetically modified aspen

    Treesearch

    Laszlo Horvath; Perry Peralta; Ilona Peszlen; Levente Csoka; Balazs Horvath; Joseph Jakes

    2012-01-01

    Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin...

  13. Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks.

    PubMed

    Zaboon, Sami; Abid, Hussein Rasool; Yao, Zhengxin; Gubner, Rolf; Wang, Shaobin; Barifcani, Ahmed

    2018-08-01

    Mono-ethylene glycol (MEG), used in the oil and gas industries as a gas hydrate inhibitor, is a hazardous chemical present in wastewater from those processes. Metal-organic frameworks (MOFs) (modified UiO-66 ∗ and UiO-66-2OH) were used for the effective removal of MEG waste from effluents of distillation columns (MEG recovery units). Batch contact adsorption method was used to study the adsorption behavior toward these types of MOFs. Adsorption experiments showed that these MOFs had very high affinity toward MEG. Significant adsorption capacity was demonstrated on UiO-66-2OH and modified UiO-66 at 1000 mg·g -1 and 800 mg·g -1 respectively. The adsorption kinetics were fitted to a pseudo first-order model. UiO-66-2OH showed a higher adsorption capacity due to the presence of hydroxyl groups in its structure. A Langmuir model gave the best fitting for isotherm of experimental data at pH = 7. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.

    PubMed

    Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M

    2012-04-10

    Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society

  15. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b

  16. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The highest sorption capacity was observed for clay modified with hydroxyapatite and calcium salts. Sorption capacity increased with a rise of temperature; the best pH value for sorption was 5. Immobilization of metals in soil, as well as industrial wastewater treatment can be accomplished by using sorbents on modified clay basis.

  17. SPATIAL VARIATION OF PM 2.5 CHEMICAL SPECIES AND SOURCE-APPORTIONED MASS CONCENTRATIONS IN NEW YORK CITY. (R827351C001)

    EPA Science Inventory

    Particulate matter (PM) is a chemically non-specific pollutant, and may originate or be derived from different emission source types. Thus, its toxicity may well vary depending on its chemical composition. If the PM toxicity could be determined based on source types, the regul...

  18. Identifying Dust Sources by Positive Matrix Factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.

    2010-05-01

    This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type. Examples of time series plots of PMF factor contributions for each of six sampling sites (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad) will be discussed. Engelbrecht , J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 1: Ambient sampling: Inhalation Toxicology, v. 21, p. 297-326.

  19. Physicochemical properties, fatty acid profile and sensory characteristics of sheep and goat meat sausages manufactured with different pork fat levels.

    PubMed

    Leite, Ana; Rodrigues, Sandra; Pereira, Etelvina; Paulos, Kátia; Oliveira, António Filipe; Lorenzo, José Manuel; Teixeira, Alfredo

    2015-07-01

    The effect of three pork backfat levels (0% vs. 10% vs. 30%) on chemical composition, fatty acid profile and sensory properties on sheep and goat meat sausages was studied. All physicochemical parameters were affected by the addition of pork backfat in both types of sausages. Sausages manufactured with 30% of pork backfat showed the lowest moisture and protein contents and the highest total fat content. The lower a(w) values in sausages manufactured with higher fat content while in pH happened the reverse situation. The addition of pork backfat modified the total fatty acid profile, prompting a significant drop in the relative percentages of C14:0, C16:0, C17:0, C17:1, C18:0 and TVA (trans-vaccenic acid), together with a marked increase in oleic and linoleic acids. Finally, in goat sausages, the fat content significantly affected sensory parameters: taste, texture and overall acceptability (P<0.05). As expected, all physicochemical parameters were affected by the addition of pork backfat in both types of sausages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ultrasensitive gas detection of large-area boron-doped graphene

    DOE PAGES

    Lv, Ruitao; Chen, Gugang; Li, Qing; ...

    2015-11-02

    Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type conducting behavior to pristine (undoped) graphene which could lead to diverse applications. But, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. We confirmed that BG behaves as a p-type conductormore » and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of B-C trimmers embedded within the hexagonal lattice. Interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO 2 and NH 3 , being able to detect extremely low concentrations (e.g. parts per trillion, parts per billion). Our work envisions that other attractive applications could now be explored based on as-synthesized BG.« less

  1. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  2. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification.

    PubMed

    Hamlet, Stephen; Ivanovski, Saso

    2011-05-01

    Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.

    PubMed

    Sağlam, Şener; Üzer, Ayşem; Erçağ, Erol; Apak, Reşat

    2018-06-19

    Since nitroaromatic- and nitramine-type energetic materials, mostly arising from military activities, are persistent pollutants in soil and groundwater, on-site sensing of these hazardous chemicals has gained importance. A novel electrochemical sensor was designed for detecting nitroaromatic- and nitramine-type energetic materials, relying on gold nanoparticles (Au nano ), modified glassy carbon (GC) electrode coated with nitro-energetic memory-poly(carbazole-aniline) copolymer (Cz- co-ANI) film (e.g., TNT memory-GC/P(Cz- co-ANI)-Au nano modified electrode). Current was recorded against concentration to build the calibration curves that were found to be linear within the range of 100-1000 μg L -1 for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT): 50-1000 μg L -1 for 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The corresponding limits of detection were 25 μg L -1 for TNT, 30 μg L -1 for DNT, and 10 μg L -1 for both RDX and HMX, using nitro-energetic memory-GC/P(Cz- co-ANI)-Au nano electrodes. These electrodes were used separately, and specific determinations were made in various mixtures of nitro-energetic materials. The developed method could be efficiently used in electroanalyzing nitroaromatics and nitramines in military explosives (i.e., comp B, octol, and comp A5). The sensor electrodes were specific for the tested nitro-energetic compounds and did not respond to paracetamol-caffeine-based analgesic drug, acetylsalicylic acid (aspirin), sweetener, and sugar that can be used as camouflage materials in passenger belongings. The developed method was statistically validated against the standard LC-MS reference method in contaminated clay soil samples containing TNT and RDX explosives.

  4. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.

    PubMed

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-07-20

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.

  5. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products--a review.

    PubMed

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-09-19

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  6. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    NASA Astrophysics Data System (ADS)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  7. Fabrication of polymerized crystalline colloidal array thin film modified β-cyclodextrin polymer for paraoxon-ethyl and parathion-ethyl detection.

    PubMed

    Bui, Minh-Phuong N; Seo, Seong S

    2014-01-01

    We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.

  8. How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex

    PubMed Central

    Ovaere, Margriet; Sponer, Jiri; Sponer, Judit E.; Herdewijn, Piet; Van Meervelt, Luc

    2012-01-01

    Altritol nucleic acids (ANAs) are a promising new tool in the development of artificial small interfering ribonucleic acids (siRNAs) for therapeutical applications. To mimic the siRNA:messenger RNA (mRNA) interactions, the crystal structure of the ANA:RNA construct a(CCGUAAUGCC-P):r(GGCAUUACGG) was determined to 1.96 Å resolution which revealed the hybrid to form an A-type helix. As this A-form is a major requirement in the RNAi process, this crystal structure confirms the potential of altritol-modified siRNAs. Moreover, in the ANA strands, a new type of intrastrand interactions was found between the O2′ hydroxyl group of one residue and the sugar ring O4′ atom of the next residue. These interactions were further investigated by quantum chemical methods. Besides hydration effects, these intrastrand hydrogen bonds may also contribute to the stability of ANA:RNA duplexes. PMID:22638588

  9. Botulinum toxin type A induces changes in the chemical coding of substance P-immunoreactive dorsal root ganglia sensory neurons supplying the porcine urinary bladder.

    PubMed

    Bossowska, Agnieszka; Lepiarczyk, Ewa; Mazur, Urszula; Janikiewicz, Paweł; Markiewicz, Włodzimierz

    2015-11-16

    Botulinum toxin (BTX) is a potent neurotoxin which blocks acetylcholine release from nerve terminals, and therefore leads to cessation of somatic motor and/or parasympathetic transmission. Recently it has been found that BTX also interferes with sensory transmission, thus, the present study was aimed at investigating the neurochemical characterization of substance P-immunoreactive (SP-IR) bladder-projecting sensory neurons (BPSN) after the toxin treatment. Investigated neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against SP, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), neuronal nitric oxide synthase (nNOS), galanin (GAL), calbindin (CB), and somatostatin (SOM). In the control group (n = 6), 45% of the total population of BPSN were SP-IR. Nearly half of these neurons co-expressed PACAP or CGRP (45% and 35%, respectively), while co-localization of SP with GAL, nNOS, SOM or CB was found less frequently (3.7%, 1.8%, 1.2%, and 0.7%, respectively). In BTX-treated pigs (n = 6), toxin-injections caused a decrease in the number of SP-IR cells containing CGRP, SOM or CB (16.2%, 0.5%, and 0%, respectively) and a distinct increase in these nerve cells immunopositive to GAL (27.2%). The present study demonstrates that BTX significantly modifies the chemical phenotypes of SP-IR BPSN.

  10. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.

    PubMed

    He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir

    2018-01-19

    Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.

  11. The effect of carbon surface chemical composition on the adsorption of acetanilide.

    PubMed

    Terzyk, Artur P

    2004-04-01

    The study of acetanilide adsorption-desorption performed at three temperatures (300, 310, and 320 K) and at two pH levels (7.0 and 1.5) on the series of D43/1 carbons (initial and modified with HNO3, fuming H2SO4, and gaseous NH3) is reported. Sorption data are additionally supplemented with the results of thermal analysis and calorimetric and kinetic measurements. It is shown that, generally, acetanilide adsorption at the neutral pH level is reversible (only on the more acidic carbons and at the lowest temperature does hysteresis occur due to the formation of hydrogen bonds with surface OH groups), and it decreases for the chemically modified carbons. In contrast, at the acidic pH level acetanilide adsorption is irreversible. A mechanism of irreversibility is proposed and it is shown that hysteresis is caused by the chemical reaction between the nucleophile (carbon) and the protonized acetanilide molecules. For all studied carbons, at the acidic pH level, adsorption increases and this is caused by the weakly basic character of acetanilide molecule. Adsorption results are described applying adsorbability and Dubinin-Astakhov, quasi-Freundlich and solution analogue of the Toth adsorption isotherm equations. Using the kinetic data, the effective diffusion coefficients and the energy of diffusion are calculated. It is shown that the diffusion is mainly a surface process, and the contribution of the pore diffusion increases with the rise in temperature. By applying different correlations between the parameters obtained from the theoretical description of experimental data and those characterizing the chemical composition of the studied carbons, the role of the latter in the adsorption and kinetics of acetanilide adsorption is determined.

  12. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability.

    PubMed

    Della Mónica, I F; Godoy, M S; Godeas, A M; Scervino, J M

    2018-01-01

    The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6·5 and 8·5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identity-dependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling. © 2017 The Society for Applied Microbiology.

  13. [Effects on cervical spondylosis of vertebral artery type and the concentrations of plasma NPY and UII in the patients treated with the modified acupuncture at unilateral/bilateral Renying (ST 9)].

    PubMed

    Wang, Yanfu; Ma, Chaoyang; Li, Lingxiao; Zhang, Ting; Gui, Xinghua; Chen, Hao

    2018-05-12

    To observe the differences in the clinical therapeutic effects on cervical spondylosis of vertebral artery type (CSA) between the modified acupuncture and the routine acupuncture at unilateral/bilateral Renying (ST 9) as well as the impacts on the concentrations of plasma neuropeptide Y (NPY) and urotensinⅡ(UⅡ) in the patients. A total of 160 patients were divided into a modified bilateral acupuncture group, a modified unilateral acupuncture group, a routine bilateral acupuncture group and a routine unilateral acupuncture group, 40 cases in each one according to the random number table. In the modified bilateral acupuncture group, the modified acupuncture was applied bilaterally to Renying (ST 9). In the modified unilateral acupuncture group, the modified acupuncture was applied unilaterally to Renying (ST 9). In the routine bilateral acupuncture group, the routine acupuncture was applied bilaterally to Renying (ST 9). In the routine unilateral acupuncture group, the routine acupuncture was applied unilaterally to Renying (ST 9). The treatment was given once every day, continuously for 6 days as one course. Two courses of treatment were required at the interval of 1 day. In each group, before and after treatment, we observed the peak systolic blood flow velocity (Vs) of the vertebral artery (VA) and the basilar artery (BA), cervical vertigo symptoms and functional assessment scales (ESCV) and the concentration of plasma NPY and UⅡ. The clinical therapeutic effects were compared among the groups. After treatment, the clinical therapeutic effect in the modified bilateral acupuncture group was 90.0% (36/40), which was better than 80.0% (32/40) in the modified unilateral acupuncture group, 77.5% (35/40) in the routine bilateral acupuncture group and 65.0% (26/40) in the routine unilateral acupuncture group (all P <0.05). After treatment, Vs of VA and BA was improved remarkably in every group (all P <0.01), and the result in the modified bilateral acupuncture group was higher than those in the other groups (all P <0.01). After treatment, ESCV scores were all increased remarkably in every group (all P <0.01). ESCV score and improvement index in the modified bilateral acupuncture group were all higher than those in the other groups ( P <0.05, P <0.01). After treatment, the concentrations of plasma NPY and UⅡ were all reduced remarkably in every group (all P <0.01) and the differences were significant among the groups (all P <0.01). The modified bilateral acupuncture at Renying (ST 9) effectively regulates the blood supply of the vertebral basilar artery and improves the cerebral circulation. The effects are superior to those of the unilateral acupuncture at Renying (ST 9).

  14. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    PubMed

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis.

  15. Single crystal growth and characterization of pure and sodium-modified copper tartrate

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.

    2008-12-01

    Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.

  16. A Non-Competitive Inhibitor of VCP/p97 and VPS4 Reveals Conserved Allosteric Circuits in Type I and II AAA ATPases.

    PubMed

    Pöhler, Robert; Krahn, Jan H; van den Boom, Johannes; Dobrynin, Grzegorz; Kaschani, Farnusch; Eggenweiler, Hans-Michael; Zenke, Frank T; Kaiser, Markus; Meyer, Hemmo

    2018-02-05

    AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B. Subsequent proteomic, genetic and biochemical studies indicate that MSC1094308 binds to a previously characterized drugable hotspot of p97, thereby inhibiting the D2 ATPase activity. Our results furthermore indicate that a similar allosteric site exists in VPS4B, suggesting conserved allosteric circuits and drugable sites in both type I and II AAA ATPases. Our results may thus guide future chemical tool and drug discovery efforts for the biomedically relevant AAA ATPases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeling diffusion and reaction in soils: 9. The Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldrup, P.; Olesen, T.; Yamaguchi, T.

    1999-08-01

    Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less

  18. Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia

    PubMed Central

    Bertuna, Angela; Faglia, Guido; Ferroni, Matteo; Kaur, Navpreet; Munasinghe Arachchige, Hashitha M. M.; Sberveglieri, Giorgio; Comini, Elisabetta

    2017-01-01

    Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO), vapor liquid solid (n-type SnO2 and p-type NiO) and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO) methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone. PMID:28468310

  19. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  20. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  1. [Preparation and release exam of magnetic chitosan nano-spheres of doxorubicin].

    PubMed

    Han, Tao; Xiao, Qingping; Zhang, Yuanming

    2010-02-01

    Magnetic chitosan (CS) nano-spheres were prepared by the modified suspension cross-linking technique. The results demonstrated that the magnetic drug nano-spheres are mainly spherical in form with a size of 200 to 800 nm, and show good magnetic responsivity. Here, Doxorubicin was used as exam drug. Glutaraldehyde connects Doxorubicin to CS by the chemical bond (-N = C-), and the drug content is in range of 1% to 15% (w/w). The chemical bond is broken depending on pH, so pH is the important factor for the release of doxorubicin. The doxorubicin release was 22.0%, 13.4%, and 4.1% in the space of 7d, when pH was 1, 2, 4. So the nano-spheres are pH-sensitive magnetic targeting drug micro-spheres.

  2. Magnetic separation of algae genetically modified for increased intracellular iron uptake.

    PubMed

    Buck, Amy; Moore, Lee R; Lane, Christopher D; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J; Zborowski, Maciej

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides ( A. p. ) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  3. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    PubMed Central

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. p.) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. PMID:29353957

  4. Transport of soil-aged silver nanoparticles in unsaturated sand.

    PubMed

    Kumahor, Samuel K; Hron, Pavel; Metreveli, George; Schaumann, Gabriele E; Klitzke, Sondra; Lang, Friederike; Vogel, Hans-Jörg

    2016-12-01

    Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting "soil-aged" Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH=5 and pH=9. The soil-aged Ag NP were less mobile at pH=5 than at pH=9 due to lower electrostatic repulsion at pH=5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (>90 kT) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transport of soil-aged silver nanoparticles in unsaturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel K.; Hron, Pavel; Metreveli, George; Schaumann, Gabriele E.; Klitzke, Sondra; Lang, Friederike; Vogel, Hans-Jörg

    2016-12-01

    Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting ;soil-aged; Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH = 5 and pH = 9. The soil-aged Ag NP were less mobile at pH = 5 than at pH = 9 due to lower electrostatic repulsion at pH = 5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (> 90 kT) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.

  6. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    PubMed

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  7. Metalorganic chemical vapor deposition and characterization of ZnO materials

    NASA Astrophysics Data System (ADS)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  8. XenoSite server: a web-available site of metabolism prediction tool.

    PubMed

    Matlock, Matthew K; Hughes, Tyler B; Swamidass, S Joshua

    2015-04-01

    Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. XenoSite server is available at http://swami.wustl.edu/xenosite. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries.

    PubMed

    Abbas, Syed Ali; Ding, Jiang; Wu, Sheng Hui; Fang, Jason; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Lee, Li Wei; Wang, Pen-Cheng; Chang, Chien-Cheng; Chu, Chih Wei

    2017-12-26

    In this paper we describe a modified (AEG/CH) coated separator for Li-S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.

  10. Chemically Modified Bacteriophage as a Streamlined Approach to Noninvasive Breast Cancer Imaging

    DTIC Science & Technology

    2013-12-01

    between the two major MALDI peaks is 245 Da, which is presumably an aldol addition of the ketone group to the PLP aldehyde (expected change: 248 Da...of the pVIII coat proteins lining the filamentous phage are converted to ketone groups, which can be subsequently modified with small molecule...chemistry to convert the N-terminal amines of the ∼4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the

  11. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon.

  12. Adsorption of Cu2+ to biomass ash and its modified product.

    PubMed

    Xu, Lei; Cui, Hongbiao; Zheng, Xuebo; Liang, Jiani; Xing, Xiangyu; Yao, Lunguang; Chen, Zhaojin; Zhou, Jing

    2017-04-01

    Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu 2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu 2+ , and the Langmuir model could best represent the adsorption characteristics of Cu 2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu 2+ was spontaneous and endothermic in nature. The adsorptions of Cu 2+ onto the modified biomass ash followed pseudo-second-order kinetics.

  13. Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olvera, A.; Bailey, T. P.; Uher, C.

    Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.

  14. Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2

    DOE PAGES

    Olvera, A.; Bailey, T. P.; Uher, C.; ...

    2018-01-01

    Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.

  15. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells.

    PubMed

    Pramod, P S; Shah, Ruchira; Jayakannan, Manickam

    2015-04-21

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 ± 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX·HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL(-1) in PBS. MTT assays on fibroblast cells revealed that DOX·HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.

  16. Nitrogen Doped Carbon Nanotubes from Organometallic Compounds: A Review

    PubMed Central

    Nxumalo, Edward N.; Coville, Neil J.

    2010-01-01

    Nitrogen doped carbon nanotubes (N-CNTs) have become a topic of increased importance in the study of carbonaceous materials. This arises from the physical and chemical properties that are created when N is embedded in a CNT. These properties include modified chemical reactivity and modified conductivity and mechanical properties. A range of methodologies have been devised to synthesize N-CNTs. One of the procedures uses a floating catalyst in which an organometallic complex is decomposed in the gas phase in the presence of a nitrogen containing reactant to give N-CNTs. Most studies have been limited to ferrocene, ring substituted ferrocene and Fe(CO)5. This review covers the synthesis (and properties) of N-CNTs and other shaped carbon nanomaterials (SCNMs) produced using organometallic complexes. It summarizes the effects that physical parameters such as temperature, pressure, gas flow rates, type and concentration of N source etc. have on the N-CNT type, size and yields as well as the nitrogen content incorporated into the tubes that are produced from organometallic complexes. Proposed growth models for N-CNT synthesis are also reported.

  17. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  18. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  19. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  20. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  1. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  2. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGES

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; ...

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  3. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J.-S.; Kim, H.; Cirignano, L.; Shah, K.

    2013-04-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH, and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p, and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  4. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.

    PubMed

    Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E

    2011-10-01

    Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

  5. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  6. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    NASA Astrophysics Data System (ADS)

    Plaza Rodriguez, Nayomi Z.

