Spier, Franciela; Zavareze, Elessandra da Rosa; Marques e Silva, Ricardo; Elias, Moacir Cardoso; Dias, Alvaro Renato Guerra
2013-07-01
Few studies on starch modifications using different chemical agents are available in the literature, and no reports were found on the combined effect of oxidation and alkaline treatment of corn starch. Thus this work evaluated the physicochemical, pasting, morphological, cystallinity and thermal properties of chemically modified corn starch, after either the isolated or combined action of alkaline (sodium hydroxide) and oxidative (sodium hypochlorite) treatments. The highest values for the sum of carbonyl and carboxyl and enzymatic hydrolysis occurred in starches submitted to oxidative treatment at high active chlorine concentrations. The alkali treatment in isolation modified the pasting properties, reduced the paste temperature and increased the peak viscosity, breakdown, final viscosity and setback of starches. Starch modified by the action of sodium hypochlorite and hydroxide in combination presented more severe damage on granule surfaces. The results show that corn starch modified by the combined action of oxidative and alkaline treatments should be studied more, especially at the concentration limit of sodium hydroxide where gelatinization occurs. Under these conditions the effect of oxidation can be more intense and thus allow the production of starches with different properties and an increase in their industrial applications. © 2013 Society of Chemical Industry.
Physical and chemical modification of starches: A review.
Zia-Ud-Din; Xiong, Hanguo; Fei, Peng
2017-08-13
The development of green material in the last decade has been increased, which tends to reduce the impact of humans on the environment. Starch as an agro-sourced polymer has become very popular recently due to its characteristics, such as wide availability, low cost, and total compostability without toxic residues. Starch is the most abundant organic compound found in nature after cellulose. Starches are inherently unsuitable for most applications and, therefore, must be modified physically and/or chemically to enhance their positive attributes and/or to minimize their defects. Modification of starches is generally carried out by using physical methods that are simple and inexpensive due to the absence of chemical agents. However, chemical modification involves the exploitation of hydroxyl group present in the starches that brings about the desired results for the utilization of starches for specific applications. All these techniques have the tendency to produce starches with altered physicochemical properties and modified structural attributes for various food and nonfood applications. This paper reviews the recent knowledge and developments using physical modification methods, some chemical modification methods, and a combination of both to produce a novel molecule with substantial applications, in food industry along with future perspectives.
Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny
2007-09-01
Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Y.; Shi, Y; Wetzel, D
Fourier transform infrared (FT-IR) microspectroscopy was used to investigate reaction homogeneity of octenyl succinic anhydride modification on waxy maize starch and detect uniformity of blends of modified and native starches. For the first time, the level and uniformity of chemical substitution on individual starch granules were analyzed by FT-IR microspectroscopy. More than 100 starch granules of each sample were analyzed one by one by FT-IR microspectroscopy. In comparison to the native starch, modified starch had two additional bands at 1723 and 1563 cm{sup -1}, indicative of ester formation in the modified starch. For the 3% modification level, the degree ofmore » substitution (DS) was low (0.019) and the distribution of the ester group was not uniform among starch granules. For the modified starch with DS of 0.073, 99% of individual starch granules had a large carbonyl band area, indicating that most granules were modified to a sufficient extent that the presence of their carbonyl ester classified them individually as being modified. However, the octenyl succinate concentration varied between granules, suggesting that the reaction was not uniform. When modified starch (DS = 0.073) was blended with native starch (3:7, w/w) to achieve a mixture with an average DS of 0.019, FT-IR microspectroscopy was able to detect heterogeneity of octenyl succinate in the blend and determine the ratio of the modified starch to the native starch granules.« less
Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy
2017-01-01
This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Yu-Ting; Wang, Ri-Si; Liang, Rui-Hong; Chen, Jun; He, Xiao-Hong; Chen, Rui-Yun; Liu, Wei; Liu, Cheng-Mei
2018-08-01
Octenyl succinic anhydride (OSA) modified starch is widely used in food industries. In this study, rice starch (RS) was pretreated by dynamic high-pressure microfluidization (DHPM) and subsequently modified by OSA. The influence of DHPM on OSA modification of rice starch was investigated. Results showed that DHPM pretreatment enhanced the degree of substitution by changing the morphology and crystallinity of rice starch. Compared with the rice starch modified by OSA without DHPM pretreatment (OSA-RS), the DHPM-pretreated OSA starch (DHPM-OSA-RS) presented higher peak viscosity and lower pasting temperature. DHPM-OSA-RS also exhibited better emulsifying activity and emulsion stability. This study suggested that DHPM will provide an opportunity to change the physicochemical properties of starch, with the resulting starch being more suitable for chemical modification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ačkar, Durđica; Subarić, Drago; Babić, Jurislav; Miličević, Borislav; Jozinović, Antun
2014-08-01
The aim of this research was to investigate the influence of modification with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures on chemical and physical properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetanhydride and azelaic acid and acetanhydride in 4, 6 and 8% (w/w). Total starch content, resistant starch content, degree of modification, changes in FT-IR spectra, colour, gel texture and freeze-thaw stability were determined. Results showed that resistant starch content increased by both investigated modifications, and degree of modification increased proportionally to amount of reagents used. FT-IR analysis of modified starches showed peak around 1,740 cm(-1), characteristic for carbonyl group of ester. Total colour difference caused by modifications was detectable by trained people. Adhesiveness significantly increased, while freeze-thaw stability decreased by both investigated modifications.
Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane
2016-01-01
Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P < 0.05). An increase in moisture, water, and oil absorption capacity was observed for the acetylated starch and, which was less pronounced for the enzymatically hydrolysed starch but more pronounced for the enzymatically hydrolysed acetylated product. The latter product underwent an increase in resistant starch content, which is induced by a rise in hydrolysis time to attain about 67 % after 1 h of reaction. The modified starch samples were added to cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.
Carlos-Amaya, Fandila; Osorio-Diaz, Perla; Agama-Acevedo, Edith; Yee-Madeira, Hernani; Bello-Pérez, Luis Arturo
2011-02-23
Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The degree of substitution of the esterified samples ranged from 0.006 to 0.020. The X-ray diffraction pattern of the modified samples did not show change; however, an increase in crystallinity level was determined (from 23.79 to 32.76%). The ungelatinized samples had low rapidly digestible starch (RDS) (4.23-9.19%), whereas the modified starches showed an increase in SDS (from 10.79 to 16.79%) and had high RS content (74.07-85.07%). In the cooked samples, the esterified starch increased the SDS content (21.32%), followed by cross-linked starch (15.13%). Dual modified starch (cross-linked-esterified) had the lowest SDS content, but the highest RS amount. The esterified and cross-linked-esterified samples had higher peak viscosity than cross-linked and esterified-cross-linked. This characteristic is due to the fact that in dual modification, the groups introduced in the first modification are replaced by the functional group of the second modification. Temperature and enthalpy of gelatinization decreased in modified starches (from 75.37 to 74.02 °C and from 10.42 to 8.68 J/g, respectively), compared with their unmodified starch (76.15 °C and 11.05 J/g). Cross-linked-esterified starch showed the lowest enthalpy of gelatinization (8.68 J/g). Retrogradation temperature decreased in modified starches compared with unmodified (59.04-57.47 °C), but no significant differences were found among the modified samples.
NASA Astrophysics Data System (ADS)
Lestari, A. Y. D.; Dewi, L. K.
2018-05-01
Novel adsorbents are succesfully manufactured from Amorphophalluscampanulatus (Porang or Suweg or Elephant Foot Yam or Foot Yam) starch. The experiment focused on modifiying the starch with citric acid and detailing those morphologies and chemical bonds. Analysis with FTIR and SEM showed that PTM (modified porous porang starch) sample is the best adsorbent which has most stable of chemical bonding and also has the most pores that influence an adsorption phenomena. Isotherm adsorption analysis showed that the adsorption mechanism of Cd and Ni ions onto the suface of PB, PT and PTM followed the Temkin and Langmuir isotherm adsorption. Adsorption ability of PTM is the best than the other PB and PT which can adsorps 256,23 mg Cd/g PTM and 87,45 mg Ni/g PTM in 500 ppm synthetic aqueous solution
Prestes, R C; Silva, L B; Torri, A M P; Kubota, E H; Rosa, C S; Roman, S S; Kempka, A P; Demiate, I M
2015-07-01
The objective of this work was to evaluate the effect of adding different starches (native and modified) on the physicochemical, sensory, structural and microbiological characteristics of low-fat chicken mortadella. Two formulations containing native cassava and regular corn starch, coded CASS (5.0 % of cassava starch) and CORN (5.0 % of regular corn starch), and one formulation produced with physically treated starch coded as MOD1 (2.5 % of Novation 2300) and chemically modified starch coded as MOD2 (2.5 % of Thermtex) were studied. The following tests were performed: physicochemical characterization (moisture, ash, protein, starch and lipid contents, and water activity); cooling, freezing and reheating losses; texture (texture profile test); color coordinates (L*, a*, b*, C and h); microbiological evaluation; sensory evaluation (multiple comparison and preference test); and histological evaluation (light microscopy). There was no significant difference (p > 0.05) for ash, protein, cooling loss, cohesiveness or in the preference test for the tested samples. The other evaluated parameters showed significant differences (p < 0.05). Histological study allowed for a qualitative evaluation between the physical properties of the food and its microscopic structure. The best results were obtained for formulation MOD2 (2.5 % Thermtex). The addition of modified starch resulted in a better performance than the native starch in relation to the evaluated technological parameters, mainly in relation to reheating losses, which demonstrated the good interaction between the modified starch in the structure of the product and the possibility of the application of this type of starch in other types of functional meat products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.; Shi, Y; Reffner, J
This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plantmore » producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Johnway; Hooker, Brian S.; Skeen, R S.