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding on the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My PhD thesis focuses on the development and implementation of neutron scattering methods that can provide insight on both the structural and dynamical changes associated with these interactions so that products with improved moisture durability can be developed efficiently. Using small angle neutron scattering (SANS) and a custom-built in situ relative humidity chamber I studied the anisotropic moisture-induced swelling of wood nanostructure. First, I studied the effects of sample preparation by comparing SANS patterns of wiley milled wood and intact latewood cell walls, and found that scattering from intact wood provide more information about the spatial arrangement of the wood nanostructures inside the cell wall. Comparisons between SANS patterns from earlywood and latewood, also showed that the higher cell wall density of latewood cell walls results in patterns with more pronounced anisotropic features. Then, by measuring latewood loblolly pine sections obtained from the same growth ring and prepared in each of the primary wood planes, I tracked the cellulose elementary fibril spacing as a function of humidity in both intact and partially cut cell walls. These studies showed that even though swelling at the elementary fibril spacing is responsible for the majority of the transverse swelling observed at the S2 level, it is not primary plane dependent. Additionally, there were no differences in the elementary fibril spacing between partially-cut and intact cell walls, except at high humidity where the spacing in partially-cut cells was higher. SANS was also used to study the effects of two chemical modifications, namely, adhesive infiltration and acetylation, on the wood nanostructure as well as its moisture-induced swelling. Tangential-longitudinal latewood loblolly pine 0.5 mm thick sections were acetylated or treated with an adhesive (Phenol-formaldehyde (PF) or polymeric methylene diisocyanate (pMDI)) using deuterated or hydrogenated chemicals. Contrast variation experiments on wood modified with deuterated chemicals revealed that PF can infiltrate the regions between the elementary fibrils, while acetylation does not. The moisture-induced swelling of the chemically modified wood was studied, by studying the samples modified with hydrogenated chemicals using SANS and the previously built humidity chamber. These studies revealed that while both PF and pMDI can infiltrate the microfibrils, only PF reduced significantly the swelling at both the elementary fibril and bulk levels. In acetylated samples, the elementary fibril spacing was proportional to the moisture-content of the sample, which was reduced with increasing acetylation. This suggested that the acetylation treatment did not reduce the swelling at the elementary fibril but prevented water from entering the microfibril by modifying the regions surrounding the elementary fibrils. Using quasi-elastic neutron scattering (QENS) and a custom-built in situ relative humidity sample environment I measured experimentally the (5 - 400 ps) water dynamics inside wood cell walls for the first time and found that there are two types of bound water in the cell wall, namely, slow and fast water. The motion of both water types is well described by a jump-diffusion model, which corresponds to water molecules whose movement follows a stop and go process. Here, the slow water corresponds to water molecules that are highly associated to the wood polymers, whereas the fast water corresponds to water confined inside nanopores within the wood cell wall.

  7. Adsorption properties of Silochrom chemically modified with nickel acetylacetonate

    NASA Astrophysics Data System (ADS)

    Pakhnutova, Evgeniya; Slizhov, Yuriy

    2017-11-01

    One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.

  8. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  9. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.

    PubMed

    Lungu, Iulia Ioana; Rădulescu, Marius; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2016-01-01

    In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), β-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.

  10. Influence of forward leaning and incentive spirometry on inspired volumes and inspiratory electromyographic activity during breathing exercises in healthy subjects.

    PubMed

    Santos, Thalita Vilaboim; Ruas, Gualberto; Sande de Souza, Luciane Aparecida Pascucci; Volpe, Marcia Souza

    2012-12-01

    Breathing exercises (BE), incentive spirometry and positioning are considered treatment modalities to achieve lung re-expansion. This study evaluated the influence of incentive spirometry and forward leaning on inspired tidal volumes (V(T)) and electromyographic activity of inspiratory muscles during BE. Four modalities of exercises were investigated: deep breathing, spirometry using both flow and volume-oriented devices, and volume-oriented spirometry after modified verbal instruction. Twelve healthy subjects aged 22.7 ± 2.1 years were studied. Surface electromyography activity of diaphragm, external intercostals, sternocleidomastoid and scalenes was recorded. Comparisons among the three types of exercises, without considering spirometry after modified instruction, showed that electromyographic activity and V(T) were lower during volume-oriented spirometry (p = 0.000, p = 0.054, respectively). Forward leaning resulted in a lower V(T) when compared to upright sitting (p = 0.000), but electromyographic activity was not different (p = 0.606). Inspired V(T) and electromyographic activity were higher during volume-oriented spirometry performed after modified instruction when compared with the flow-oriented device (p = 0.027, p = 0.052, respectively). In conclusion BE using volume-oriented spirometry before modified instruction resulted in a lower work of breathing as a result of a lower V(T) and was not a consequence of the device type used. Forward leaning might not be assumed by healthy subjects during situations of augmented respiratory demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Creatine kinase: Essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry

    PubMed Central

    Wood, Troy D.; Guan, Ziqiang; Borders, Charles L.; Chen, Lorenzo H.; Kenyon, George L.; McLafferty, Fred W.

    1998-01-01

    Phenylglyoxal is an arginine-specific reagent that inactivates creatine kinase (CK). Previous results suggest that modification of the dimeric enzyme at a single arginine residue per subunit causes complete inactivation accompanied by the loss of nucleotide binding; the actual site of modification was not identified. Here, high-resolution tandem mass spectrometry (MS/MS) was used to identify three phenylglyoxal-modified Arg residues in monomeric rabbit muscle CK. Electrospray ionizaton Fourier-transform MS of the phenylglyoxal-modified CK that had lost ≈80% activity identified three species: unmodified, once-modified (+116 Da), and twice-modified (+232 Da) enzyme in a ratio of approximately 1:4:1. MS/MS restricts the derivatized sites to P122-P212 and P283-V332, whereas MS of Lys-C digestions revealed two modified peptides, A266-K297 and G116-K137. The only Arg in A266-K297 is Arg-291 (invariant), whereas MS/MS of modified G116-K137 shows that two of the three sites Arg-129, Arg-131, or Arg-134 (all invariant) can contain the modification. The recently reported x-ray crystal structure for the octameric chicken mitochondrial CK indicates that its nucleotide triphosphate-binding site indeed contains the equivalent of R291, R129, and R131 reported here to be at the active site of rabbit muscle CK. PMID:9520370

  12. A New Chemical Pathway Yielding A-Type Vitisins in Red Wines

    PubMed Central

    Araújo, Paula; Fernandes, Ana; de Freitas, Victor; Oliveira, Joana

    2017-01-01

    A new chemical pathway yielding A-type vitisins in red wines is proposed herein from the reaction between anthocyanins and oxaloacetic acid (OAA). This new chemical path is thought to occur in the first stages of the wine production even during the fermentation process. This is due to the revealed high reactivity of OAA with anthocyanins compared with the already known precursor (pyruvic acid, PA). In model solutions at wine pH (3.5), when malvidin-3-O-glucoside (mv-3-glc) is in contact with OAA and PA a decrease in the OAA concentration is observed along with the formation of A-type vitisin. Moreover, part of the OAA is also chemically converted into PA in model solutions. The reaction yields were also determined for OAA and PA using different mv-3-glc:organic acid molar ratios (1:0.5, 1:1, 1:5, 1:10; 1:50, and 1:100) and these values were always higher for OAA when compared to PA, even at the lowest molar ratio (1:0.5). The reaction yields were higher at pH 2.6 in comparison to pH 1.5 and 3.5, being less affected at pH 3.5 for OAA. These results support the idea that OAA can be at the origin of A-type vitisins in the first stages of wine production and PA in the subsequent ageing process. PMID:28375190

  13. A New Chemical Pathway Yielding A-Type Vitisins in Red Wines.

    PubMed

    Araújo, Paula; Fernandes, Ana; de Freitas, Victor; Oliveira, Joana

    2017-04-04

    A new chemical pathway yielding A-type vitisins in red wines is proposed herein from the reaction between anthocyanins and oxaloacetic acid (OAA). This new chemical path is thought to occur in the first stages of the wine production even during the fermentation process. This is due to the revealed high reactivity of OAA with anthocyanins compared with the already known precursor (pyruvic acid, PA). In model solutions at wine pH (3.5), when malvidin-3- O -glucoside (mv-3-glc) is in contact with OAA and PA a decrease in the OAA concentration is observed along with the formation of A-type vitisin. Moreover, part of the OAA is also chemically converted into PA in model solutions. The reaction yields were also determined for OAA and PA using different mv-3-glc:organic acid molar ratios (1:0.5, 1:1, 1:5, 1:10; 1:50, and 1:100) and these values were always higher for OAA when compared to PA, even at the lowest molar ratio (1:0.5). The reaction yields were higher at pH 2.6 in comparison to pH 1.5 and 3.5, being less affected at pH 3.5 for OAA. These results support the idea that OAA can be at the origin of A-type vitisins in the first stages of wine production and PA in the subsequent ageing process.

  14. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  15. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    PubMed Central

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  16. Circulating progesterone concentrations in nonlactating Holstein cows during reuse of intravaginal progesterone implants sanitized by autoclave or chemical disinfection.

    PubMed

    Melo, L F; Monteiro, P L J; Oliveira, L H; Guardieiro, M M; Drum, J N; Wiltbank, M C; Sartori, R

    2018-04-01

    The aim of this study was to compare plasma progesterone (P4) concentrations in nonlactating, multiparous Holstein cows (n = 24) treated with 2 types of intravaginal implants containing either 1.0 or 1.9 g of P4 either at the first use or during reuse of the implants after sanitizing the implant by autoclave or chemical disinfection. In a completely randomized design with a 2 × 3 factorial arrangement and 2 replicates, every cow underwent 2 of 6 treatments. Two sources of P4 [controlled internal drug release (1.9 g of P4) from Zoetis (São Paulo, Brazil), and Sincrogest (1.0 g of P4) from Ourofino (Cravinhos, Brazil)] and 3 types of processing, new (N), reused after autoclave (RA), and reused after chemical disinfection (RC), were used. After inducing luteolysis to avoid endogenous circulating P4, the cows were randomized in 1 of 6 treatments (1.9 g of N, 1.9 g of RA, 1.9 g of RC, 1.0 g of N, 1.0 g of RA, and 1.0 g RC). Cows were treated with the implants for 8 d and during this period blood samples were collected at 0, 2, 12, 24, 48, 72, 96, 120, 144, 168, and 192 h. Statistical analyses were performed using Proc-Mixed and the mean ± standard error of the mean P4 concentrations were calculated using the Proc-Means procedures of SAS 9.4 (SAS Institute Inc., Cary, NC). No interaction between treatments was observed. Comparing types of implant, average P4 concentrations during treatments were greater for 1.9 g than 1.0 g (1.46 vs. 1.14 ± 0.04 ng/mL). When types of processing were compared, average P4 concentrations did not differ between autoclaved and new inserts (1.46 vs. 1.37 ± 0.05 ng/mL; respectively), but both were greater than chemically disinfected implants (1.09 ± 0.04 ng/mL). Within 1.9-g P4 inserts, P4 concentrations from autoclaved implants were greater than new, which were greater than chemically disinfected (1.67 ± 0.06 vs. 1.49 ± 0.07 vs. 1.21 ± 0.05 ng/mL; respectively). For 1.0-g P4 implants, P4 concentrations from autoclaved did not differ from new, but both were greater than chemically disinfected (1.20 ± 0.08 vs. 1.24 ± 0.06 vs. 0.97 ± 0.05 ng/mL; respectively). In conclusion, the mean plasma P4 concentration in nonlactating Holstein cows was greater for 1.9 than 1.0 g of P4 and regardless of the type of implant, the autoclaving process provided greater circulating P4 in relation to chemical disinfection, and similar or greater P4 concentrations compared with a new implant. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.

    PubMed

    Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek

    2015-04-01

    CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C.

  18. Study on the injectability of a novel glucose modified magnesium potassium phosphate chemically bonded ceramic.

    PubMed

    Tan, Yongshan; Dong, Jinmei; Yu, Hongfa; Li, Ying; Wen, Jing; Wu, Chengyou

    2017-10-01

    A novel magnesium potassium phosphate chemically bonded ceramic (MKPCBC) was prepared as a byproduct of boron-containing magnesium oxide (B-MgO) after extracting Li 2 CO 3 from salt lakes. In this work, the influence of glucose on the properties of MKPCBC, such as the setting time, compressive strength and hydration heat, was investigated. In addition, we studied the effect of the magnesium-phosphate ratio (M/P) and liquid-solid ratio (L/S) on the injectability of MKPCBC. The pH change in glucose modified MKPCBC paste was also investigated. The phase composition and microstructure were studied in detail by using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). The results show that the optimal content of glucose is 6wt%. The optimum proportions of M/P and L/S for MKPCBC are 1.5 and 0.25, respectively. The properties of the novel MPCBC can meet the requirements of biomaterials. In addition, the retardation mechanism of glucose on MKPCBC and the hydration mechanism of novel MKPCBC were studied in detail through the continuous monitoring of the phase composition and microstructure. Copyright © 2017. Published by Elsevier B.V.

  19. Chemical Sensors Based on Cyclodextrin Derivatives.

    PubMed

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  20. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    PubMed

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Protistan Grazing Analysis by Flow Cytometry Using Prey Labeled by In Vivo Expression of Fluorescent Proteins

    PubMed Central

    Fu, Yutao; O'Kelly, Charles; Sieracki, Michael; Distel, Daniel L.

    2003-01-01

    Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells. PMID:14602649

  2. Addictive behavior among young people in Ukraine: a pilot study.

    PubMed

    Linskiy, Igor V; Minko, Aleksandr I; Artemchuk, Anatoliy Ph; Grinevich, Eugenia G; Markova, Marianna V; Musienko, Georgiy A; Shalashov, Valeriy V; Markozova, Lyubov M; Samoilova, Elena S; Kuzminov, Valeriy N; Shalashova, Ilona V; Ponomarev, Vladimir I; Baranenko, Aleksey V; Minko, Aleksey A; Goltsova, Svetlana V; Sergienko, Oksana V; Linskaya, Ekaterina I; Vyglazova, Olga V; Zhabenko, Nataliya; Zhabenko, Olena

    2012-08-01

    The AUDIT-like tests system was created for complex assessment and evaluation of the addictive status of adolescents in a Ukrainian population. The AUDIT-like tests system has been created from the Alcohol Use Disorders Identification Test (AUDIT) developed by the World Health Organization. The AUDIT-like tests were minimally modified from the original AUDIT. Attention was brought to similarities between stages of different addictions (TV, computer games, the Internet, etc.) and alcohol addiction. Seventeen AUDIT-like tests were created to detect the different types of chemical and non-chemical addictions.

  3. Physico-Chemical Properties and Biodegradability of Genetically Modified Populus trichocarpa and Pinus taeda

    NASA Astrophysics Data System (ADS)

    Edmunds, Charles Warren

    Increasing concerns over greenhouse gas emissions and the finite supply of fossil fuels lead to the goal of utilizing lignocellulosic feedstocks for biofuels, platform chemicals, and biocomposites. Lignin is responsible for the recalcitrance of lignocellulosic biomass and is a major barrier to its deconstruction. Great progress has been made in mapping and modifying the lignin biosynthetic pathway. However, the link between the genetic modification, resulting chemical and physical properties of the wood, and how these properties influence the thermomechanical and recalcitrance to biological and chemical degradation needs further investigation. In this dissertation, the study of modified Populus trichocarpa and Pinus taeda were utilized to accomplish this goal. Thermo-mechanical properties of genetically modified P. trichocarpa with altered lignin content and/or lignin structure were measured with a series of tools including; dynamic mechanical analysis, nuclear magnetic resonance, and wet chemistry techniques. Results demonstrated lignin content and lignin structure likely influence the glass transition temperature (Tg), and that decreased lignin content and the corresponding higher proportion of cell wall carbohydrates may contribute to increased molecular mobility in the wood polymer structure. The effect of lignin biosynthetic pathway modification on biological degradation of these transgenic wood specimens was of interest. However, experimental methods for fungal treatment on small young greenhouse-grown wood specimens are not well established. Therefore, a project was undertaken to develop a method for fungal inoculation and incubation for these unique specimens. Several parameters were tested, and a fungal treatment method was identified with sufficient weight loss after decay and significant reduction in variation of weight loss between replicates compared to previous experiments by direct inoculation of wood with liquid malt extract fungal culture. Utilizing the fungal treatment method which was developed, fungal pretreatment as a potential low-input and environmentally-friendly alternative to conventional pretreatment methods was tested using the white-rot fungus, Ceriporiopsis subvermispora, on wildtype and transgenic P. trichocarpa. In addition to fungal treatment, hot water and dilute acid treatments followed by enzymatic hydrolysis was tested. Results showed no clear relationship between the initial lignin content or syringyl/guaiacyl lignin monomer ratio and weight loss due to fungal treatment. P-hydroxyphenyl lignin monomer degradation of up to 60% during the fungal treatment were observed in cinnamate 3-hydroxylase down-regulated genetic lines. It was demonstrated that fungal treatment in wildtype and several transgenic lines resulted in substantial improvements in sugar yields, up to 2.4-fold increase in glucose yield and 6.7-fold increase in xylose yield after enzymatic hydrolysis. However, some genetic lines showed little benefit from fungal pretreatment, and in general hot water and dilute acid pretreatments showed similar or increased glucose yield compared to fungal treatment. The goal of the last project was to characterize P. taeda which was genetically modified for S lignin production or decreased lignin content. In addition, the amenability to pretreatment and enzymatic hydrolysis were analyzed using hot water and dilute acid pretreatments followed by enzymatic hydrolysis. In the transgenic lines modified for production of syringyl lignin, Maule staining demonstrated the intermittent deposition of syringyl lignin in the secondary xylem, while thioacidolysis showed 13% concentration of S lignin, and solid state NMR demonstrated the occurrence of beta-O-4 linkages in S lignin units. In transgenic lines modified for reduced lignin content, lignin reduction up to 33% was observed, and pretreatment and enzymatic hydrolysis demonstrated increased cellulose conversion in lowlignin samples. These results highlight the potential of softwood to be a viable bioenergy/biochemical feedstock and opens up exciting new avenue of research.

  4. Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop.

    PubMed

    Kirkland, David; Kasper, Peter; Müller, Lutz; Corvi, Raffaella; Speit, Günter

    2008-05-31

    At a recent ECVAM workshop considering ways to reduce the frequency of irrelevant positive results in mammalian cell genotoxicity tests [D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, A. Elhajouji, H.-R. Glatt, P. Hastwell, M. Hayashi, P. Kasper, S. Kirchner, A. Lynch, D. Marzin, D. Maurici, J.-R. Meunier, L. Müller, G. Nohynek, J. Parry, E. Parry, V. Thybaud, R. Tice, J. van Benthem, P. Vanparys, P. White, How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary followup animal tests: Report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55], recommendations for improvements/modifications to existing tests, and suggestions for new assays were made. Following on from this, it was important to identify chemicals that could be used in the evaluation of modified or new assays. An expert panel was therefore convened and recommendations made for chemicals to fit three different sets of characteristics, namely: This paper therefore contains these three recommended lists of chemicals and describes how these should be used for any test-evaluation programme.

  5. 78 FR 23184 - Proposed Significant New Use Rules on Certain Chemical Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... the use of special characters, any form of encryption, and be free of any defects or viruses. Docket... manufacturing and processing of a chemical substance. The extent to which a use changes the type or form of... blend-stock for conventional fossil fuels (P-11-329, P-11-330, and P-11-331), and use in a manner...

  6. The A [plus] B [double arrow] C of Chemical Thermodynamics.

    ERIC Educational Resources Information Center

    Gerhartl, F. J.

    1994-01-01

    Basic chemical thermodynamics usually treats non-p,T reactions in a stepmotherly fashion. This paper covers the main aspects of the theoretical principles of reactions (p,T; V,T; p,H; and V,U) and offers results from the ABC computer program, which was designed to show the validity of the equilibrium theory to all types of reaction modes. (PVD)

  7. The effect of Cinnamomum zeylanicum essential oil on chemical characteristics of Lyoner- type sausage during refrigerated storage

    PubMed Central

    Aminzare, Majid; Aliakbarlu, Javad; Tajik, Hossein

    2015-01-01

    The effect of Cinnamomum zeylanicum essential oil (CZEO) at two concentrations (0.02% and 0.04% v/w) on chemical composition, pH, water activity (aw), lipid oxidation, color stability and sensory characteristics of Lyoner-type sausage stored at 4 ˚C for 40 days was investigated. The moisture content of the control sample was higher (p < 0.05) than CZEO incorporated samples, while fat, ash and protein content were not affected by adding essential oil. At days 0 and 40, Lightness (L*) and whiteness index (WI) were significantly decreased and total color difference (ΔE) significantly increased (p < 0.05) by adding CZEO. With the exception of first day of storage, redness (a*) and yellowness (b*) were significantly increased and decreased, respectively during the rest of storage (p < 0.05). The pH values were not differing between the control samples and samples containing CZEO (p > 0.05). The water activity content fell in Lyoners with added CZEO during the storage. Incorporation of CZEO retard lipid oxidation process at the end of storage (p < 0.05). Samples containing highest amount of CZEO had higher sensory score compared to control sample. Our results pointed out that CZEO could be used as natural additive for increasing the chemical stability of Lyoner-type sausages. PMID:25992249

  8. Correlation of concentration of modified cassava flour for banana fritter flour using simple linear regression

    NASA Astrophysics Data System (ADS)

    Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.

    2017-12-01

    The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.

  9. Energy potential of the modified excess sludge

    NASA Astrophysics Data System (ADS)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  10. Morphology and FT IR spectra of porous silicon

    NASA Astrophysics Data System (ADS)

    Kopani, Martin; Mikula, Milan; Kosnac, Daniel; Gregus, Jan; Pincik, Emil

    2017-12-01

    The morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHy complexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHy and SiFxHy complexes in the layer.

  11. Genetic engineering and chemical conjugation of potato virus X.

    PubMed

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  12. Does low well-being modify the effects of PRISMA (Dutch DESMOND), a structured self-management-education program for people with type 2 diabetes?

    PubMed

    van Vugt, Michael; de Wit, Maartje; Bader, Suzanne; Snoek, Frank J

    2016-04-01

    Diabetes self-management education improves behavioural and clinical outcomes in type 2 diabetes patients, however little is known about the modifying effects of well-being. This is relevant given high prevalence of depression and distress among diabetes patients. We aimed to test whether low well-being modifies the effects of the PRISMA self-management education program (Dutch DESMOND). 297 primary care type 2 diabetes patients participated in the PRISMA observational study with a pre-post measurement design. Patients were grouped in low (n=63) and normal well-being (n=234). Low well-being was defined as either low mood (WHO-5<50) and/or high diabetes-distress (PAID-5>8). Outcome measures were: diabetes self-efficacy (CIDS), illness perception (IPQ) and diabetes self-care activities (SDSCA). Improvements were found in illness perception (b=1.586, p<0.001), general diet (b=1.508, p=0.001), foot care (b=0.678, p=0.037), weekly average diet (b=1.140, p=0.001), creating action plan (b=0.405, p=0.007). Well-being interaction effects were found for general diet (p=0.009), weekly average diet (p=0.022), and creating an action plan (p=0.002). PRISMA self-management education seems as effective for people with normal well-being as for people with low well-being. Further research should examine whether addressing mood and diabetes-distress as part of self-management education could reduce attrition and maintain or improve well-being among participants. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  13. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity.

    PubMed

    Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K

    2014-03-12

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.

  14. Fluorescent Nanodiamonds in Biomedical Applications.

    PubMed

    Mitura, Katarzyna Anna; Włodarczyk, Elżbieta

    2018-04-18

    Nanoparticles have an extended surface and a large surface area, which is the ratio of the size of the surfacearea to the volume. A functionalized surface can give rise to more modifications and therefore allows this nanomaterial to have new properties. Fluorescent molecules contain fluorophore, which is capable of being excited via the absorption of light energy at a specific wavelength and subsequently emitting radiation energy of a longer wavelength. A chemically modified surface of nanodiamond (ND; by carboxylation) demonstrated biocompatibility with DNA, cytochrome C, and antigens. In turn, fluorescent nanodiamonds (FNDs) belong to a group of new nanomaterials. Their surface can be modified by joining functional groups such as carboxyl, hydroxyl, or amino, after which they can be employed as a fluorescence agent. Their fluorescent properties result from defects in the crystal lattice. FNDs reach dimensions of 4-100 nm, have attributes such as photostability, long fluorescence lifetimes (10 ns), and fluorescence emission between 600 and 700 nm. They are also nontoxic, chemically inert, biocompatible, and environmentally harmless. The main purpose of this article was to present the medical applications of various types of modified NDs.

  15. Infectivity and reconstitution of TMV RNA modified with N-acetoxy-2-acetylaminofluorene or benzol [a] pyrene 7,8-dihydrodiol 9,10 oxide.

    PubMed Central

    Singer, B; Pulkrabek, P; Weinstein, I B; Grunberger, D

    1980-01-01

    TMV RNA was modified by two bulky carcinogens, N-acetoxy-2-acetylamino-fluorene (AAAF) and (+/-)-7beta, 8alpha- dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE), and the effects of such substituents on biological and physical properties was studied. For both types of modification, the loss of infectivity was directly proportional to the number of chemical modifications indicating that all modifications are lethal. Neither AAAF nor BPDE produced measurable mutations. Reconstitution of modified RNA with TMV protein was partially inhibited, but such inhibition occurred to similar extents with either carcinogen and a varying levels of modification. The data suggest that both types of substitution of TMV RNA generally permit the TMV coat protein to aggregate normally around the RNA, but that AAAF and BPDE may induce some conformational change in the initiation region that inhibits the initiation step. PMID:6776494

  16. Photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Lee, J.-S.; Stanford, J. A.; Grant, W. K.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Swanberg, E. L.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2013-09-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. Samples of as polished TlBr were treated separately with 2%Br:MeOH, 10%HF, 10%HCl and 96%SOCl2 solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry. Results suggest anion substitution at the surface with subsequent shallow heterojunction formation. Surface chemistry and valence band electronic structure were further correlated with the goal of optimizing the long-term stability and radiation response.

  17. Chemically reduced graphene oxide-P25-Au nanocomposite materials and their photoelectrocatalytic and photocatalytic applications.

    PubMed

    Praveen, Raju; Ramaraj, Ramasamy

    2016-10-05

    Visible light active photocatalysts consisting of gold nanoparticle (Au NP) decorated chemically reduced graphene oxide-P25 nanocomposite materials (CRGO-P25-Au NCMs) were prepared through a one-pot chemical reduction method. The nanocomposite materials were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) analyses. The performances of CRGO-P25-Au NCM modified ITO electrodes were evaluated towards the photoelectrochemical oxidation of methanol. The photoelectrode fabricated using CRGO-P25-Au NCM exhibited a higher photocurrent of 293 μA cm -2 compared to other control electrodes. The CRGO-P25-Au NCMs were also used for the photocatalytic reduction of highly toxic chromium(vi) ions to chromium(iii) ions in the presence of oxalic acid as a sacrificial electron donor. The results showed that around 75% of the Cr(vi) ions were photocatalytically reduced to Cr(iii) ions by the CRGO-P25-Au NCM within the light irradiation time of 1 h. In both applications, the enhanced catalytic activity of the CRGO-P25-Au NCM was attributed to the improved visible light absorption and the reduced charge recombination exerted by the interaction of CRGO and Au NPs with P25 and their synergistic effects.

  18. A self-assembled 2D/2D-type protonated carbon nitride-modified graphene oxide nanocomposite with improved photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xie, Linfang; Ni, Jie; Tang, Bo; He, Guangyu; Chen, Haiqun

    2018-03-01

    A surface charge modified g-C3N4 was successfully prepared by protonation of nitric acid. Combination of the protonated g-C3N4 (pCN) and graphene oxide (GO) layers created a 2D/2D-type composite (pCN/GO) under the synergistic effect of sonication-exfoliation and self-assembly. The obtained 2D nanostructure of pCN/GO was explored by electron microscopy analysis. The photocatalytic degradation of rhodamine B (RhB) and ciprofloxacin (CIP) showed a distinctly high efficiency of pCN/GO-5% with excellent stability, which is superior not only to that of g-C3N4, pCN and g-C3N4/GO-5% nanocomposites we prepared, but also to what was reported previously. The optimized combination of GO and pCN afforded the pCN/GO composite intimate interfacial contact within the heterojunction, which promoted the separation of photogenerated electron-hole pairs as evidenced by zeta potential, photoluminescence and photocurrent measurements. A visible-light photocatalytic degradation mechanism associated with pCN/GO nanocomposites was also proposed.

  19. Enzyme immobilization techniques on poly(glycidyl methacrylate-co-ethylene dimethacrylate) carrier with penicillin amidase as model.

    PubMed

    Drobník, J; Saudek, V; Svec, F; Kálal, J; Vojtísek, V; Bárta, M

    1979-08-01

    Two types of bead-form macroporous carriers based on glycidyl methacrylate with ethylene dimethacrylate copolymers were used for the immobilization of penicillin amidase either directly or after chemical modification. Direct binding through oxirane groups, which is equally efficient at pH 4.2 and 7, is relatively slow and brings about an activity loss at low enzyme concentrations. The most efficient immobilization was achieved on glutaraldehyde-activated amino carrier, irrespective of whether the amino groups were formed by ammonia or 1,6-diaminohexane treatment of the original oxirane carrier. Hydrazine treatment gave lower immobilization yields. The same is true of the azide method independent of the length of the spacer. Most enzyme activity was preserved by coupling the carbodiimide-activated enzyme to the carrier with alkyl or arylamino groups at the end of a longer substituent. Immobilization on diazo-modified carrier gave average results. Rapid immobilization by a lysine-modified phosgene-treated carrier resulted in an activity loss. It is suggested that multipoint and very tight attachment of the enzyme molecule to the matrix decreased the activity. The immobilized activity is quite stable in solution and very stable upon lyophilization with sucrose.

  20. Recent innovations in edible and/or biodegradable packaging materials.

    PubMed

    Guilbert, S; Cuq, B; Gontard, N

    1997-01-01

    Certain newly discovered characteristics of natural biopolymers should make them a choice material to be used for different types of wrappings and films. Edible and/or biodegradable packagings produced from agricultural origin macromolecules provide a supplementary and sometimes essential means to control physiological, microbiological, and physicochemical changes in food products. This is accomplished (i) by controlling mass transfers between food product and ambient atmosphere or between components in heterogeneous food product, and (iii) by modifying and controlling food surface conditions (pH, level of specific functional agents, slow release of flavour compounds), it should be stressed that the material characteristics (polysaccharide, protein, or lipid, plasticized or not, chemically modified or not, used alone or in combination) and the fabrication procedures (casting of a film-forming solution, thermoforming) must be adapted to each specific food product and usage condition (relative humidity, temperature). Some potential uses of these materials (e.g. wrapping of various fabricated foods; protection of fruits and vegetables by control of maturation; protection of meat and fish; control of internal moisture transfer in pizzas), which are hinged on film properties (e.g. organoleptic, mechanical, gas and solute barrier) are described with examples.

  1. Modeling CO2 degassing and pH in a stream-aquifer system

    USGS Publications Warehouse

    Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.

    1998-01-01

    Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and pH in Pinal Creek. The model used the numerical iteration method to solve the nonlinear relation between pH and CT. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that CT and pH in the stream water were controlled by the mixing of groundwater with stream water and CO2 degassing.

  2. Cloning and expression of vgb gene in Bacillus cereus, improve phenol and p-nitrophenol biodegradation

    NASA Astrophysics Data System (ADS)

    Vélez-Lee, Angel Eduardo; Cordova-Lozano, Felipe; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    2016-02-01

    In this work, the vgb gene from Vitrocilla stercoraria was used to genetically modify a Bacillus cereus strain isolated from pulp and paper wastewater effluent. The gene was cloned in a multicopy plasmid (pUB110) or uni-copy gene using a chromosome integrative vector (pTrpBG1). B. cereus and its recombinant strains were used for phenol and p-nitrophenol biodegradation using aerobic or micro-aerobic conditions and two different temperatures (i.e. 37 and 25 °C). Complete (100%) phenol degradation was obtained for the strain where the multicopy of vgb gene was present, 98% for the strain where uni-copy gene was present and 45% for wild type strain for the same experimental conditions (i.e. 37 °C and aerobic condition). For p-nitrophenol degradation at the same conditions, the strain with the multi-copy vgb gene was capable to achieve 50% of biodegradation, ˜100% biodegradation was obtained using the uni-copy strain and ˜24% for wild type strain. When the micro-aerobic condition was tested, the biodegradation yield showed a significant decreased. The biodegradation trend observed for aerobic was similar for micro-aerobic assessments: the modified strains showed higher degradation rates when compared with wild type strain. For all experimental conditions, the highest p-nitrophenol degradation was observed using the strain with uni-copy of vgb gene. Besides the increase of biodegradative capability of the strain, insertion of the vgb gene was observed able to modify other morphological characteristics such as avoiding the typical flake formation in the B. cereus culture. In both cases, the modification seems to be related with the enhancement of oxygen supply to the cells generated by the vgb gene insertion. The application of the genetically modified microorganism (GMM) to the biodegradation of pollutants in contaminated water possesses high potential as an environmentally friendly technology to facing this emergent problem.

  3. 77 FR 40033 - Certain New Chemicals; Receipt and Status Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... show photographic identification, pass through a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X-ray machine and subject to search. Visitors will be provided an...-(isocyanatomethyl)- alkylcyclohexane. P-10-0378 05/03/2012 04/30/2012 (G) Metal oxide modified with alkyl and vinyl...

  4. Potential of chitosan (chemically-modified chitin) for extraction of lead-arsenate contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...

  5. Venoarterial modified ultrafiltration versus conventional arteriovenous modified ultrafiltration during cardiopulmonary bypass surgery.

    PubMed

    Mohanlall, Rakesh; Adam, Jamila; Nemlander, Arto

    2014-01-01

    Different types of modified ultrafiltration (MUF) systems evaluated showed that none of the MUF techniques adhered to the normal venous to arterial blood flow dynamics. This study compared a conventional arteriovenous modified ultrafiltration (AVMUF) system to a custom- designed venoarterial modified ultrafiltration (VAMUF) system. Randomized, controlled clinical study conducted at the Northwest Armed Forces Military hospital in Tabuk, Saudi Arabia. Sixty patients who underwent MUF during the years 2007 and 2009 were divided into 2 groups: the AVMUF (n=30) and the VAMUF (n=30) groups. MUF was performed for a mean time of 12 minutes in both groups. In AVMUF, blood was removed from the aorta, hemoconcentrated, and infused into the right atrium (RA). In VAMUF, blood flow was from the RA through a hemoconcentrator and re-infused into the aorta. Results of the study showed that the VAMUF group required a shorter ventilation time (P < .001), in.tensive care unit (ICU) (P=.003), and hospital stay (P=.007) than the AVMUF group. Results also demonstrated a lower percentage of fluid balance (P=.008) in the VAMUF group. The systolic (P < .001) and mean blood pres.sures (P < .001) were significantly higher after VAMUF, with a decrease in heart rate (P < .001) and central venous pressure (P=.002). The VAMUF group showed a significantly greater decrease of creatinine (P < .001), serum lactacte (P < .001), and uric acid (P < .027) over time with no significant differences in oximetry. Results prove that VAMUF is a more physiological technique than AVMUF.

  6. Long term storage of virus templated fluorescent materials for sensing applications

    NASA Astrophysics Data System (ADS)

    Seetharam, Raviraja N.; Szuchmacher Blum, Amy; Soto, Carissa M.; Whitley, Jessica L.; Sapsford, Kim E.; Chatterji, Anju; Lin, Tianwei; Johnson, John E.; Guerra, Charles; Satir, Peter; Ratna, Banahalli R.

    2008-03-01

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less

  8. Cell signaling, post-translational protein modifications and NMR spectroscopy

    PubMed Central

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy

    2016-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy. PMID:23011410

  9. The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver

    2017-09-01

    This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.

  10. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions.

  11. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  12. Engineering birnessite-type MnO2 nanosheets on fiberglass for pH-dependent degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Xin Zhang, Yu; Long Guo, Xiao; Huang, Ming; Dong Hao, Xiao; Yuan, Yuan; Hua, Chao

    2015-08-01

    We construct hierarchical MnO2 nanosheets @ fiberglass nanostructures via one-pot hydrothermal method without any surfactants. The morphology and structure of MnO2-modified fiberglass composites are examined by focus ion beam scanning electron microscopy (FIB/SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The birnessite-type MnO2 nanosheets are observed to grow vertically on the surface of fiberglass. Furthermore, the birnessite-type MnO2-fiberglass composites exhibit good ability for degradation of methylene blue (MB) in different pH levels. In neutral solution (pH 6.5-7.0), it achieves a high removal rate of 96.1% (2 h, at 60 °C) in the presence of H2O2; and in acidic environment (pH 1.5), 96.8% of MB solution (20 mg/L, 100 mL) is decomposed by oxidation within only 5 min. In principles, the rational design of MnO2 nanosheets-decorated fiberglass architectures demonstrated the suitability of the low-cost MnO2-modified fiberglass nanostructure for water treatment.

  13. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices

    NASA Astrophysics Data System (ADS)

    Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2009-10-01

    The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.

  14. Weight loss with a modified Mediterranean-type diet using fat modification: a randomized controlled trial.

    PubMed

    Austel, A; Ranke, C; Wagner, N; Görge, J; Ellrott, T

    2015-08-01

    There is evidence that Mediterranean diets with a high proportion of olive oil and nuts can be effective for weight management and prevention of cardiovascular disease. It might be difficult for populations with other eating habits to follow such diets. Therefore, a modified Mediterranean-type diet using fat modification through neutral and butter-flavored canola oil, walnuts and walnut oil with two portion-controlled sweet daily snacks was tested in Germany. Randomized waiting-list control study with overweight/grade 1 obese subjects: 12-week self-help modified Mediterranean-type diet, 6 weeks of diet plans and 6 weeks of weight loss maintenance training. Trial duration was 12 months. Intervention group (IG) included 100 participants (average age of 52.4 years, weight 85.1 kg and body mass index (BMI) 30.1 kg/m(2)), waiting-list control group (CG) included 112 participants (52.6 years, 84.1 kg and 30.1 kg/m(2)). Per-protocol weight loss after 12 weeks was 5.2 kg in IG vs 0.4 kg in CG (P ⩽ 0.0001), BMI -1.8 vs -0.1 kg/m(2) (P ⩽ 0.0001), waist circumference -4.7 vs -0.9 cm (P ⩽ 0.0001). Triglycerides, total cholesterol and LDL cholesterol improved significantly in IG but not in CG. One-year dropouts: 44% in IG and 53% in CG. Weight loss after 12 months: 4.2 kg (pooled data). A five-meal modified Mediterranean-type diet with two daily portion-controlled sweet snacks was effective for weight management in a self-help setting for overweight and grade 1 obese subjects. Fat modification through canola oil, walnuts and walnut oil improved blood lipids even at 12 months.

  15. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  16. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE PAGES

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    2017-02-22

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  17. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  18. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  19. Application of visible/near-infrared reflectance spectroscopy for predicting internal and external quality in pepper.

    PubMed

    Toledo-Martín, Eva María; García-García, María Carmen; Font, Rafael; Moreno-Rojas, José Manuel; Gómez, Pedro; Salinas-Navarro, María; Del Río-Celestino, Mercedes

    2016-07-01

    The characterization of internal (°Brix, pH, malic acid, total phenolic compounds, ascorbic acid and total carotenoid content) and external (color, firmness and pericarp wall thickness) pepper quality is necessary to better understand its possible applications and increase consumer awareness of its benefits. The main aim of this work was to examine the feasibility of using visible/near-infrared reflectance spectroscopy (VIS-NIRS) to predict quality parameters in different pepper types. Commercially available spectrophotometers were evaluated for this purpose: a Polychromix Phazir spectrometer for intact raw pepper, and a scanning monochromator for freeze-dried pepper. The RPD values (ratio of the standard deviation of the reference data to the standard error of prediction) obtained from the external validation exceeded a value of 3 for chlorophyll a and total carotenoid content; values ranging between 2.5 < RPD < 3 for total phenolic compounds; between 1.5 < RPD <2.5 for °Brix, pH, color parameters a* and h* and chlorophyll b; and RPD values below 1.5 for fruit firmness, pericarp wall thickness, color parameters C*, b* and L*, vitamin C and malic acid content. The present work has led to the development of multi-type calibrations for pepper quality parameters in intact and freeze-dried peppers. The majority of NIRS equations obtained were suitable for screening purposes in pepper breeding programs. Components such as pigments (xanthophyll, carotenes and chlorophyll), glucides, lipids, cellulose and water were used by modified partial least-squares regression for modeling the predicting equations. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. 40 CFR 721.5905 - Modified phenolic resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5905 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified phenolic resin (PMN...

  1. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells. Electronic supplementary information (ESI) available: 13C NMR of DEX-CHO, 2D NMR spectra of DEX-CHO, 1H NMR of DEX-IM, 1H NMR of DEX-IM-DOX conjugated, absorbance spectra of DEX-IM-DOX conjugated, DLS, FE-SEM and TEM image of DEX-CHO-5, emission spectra of pyrene and Nile red with DEX-IM-10, FE-SEM image of DEX-IM-DOX loaded, FE-SEM image of acid treated DEX-IM-5, absorbance spectra of DOX released, in vitro DOX release from drug loaded and conjugated vesicles in the presence of serum (FBS), DLS data depicting stability of DEX-IM vesicles in serum (FBS), 1HNMR, 13C NMR and HR-MS spectra of all intermediates are provided. See DOI: 10.1039/c5nr00799b

  2. Effects of soil pH on the Vicia-micronucleus genotoxicity assay.

    PubMed

    Dhyèvre, Adrien; Foltête, Anne Sophie; Aran, Delphine; Muller, Serge; Cotelle, Sylvie

    2014-11-01

    In the field of contaminated sites and soil management, chemical analyses only bring typological data about pollution. As far as bioavailability and effects on organisms are concerned, we need ecotoxicology tools. In this domain, among many existing tests, we chose to study genotoxicity because it is a short-term endpoint with long-term consequences. The aim of this study is to assess the effects of soil pH on the results of the Vicia faba root tip micronucleus test for the two following reasons: (i) to define the pH range within which the test can be performed without modifying the soil to be tested, within the framework of the ISO standard of the test and (ii) to provides information about the effects of the pH on the genotoxic potential of soils. In this context, we modified the pH of a standard soil with HCl or NaOH and we spiked the matrix with copper (2, 4 and 8 mmol kg(-1) dry soil) or with maleic hydrazide, an antigerminative chemical (5, 10 and 20 μmol kg(-1) dry soil). We concluded that the pH had no effect on the mitotic index or micronucleus frequency in the root cells of the negative controls: extreme pH values did not induce micronucleus formation in root cells. Moreover, according to our results, the Vicia-micronucleus test can be performed with pH values ranging between 3.2 and 9.0, but in the ISO 29200 "Soil quality--assessment of genotoxic effects on higher plants--V. faba micronucleus test" we recommended to use a control soil with a pH value ranging between 5 and 8 for a more accurate assessment of chemical genotoxicity. We also found that acid pH could increase the genotoxic potential of pollutants, especially heavy metals. With hydrazide maleic spiked soil, plants were placed in a situation of double stress, i.e. toxicity caused by extreme pH values and toxicity induced by the pollutant. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment

    NASA Astrophysics Data System (ADS)

    Grodzicki, M.; Mazur, P.; Ciszewski, A.

    2018-05-01

    The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.

  4. 46 CFR 45.53 - Summer freeboard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... summer for a type A vessel is F in the following formula modified by the corrections in this subpart: F (inches)=10.2×P 1×D where P 1 is defined in § 45.55 and D is the depth for freeboard in feet. (b) Except as required in paragraph (c) of this section, the minimum freeboard in summer for a type B vessel is...

  5. 46 CFR 45.53 - Summer freeboard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... summer for a type A vessel is F in the following formula modified by the corrections in this subpart: F (inches)=10.2×P 1×D where P 1 is defined in § 45.55 and D is the depth for freeboard in feet. (b) Except as required in paragraph (c) of this section, the minimum freeboard in summer for a type B vessel is...

  6. 40 CFR 721.2540 - Diphenylmethane diisocyanate (MDI) modified.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2540 Diphenylmethane diisocyanate (MDI) modified. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a...

  7. Integrity of Disposable Nitrile Exam Gloves Exposed to Simulated Movement

    PubMed Central

    Phalen, Robert N.; Wong, Weng Kee

    2011-01-01

    Every year, millions of health care, first responder, and industry workers are exposed to chemical and biological hazards. Disposable nitrile gloves are a common choice as both a chemical and physical barrier to these hazards, especially as an alternative to natural latex gloves. However, glove selection is complicated by the availability of several types or formulations of nitrile gloves, such as low-modulus, medical-grade, low-filler, and cleanroom products. This study evaluated the influence of simulated movement on the physical integrity (i.e., holes) of different nitrile exam glove brands and types. Thirty glove products were evaluated out-of-box and after exposure to simulated whole-glove movement for 2 hr. In lieu of the traditional 1-L water-leak test, a modified water-leak test, standardized to detect a 0.15 ± 0.05 mm hole in different regions of the glove, was developed. A specialized air inflation method simulated bidirectional stretching and whole-glove movement. A worst-case scenario with maximum stretching was evaluated. On average, movement did not have a significant effect on glove integrity (chi-square; p=0.068). The average effect was less than 1% between no movement (1.5%) and movement (2.1%) exposures. However, there was significant variability in glove integrity between different glove types (p ≤ 0.05). Cleanroom gloves, on average, had the highest percentage of leaks, and 50% failed the water-leak test. Low-modulus and medical-grade gloves had the lowest percentages of leaks, and no products failed the water-leak test. Variability in polymer formulation was suspected to account for the observed discrepancies, as well as the inability of the traditional 1-L water-leak test to detect holes in finger/thumb regions. Unexpectedly, greater than 80% of the glove defects were observed in the finger and thumb regions. It is recommended that existing water-leak tests be re-evaluated and standardized to account for product variability. PMID:21476169

  8. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DOE PAGES

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N. M.; ...

    2016-07-05

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters asmore » assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less

  9. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites

    PubMed Central

    Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong

    2016-01-01

    This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR. PMID:28787891

  10. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites.

    PubMed

    Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong

    2016-02-02

    This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.

  11. Modified Allergens for Immunotherapy.

    PubMed

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  12. Study of surface passivation as a function of InP closed-ampoule solar cell fabrication processing variables

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Jenkins, Phillip; Goradia, Manju; Goradia, Chandra; Bailey, Sheila; Weinberg, Irving; Jayne, Douglas

    1990-01-01

    The effects of various surface preparation procedures, including chemical treatment and anodic or chemical oxidation, closed-ampoule diffusion conditions, and post-diffusion surface preparation and annealing conditions, on the passivating properties of InP have been investigated in order to optimize the fabrication procedures of n(+)p InP solar cells made by closed-ampoule diffusion of sulfur into p-type InP. The InP substrates used were p-type Cd-doped to a level of 1.7 x 10 to the 16th/cu cm, Zn-doped to levels of 2.2 x 10 to the 16th and 1.2 x 10 to the 18th/cu cm, and n-type S-doped to 4.4 x 10 to the 18th/cu cm. The passivating properties have been evaluated from photoluminescence (PL) and conductance-voltage (G-V) data. Good agreement was found between the level of surface passivation and the composition of different surface layers as revealed by X-ray photoelectron spectroscopy (XPS) analysis.

  13. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered chemicals...

  14. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An Efficient Lanthanide-Dependent DNAzyme Cleaving 2'-5'-Linked RNA.

    PubMed

    Zhou, Wenhu; Ding, Jinsong; Liu, Juewen

    2016-05-17

    RNA can form two types of linkage. In addition to the predominant 3'-5' linkage, 2'-5'-linked RNA is also important in biology, medicine, and prebiotic studies. Here, in vitro selection was used to isolate a DNAzyme that specifically cleaves 2'-5' RNA by using Ce(3+) as the metal cofactor, but leaves the 3'-5' counterpart intact. This Ce5 DNAzyme requires trivalent light lanthanide ions and shows a rate of 0.16 min(-1) in the presence of 10 μm Ce(3+) ; the activity decreases with heavier lanthanide ions. This is the fastest DNAzyme reported for this reaction, and it might enable applications in chemical biology. As a proof-of-concept, using this DNAzyme, the reactions between phosphorothioate-modified RNA and strongly thiophilic metals (Hg(2+) and Tl(3+) ) were studied as a function of pH. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and characterization of polycrystalline CdSiP2

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Sarkisov, S. Yu; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A modified method is proposed for the CdSiP2 compound synthesis from elemental starting components. The developed technique allows completing the synthesis process within 30 h. The phase and chemical composition of the synthesized material were confirmed by the x-ray diffraction analysis and scanning electron microscopy with energy-dispersive spectroscopy. The transparent crystal block sized 3 × 3 × 2 mm3 was cut from the polycrystalline ingot and characterized by optical methods.

  17. Fusogenic pH sensitive liposomal formulation for rapamycin: improvement of antiproliferative effect.

    PubMed

    Ghanbarzadeh, Saeed; Khorrami, Arash; Mohamed Khosroshahi, Leila; Arami, Sanam

    2014-07-01

    Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets. The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line. Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50 nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72 h. The particle size, zeta potential, and EE% of the liposomes were 165 ± 12.3 and 178 ± 15.4 nm, -39.6 ± 1.3, and -41.2 ± 2.1 mV as well as 76.9 ± 2.6 and 76.9 ± 2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4 °C than 25 °C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.

  18. Effect of modified atmosphere packaging and irradiation in combination on content of nitrosamines in cooked pork sausage.

    PubMed

    Song, I H; Kim, W J; Jo, C; Ahn, H J; Kim, J H; Byun, M W

    2003-06-01

    The effect of modified atmosphere packaging and irradiation in combination on nitrosodimethylamine (NDMA) and nitrosopyrrolidine (NPYR) levels in pork sausage was studied. Emulsion-type cooked pork sausage was manufactured and packaged in aerobic, CO2 (100%), N2 (100%), and CO2/N2 (25%/75%) environments, respectively, and irradiated at 0, 5, 10, and 20 kGy with gamma irradiation. The nitrosamine contents were significantly reduced by irradiation, and the reduction of nitrosamines was more extensive with modified atmosphere packaging than with aerobic packaging. The correlation coefficient between irradiation dose and nitrosamine content indicated that irradiation can reduce the levels of nitrosamines. The combination of irradiation and modified atmosphere packaging is effective in enhancing the chemical safety of sausage by reducing nitrosamines, if present, as well as enhancing the microbial safety of cooked pork sausage.

  19. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  20. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature.

    PubMed Central

    D'Ettorre, P; Mondy, N; Lenoir, A; Errard, C

    2002-01-01

    Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching. PMID:12350253

  1. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  2. Analysis of the gutta-percha filled area in C-shaped mandibular molars obturated with a modified MicroSeal technique.

    PubMed

    Ordinola-Zapata, R; Bramante, C M; de Moraes, I G; Bernardineli, N; Garcia, R B; Gutmann, J L

    2009-03-01

    To analyse the gutta-percha filled area of C-shaped molar teeth root filled with the modified MicroSeal technique with reference to the radiographic features and the C-shaped canal configuration. Twenty-three mandibular second molar teeth with C-shaped roots were classified according to their radiographic features as: type I--merging, type II--symmetrical and type III--asymmetrical. The canals were root filled using a modified technique of the MicroSeal system. Horizontal sections at intervals of 600 mum were made 1 mm from the apex to the subpulpal floor level. The percentage of gutta-percha area from the apical, middle and coronal levels of the radiographic types was analysed using the Kruskal-Wallis test. Complementary analysis of the C-shaped canal configurations (C1, C2 and C3) determined from cross-sections from the apical third was performed in a similar way. No significant differences were found between the radiographic types in terms of the percentage of gutta-percha area at any level (P > 0.05): apical third, type I: 77.04%, II: 70.48% and III: 77.13%, middle third, type I: 95.72%, II: 93.17%, III: 91.13% and coronal level, type I: 98.30%, II: 98.25%, III: 97.14%. Overall, the percentage of the filling material was lower in the apical third (P < 0.05). No significant differences were found between the C-shaped canal configurations apically; C1: 72.64%, C2: 79.62%, C3: 73.51% (P > 0.05). The percentage of area filled with gutta-percha was similar in the three radiographic types and canal configuration categories of C-shaped molars. These results show the difficulty of achieving predictable filling of the root canal system when this anatomical variation exists. In general, the apical third was less completely filled.

  3. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method.

    PubMed

    Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari

    2014-10-27

    Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modeling covalent-modifier drugs.

    PubMed

    Awoonor-Williams, Ernest; Walsh, Andrew G; Rowley, Christopher N

    2017-11-01

    In this review, we present a summary of how computer modeling has been used in the development of covalent-modifier drugs. Covalent-modifier drugs bind by forming a chemical bond with their target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed. In some cases, this results in irreversible inhibition of the target, but some targeted covalent inhibitor (TCI) drugs bind covalently but reversibly. Computer modeling is widely used in drug discovery, but different computational methods must be used to model covalent modifiers because of the chemical bonds formed. Structural and bioinformatic analysis has identified sites of modification that could yield selectivity for a chosen target. Docking methods, which are used to rank binding poses of large sets of inhibitors, have been augmented to support the formation of protein-ligand bonds and are now capable of predicting the binding pose of covalent modifiers accurately. The pK a 's of amino acids can be calculated in order to assess their reactivity towards electrophiles. QM/MM methods have been used to model the reaction mechanisms of covalent modification. The continued development of these tools will allow computation to aid in the development of new covalent-modifier drugs. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. S-Nitrosothiol-Modified Nitric Oxide-Releasing Chitosan Oligosaccharides as Antibacterial Agents

    PubMed Central

    Lu, Yuan; Shah, Anand; Hunter, Rebecca A.; Soto, Robert J.; Schoenfisch, Mark H.

    2017-01-01

    S-nitrosothiol-modified chitosan oligosaccharides were synthesized by reaction with 2-iminothiolane hydrochloride and 3-acetamido-4,4-dimethylthietan-2-one, followed by the thiol nitrosation. The resulting nitric oxide (NO)-releasing chitosan oligosaccharides stored ~0.3 μmol NO/mg chitosan. Both the chemical structure of the nitrosothiol (i.e., primary and tertiary) and the use of ascorbic acid as a trigger for NO donor decomposition were used to control the NO-release kinetics. With ascorbic acid, the S-nitrosothiol-modified chitosan oligosaccharides elicited a 4-log reduction in Pseudomonas aeruginosa (P. aeruginosa) viability. Confocal microscopy indicated that the primary S-nitrosothiol-modified chitosan oligosaccharides associated more with the bacteria relative to the tertiary S-nitrosothiol system. The primary S-nitrosothiol-modified chitosan oligosaccharides elicited minimal toxicity towards L929 mouse fibroblast cells at the concentration necessary for a 4-log reduction in bacterial viability, further demonstrating the potential of S-nitrosothiol-modified chitosan oligosaccharides as NO-release therapeutics. PMID:25449913

  6. A new modified CKD-EPI equation for Chinese patients with type 2 diabetes.

    PubMed

    Liu, Xun; Gan, Xiaoliang; Chen, Jinxia; Lv, Linsheng; Li, Ming; Lou, Tanqi

    2014-01-01

    To improve the performance of glomerular filtration rate (GFR) estimating equation in Chinese type 2 diabetic patients by modification of the CKD-EPI equation. A total of 1196 subjects were enrolled. Measured GFR was calibrated to the dual plasma sample 99mTc-DTPA-GFR. GFRs estimated by the re-expressed 4-variable MDRD equation, the CKD-EPI equation and the Asian modified CKD-EPI equation were compared in 351 diabetic/non-diabetic pairs. And a new modified CKD-EPI equation was reconstructed in a total of 589 type 2 diabetic patients. In terms of both precision and accuracy, GFR estimating equations all achieved better results in the non-diabetic cohort comparing with those in the type 2 diabetic cohort (30% accuracy, P≤0.01 for all comparisons). In the validation data set, the new modified equation showed less bias (median difference, 2.3 ml/min/1.73 m2 for the new modified equation vs. ranged from -3.8 to -7.9 ml/min/1.73 m2 for the other 3 equations [P<0.001 for all comparisons]), as was precision (IQR of the difference, 24.5 ml/min/1.73 m2 vs. ranged from 27.3 to 30.7 ml/min/1.73 m2), leading to a greater accuracy (30% accuracy, 71.4% vs. 55.2% for the re-expressed 4 variable MDRD equation and 61.0% for the Asian modified CKD-EPI equation [P = 0.001 and P = 0.02]). A new modified CKD-EPI equation for type 2 diabetic patients was developed and validated. The new modified equation improves the performance of GFR estimation.

  7. Immobilization of endo-polygalacturonase from Aspergillus niger on various types of macromolecular supports.

    PubMed

    Pifferi, P G; Tramontini, M; Malacarne, A

    1989-04-20

    Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.

  8. Effects of process variables on the yield stress of rheologically modified biomass

    Treesearch

    Joseph R. Samaniuk; C Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2015-01-01

    Additives that alter the rheology of lignocellulosic biomass suspensions were tested under conditions of variable pH, temperature, and solid concentration. The effects of certain ions, biomass type, after the addition of rheological modifier were also examined. Torque and vane rheometry were used to measure the yield stress of samples. It was found that the...

  9. Numerical artifacts in the Generalized Porous Medium Equation: Why harmonic averaging itself is not to blame

    NASA Astrophysics Data System (ADS)

    Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot

    2018-05-01

    The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.

  10. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    PubMed

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  11. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies

    PubMed Central

    Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.

    2016-01-01

    ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478

  12. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with alkyl...

  13. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  14. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  15. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  16. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  17. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified polymer of vinyl acetate and... Significant New Uses for Specific Chemical Substances § 721.8658 Modified polymer of vinyl acetate and.... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary...

  18. Remote-loading labeling of liposomes with (99m)Tc-BMEDA and its stability evaluation: effects of lipid formulation and pH/chemical gradient.

    PubMed

    Li, Shihong; Goins, Beth; Phillips, William T; Bao, Ande

    2011-03-01

    Efficient, convenient, and stable radiolabeling plays a critical role for the monitoring of liposome behavior via either blood sampling, organ distribution, or noninvasive nuclear imaging. The direct labeling of liposome-carrying drugs without any prior modification undoubtedly is convenient and optimal for liposomal drug testing. In this article, we investigated the effect of various lipid formulations and pH/chemical gradients on the radiolabeling efficiency and entrapment stability of technetium-99m ((99m)Tc) remotely loaded into liposomes, using (99m)Tc-N,N-bis(2-mercaptoethyl)-N',N'-diethyl-ethylenediamine ((99m)Tc-BMEDA) complex. The tested liposomes either contained unsaturated lipid or possessed various surface charges. (99m)Tc could be efficiently loaded into various premanufactured liposomes containing either an ammonium sulfate pH, citrate pH, or glutathione (GSH) chemical gradient. (99m)Tc-entrapment stabilities of these liposomes in phosphate-buffered saline (PBS; pH 7.4) buffer at 25°C were mainly dependent on the pH/chemical gradient, but not lipid formulation. Stability sequence was ammonium sulfate pH-gradient>citrate pH-gradient>GSH-gradient. Stabilities of (99m)Tc-liposomes in 50% fetal bovine serum (FBS)/PBS (pH 7.4) buffer at 37°C are dependent on both lipid formulation and pH/chemical gradient. Specifically, (99m)Tc labeling of the ammonium sulfate pH-gradient liposomes were less stable in 50% FBS/PBS than in PBS, whereas noncationic liposomes with citrate pH- or GSH-gradient displayed higher stability, except that anionic citrate pH-gradient liposomes showed no stability difference in these two media. Cationic liposomes aggregated in 50% FBS/PBS, forming a new discrete fraction with larger particle sizes. These in vitro characterization results have indicated the optimism of using (99m)Tc-BMEDA for labeling pH/GSH gradient liposomes without the requirement of modifying lipid formulation for liposomal therapeutic-agent development.

  19. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand and comparison with the modified closed-loop ASTM F739 method 1. No fist clenching.

    PubMed

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The aim was to develop a whole glove permeation method for cyclohexanol to generate permeation parameter data for a non-moving dextrous robot hand (normalized breakthrough time t b , standardized breakthrough time t s , steady state permeation rate P s , and diffusion coefficient D). Four types of disposable powderless, unsupported, and unlined nitrile gloves from the same producer were investigated: Safeskin Blue and Kimtech Science Blue, Purple, and Sterling. The whole glove method developed involved a peristaltic pump for water circulation through chemically resistant Viton tubing to continually wash the inner surface of the test glove via holes in the tubing, a dextrous robot hand operated by a microprocessor, a chemically protective nitrile glove to protect the robot hand, an incubator to maintain 35°C temperature, and a hot plate to maintain 35°C at the sampling point of the circulating water. Aliquots of 1.0 mL were sampled at regular time intervals for the first 60 min followed by removal of 0.5 mL aliquots every hour to 8 hr. Quantification was by the internal standard method after gas chromatography-selective ion electron impact mass spectrometry using a non-polar capillary column. The individual glove values of t b and t s differed for the ASTM closed loop method except for Safeskin Blue, but did not for the whole glove method. Most of the kinetic parameters agreed within an order of magnitude for the two techniques. The order of most protective to least protective glove was Blue and Safeskin, then Purple followed by Sterling for the whole gloves. The analogous order for the modified F739 ASTM closed loop method was: Safeskin, Blue, Purple, and Sterling, almost the same as for the whole glove. The Sterling glove was "not recommended" from the modified ASTM data, and was "poor" from the whole glove data.

  20. pH sensitive silica nanotubes as rationally designed vehicles for NSAIDs delivery.

    PubMed

    Sousa, Célia T; Nunes, Cláudia; Proença, Mariana P; Leitão, Diana C; Lima, José L F C; Reis, Salette; Araújo, João P; Lúcio, Marlene

    2012-06-01

    A novel pH-sensitive drug delivery system based on functionalized silica nanotubes was developed for the incorporation of non-steroidal anti-inflammatory drugs (NSAIDs), aimed at a tailored drug release in acidic conditions characteristic of inflamed tissues. Silica nanotubes (SNTs) were synthesized by a nanoporous alumina template assisted sol-gel method. Inner surfaces were physically and chemically modified to improve both the functionalization and subsequent incorporation of the drug. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) were used to characterize the designed nanocarriers and their functionalization. To achieve the highest degree of functionalization, three types of aminosilanes were tested and calcination conditions were optimized. APTES was shown to be the most effective aminosilane regarding the functionalization of the SNTs' inner surface and an adequate calcination temperature (220°C) was found to attain mechanical stability without compromising functionalization efficiency. Finally, the incorporation of naproxen into the nanotubes was accessed by fluorescence measurements and drug release studies were performed, revealing that the electrostatic linkage ensures effective release of the drug in the acidic pH typical of inflamed cells, while maintaining the SNT-drug conjugates stable at the typical bloodstream pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Light-dependent delta pH and membrane potential changes in halobacterial vesicles coupled to sodium transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamo, N.; Racanelli, T.; Packer, L.

    1982-01-01

    Bacteriorhodopsin and Halorhodopsin present in Halobacterium halobium strains have been investigated in relation to Na/sup +//H/sup +/ exchange in isolated cell envelope vesicles. Upon illumination, these retinal proteins result in extrusion of sodium ions by either an electrogenic Na/sup +//Ha/sup +/ antiporter and/or a direct sodium pump. Since a molecular characterization of these mechanism(s) of sodium extrusion has not yet been realized, it was of interest to measure directly the light- and sodium-dependent changes in delta pH and membrane potential under nearly identical conditions in S9 and R1mR cell membrane vesicles to gain information on the relation of these retinalmore » proteins to sodium extrusion. These activities were evaluated in terms of their dependence on light intensity, and on the inhibitory effect of chemical modifiers of carboxyl groups (carbodiimides); electroneutral exchanges (monensin and triphenyltin); digitoxin and some analogues; and phloretin. Under most of the conditions and treatments employed, light- and sodium-dependent delta pH led to similar effects in both membrane vesicle types. Hence, it is concluded that the delta pH and delta psi which arise from sodium transport occur by either a single mechanism or by one which shares common features.« less

  2. Towards Predicting Basin-Wide Invertebrate Organic Biomass and Production in Marine Sediments from a Coastal Sea

    PubMed Central

    Burd, Brenda J.; Macdonald, Tara A.; van Roodselaar, Albert

    2012-01-01

    Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69–74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first-order estimates of sediment invertebrate production. PMID:22792267

  3. The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects.

    PubMed

    Bonasia, Davide Edoardo; Martin, James A; Marmotti, Antonio; Kurriger, Gail L; Lehman, Abigail D; Rossi, Roberto; Amendola, Annunziato

    2016-12-01

    The goal of the study was to evaluate the repair of chondral lesions treated with combined autologous adult/allogenic juvenile cartilage fragments, compared with isolated adult and isolated juvenile cartilage fragments. Fifty-eight adult (>16 week old) and five juvenile (<6 week old) New Zealand White female rabbits were used. A large osteochondral defect was created in the center of the femoral trochlea of adult rabbits. The rabbits were divided in four groups: Group 1 = untreated defects (controls); Group 2 = adult cartilage fragments; Group 3 = juvenile cartilage fragments; and Group 4 = adult + juvenile cartilage fragments. Killings were performed at 3 and 6 months. The defects were evaluated with ICRS macroscopic score, modified O'Driscoll score, and Collagen type II immunostaining. At 3 months, Group 4 performed better than Group 1, in terms of modified O'Driscoll score (p = 0.001) and Collagen type II immunostaining (p = 0.015). At 6 months, Group 4 showed higher modified O'Driscoll score (p = 0.003) and Collagen type II immunostaining score (p < 0.001) than Group 1. Histologically, also Group 3 performed better than Group 1 (p = 0.03), and Group 4 performed better than Group 2 (p = 0.004). Mixing adult and juvenile cartilage fragments improved cartilage repair in a rabbit model. In the clinical setting, a new "one-stage" procedure combining the two cartilage sources can be hypothesized, with the advantages of improved chondral repair and large defect coverage, because of the use of an off-the-shelf juvenile allograft. Further studies on larger animals and clinical trials are required to confirm these results.

  4. Carbon incorporation in InP grown by metalorganic chemical vapor deposition and application to InP/InGaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Stockman, S. A.; Fresina, M. T.; Hartmann, Q. J.; Hanson, A. W.; Gardner, N. F.; Baker, J. E.; Stillman, G. E.

    1994-04-01

    The incorporation of residual carbon has been studied for InP grown at low temperatures using TMIn and PH3 by low-pressure metalorganic chemical vapor deposition. n-type conduction is observed with electron concentrations as high as 1×1018 cm-3, and the electrical activation efficiency is 5%-15%. Carbon incorporation is found to be highly dependent on substrate temperature, suggesting that the rate-limiting step is desorption of CHy (0≤y≤3) from the surface during growth. Hydrogen is also incorporated in the layers during growth. The electron mobilities are lower for C-doped InP than for Si-doped InP. InP/InGaAs heterojunction bipolar transistors with C as the p-type base dopant and either Si or C as the n-type emitter dopant have been fabricated and compared. Devices with a carbon-doped base and emitter showed degraded performance, likely as a result of deep levels incorporated during growth of the emitter.

  5. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  6. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography-mass spectrometry.

    PubMed

    He, Yuqin; Zhang, Haide; Wen, Nana; Hu, Rongsuo; Wu, Guiping; Zeng, Ying; Li, Xiong; Miao, Xiaodan

    2018-01-01

    Arabica coffee is a sub-tropical agricultural product in China. Coffee undergoes a series of thermal reactions to form abundant volatile profiles after roasting, so it loses a lot of reducing sugars and amino acids. Adding carbonyl compounds with amino acids before roasting could ensure the nutrition and flavour of coffee. The technology is versatile for the development of coffee roasting process. This investigation evaluates the effects of combining maltose and lysine (Lys) to modify coffee aroma and the possibly related mechanisms. Arabica coffee was pretreated with a series of solvent ratios of maltose and Lys with an identical concentration (0.25 mol L -1 ) before microwave heating. It was found that the combination of maltose and Lys significantly (P ≤ 0.05) influenced quality indices of coffee (pH and browning degree). Ninety-six aromatic volatiles have been isolated and identified. Twelve volatile profiles revealed the relationship between fragrance difference and compound content in coffee. Moreover, coffee aroma was modified by a large number of volatiles with different chemical classes and character. Thus, our results suggest that the combination of reagents changed overall aroma quality through a series of complex thermal reactions, especially the ratio of Lys/maltose over 2:1. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE PAGES

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce; ...

    2017-09-25

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  8. The effect on biological and moisture resistance of epichlorohydrin chemically modified wood

    Treesearch

    Rebecca E. Ibach; Beom-Goo Lee

    2002-01-01

    Southern pine solid wood and fiber were chemically modified with epichlorohydrin to help in understanding the role of moisture in the mechanism of biological effectiveness of chemically modified wood. The solid wood had weight gains from 11% to 34%, while the fiber had weight gains from 9% to 75%. After modification, part of the specimens were water leached for 2 weeks...

  9. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  10. In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase.

    PubMed

    Calzada, Catherine; Coulon, Laurent; Halimi, Déborah; Le Coquil, Elodie; Pruneta-Deloche, Valérie; Moulin, Philippe; Ponsin, Gabriel; Véricel, Evelyne; Lagarde, Michel

    2007-05-01

    Platelet hyperactivation contributes to the increased risk for atherothrombosis in type 2 diabetes and is associated with oxidative stress. Plasma low-density lipoproteins (LDLs) are exposed to both hyperglycemia and oxidative stress, and their role in platelet activation remains to be ascertained. The aim of this study was to investigate the effects of LDLs modified by both glycation and oxidation in vitro or in vivo on platelet arachidonic acid signaling cascade. The activation of platelet p38 MAPK, the stress kinase responsible for the activation of cytosolic phospholipase A(2), and the concentration of thromboxane B(2), the stable catabolite of the proaggregatory arachidonic acid metabolite thromboxane A(2), were assessed. First, in vitro-glycoxidized LDLs increased the phosphorylation of platelet p38 MAPK as well as the concentration of thromboxane B(2). Second, LDLs isolated from plasma of poorly controlled type 2 diabetic patients stimulated both platelet p38 MAPK phosphorylation and thromboxane B(2) production and possessed high levels of malondialdehyde but normal alpha-tocopherol concentrations. By contrast, LDLs from sex- and age-matched healthy volunteers had no activating effects on platelets. Our results indicate that LDLs modified by glycoxidation may play an important contributing role in platelet hyperactivation observed in type 2 diabetes via activation of p38 MAPK.

  11. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  12. Interfacially enhancement of PBO/epoxy composites by grafting MWCNTs onto PBO surface through melamine as molecular bridge

    NASA Astrophysics Data System (ADS)

    Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia

    2018-06-01

    Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.

  13. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.

  14. A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes.

    PubMed

    Faiella, Laura; Piaz, Fabrizio Dal; Bisio, Angela; Tosco, Alessandra; De Tommasi, Nunziatina

    2012-10-01

    Clerodane diterpenoids are a class of naturally occurring molecules widely distributed in the Lamiaceae family. Neo-clerodane diterpenoids from Salvia ssp were recently described as compounds inhibiting the proliferation of human cancer cell lines. To gain new insights into molecular mechanism(s) underlying the antitumor potential of this class of compounds, we used a chemical proteomics approach to analyse the cellular interactome of hardwickiic acid (HAA) selected as a representative molecule. HAA was linked to an opportune 1,1'-carbonyldiimidazole modified by 1,12-dodecanediamine and then immobilized on a matrix support. The modified beads were then used as bait for fishing the potential partners of HAA in a U937 cell lysate. We identified heat shock protein 27 (Hsp27), an ATP-independent antiapoptotic chaperone characterized for its tumorigenic and metastatic properties and now referenced as a major therapeutic target in many types of cancer, as a major HAA partner. Here, we also report the study of HAA-Hsp27 interaction by means of a panel of chemical and biological approaches, including surface plasmon resonance measurements limited proteolysis, and biochemical assays. Our data suggest that HAA could provide a potential tool to develop strategies for the discovery of Hsp27 chemical inhibitors.

  15. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  16. A Genetically Modified Tobacco Mosaic Virus that can Produce Gold Nanoparticles from a Metal Salt Precursor

    PubMed Central

    Love, Andrew J.; Makarov, Valentine V.; Sinitsyna, Olga V.; Shaw, Jane; Yaminsky, Igor V.; Kalinina, Natalia O.; Taliansky, Michael E.

    2015-01-01

    We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10–40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials. PMID:26617624

  17. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Changes of pH and peroxide value in carp (Cyprinus carpio) cuts packaged in modified atmosphere

    NASA Astrophysics Data System (ADS)

    Milijašević, M.; Babić Milijašević, J.; Đinović-Stojanović, J.; Vesković Moračanin, S.; Lilić, S.

    2017-09-01

    The aim of our research was to examine the influence of packaging in modified atmosphere on the pH and peroxide value in muscle of common carp (Cyprinus carpio), as well as to determine the most suitable gas mixtures for packing of that freshwater species. Three sample groups of carp cuts were investigated. One group of carp cuts was placed on top of flaked ice placed in polystyrene boxes. Two other groups were packaged in modified atmosphere with different gas ratios: 80%O2+20%CO2 (MAP 1) and 90%CO2+10%N2 (MAP 2). All carp cuts were stored in the same conditions at 3±0.5°C, and on 1, 3, 5, 7, 9, 11, 13, 15. and 17 days of storage, chemical testing was performed. The results obtained indicate that the packaging of common carp under 90%CO2+10%N2 slowed proteolytic reaction as well as secondary lipid oxidation.

  19. Graphene sheets modified with polyindole for electro-chemical detection of dopamine.

    PubMed

    Kumar, Ashish; Prakash, Rajiv

    2014-03-01

    Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).

  20. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced levelmore » of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.« less

  1. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology.

    PubMed

    Dutto, Ilaria; Tillhon, Micol; Cazzalini, Ornella; Stivala, Lucia A; Prosperi, Ennio

    2015-02-01

    The cell cycle inhibitor p21(CDKN1A) is a protein playing multiple roles not only in the DNA damage response, but also in many cellular processes during unperturbed cell growth. The main, well-known function of p21 is to arrest cell cycle progression by inhibiting the activity of cyclin-dependent kinases. In addition, p21 is involved in the regulation of transcription, apoptosis, DNA repair, as well as cell motility. However, p21 appears to a have a dual-face behavior because, in addition to its tumor suppressor functions, it may act as an oncogene, depending on the cell type and on the cellular localization. As a biomarker of the cell response to different toxic stimuli, p21 expression and functions have been analyzed in an impressive number of studies investigating the activity of several types of chemicals, in order to determine their possible harmful effects on human cells. Here, we review these studies in order to highlight the different roles p21 may play in the cell response to chemical exposure and to better evaluate the information provided by this biomarker.

  2. Type D personality, self-efficacy, and medication adherence in patients with heart failure-A mediation analysis.

    PubMed

    Wu, Jia-Rong; Song, Eun Kyeung; Moser, Debra K

    2015-01-01

    Type D personality is associated with medication non-adherence. Both Type D personality and non-adherence are predictors of poor outcomes. Self-efficacy, which is modifiable, is also associated with medication adherence. To determine the relationships among Type D personality, self-efficacy, and medication adherence in 84 heart failure patients. Self-efficacy, Type D personality, medication adherence, demographic and clinical data were collected. Hierarchical linear regression was used. Type D patients were more likely to have lower self-efficacy (p = .023) and medication non-adherence (p = .027) than non-Type D patients. Low self-efficacy was associated with medication non-adherence (p < .001). Type D personality didn't predict medication adherence after entering self-efficacy in the model (p = .422), demonstrating mediation. Self-efficacy mediates the relationship between Type D personality and medication adherence. Developing and applying interventions to enhance self-efficacy may help to sever the link between Type D personality and poor outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Addenda to Allied Medical Publication 8, NATO Planning Guide for the Estimation of Chemical, Biological, Radiological, and Nuclear (CBRN) Casualties (AMedP-8(C)) to Consider the Impact of Medical Treatment on Casualty Estimation

    DTIC Science & Technology

    2013-05-01

    122 I. Q Fever Model Parameters (Section C131) ....................................................128 1...needed to incorporate human response models for five biological agents not originally considered in AMedP-8(C): brucellosis, glanders, Q fever ...0103.1b should be modified to read: b. Biological agents include the causative agents of anthrax, brucellosis, glanders, Q fever , tularemia

  4. Chemically mediated species recognition in closely related Podarcis wall lizards.

    PubMed

    Barbosa, Diana; Font, Enrique; Desfilis, Ester; Carretero, Miguel A

    2006-07-01

    In many animals, chemical signals play an important role in species recognition and may contribute to reproductive isolation and speciation. The Iberian lizards of the genus Podarcis, with up to nine currently recognized lineages that are often sympatric, are highly chemosensory and provide an excellent model for the study of chemically mediated species recognition in closely related taxa. In this study, we tested the ability of male and female lizards of two sister species with widely overlapping distribution ranges (Podarcis bocagei and P. hispanica type 1) to discriminate between conspecific and heterospecific mates by using only substrate-borne chemical cues. We scored the number of tongue flicks directed at the paper substrate by each individual in a terrarium previously occupied by a conspecific or a heterospecific lizard of the opposite sex. Results show that males of P. bocagei and P. hispanica type 1 are capable of discriminating chemically between conspecifics and heterospecifics of the opposite sex, but females are not. These results suggest that differences in female, but not male, chemical cues may underlie species recognition and contribute to reproductive isolation in these species. The apparent inability of females to discriminate conspecific from heterospecific males, which is not because of reduced baseline exploration rates, is discussed in the context of sexual selection theory and species discrimination.

  5. 2’f-OMe-phosphorodithioate modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    PubMed Central

    Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.

    2014-01-01

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206

  6. Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells.

    PubMed

    Ma, Shuang; Qiao, Wenyuan; Cheng, Tai; Zhang, Bing; Yao, Jianxi; Alsaedi, Ahmed; Hayat, Tasawar; Ding, Yong; Tan, Zhan'ao; Dai, Songyuan

    2018-01-31

    In PIN-type perovskite solar cells (PSCs), the hydroscopicity and acidity of the poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) (PEDOT:PSS) hole transport layer (HTL) have critical influences on the device stability. To eliminate these problems, Nafion, the hydrophobic perfluorosulfonic copolymer, is incorporated into PEDOT:PSS by a simple spin-coating process. For the modified film, Nafion/PSSH (poly(styrene sulfonate) acid) acts as an electron-blocking layer on the surface and the PEDOT-rich domain tends to gather into larger particles with better interchain charge transfer inside the film. Consequently, the modified PEDOT:PSS HTL shows enhanced conductivity and light transmittance as well as more favorable work function, ending up with the increased short-circuit current density (J sc ) and open-circuit voltage (V oc ) of the device. Finally, PSCs with Nafion-modified HTLs achieve the best power conversion efficiency of 16.72%, with 23.76% improvement compared with PEDOT:PSS-only devices (13.51%). Most importantly, the device stability is obviously enhanced because of the hydrophobicity and chemical and mechanical stability of the Nafion polymer that is enriched on the surface of the PEDOT:PSS film.

  7. High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping

    2017-07-01

    High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.

  8. Effect of AlP coating on electrochemical properties of LiMn{sub 2}O{sub 4} cathode material for lithium ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xiaoyu; Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn; Yin, Longwei

    2016-02-15

    Highlights: • Modified LiMn{sub 2}O{sub 4} surface with AlP successfully. • AlP coating surface modification enhances the cycling stability of LiMn{sub 2}O{sub 4} at both room temperature and 60 °C. • AlP coating surface modification improves the rate capability of LiMn{sub 2}O{sub 4}. - Abstract: AlP-modified LiMn{sub 2}O{sub 4} has been synthesized via a simple chemical deposition method followed by high-temperature heating. The X-ray diffraction patterns, SEM images and Energy Dispersive Spectrometer show the successful surface coating of LiMn{sub 2}O{sub 4} by F-43 m crystal form AlP. AlP-modified LiMn{sub 2}O{sub 4} has a high discharge capacity of 125.7 mAh g{supmore » −1} with retention of 87% at a current density of 1C between 3.3 V and 4.3 V after 100 cycles at 60 °C, while bare LiMn{sub 2}O{sub 4} has more than 28% capacity loss. At 10 rates, the coated sample delivers capacity of 100 mAh g{sup −1}, which is much higher than bare LiMn{sub 2}O{sub 4}. Based on the EIS (electrochemical impedance spectroscopy) result, AlP coating can effectively inhibit the increase of the charge transfer resistance during charging and discharging cycles.« less

  9. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  10. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  11. A comparative study of Northern Ireland's estuaries based on the results of beam trawl fish surveys

    NASA Astrophysics Data System (ADS)

    Harrison, Trevor D.; Armour, Neil D.; McNeill, Michael T.; Moorehead, Peter W.

    2017-11-01

    The fish communities of Northern Ireland's estuaries were described and compared using data collected with a modified beam trawl over a six year period from 2009 to 2014. Multivariate analyses identified four estuary groups based on variations in their physico-chemical attributes. These groups broadly corresponded with the distribution and variation of estuary geomorphic types identified around the Irish coast. The dominant fish species captured were also among the main species reported in other North East Atlantic estuaries. A significant link between the estuary types and their fish communities was found; each estuary group contained a somewhat distinctive fish community. The fish communities also showed a significant relationship with the physico-chemical characteristics of the estuaries. Differences in fish species composition are attributed to habitat and environmental preferences of key estuary-associated species.

  12. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.

    PubMed

    Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong

    2018-03-28

    Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.

  13. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds.

    PubMed

    Han, Shu-ying; Liang, Chao; Zou, Kuan; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2012-11-15

    The variation in mobile phase pH and ionizable solute dissociation constant (pK(a)) with the change of organic modifier fraction in hydroorganic mobile phase has seemingly been a troublesome problem in studies and applications of reversed phase high performance liquid chromatography (RP-HPLC). Most of the early studies regarding the RP-HPLC of acid-base compounds have to measure the actual pH of the mixed mobile phase rigorously, sometimes bringing difficulties in the practices of liquid chromatographic separation. In this paper, the effect of this variation on the apparent n-octanol/water partition coefficient (K(ow)″) and the related quantitative structure-retention relationship (QSRR) of logK(ow)″ vs. logk(w), the logarithm of retention factor of analytes in neat aqueous mobile phases, was investigated for weakly acidic compounds. This QSRR is commonly used as a classical method for K(ow) measurement by RP-HPLC. The theoretical and experimental derivation revealed that the variation in mobile phase pH and solute pK(a) will not affect the QSRRs of acidic compounds. This conclusion is proved to be suitable for various types of ion-suppressors, i.e., strong acid (perchloric acid), weak acid (acetic acid) and buffer salt (potassium dihydrogen phosphate/phosphoric acid, PBS). The QSRRs of logK(ow)″ vs. logk(w) were modeled by 11 substituted benzoic acids using different types of ion-suppressors in a binary methanol-water mobile phase to confirm our deduction. Although different types of ion-suppressor all can be used as mobile phase pH modifiers, the QSRR model obtained by using perchloric acid as the ion-suppressor was found to have the best result, and the slightly inferior QSRRs were obtained by using acetic acid or PBS as the ion-suppressor. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution

    PubMed Central

    Liu, Minmin; Hou, Li-an; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption. PMID:24976787

  15. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution.

    PubMed

    Liu, Minmin; Hou, Li-An; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29 Si and 27 Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption.

  16. Structural Transformations in Chemically Modified Graphene

    DTIC Science & Technology

    2012-07-16

    Mullen, Nano Lett. 8 (2007) 323–327. [7] J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8 (2008) 3137–3140. [8] D.A. Dikin , S...97 (2006) 187401. [36] S. Stankovich, D.A. Dikin , R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007

  17. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    PubMed Central

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  18. Gold Binding by Native and Chemically Modified Hops Biomasses

    PubMed Central

    López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087

  19. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant parts decreased in two improved groups, while the proportion of strong activity chemical forms increased; two improved groups led strong activity Zn chemical form of root increased, while strong activity Zn chemical form of aboveground decreased.

  20. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.

    PubMed

    Nikolova, I

    2016-04-01

    Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.

  1. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    PubMed

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  2. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish

    2016-03-01

    The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.

  3. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  4. The DeBakey classification exactly reflects late outcome and re-intervention probability in acute aortic dissection with a slightly modified type II definition.

    PubMed

    Tsagakis, Konstantinos; Tossios, Paschalis; Kamler, Markus; Benedik, Jaroslav; Natour, Dorgam; Eggebrecht, Holger; Piotrowski, Jarowit; Jakob, Heinz

    2011-11-01

    The DeBakey classification was used to discriminate the extent of acute aortic dissection (AD) and was correlated to long-term outcome and re-intervention rate. A slight modification of type II subgroup definition was applied by incorporating the aortic arch, when full resectability of the dissection process was given. Between January 2001 and March 2010, 118 patients (64% male, mean age 59 years) underwent surgery for acute AD. As many as 74 were operated on for type I and 44 for type II AD. Complete resection of all entry sites was performed, including antegrade stent grafting for proximal descending lesions. Patients were comparable with respect to demographics and preoperative hemodynamic status. They underwent isolated ascending replacement, hemiarch, or total arch replacement in 7%, 26%, and 67% in type I, versus 27%, 37%, and 36% in type II, respectively. Additional descending stent grafting was performed in 33/74 (45%) type I patients. In-hospital mortality was 14%, 16% (12/74) in type I versus 9% (4/44, type II), p=0.405. After 5 years, the estimated survival rate was 63% in type I versus 80% in type II, p=0.135. In type II, no distal aortic re-intervention was required. In type I, the freedom of distal re-interventions was 82% in patients with additional stent grafting versus 53% in patients without, p=0.022. The slightly modified DeBakey classification exactly reflects late outcome and aortic re-intervention probability. Thus, in type II patients, the aorta seems to be healed without any probability of later re-operation or re-intervention. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  5. Bioimaging of Nucleolin Aptamer-Containing 5-(N-benzylcarboxyamide)-2′-deoxyuridine More Capable of Specific Binding to Targets in Cancer Cells

    PubMed Central

    Lee, Kyue Yim; Kang, Hyungu; Ryu, Sung Ho; Lee, Dong Soo; Lee, Jung Hwan; Kim, Soonhag

    2010-01-01

    Chemically modified nucleotides have been developed and applied into SELEX procedure to find a novel type of aptamers to fit with targets of interest. In this study, we directly performed chemical modification of 5-(N-benzylcarboxyamide)-2′-deoxyuridine (called 5-BzdU) in the AS1411 aptamer, which binds to the nucleolin protein expressed in cancer cells. Forty-seven compounds of AS1411-containing Cy3-labeled 5-BzdU (called Cy3-(5-BzdU)-modified-AS1411) were synthesized by randomly substituting thymidines one to twelve in AS1411 with Cy3-labeled 5-BzdU. Both statistically quantified fluorescence measurements and confocal imaging analysis demonstrated at least three potential compounds of interest: number 12, 29 and 41 that significantly increased the targeting affinity to cancer cells but no significant activity from normal healthy cells. These results suggest that the position and number of substituents in AS1411 are critical parameters to improve the aptamer function. In this study, we demonstrated that chemical modification of the existing aptamers enhanced the binding and targeting affinity to targets of interest without additional SELEX procedures. PMID:20204158

  6. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  8. Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.

    PubMed

    Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji

    2011-01-05

    Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. In-cell RNA structure probing with SHAPE-MaP.

    PubMed

    Smola, Matthew J; Weeks, Kevin M

    2018-06-01

    This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.

  10. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    PubMed

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  11. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    PubMed Central

    Cicco, Stefania Roberta; Vona, Danilo; Gristina, Roberto; Sardella, Eloisa; Ragni, Roberta; Lo Presti, Marco; Farinola, Gianluca Maria

    2016-01-01

    In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS) and 3-aminopropyl-triethoxysilane (APTES). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility. PMID:28952597

  12. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution.

    PubMed

    Huang, Ting; Lu, Renguo; Su, Chao; Wang, Hongna; Guo, Zheng; Liu, Pei; Huang, Zhongyuan; Chen, Haiming; Li, Tongsheng

    2012-05-01

    Herein, we have developed a rather simple composite fabrication approach to achieving molecular-level dispersion and planar orientation of chemically modified graphene (CMG) in the thermosetting polyimide (PI) matrix as well as realizing strong adhesion at the interfacial regions between reinforcing filler and matrix. The covalent adhesion of CMG to PI matrix and oriented distribution of CMG were carefully confirmed and analyzed by detailed investigations. Combination of covalent bonding and oriented distribution could enlarge the effectiveness of CMG in the matrix. Efficient stress transfer was found at the CMG/PI interfaces. Significant improvements in the mechanical performances, thermal stability, electrical conductivity, and hydrophobic behavior were achieved by addition of only a small amount of CMG. Furthermore, it is noteworthy that the hydrophilic-to-hydrophobic transition and the electrical percolation were observed at only 0.2 wt % CMG in this composite system. This facile methodology is believed to afford broad application potential in graphene-based polymer nanocomposites, especially other types of high-performance thermosetting systems.

  13. Mesomeric Effects of Graphene Modified with Diazonium Salts: Substituent Type and Position Influence its Properties.

    PubMed

    Bouša, Daniel; Jankovský, Ondřej; Sedmidubský, David; Luxa, Jan; Šturala, Jiří; Pumera, Martin; Sofer, Zdeněk

    2015-12-01

    In the last decade, graphene and graphene derivatives have become some of the most intensively studied materials. Tuning of the electronic and electrochemical properties of graphene is of paramount importance. In this study, six diazonium-modified graphenes containing different functional groups according to the diazonium salt precursor were investigated. These diazonium moieties have a strong mesomeric (resonance) effect and act as either electron-donating or -withdrawing species. Different graphene precursors, such as thermally and chemically reduced graphenes were studied. All the products were characterized in detail by elemental combustion analysis, FTIR spectroscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. Resistivity and zeta potential measurements were consistent with theoretical (DFT) calculations. The results show that chemical modification of graphene by diazotation strongly influences its properties, creating a huge application potential in microelectronics, energy storage and conversion devices, and electrocatalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part II. Biomimetic layer growth and characterization.

    PubMed

    Pramatarova, L; Pecheva, E; Krastev, V

    2007-03-01

    The interest in stainless steel as a material widely used in medicine and dentistry has stimulated extensive studies on improving its bone-bonding properties. AISI 316 stainless steel is modified by a sequential ion implantation of Ca and P ions (the basic ions of hydroxyapatite), and by Ca and P implantation and subsequent thermal treatment in air (600( composite function)C, 1 h). This paper investigates the ability of the as-modified surfaces to induce hydroxyapatite deposition by using a biomimetic approach, i.e. immersion in a supersaturated aqueous solution resembling the human blood plasma (the so-called simulated body fluid). We describe our experimental procedure and results, and discuss the physico-chemical properties of the deposed hydroxyapatite on the modified stainless steel surfaces. It is shown that the implantation of a selected combination of ions followed by the applied methodology of the sample soaking in the simulated body fluid yield the growth of hydroxyapatite layers with composition and structure resembling those of the bone apatite. The grown layers are found suitable for studying the process of mineral formation in nature (biomineralization).

  15. A rationally designed peptide IA-2-P2 against type 1 diabetes in streptozotocin-induced diabetic mice.

    PubMed

    Shen, Lili; Lu, Shiping; Huang, Dongcheng; Li, Guoliang; Liu, Kunfeng; Cao, Rongyue; Zong, Li; Jin, Liang; Wu, Jie

    2017-05-01

    Recent studies have investigated the potential of type 1 diabetes mellitus-related autoantigens, such as heat shock protein 60, to induce immunological tolerance or to suppress the immune response. A functional 24-residue peptide derived from heat shock protein 60 (P277) has shown anti-type 1 diabetes mellitus potential in experimental animals and in clinical studies, but it also carries a potential atherogenic effect. In this study, we have modified P277 to retain an anti-type 1 diabetes mellitus effect and minimize the atherogenic potential by replacing the P277 B epitope with another diabetes-associated autoantigen, insulinoma antigen-2 (IA-2), to create the fusion peptide IA-2-P2. In streptozotocin-induced diabetic C57BL/6J mice, the IA-2-P2 peptide displayed similar anti-diabetic effects to the control P277 peptide. Also, the IA-2-P2 peptide did not show atherogenic activity in a rabbit model. Our findings indicate the potential of IA-2-P2 as a promising vaccine against type 1 diabetes mellitus.

  16. Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods

    PubMed Central

    Fleischer, Karsten; Norton, Emma; Mullarkey, Daragh; Caffrey, David; Shvets, Igor V.

    2017-01-01

    Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells. PMID:28862695

  17. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates.

    PubMed

    Gutsche, S; Krause, M; Kranz, H

    2008-12-01

    Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.

  18. Rainwater as a chemical agent of geologic processes; a review

    USGS Publications Warehouse

    Carroll, Dorothy

    1962-01-01

    Chemical analyses of the rainwater collected at several localities are given to show the variations of the principal constitutents. In rock weathering and soil-forming processes, the chemical composition of rainwater has an important effect which has been evaluated for only a few arid areas. In humid regions the important amounts of calcium, magnesium, sodium, and potassium added yearly by rain may be expected to influence the composition of the soil water and thereby the cations in the exchange positions of soil clay minerals. The acquisition of cations by clay minerals may slow down chemical weathering. The stability of soil clay minerals is influenced by the constant accession of cations from rainwater. Conversely, the clay minerals modify the amounts and kinds of cations that are leached out by drainage waters. The stability of micaceous minerals in soils may be partly due to accessions of K +1 ions from rainwater. The pH of rainwater in any area varies considerably and seems to form a seasonal and regional pattern. The recorded pH values range from 3.0 to 9.8.

  19. Longitudinal Analysis of Depressive Symptoms and Glycemic Control in Type 2 Diabetes

    PubMed Central

    Aikens, James E.; Perkins, Denise White; Lipton, Bonnie; Piette, John D.

    2009-01-01

    OBJECTIVE To compare whether depressive symptoms are more strongly related to subsequent or prior glycemic control in type 2 diabetes and to test whether patient characteristics modify these longitudinal associations. RESEARCH DESIGN AND METHODS On two occasions separated by 6 months, depressive symptoms and glycemic control were assessed in 253 adults with type 2 diabetes. Regression analyses examined depressive symptoms as both a predictor and outcome of glycemic control and tested whether medication regimen (e.g., insulin versus oral drugs) was an effect modifier before and after adjusting for baseline levels of the outcome being predicted. RESULTS Depressive symptom severity predicted poor glycemic control 6 months later (P = 0.018) but not after baseline glycemic control was taken into account (P = 0.361). Although baseline glycemic control did not generally predict depressive symptoms 6 months later (P = 0.558), it significantly interacted with regimen (P = 0.008). Specifically, glycemic control predicted depressive symptoms among patients prescribed insulin (β = 0.31, P = 0.002) but not among those prescribed oral medication alone (β = −0.10, P = 0.210). Classifying depression dichotomously produced similar but weaker findings. CONCLUSIONS Depressive symptoms do not necessarily lead to worsened glycemic control. In contrast, insulin-treated patients in poor glycemic control are at moderate risk for worsening of depressive symptoms. These patients should be carefully monitored to determine whether depression treatment should be initiated or intensified. PMID:19389814

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelgund, Gururaj M.; Oki, Aderemi, E-mail: aroki@pvamu.edu; Luo, Zhiping

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HAmore » was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.« less

  1. Mesoporous Silica Nanoparticle Delivery of Chemically Modified siRNA Against TWIST1 Leads to Reduced Tumor Burden

    PubMed Central

    Finlay, James; Roberts, Cai M.; Dong, Juyao; Zink, Jeffrey I.; Tamanoi, Fuyuhiko; Glackin, Carlotta A.

    2015-01-01

    Growth and progression of solid tumors depends on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. Chemically modified siRNA against TWIST1 was complexed to cation-coated mesoporous silica nanoparticles and tested in vitro and in vivo. In cell culture experiments, siRNA reduced expression of TWIST1 and its target genes, and reduced cell migration. In mice, injections of the siRNA-nanoparticle complex led to reduced tumor weight. Data suggest that diminished tumor burden was the result of reduced CCL2 expression and angiogenesis following TWIST1 knockdown. PMID:26115637

  2. Zinc doping of large-area MoS2 films via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xu, Enzhi; Liu, Haoming; Park, Kyungwha; Li, Zhen; Losovyj, Yaroslav; Starr, Matthew; Werbianskyj, Madilynn; Fertig, Herbert; Zhang, Shixiong

    Atomically thin molybdenum disulfide (MoS2) has attracted significant attention because of its great potential for electronic and optoelectronic applications. Undoped MoS2 is n-type presumably due to the formation of native defects, and realizing p-type conduction has often turned out to be challenging. In this work, we report on the synthesis and characterizations of large-area Zn-doped MoS2 thin films in which the zinc dopant is demonstrated to be p-type. The films were grown by chemical vapor deposition and are monolayers or bilayers with a lateral dimension on the order of millimeters. The p-type nature of Zn dopants was evidenced by the suppression of n-type conduction and a downward shift of the Fermi level with doping. Density-functional-theory calculations were carried out to demonstrate the stability of the Zn dopants and to determine the impurity states. A p-type gate transfer characteristic was observed after the Zn-MoS2 film was thermally annealed in a sulfur atmosphere. This work is supported by the NSF through Grant Nos. DMR-1506460, DMR-1506263, and DMR-1206354, the San Diego Supercomputer Center (SDSC) Gordon under DMR060009N, and by the US-Israel Binational Science Foundation.

  3. Comparison of energy and protein intakes of older people consuming a texture modified diet with a normal hospital diet.

    PubMed

    Wright, L; Cotter, D; Hickson, M; Frost, G

    2005-06-01

    There are very few studies looking at the energy and protein requirements of patients requiring texture modified diets. Dysphagia is the main indication for people to be recommended texture-modified diets. Older people post-stroke are the key group in the hospital setting who consume this type of diet. The diets can be of several consistencies ranging from pureed to soft textures. To compare the 24-hour dietary intake of older people consuming a texture modified diet in a clinical setting to older people consuming a normal hospital diet. Weighed food intakes and food record charts were used to quantify the patients' intakes, which were compared to their individual requirements. The oral intake of 55 patients was measured. Twenty-five of the patients surveyed were eating a normal diet and acted as controls for 30 patients who were prescribed a texture-modified diet. The results showed that the texture-modified group had significantly lower intakes of energy (3877 versus 6115 kJ, P < 0.0001) and protein (40 versus 60 g, P < 0.003) compared to consumption of the normal diet. The energy and protein deficit from estimated requirements was significantly greater in the texture-modified group (2549 versus 357 kJ, P < 0.0001; 6 versus 22 g, P = 0.013; respectively). These statistically significant results indicate that older people on texture-modified diets have a lower intake of energy and protein than those consuming a normal hospital diet and it is likely that other nutrients will be inadequate. All patients on texture-modified diets should be assessed by the dietitian for nutritional support. Evidence based strategies for improving overall nutrient intake should be identified.

  4. [Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

    PubMed

    Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng

    2013-01-01

    An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

  5. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  6. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    PubMed

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  7. The Effect of Different Location of Muscle on Quality of Frozen Simmental Ongole Grade Male Meat

    NASA Astrophysics Data System (ADS)

    Triasih, D.; Krisdiani, D.; Riyanto, J.; Pratitis, W.; Widyawati, S. D.

    2018-02-01

    The aim of this research was to identify the influence of different types of muscle on the characteristics physical quality frozen meat of Simmental Ongole Crossbreed Male frozen meat. The research had been conducted at the Laboratory of Meat Technology and Processing and Laboratory of Nutritional Biochemistry, Faculty of Animal Science, University GadjahMada, Yogyakarta. The physical quality with 4 levels treatments, the name was Biceps femoris (BF), Longissimus dorsi (LD), Triceps brachii (TB), and Pectoralis profundus (PP). The chemical quality with 3 levels treatments, the name was Biceps femoris (BF), Longissimus dorsi (LD), and Triceps brachii (TB). The research used Completely Randomized Design with 5 replications for each treatment. The variables of the physical quality test were pH, tenderness, cooking loss, and water-holding capacity. The chemical quality test were water content, protein content, fat content, and cholesterol content. The result of the physical quality test showed that the different types of muscle were significantly influence the pH value (P<0,01), also the influence the tenderness and cooking loss (P<0,05), but there was no significant different on water-holding capacity. The chemical quality test showed that the different types of muscle significant influenced on protein content and fat content (P<0,01). They were significant different (P<0,05) on water content, and there was significant effect (P<0,05) on cholesterol. In conclusion, the BF have high value of pH, cooking loss, water content, protein content, and cholesterol than other muscle, but have low value of tenderness and fat content.

  8. [Does prenatal diagnosis modify neonatal management and early outcome of children with esophageal atresia type III?].

    PubMed

    Garabedian, C; Sfeir, R; Langlois, C; Bonnard, A; Khen-Dunlop, N; Gelas, T; Michaud, L; Auber, F; Piolat, C; Lemelle, J-L; Fouquet, V; Habonima, É; Becmeur, F; Polimerol, M-L; Breton, A; Petit, T; Podevin, G; Lavrand, F; Allal, H; Lopez, M; Elbaz, F; Merrot, T; Michel, J-L; Buisson, P; Sapin, E; Delagausie, P; Pelatan, C; Gaudin, J; Weil, D; de Vries, P; Jaby, O; Lardy, H; Aubert, D; Borderon, C; Fourcade, L; Geiss, S; Breaud, J; Pouzac, M; Echaieb, A; Laplace, C; Gottrand, F; Houfflin-Debarge, V

    2015-11-01

    Evaluate neonatal management and outcome of neonates with either a prenatal or a post-natal diagnosis of EA type III. Population-based study using data from the French National Register for EA from 2008 to 2010. We compared children with prenatal versus post-natal diagnosis in regards to prenatal, maternal and neonatal characteristics. We define a composite variable of morbidity (anastomotic esophageal leaks, recurrent fistula, stenosis) and mortality at 1 year. Four hundred and eight live births with EA type III were recorded with a prenatal diagnosis rate of 18.1%. Transfer after birth was lower in prenatal subset (32.4% versus 81.5%, P<0.001). Delay between birth and first intervention was not significantly different. Defect size (2cm vs 1.4cm, P<0.001), gastrostomy (21.6% versus 8.7%, P<0.001) and length in neonatal unit care were higher in prenatal subset (47.9 days versus 33.6 days, P<0.001). The composite variables were higher in prenatal diagnosis subset (38.7% vs 26.1%, P=0.044). Despite the excellent survival rate of EA, cases with antenatal detection have a higher morbidity related to the EA type (longer gap). Even if it does not modify neonatal management and 1-year outcome, prenatal diagnosis allows antenatal parental counseling and avoids post-natal transfer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Role of the chemical substitution on the luminescence properties of solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir; CEA, DEN, Département d'Etudes des Réacteurs, Service de Physique Expérimentale, Laboratoire Dosimétrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance

    2015-10-15

    Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectralmore » bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.« less

  10. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  11. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    DOE PAGES

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei; ...

    2017-09-05

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  12. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.

    PubMed

    Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-12-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.

  13. Removal of Remazol turquoise Blue G-133 from aqueous solution using modified waste newspaper fiber.

    PubMed

    Zhang, Xiaoyu; Tan, Jia; Wei, Xinhao; Wang, Lijuan

    2013-02-15

    Waste newspaper fiber (WNF) was separated and modified via grafting quaternary ammonium salt to obtain an adsorbent, which removes Remazol turquoise Blue G-133 (RTB G-133) from aqueous solutions. SEM and IR were used to analyze the morphology and chemical groups of the modified waste newspaper fiber (MWNF). Batch adsorption studies were conducted with varying adsorbent dosages, solution pH, and contact time. Adsorption isotherms and models were fitted. The SEM photographs show the surface of MWNF is smoother in comparison with that of WNF. The IR analysis indicates that the quaternary ammonium salt was successfully grafted onto the cellulose skeleton in WNF and the chemical interaction played an important role in adsorption. Results show that the equilibrium adsorption capacity can be reached within 360 min, and that the maximum adsorption capacity was 260 mg g(-1). The adsorption of RTB G-133 on MWNF was a spontaneous endothermic process and well fitted pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The results show that MWNF is promising for dye wastewater treatment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Investigation on the Performance of Chemically Modified Aquatic Macrophytes-Salvinia molesta for the Micro-Solid Phase Preconcentration of Cd(II) On-Line Coupled to FAAS.

    PubMed

    Cajamarca, Fabio Antonio Suquila; Corazza, Marcela Zanetti; Prete, Maiyara Caroline; Dragunski, Douglas Cardoso; Rocker, Cristiana; Caetano, Josiane; Gonçalves Júnior, Affonso Celso; Tarley, César Ricardo Teixeira

    2016-12-01

    In this study, a new method for the preconcentration of cadmium ions using modified aquatic macrophytes - Salvinia molesta as biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. The method is based on preconcentration of 20.0 mL sample at pH 3.75 through 35.0 mg of biosorbent at 10.0 mL min -1 and subsequent elution with 0.5 mol L -1 HNO 3 . A preconcentration factor of 31-fold, linear dynamic range from 5.0 to 70.0 µg L -1 (r = 0.9996) and detection and quantification limits of 0.15 and 0.51 µg L -1 were obtained. The characterization of the biosorbent chemically modified with NaOH and citric acid, was performed through FTIR and SEM measurements. The method precision was found to be 3.97 % and 1.48 % for 5.0 and 60.0 µg L -1 Cd(II) solutions, respectively. The applicability of method was checked by analysis of different kind of water samples and certified reference material.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances inmore » solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.« less

  16. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  17. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- andmore » compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.« less

  18. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    PubMed

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  19. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  20. pH Static Titration: A Quasistatic Approach

    ERIC Educational Resources Information Center

    Michalowski, Tadeusz; Toporek, Marcin; Rymanowski, Maciej

    2007-01-01

    The pH-static titration is applicable to those systems where at least two types of reactions occur in comparable intensities. The commonalities in titrimetric procedure realized according to pH-static titration, irrespective of the kind of chemical processes occurring are discussed.

  1. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  2. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  3. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  4. Increasing the hydrolysis constant of the reactive site upon introduction of an engineered Cys¹⁴-Cys³⁹ bond into the ovomucoid third domain from silver pheasant.

    PubMed

    Hemmi, Hikaru; Kumazaki, Takashi; Kojima, Shuichi; Yoshida, Takuya; Ohkubo, Tadayasu; Yokosawa, Hideyoshi; Miura, Kin-Ichiro; Kobayashi, Yuji

    2011-08-01

    P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys¹⁴-Cys³⁹ bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys¹⁴-Cys³⁹ bond into the flexible N-terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH-independent hydrolysis constant (K(hyd) °) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in K(hyd) °, but has no effect on the thermal stability. The site-specific disulfide introduction into the flexible N-terminal loop of natural Kazal-type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  5. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    PubMed

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude shorter than that of the unmodified fibers. The presented polymers and method of multilayer coating can lead to a development of self-decontaminating textiles and other materials.

  6. Chemical modification of citrus pectin: Structural, physical and rheologial implications.

    PubMed

    Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro

    2018-04-01

    The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. I Should but I Can't: Controlled Motivation and Self-Efficacy Are Related to Disordered Eating Behaviors in Adolescents With Type 1 Diabetes.

    PubMed

    Eisenberg, Miriam H; Lipsky, Leah M; Dempster, Katherine W; Liu, Aiyi; Nansel, Tonja R

    2016-11-01

    Among adolescents with type 1 diabetes, disordered eating behaviors (DEBs) are more prevalent and have more serious health implications than in adolescents without diabetes, necessitating identification of modifiable correlates of DEB in this population. This study hypothesized that (1) autonomous motivation and (2) controlled motivation for healthy eating (i.e., eating healthfully because it is important to oneself vs. important to others, respectively) are associated with DEB among adolescents with type 1 diabetes. The third hypothesis was that baseline healthy eating self-efficacy moderates these associations. Adolescents with type 1 diabetes (n = 90; 13-16 years) participating in a behavioral nutrition intervention efficacy trial reported DEB, controlled and autonomous motivation, and self-efficacy at baseline, 6, 12, and 18 months. Linear-mixed models estimated associations of controlled and autonomous motivation with DEB, adjusting for treatment group, body mass index, socioeconomic status, age, and gender. Separate models investigated the interaction of self-efficacy with each motivation type. Controlled motivation was positively associated with DEB (B = 2.18 ± .33, p < .001); the association was stronger for those with lower self-efficacy (B = 3.33 ± .55, p < .001) than those with higher self-efficacy (B = 1.36 ± .36, p < .001). Autonomous motivation was not associated with DEB (B = -.70 ± .43, p = .11). Findings identify controlled motivation for healthy eating as a novel correlate of DEB among adolescents with type 1 diabetes and show that self-efficacy can modify this association. Motivation and self-efficacy for healthy eating represent potential intervention targets to reduce DEB in adolescents with type 1 diabetes. Published by Elsevier Inc.

  8. Modelling threats to water quality from fire suppression chemicals and post-fire erosion

    NASA Astrophysics Data System (ADS)

    Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William

    2014-05-01

    Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.

  9. Composition of two Spanish common dry beans (Phaseolus vulgaris), 'Almonga' and 'Curruquilla', and their postprandial effect in type 2 diabetics.

    PubMed

    Olmedilla-Alonso, Begoña; Pedrosa, Mercedes Martín; Cuadrado, Carmen; Brito, Miguel; Asensio-S-Manzanera, Carmen; Asensio-Vegas, Carmen

    2013-03-30

    Legume consumption has been associated with a lower risk of developing type 2 diabetes. However, the type of legume is a modifier of its effect. Two Spanish dry bean varieties-white ('Almonga') and cream ('Curruquilla')-were analyzed and used in a postprandial study in type 2 diabetics to assess glucose, insulin and triacylglycerol in blood. 'Curruquilla' variety had higher total galactoside (stachyose, mainly), trypsin inhibitors and lectin content than 'Almonga'. The canning liquid was discarded prior to the analysis and the bean consumption by the subjects. The canning process reduced the total α-galactoside content (>50%), practically eliminated trypsin inhibitors, and no lectin content was found. After bean consumption, maximum glucose was obtained at 60 min and was three times lower than that in bread. After bean intake, maximum insulin was produced 60 min with 'Almonga' and occurred later (90 min) with 'Curruquilla' and bread. After 'Almonga' intake, the area under the curve response of triglycerides was 14% lower compared to bread (P = 0.013). 'Almonga' and 'Curruquilla' are similar in the content of the nutritional but not in that of the antinutritional components. Both beans showed similar effects on blood glucose and insulin in type 2 diabetics and marked differences compared to those of bread in terms of magnitude and time course, but only 'Almonga' rendered a significant reduction in the triglyceridemic response. © 2012 Society of Chemical Industry.

  10. Synthesis and properties of ApA analogues with shortened phosphonate internucleotide linkage.

    PubMed

    Králíková, Sárka; Buděšínský, Miloš; Barvík, Ivan; Masojídková, Milena; Točík, Zdeněk; Rosenberg, Ivan

    2011-01-01

    A complete series of the 2 '-5 ' and 3 '-5 ' regioisomeric types of r(ApA) and 2 '-d(ApA) analogues with the α-hydroxy-phosphonate C3 '-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 '-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 '-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 '(2 ')-O-P-CH(2)-C4 ″ linkage lacking the 5 '-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 '-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.

  11. Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells.

    PubMed

    Freitas, Flavio S; Clifford, John N; Palomares, Emilio; Nogueira, Ana F

    2012-09-14

    In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.

  12. Optical properties of Mg doped p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  13. Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design.

    PubMed

    Gu, Wenwen; Chen, Ying; Li, Yu

    2017-08-01

    Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.

  14. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1

    PubMed Central

    Kapplinger, Jamie D; Erickson, Anders; Asuri, Sirisha; Tester, David J; McIntosh, Sarah; Kerr, Charles R; Morrison, Julie; Tang, Anthony; Sanatani, Shubhayan; Arbour, Laura; Ackerman, Michael J

    2017-01-01

    Background Variable expressivity and incomplete penetrance between individuals with identical long QT syndrome (LQTS) causative mutations largely remain unexplained. Founder populations provide a unique opportunity to explore modifying genetic effects. We examined the role of a novel synonymous KCNQ1 p.L353L variant on the splicing of exon 8 and on heart rate corrected QT interval (QTc) in a population known to have a pathogenic LQTS type 1 (LQTS1) causative mutation, p.V205M, in KCNQ1-encoded Kv7.1. Methods 419 adults were genotyped for p.V205M, p.L353L and a previously described QTc modifier (KCNH2-p.K897T). Adjusted linear regression determined the effect of each variant on QTc, alone and in combination. In addition, peripheral blood RNA was extracted from three controls and three p.L353L-positive individuals. The mutant transcript levels were assessed via qPCR and normalised to overall KCNQ1 transcript levels to assess the effect on splicing. Results For women and men, respectively, p.L353L alone conferred a 10.0 (p=0.064) ms and 14.0 (p=0.014) ms increase in QTc and in men only a significant interaction effect in combination with the p.V205M (34.6 ms, p=0.003) resulting in a QTc of ∼500 ms. The mechanism of p.L353L's effect was attributed to approximately threefold increase in exon 8 exclusion resulting in ∼25% mutant transcripts of the total KCNQ1 transcript levels. Conclusions Our results provide the first evidence that synonymous variants outside the canonical splice sites in KCNQ1 can alter splicing and clinically impact phenotype. Through this mechanism, we identified that p.L353L can precipitate QT prolongation by itself and produce a clinically relevant interactive effect in conjunction with other LQTS variants. PMID:28264985

  15. Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery

    PubMed Central

    Abdelmawla, Sherine; Guo, Songchuan; Zhang, Limin; Pulukuri, Sai M; Patankar, Prithviraj; Conley, Patrick; Trebley, Joseph; Guo, Peixuan; Li, Qi-Xiang

    2011-01-01

    Previous studies have shown that the packaging RNA (pRNA) of bacteriophage phi29 DNA packaging motor folds into a compact structure, constituting a RNA nanoparticle that can be modularized with functional groups as a nanodelivery system. pRNA nanoparticles can also be self-assembled by the bipartite approach without altering folding property. The present study demonstrated that 2′-F-modified pRNA nanoparticles were readily manufactured through this scalable bipartite strategy, featuring total chemical synthesis and permitting diverse functional modularizations. The RNA nanoparticles were chemically and metabolically stable and demonstrated a favorable pharmacokinetic (PK) profile in mice (half-life (T1/2): 5–10 hours, clearance (Cl): <0.13 l/kg/hour, volume of distribution (Vd): 1.2 l/kg). It did not induce an interferon (IFN) response nor did it induce cytokine production in mice. Repeat intravenous administrations in mice up to 30 mg/kg did not result in any toxicity. Fluorescent folate-pRNA nanoparticles efficiently and specifically bound and internalized to folate receptor (FR)-bearing cancer cells in vitro. It also specifically and dose-dependently targeted to FR+ xenograft tumor in mice with minimal accumulation in normal tissues. This first comprehensive pharmacological study suggests that the pRNA nanoparticle had all the preferred pharmacological features to serve as an efficient nanodelivery platform for broad medical applications. PMID:21468004

  16. Association between variations in the TLR4 gene and incident type 2 diabetes is modified by the ratio of total cholesterol to HDL-cholesterol

    PubMed Central

    Kolz, Melanie; Baumert, Jens; Müller, Martina; Khuseyinova, Natalie; Klopp, Norman; Thorand, Barbara; Meisinger, Christine; Herder, Christian; Koenig, Wolfgang; Illig, Thomas

    2008-01-01

    Background Toll-like receptor 4 (TLR4), the signaling receptor for lipopolysaccharides, is an important member of the innate immunity system. Since several studies have suggested that type 2 diabetes might be associated with changes in the innate immune response, we sought to investigate the association between genetic variants in the TLR4 gene and incident type 2 diabetes. Methods A case-cohort study was conducted in initially healthy, middle-aged subjects from the MONICA/KORA Augsburg studies including 498 individuals with incident type 2 diabetes and 1,569 non-cases. Seven SNPs were systematically selected in the TLR4 gene and haplotypes were reconstructed. Results The effect of TLR4 SNPs on incident type 2 diabetes was modified by the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C). In men, four out of seven TLR4 variants showed significant interaction with TC/HDL-C after correction for multiple testing (p < 0.01). The influence of the minor alleles of those variants on the incidence of type 2 diabetes was observed particularly for male patients with high values of TC/HDL-C. Consistent with these findings, haplotype-based analyses also revealed that the effect of two haplotypes on incident type 2 diabetes was modified by TC/HDL-C in men (p < 10-3). However, none of the investigated variants or haplotypes was associated with type 2 diabetes in main effect models without assessment of effect modifications. Conclusion We conclude that minor alleles of several TLR4 variants, although not directly associated with type 2 diabetes might increase the risk for type 2 diabetes in subjects with high TC/HDL-C. Additionally, our results confirm previous studies reporting sex-related dissimilarities in the development of type 2 diabetes. PMID:18298826

  17. Novel inclusion complex of ibuprofen tromethamine with cyclodextrins: physico-chemical characterization.

    PubMed

    Al Omari, Mahmoud M; Daraghmeh, Nidal H; El-Barghouthi, Musa I; Zughul, Mohammad B; Chowdhry, Babur Z; Leharne, Stephen A; Badwan, Adnan A

    2009-10-15

    Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance ((1)H NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD), scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a)=4.55) forms 1:1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B(S)-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K(11)=58 M(-1) at pH 7.0) compared with the neutral Ibu (K(11)=4200 M(-1)) in water. Complex formation of Ibu.T with beta-CyD (DeltaG(o)=-20.4 kJ/mol) is enthalpy driven (DeltaH(o)=-22.9 kJ/mol) and is accompanied by a small unfavorable entropy (DeltaS(o)=-8.4 J/mol K) change. (1)H NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of Ibu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, (1)H NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state.

  18. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  19. Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, A. S.; O'Donnell, J. A.; Schmidt, J. H.; Kristenson, H. J.; Swanson, D. K.

    2017-04-01

    Lakes are an important component of high-latitude regions, providing habitat for fish and wildlife and playing a critical role in biogeochemical and global carbon cycles. High-latitude lakes are sensitive to climate change, in part due to their development within permafrost soils. Considerable heterogeneity exists across arctic and subarctic landscapes, yet little is known about how this landscape variability influences chemical and physical attributes of lakes. We investigated the physical and chemical limnology of 617 lakes in Alaska's boreal forest and boreal-arctic transition zone. We categorized lakes into 10 basin types based on parent material, topography, genesis, and permafrost characteristics. Physical parameters varied across lake basin types, with the deepest lakes occurring in ice-poor glacial deposits and ice-rich terrain, while the shallowest lakes were observed in floodplain deposits and coastal lowlands. Dissolved inorganic nitrogen (N) and phosphorous (P) concentrations were generally low across all landscapes, whereas total N and P were highest in lakes underlain by ice-rich Pleistocene loess. Total N and P concentrations were significantly correlated with chlorophyll a, indicating a possible colimitation of primary productivity in these systems. Base cation concentrations helped elucidate lake basin hydrology and the relative influence of shallow versus deep groundwater inputs to surface water. Using these results, we developed a simple conceptual model for each lake and landscape type based on differences in physical and chemical parameters. Overall, we expect that the vulnerability of lake ecosystems to climate change will vary across lake basin types and will be mediated by spatial patterns in permafrost characteristics and subsurface hydrology.

  20. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. Part 1: Chemical representation of cementitious binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Batchelor, B.

    1999-03-01

    Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less

  1. Morphology and physical-chemical properties of celluloses obtained by different methods

    NASA Astrophysics Data System (ADS)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  2. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    PubMed

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  3. Development of LLNA:DAE: a new local lymph node assay that includes the elicitation phase, discriminates borderline-positive chemicals, and is useful for cross-sensitization testing.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Itagaki, Hiroshi

    2014-02-01

    We developed a new local lymph node assay (LLNA) that includes the elicitation phase termed LLNA:DAE for discrimination of borderline-positive chemicals as classified by the LLNA modified by Daicel based on ATP content (LLNA:DA) and for cross-sensitization testing. Although the LLNA:DA method could help identify skin sensitizers, some skin irritants classified as non-sensitizers by the LLNA were classified as borderline positive. In addition, the evaluation for the cross-sensitization potential between chemicals was impossible. In the LLNA:DAE procedure, test group of mice received four applications of chemicals on the dorsum of the right ear for induction and one application on the dorsum of the left ear for elicitation. Control group of mice received one chemical application on the dorsum of the left ear. We evaluated the sensitizing potential by comparing the weights of the lymph nodes from the left ears between the two groups. The results of using the LLNA:DAE method to examine 24 chemicals, which contained borderline-positive chemicals, were consistent with those from the LLNA method, except for nickel chloride (NiCl2). Two chemical pairs, 2,4-dinitrochlorobenzene (DNCB) with 2,4-dinitrofluorobenzene (DNFB) and hydroquinone (HQ) with p-benzoquinone (p-BQ), showed clear cross-sensitization with each other, while another chemical pair, DNFB with hexylcinnamic aldehyde (HCA) did not. Taken together, our results suggest that the LLNA:DAE method is useful for discriminating borderline-positive chemicals and for determining chemical cross-sensitization.

  4. Effect of catalyst type on field emission properties of nanostructured carbon films grown by a modified hot-filament chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Kang, Sukill; Lowndes, Douglas H.; Ellis, Darren

    2001-03-01

    Nanostructured carbon films have been grown on uncatalysed n-type Si using a modified HF-CVD process and catalytic decomposition of ethylene (C_2H_4). Various metal catalyst wires such as Ni, Co, Fe and a NiFe composite were placed within the windings of a tungsten filament and the assembly was placed in close proximity ( ~7 mm) to the unheated substrate. Radiative heating of the substrate by the filament results in a substrate temperature of ~ 500^oC after 7 min. Films grown using the Ni catalyst showed a field emission turn-on field that varied from 9 to 15 V/μm and was stable for 30-50 hours (1-10 A/cm^2 emission current density), a result that is comparable to carbon nanotube- and carbon nanofiber-based structures. In this contribution, we present results from field emission scanning electron microscopy, transmission electron microscopy, and electron field emission measurements that elucidate the relationship between field emission properties, film morphology, and type of catalyst.

  5. Geochemical evolution of groundwater in southern Bengal Basin: The example of Rajarhat and adjoining areas, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Sahu, Paulami; Sikdar, P. K.; Chakraborty, Surajit

    2016-02-01

    Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: `excellent', `good' and `poor' and seven hydrochemical facies are assigned to three broad types: `fresh', `mixed' and `brackish' waters. The `fresh' water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich `brackish' groundwater represents freshening of modified connate water. The `mixed' type groundwater has possibly evolved due to hydraulic mixing of `fresh' and `brackish' waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.

  6. Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers.

    PubMed

    Wang, Gunuk; Jeong, Hyunhak; Ku, Jamin; Na, Seok-In; Kang, Hungu; Ito, Eisuke; Jang, Yun Hee; Noh, Jaegeun; Lee, Takhee

    2014-04-01

    We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems.

    PubMed

    Fernandes, Rafaella de Paula Paseto; Freire, Maria Teresa de Alvarenga; de Paula, Elisa Silva Maluf; Kanashiro, Ana Livea Sayuri; Catunda, Fernanda Antunes Pinto; Rosa, Alessandra Fernandes; Balieiro, Júlio Cesar de Carvalho; Trindade, Marco Antonio

    2014-01-01

    The aim of the present study was to evaluate the effect of different modified atmosphere packaging (MAP) systems (vacuum, 75% O2+25% CO2 and 100% CO2) on the stability of lamb loins stored at 1±1°C for 28 days. Microbiological (counts of aerobic and anaerobic psychrotrophic microorganisms, coliform at 45°C, coagulase-positive staphylococci and lactic acid bacteria and presence of Salmonella), physical and chemical (thiobarbituric acid reactive substances [TBARS], objective color, pH, water loss from cooking [WLC] and shear force), sensory (acceptance testing using a 9-point hedonic scale) and gas composition analyses were performed. Lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, with respect to psychrotrophic microorganisms, 100% CO2 packaging system provided increased stability despite presenting lower appearance preference. © 2013.

  8. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    PubMed

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  9. Cyclic loading of rotator cuff reconstructions: single-row repair with modified suture configurations versus double-row repair.

    PubMed

    Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich

    2008-08-01

    Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio-Corkscrew FT anchors (5.9 +/- 0.9 mm; P = .008), and corkscrews with modified Mason-Allen sutures (6.4 +/- 1.3 mm; P = .001). Double-row double-corkscrew anchor rotator cuff repair offered the highest failure load and smallest gap formation and provided the most secure fixation of all tested configurations. Double-loaded suture anchors using modified suture configurations achieved superior results in failure load and gap formation compared to simple suture repair and showed similar loads and gap formation with double-row repair using PushLock and Bio-Corkscrew FT anchors. Single-row repair with modified suture configurations may lead to results comparable to several double-row fixations. If double-row repair is used, modified stitches might further minimize gap formation and increase failure load.

  10. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    PubMed

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  11. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  12. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  13. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    PubMed

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthesis and characterization of vanadiumoxidecatalysts supported on copper orthophosphates

    NASA Astrophysics Data System (ADS)

    Ouchabi, M.; Baalala, M.; Elaissi, A.; Loulidi, I.; Bensitel, M.

    2017-03-01

    Synthesis of a pure copper orthophosphate (CuP) prepared by Coprecipitation, and CuP modified by impregnation of vanadium (2-12 wt % of V2O5) have been carried out. The solids obtained were investigated as synthesized or after calcination by various physico-chemical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results revealed that the solids V/CuP consisted of copper orthophosphate Cu3(PO4)2 as major phases, together with V2O5 as minor phase. The diffraction lines of V2O5 increase by increasing the vanadium content.

  15. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.

  16. Gold Binding by Native and Chemically Modified Hops Biomasses

    DOE PAGES

    López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less

  17. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    PubMed

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  18. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  19. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-07-30

    Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch.

    PubMed

    Lv, Qing-Qing; Li, Gao-Yang; Xie, Qiu-Tao; Zhang, Bao; Li, Xiao-Min; Pan, Yi; Chen, Han-Qing

    2018-08-01

    In order to increase the degree of substitution (DS), a combination of heat-moisture treatment (HMT) and octenyl succinylation (OSA) was used to modify sweet potato starch (SPS). The content of OSA had significant influence on the DS of starch, and DS of HMT OSA-modified SPS (HOSA-SPS) was higher than that of OSA-modified SPS (OSA-SPS), indicating that prior HMT could enhance the reaction. HOSA-SPS showed higher contents of SDS and RS in comparison with OSA-SPS as OSA concentration was beyond 6%. HMT decreased swelling power of starch while OSA modification had a contrary role (p < 0.05). Scanning electron microscopy (SEM) showed starch was destroyed by OSA modification while HMT had slight effect on the structure. X-ray diffraction (XRD) indicated that crystal type of starch was transformed from C- to A-type resulted from HMT, and remained unchanged by OSA modification. The onset, peak, and conclusion gelatinization temperatures of starch increased by HMT and decreased by OSA modification (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Phase Transition in Biopolymer Hydrogels Based on Glycine (g), Valine (v), Proline (p), and Isoleucine (i)

    NASA Astrophysics Data System (ADS)

    Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.

    2000-03-01

    Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.

  2. Biosynthesis and Heterologous Production of Epothilones

    NASA Astrophysics Data System (ADS)

    Müller, Rolf

    Although a variety of chemical syntheses for the epothilones and various derivatives have been described, modifying the backbone of those natural products remains a major challenge. One alternative to chemical alteration is the elucidation and subsequent manipulation of the biosynthetic pathway via genetic engineering in the producing organism. This type of approach is known as “combinatorial biosynthesis” and holds great promise, especially in conjunction with semi-synthesis methods to alter the structure of the natural product. In parallel, production can be optimized in the natural producer if the regulatory mechanisms governing the biosynthesis are understood. Alternatively, the entire gene cluster can be transferred into a heterologous host, more amenable both to genetic alteration and overexpression.

  3. Clean Transformation of Ethanol to Useful Chemicals. The Behavior of a Gold-Modified Silicalite Catalyst.

    PubMed

    Falletta, Ermelinda; Rossi, Michele; Teles, Joaquim Henrique; Della Pina, Cristina

    2016-03-19

    Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process.

  4. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, D.

    The reasons for preservative treatment of cooling tower wood are reviewed along with a summary of which types of treatment are available, how they are applied, and a comparison of materials and processes. Industries often specify minimum quality preservatives for their cooling towers without understanding the loss of strength caused by decay and the economic losses due to a cooling tower failure and lost production. Wood is subject to both chemical (surface delignification and iron rot) and biological (soft rot) attack. A successful preservative treatment that protects against both must have retention and penetration qualities. Research efforts are examining themore » toxicity and environmental impacts of preservatives and exploring the possibility of chemically modifying wood. (DCK)« less

  6. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  7. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus.

    PubMed

    Kurban, Sevil; Mehmetoglu, Idris; Yerlikaya, Hümeyra F; Gönen, Sait; Erdem, Sami

    2011-01-01

    Objectives. Our aim was to determine the effect of chronic regular exercise on ischemia-modified albumin (IMA) levels and oxidative stress in type 2 diabetes mellitus (DM). Design and methods. Sixty patients with type 2 DM were randomly divided into two groups as exercise (17 M, 13 F) and non-exercise (12 M, 18 F) groups, each consisting of 30 patients. The exercise group underwent a 3-month aerobic regular exercise consisting of moderate-intensity power walking. The non-exercise subjects remained sedentary throughout the study period. Serum total antioxidant status (TAS), total oxidant status (TOS), and IMA levels of the groups were determined at baseline and 3 months later. Results. There was no significant change in TOS and IMA levels of exercise group but TAS levels were significantly increased (p < 0.05). Also, postexercise systolic (p < 0.001) and diastolic (p < 0.05) blood pressures of the exercise group were significantly lower than the baseline values. In addition, there was no significant change in TAS and TOS levels of the non-exercise group; however, IMA levels were significantly increased (p < 0.01). Conclusion. We have shown, for the first time, that exercise prevents increase in IMA levels in type 2 DM which might have resulted from increased levels of TAS and reduces the risk of ischemia in these patients. These findings show that chronic exercise is beneficial in the prevention of oxidative stress in patients with type 2 DM as documented by decreased IMA levels.

  8. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  9. Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity.

    PubMed

    Han, Fang; Wiercigroch, Marian; Fang, Jian-An; Wang, Zhijie

    2011-10-01

    Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one.

  10. An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte.

    PubMed

    Qadri, Masroor; Nalli, Yedukondalu; Jain, Shreyans K; Chaubey, Asha; Ali, Asif; Strobel, Gary A; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2017-05-01

    Muscodor spp. are proficient producers of bioactive volatile organic compounds (VOCs) with many potential applications. However, all members of this genus produce varying amounts and types of VOCs which suggests the involvement of epigenetics as a possible explanation. The members of this genus are poorly explored for the production of soluble compounds (extrolites). In this study, the polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes from an endophyte, Muscodor yucatanensis Ni30, were cloned and sequenced. The PKS genes belonged to reduced, partially reduced, non-reduced, and highly reduced subtypes. Strains over-expressing PKS genes were developed through the use of small-molecule epigenetic modifiers (suberoylanilide hydroxamic acid (SAHA) and 5-azacytidine). The putative epigenetic variants of this organism differed considerably from the wild type in morphological features and cultural characteristics as well as metabolites that were produced. Each variant produced a different set of VOCs distinct from the wild type, and several VOCs including methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)hexane-2,4-diol and 2-carboxymethyl-3-n-hexylmaleic appeared in the variant strains, the production of which could be attributed to the activity of otherwise silent PKS genes. The bioactive extrolite brefeldin A was isolated and characterized from the wild type. However, this metabolite was not detected in EV-1, but instead, two other products were isolated and characterized as ergosterol and xylaguaianol C. Hence, M. yucatanensis has the genetic potential to produce several previously undetectable VOCs and organic solvent soluble products. It is also the case that small-molecule epigenetic modifiers can be used to produce stable variant strains of fungi with the potential to produce new molecules. Finally, this work hints to the prospect that the epigenetics of an endophytic microorganism can be influenced by any number of environmental and chemical factors associated with its host plant which may help to explain the enormous chemical diversity of secondary metabolic products found in Muscodor spp.

  11. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    PubMed Central

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding which may be of benefit in situations where large demands are imposed on biomechanically stable interfaces, such as in early loading and in compromised conditions. PMID:27299883

  12. Chemical structure determination of DNA bases modified by active metabolites of lucidin-3-O-primeveroside.

    PubMed

    Ishii, Yuji; Okamura, Toshiya; Inoue, Tomoki; Fukuhara, Kiyoshi; Umemura, Takashi; Nishikawa, Akiyoshi

    2010-01-01

    Lucidin-3-O- primeveroside (LuP) is one of the components of madder root (Rubia tinctorum L.; MR) which is reported to be carcinogenic in the kidney and liver of rats. Since metabolism of LuP generates genotoxic compounds such as lucidin (Luc) and rubiadin (Rub), it is likely that LuP plays a key role in MR carcinogenesis. In the present study, the chemical structures of Luc-specific 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts following the reactions of dG and dA with a Luc carbocation or quinone methide intermediate derived from Acetoxy-Luc were determined by liquid chromatography with photodiode array and electron spray ionizaion-mass spectrometry (LC-PDA-ESI/MS). The identification of the two measurable adducts as Luc-N(2)-dG and Luc-N(6)-dA was confirmed by NMR analysis. Subsequently, using a newly developed quantitative analytical method using LC-ESI/MS, the formation of Luc-N(2)-dG and Luc-N(6)-dA from the reaction of calf thymus DNA with Luc in the presence of S9 mixture was observed. The fact that this reaction with Rub also gave rise to the same dG and dA adducts strongly suggests that Rub genotoxicity involves a metabolic conversion to Luc. The precise determination of the modified DNA bases generated by LuP and the method for their analysis may contribute to further comprehension of the mode of action underlying carcinogenesis by MR and related anthraquinones.

  13. Global and local disturbances interact to modify seagrass palatability.

    PubMed

    Jiménez-Ramos, Rocío; Egea, Luis G; Ortega, María J; Hernández, Ignacio; Vergara, Juan J; Brun, Fernando G

    2017-01-01

    Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.

  14. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  15. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  16. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes.

    PubMed

    Yin, Hongbin; Kong, Ming; Han, Meixiang; Fan, Chengxin

    2016-12-01

    Modified clay-based solid-phase phosphorous (P) sorbents are increasingly used as lake geoengineering materials for lake eutrophication control. However, some still dispute the feasibility of using these materials to control internal P loading from shallow eutrophic lakes. The lack of information about P behavior while undergoing frequent sediment resuspension greatly inhibits the modified minerals' use. In this study, a sediment resuspension generating system was used to simulate the effect of both moderate winds (5.1 m/s) and strong winds (8.7 m/s) on the stability of sediment treated by two geoengineering materials, Phoslock ® (a lanthanum modified bentonite) and thermally-treated calcium-rich attapulgite. This study also presents an analysis of the P dynamics across the sediment-water interface of two shallow eutrophic lakes. In addition, the effect of wind velocity on P forms and P supply from the treated sediment were studied using chemical extraction and diffusive gradients in thin films (DGT) technique, respectively. Results showed that adding geoengineering materials can enhance the stability of surface sediment and reduce the erosion depth caused by wind accordingly. All treatments can effectively reduce soluble reactive phosphorus (SRP) concentration in overlying water when sediment is capped with thermally-treated calcium-rich attapulgite, which performs better than sediment mixed with modified attapulgite but not as well as sediment treated with Phoslock ® . However, their efficiency decreased with the increase in occurrences of sediment resuspension. The addition of the selected geoengineering materials effectively reduced the P fluxes across sediment-water interface and lowered P supply ability from the treated sediment during sediment resuspension. The reduction of mobile P and enhancement of calcium bound P and residual P fraction in the treated sediment was beneficial to the long-term lake internal P loading management. All of the results indicated that the studied geoengineering materials are suitable for application in shallow eutrophic lakes with frequent sediment resuspension activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  18. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes

    PubMed Central

    Skinnider, Michael A.; Merwin, Nishanth J.; Johnston, Chad W.

    2017-01-01

    Abstract Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/. PMID:28460067

  19. I Should but I Can’t: Controlled Motivation and Self-efficacy are Related to Disordered Eating Behaviors in Adolescents with Type 1 Diabetes

    PubMed Central

    Eisenberg, Miriam H.; Lipsky, Leah M.; Dempster, Katherine; Liu, Aiyi; Nansel, Tonja R.

    2016-01-01

    Purpose Among adolescents with type 1 diabetes, disordered eating behaviors (DEB) are more prevalent and have more serious health implications than in adolescents without diabetes, necessitating identification of modifiable correlates of DEB in this population. This study hypothesized that 1) autonomous motivation and 2) controlled motivation for healthy eating (i.e., eating healthfully because it’s important to oneself versus important to others respectively) are associated with DEB among adolescents with type 1 diabetes. The third hypothesis was that baseline healthy eating self-efficacy moderates these associations. Methods Adolescents with T1D (n = 90; 13–16 years) participating in a behavioral nutrition intervention efficacy trial reported DEB, controlled and autonomous motivation, and self-efficacy at baseline, 6, 12, and 18 months. Linear mixed models estimated associations of controlled and autonomous motivation with DEB, adjusting for treatment group, BMI, socio-economic status, age, and gender. Separate models investigated the interaction of self-efficacy with each motivation type. Results Controlled motivation was positively associated with DEB (B=2.18±.33, p<.001); the association was stronger for those with lower self-efficacy (B= 3.33±.55, p<.001) than those with higher self-efficacy (B=1.36±.36, p<.001). Autonomous motivation was not associated with DEB (B=−.70± .43, p=.11). Conclusions Findings identify controlled motivation for healthy eating as a novel correlate of DEB among adolescents with type 1 diabetes and show that self-efficacy can modify this association. Motivation and self-efficacy for healthy eating represent potential intervention targets to reduce DEB in adolescents with type 1 diabetes. PMID:27567063

  20. RNAi Screening with Self-Delivering, Synthetic siRNAs for Identification of Genes That Regulate Primary Human T Cell Migration.

    PubMed

    Freeley, Michael; Derrick, Emily; Dempsey, Eugene; Hoff, Antje; Davies, Anthony; Leake, Devin; Vermeulen, Annaleen; Kelleher, Dermot; Long, Aideen

    2015-09-01

    Screening of RNA interference (RNAi) libraries in primary T cells is labor-intensive and technically challenging because these cells are hard to transfect. Chemically modified, self-delivering small interfering RNAs (siRNAs) offer a solution to this problem, because they enter hard-to-transfect cell types without needing a delivery reagent and are available in library format for RNAi screening. In this study, we have screened a library of chemically modified, self-delivering siRNAs targeting the expression of 72 distinct genes in conjunction with an image-based high-content-analysis platform as a proof-of-principle strategy to identify genes involved in lymphocyte function-associated antigen-1 (LFA-1)-mediated migration in primary human T cells. Our library-screening strategy identified the small GTPase RhoA as being crucial for T cell polarization and migration in response to LFA-1 stimulation and other migratory ligands. We also demonstrate that multiple downstream assays can be performed within an individual RNAi screen and have used the remainder of the cells for additional assays, including cell viability and adhesion to ICAM-1 (the physiological ligand for LFA-1) in the absence or presence of the chemokine SDF-1α. This study therefore demonstrates the ease and benefits of conducting siRNA library screens in primary human T cells using self-delivering, chemically modified siRNAs, and it emphasizes the feasibility and potential of this approach for elucidating the signaling pathways that regulate T cell function. © 2015 Society for Laboratory Automation and Screening.

  1. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    PubMed Central

    Laminack, William I.; Gole, James L.

    2013-01-01

    The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2), in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH) groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB) model. PMID:28348345

  2. A Summary of Publications on the Development of Mode-of ...

    EPA Pesticide Factsheets

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures of potentially toxic disinfection byproducts (DBPs). The types and concentrations of DBPs formed during disinfection and the relative proportions of the components vary depending on factors such as source water conditions (e.g., types of NOM present), disinfectant type (e.g., chlorine, ozone, chloramine), and treatment conditions (e.g., pH and temperature). To date, over 500 DBPs have been detected in treated waters. However, typically more than 50% of the organic halide mass produced by chlorination disinfection consists of unidentified chemicals, which are not measured by routine analyses of DBPs. The protocols and methods typically used to evaluate chemical mixtures are best applied to simple defined mixtures consisting of relatively few chemicals. These approaches rely on assumptions (e.g., common mode of action, independent toxic action) regarding the type of joint toxic action (e.g., dose-additivity, synergism) that might be observed. Such methods, used for site assessments or toxicological studies, are often not sufficient to estimate health risk for complex drinking water DBP mixtures. Actual drinking water exposures involve multiple chemicals, many of w

  3. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    PubMed

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  4. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    NASA Astrophysics Data System (ADS)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  5. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    PubMed

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  6. Functional assessment using Constant's Shoulder Scale after modified radical and selective neck dissection.

    PubMed

    Chepeha, Douglas B; Taylor, Rodney J; Chepeha, Judith C; Teknos, Theodoros N; Bradford, Carol R; Sharma, Pramod K; Terrell, Jeffrey E; Wolf, Gregory T

    2002-05-01

    Constant's Shoulder Scale is a validated and widely applied instrument for assessment of shoulder function. We used this instrument to assess which treatment and demographic variables contribute to shoulder dysfunction after neck dissection in head and neck cancer patients. A convenience sample of 54 patients with 64 neck dissections and minimum follow-up of 11 months were evaluated. Thirty-two accessory nerve-sparing modified radical (MRND) and 32 selective neck (SND) dissections were performed. Multivariable regression analysis was used to determine the variables that were predictive for shoulder dysfunction. Clinical variables included age, time from surgery, handedness, weight, radiation therapy, neck dissection type, tumor stage, and site. Patients receiving MRND had significantly worse shoulder function than patients with SND (p =.0007). Radiation therapy contributed negatively, whereas weight contributed positively (p =.0001). The critical factors contributing to shoulder dysfunction after neck dissection were weight, radiation therapy, and neck dissection type. Copyright 2002 Wiley Periodicals, Inc.

  7. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    NASA Astrophysics Data System (ADS)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  8. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    PubMed

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry.

    PubMed

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-03-07

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.

  10. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry

    PubMed Central

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-01-01

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules. PMID:28223513

  11. Effect of different fibers on dough properties and biscuit quality.

    PubMed

    Blanco Canalis, María S; Steffolani, María E; León, Alberto E; Ribotta, Pablo D

    2017-03-01

    This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Moisture Damage Modeling in Lime and Chemically Modified Asphalt at Nanolevel Using Ensemble Computational Intelligence

    PubMed Central

    2018-01-01

    This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques. PMID:29849551

  13. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  14. Effects of anticaking agents and relative humidity on the physical and chemical stability of powdered vitamin C.

    PubMed

    Lipasek, Rebecca A; Taylor, Lynne S; Mauer, Lisa J

    2011-09-01

    Vitamin C is an essential nutrient that is widely used by the food industry in the powder form for both its nutritional and functional properties. However, vitamin C is deliquescent, and deliquescence has been linked to physical and chemical instabilities. Anticaking agents are often added to powder systems to delay or prevent caking, but little is known about their effect on the chemical stability of powders. In this study, various anticaking agents (calcium phosphate, calcium silicate, calcium stearate, corn starch, and silicon dioxide) were combined with sodium ascorbate at 2% and 50% w/w ratios and stored at various relative humidities (23%, 43%, 64%, 75%, 85%, and 98% RHs). Chemical and physical stability and moisture sorption were monitored over time. Additionally, saturated solution samples were stored at various pHs to determine the effect of surface pH and dissolution on the vitamin degradation rate. Storage RH, time, and anticaking agent type and ratio all significantly affected (P < 0.05) moisture sorption and vitamin C stability. Silicon dioxide and calcium silicate (50% w/w) and calcium stearate (at both ratios) were the only anticaking agents to improve the physical stability of powdered sodium ascorbate while none of the anticaking agents improved its chemical stability. However, corn starch and calcium stearate had the least adverse effect on chemical stability. Dissolution rate and pH were also important factors affecting the chemical and physical stability of the powders. Therefore, monitoring storage environmental conditions and anticaking agent usage are important for understanding the stability of vitamin C. Anticaking agent type and ratio significantly affected the physical and chemical stability of vitamin C over time and over a range of RHs. No anticaking agent improved the chemical stability of the vitamin, and most caused an increase in chemical degradation even if physical stability was improved. It is possible that anticaking agents would greatly affect other chemically labile deliquescent ingredients, and therefore, anticaking agent usage and storage conditions should be monitored in blended powder systems. © 2011 Institute of Food Technologists®

  15. Thermodynamics and sorption characteristics of Zn(II) onto natural and chemically modified zeolites for agricultural and environmental using

    NASA Astrophysics Data System (ADS)

    Saltali, K.; Tazebay, N.; Kaya, M.

    2017-10-01

    Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities ( q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (Δ H°) and entropy (Δ S°) values were positive. The change values of Gibbs free energy (Δ G°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.

  16. The effect of short polyethylene fiber with different weight percentages on diametral tensile strength of conventional and resin modified glass ionomer cements

    PubMed Central

    Sharafeddin, Farahnaz; Ghaboos, Seyed-Ali

    2017-01-01

    Background The aim of this study was to investigate the effect of polyethylene fiber on diametral tensile strength of conventional and resin modified glass ionomer cements. Material and Methods 60 specimens in 6 groups (n=10) were prepared. In group 1 conventional glass ionomer (Fuji GC) and in group 2 resin modified glass ionomer (Fuji LC) were as control groups. In group 3 and 4 conventional glass ionomers mixed with short polyethylene fibers in proportion of 1 wt% and 3 wt%, respectively. In fifth and sixth groups, resin modified glass ionomer and short polyethylene fibers were mixed in 1 and 3% wt, respectively. Samples were prepared in a round brass mold (6.5×2.5 mm). After thermo-cycling, the diametral tensile strength of the specimens were tested and data were analyzed with ANOVA and post-hoc tests (p<0.05). Results Diametral tensile strength of both conventional and resin modified glass ionomer cements increased after mixing with polyethylene fiber (p<0.001). Also, reinforcement occurred as the mixing percentage increased from 1% wt to 3% wt in either conventional and resin modified glass ionomer (p<0.001). Conclusions The polyethylene fiber was shown to have a significant positive influence on diametral tensile strength of two types of glass ionomers. Key words:Conventional glass ionomer, diametral tensile strength, polyethylene fiber, resin modified glass ionomer. PMID:28298993

  17. Mutation-Induced Changes in the Protein Environment and Site Energies in the (M)L214G Mutant of the Rhodobacter sphaeroides Bacterial Reaction Center.

    PubMed

    Jankowiak, Ryszard; Rancova, Olga; Chen, Jinhai; Kell, Adam; Saer, Rafael G; Beatty, J Thomas; Abramavicius, Darius

    2016-08-18

    This work focuses on the low-temperature (5 K) photochemical (transient) hole-burned (HB) spectra within the P870 absorption band, and their theoretical analysis, for the (M)L214G mutant of the photosynthetic Rhodobacter sphaeroides bacterial reaction center (bRC). To provide insight into system-bath interactions of the bacteriochlorophyll a (BChl a) special pair, i.e., P870, in the mutated bRC, the optical line shape function for the P870 band is calculated numerically. On the basis of the modeling studies, we demonstrate that (M)L214G mutation leads to a heterogeneous population of bRCs with modified (increased) total electron-phonon coupling strength of the special pair BChl a and larger inhomogeneous broadening. Specifically, we show that after mutation in the (M)L214G bRC a large fraction (∼50%) of the bacteriopheophytin (HA) chromophores shifts red and the 800 nm absorption band broadens, while the remaining fraction of HA cofactors retains nearly the same site energy as HA in the wild-type bRC. Modeling using these two subpopulations allowed for fits of the absorption and nonresonant (transient) HB spectra of the mutant bRC in the charge neutral, oxidized, and charge-separated states using the Frenkel exciton Hamiltonian, providing new insight into the mutant's complex electronic structure. Although the average (M)L214G mutant quantum efficiency of P(+)QA(-) state formation seems to be altered in comparison with the wild-type bRC, the average electron transfer time (measured via resonant transient HB spectra within the P870 band) was not affected. Thus, mutation in the vicinity of the electron acceptor (HA) does not tune the charge separation dynamics. Finally, quenching of the (M)L214G mutant excited states by P(+) is addressed by persistent HB spectra burned within the B band in chemically oxidized samples.

  18. Impact of landform and type of land use on soils developed over granite in the monsoonal climate of North-East India

    NASA Astrophysics Data System (ADS)

    Prokop, Paweł; Kruczkowska, Bogusława; Jones Syiemlieh, Hiambok; Bucała, Anna

    2016-04-01

    Soil properties are determined by the factors such climate, organisms, topography, geology, and time. Despite human activity will be recognized as part of biotic factors or distinct from other organisms it change soil directly or indirectly by changing both soil morphology and the underlying soil-forming processes. Thus it is difficult to distinguish soil properties modified only due to human impact. A small hilly catchment (3.9 km2) at an altitude of 1750-1800 m a.s.l. was selected for the investigation of landform and land use impact on soil properties. The climate is monsoonal with 14oC of mean annual temperature and 2400 mm of mean annual rainfall. The catchment is underlain by deeply weathered (up to 20 m) granite with abundant corestones embedded in sandy grus. Soils have been classified as sandy-loam and silty-loam Ultisols. Site has relatively uniform climate and parent material, so that a large proportion of the local soil variation can be attributed to landforms and land use changes within them. Thirty soil samples from topsoil (depth up to10 cm) were analysed from two landforms: flat ridge and the middle part of 150 m length slope (15o) with three types of land use: natural deciduous forest, cultivated land (potatoes, cabbage) and 20-years old pine forest on former cultivated land. Physical (texture, bulk density) and chemical (pH, C, N, P, K, CEC) soil properties were analysed. Significant differences between the means of soil properties were identified using the t-statistics, with a level of probability of 5%. Impact of landform on topsoil properties was visible under all three land use types. Soil under natural deciduous forest on flat ridge has statistically significant less sand, higher content of C and N in comparison to soil profile localized on slope. The differences between ridge and slope under pine forest and cultivated land were limited to some chemical properties such content of C, N and CEC, while statistically significant differences in physical properties were not observed due to homogenization of topsoil during tillage. Contrasts in soil properties between three types of land use within the flat ridge were smaller than the contrast on slope. Soil under pine forest has highest pH and C, N content both within ridge (4.8, 4.24%, 0.37%) and slope (4.8, 3.46%, 0.27%) in comparison to natural deciduous forest (ridge 4.4, 3.42, 0.27%; slope 4.6, 2.32%, 0.20%) and agricultural land (ridge 4.7, 2.94%, 0.27%; slope 4.5, 2.43%, 0.23%). This indicates relatively fast recovery of topsoil chemical properties on the former cultivated land. The effects of cultivation on deep weathered granites, despite severe erosion on slopes, are less negative for environment than on surrounding areas built of quartzites with limited thickness of parent material.

  19. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    PubMed Central

    Cox, David G.; Simard, Jacques; Sinnett, Daniel; Hamdi, Yosr; Soucy, Penny; Ouimet, Manon; Barjhoux, Laure; Verny-Pierre, Carole; McGuffog, Lesley; Healey, Sue; Szabo, Csilla; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Caligo, Maria A.; Friedman, Eitan; Laitman, Yael; Kaufman, Bella; Paluch, Shani S.; Borg, Åke; Karlsson, Per; Stenmark Askmalm, Marie; Barbany Bustinza, Gisela; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; van den Ouweland, Ans M.W.; Ausems, Margreet G.E.M.; Aalfs, Cora M.; van Asperen, Christi J.; Devilee, Peter; Gille, Hans J.J.P.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Adlard, Julian; Paterson, Joan; Eason, Jacqueline; Godwin, Andrew K.; Remon, Marie-Alice; Moncoutier, Virginie; Gauthier-Villars, Marion; Lasset, Christine; Giraud, Sophie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Eisinger, François; Bressac de Paillerets, Brigitte; Caron, Olivier; Delnatte, Capucine; Goldgar, David; Miron, Alex; Ozcelik, Hilmi; Buys, Saundra; Southey, Melissa C.; Terry, Mary Beth; Singer, Christian F.; Dressler, Anne-Catharina; Tea, Muy-Kheng; Hansen, Thomas V.O.; Johannsson, Oskar; Piedmonte, Marion; Rodriguez, Gustavo C.; Basil, Jack B.; Blank, Stephanie; Toland, Amanda E.; Montagna, Marco; Isaacs, Claudine; Blanco, Ignacio; Gayther, Simon A.; Moysich, Kirsten B.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Gadzicki, Dorothea; Fiebig, Britta; Caldes, Trinidad; Laframboise, Rachel; Nevanlinna, Heli; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Radice, Paolo; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Sinilnikova, Olga M.

    2011-01-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77–0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription. PMID:21890493

  20. Biomechanical Comparison of Modified Suture Bridge Using Rip-Stop versus Traditional Suture Bridge for Rotator Cuff Repair

    PubMed Central

    Zhang, Peng; Chen, TianWu; Chen, ShiYi

    2016-01-01

    Purpose. To compare the biomechanical properties of 3 suture-bridge techniques for rotator cuff repair. Methods. Twelve pair-matched fresh-frozen shoulder specimens were randomized to 3 groups of different repair types: the medially Knotted Suture Bridge (KSB), the medially Untied Suture Bridge (USB), and the Modified Suture Bridge (MSB). Cyclic loading and load-to-failure test were performed. Parameters of elongation, stiffness, load at failure, and mode of failure were recorded. Results. The MSB technique had the significantly greatest load to failure (515.6 ± 78.0 N, P = 0.04 for KSB group; P < 0.001 for USB group), stiffness (58.0 ± 10.7 N/mm, P = 0.005 for KSB group; P < 0.001 for USB group), and lowest elongation (1.49 ± 0.39 mm, P = 0.009 for KSB group; P = 0.001 for USB group) among 3 groups. The KSB repair had significantly higher ultimate load (443.5 ± 65.0 N) than USB repair (363.5 ± 52.3 N, P = 0.024). However, there was no statistical difference in stiffness and elongation between KSB and USB technique (P = 0.396 for stiffness and P = 0.242 for elongation, resp.). The failure mode for all specimens was suture pulling through the cuff tendon. Conclusions. Our modified suture bridge technique (MSB) may provide enhanced biomechanical properties when compared with medially knotted or knotless repair. Clinical Relevance. Our modified technique may represent a promising alternative in arthroscopic rotator cuff repair. PMID:27975065

Top