2002-01-01
A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.
Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D
2016-05-01
During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Lv, Qing-Qing; Li, Gao-Yang; Xie, Qiu-Tao; Zhang, Bao; Li, Xiao-Min; Pan, Yi; Chen, Han-Qing
2018-08-01
In order to increase the degree of substitution (DS), a combination of heat-moisture treatment (HMT) and octenyl succinylation (OSA) was used to modify sweet potato starch (SPS). The content of OSA had significant influence on the DS of starch, and DS of HMT OSA-modified SPS (HOSA-SPS) was higher than that of OSA-modified SPS (OSA-SPS), indicating that prior HMT could enhance the reaction. HOSA-SPS showed higher contents of SDS and RS in comparison with OSA-SPS as OSA concentration was beyond 6%. HMT decreased swelling power of starch while OSA modification had a contrary role (p < 0.05). Scanning electron microscopy (SEM) showed starch was destroyed by OSA modification while HMT had slight effect on the structure. X-ray diffraction (XRD) indicated that crystal type of starch was transformed from C- to A-type resulted from HMT, and remained unchanged by OSA modification. The onset, peak, and conclusion gelatinization temperatures of starch increased by HMT and decreased by OSA modification (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.
Newman, M. A.; Zebeli, Q.; Velde, K.; Grüll, D.; Molnar, T.; Kandler, W.; Metzler-Zebeli, B. U.
2016-01-01
Aside from being used as stabilizing agents in many processed foods, chemically modified starches may act as functional dietary ingredients. Therefore, development of chemically modified starches that are less digestible in the upper intestinal segments and promote fermentation in the hindgut receives considerable attention. This study aimed to investigate the impact of an enzymatically modified starch (EMS) on nutrient flow, passage rate, and bacterial activity at ileal and post-ileal level. Eight ileal-cannulated growing pigs were fed 2 diets containing 72% purified starch (EMS or waxy cornstarch as control) in a cross-over design for 10 d, followed by a 4-d collection of feces and 2-d collection of ileal digesta. On d 17, solid and liquid phase markers were added to the diet to determine ileal digesta flow for 8 h after feeding. Reduced small intestinal digestion after the consumption of the EMS diet was indicated by a 10%-increase in ileal flow and fecal excretion of dry matter and energy compared to the control diet (P<0.05). Moreover, EMS feeding reduced ileal transit time of both liquid and solid fractions compared to the control diet (P<0.05). The greater substrate flow to the large intestine with the EMS diet increased the concentrations of total and individual short-chain fatty acids (SCFA) in feces (P<0.05). Total bacterial 16S rRNA gene abundance was not affected by diet, whereas the relative abundance of the Lactobacillus group decreased (P<0.01) by 50% and of Enterobacteriaceae tended (P<0.1) to increase by 20% in ileal digesta with the EMS diet compared to the control diet. In conclusion, EMS appears to resemble a slowly digestible starch by reducing intestinal transit and increasing SCFA in the distal large intestine. PMID:27936165
Starch--value addition by modification.
Tharanathan, Rudrapatnam N
2005-01-01
Starch is one of the most important but flexible food ingredients possessing value added attributes for innumerable industrial applications. Its various chemically modified derivatives offer a great scope of high technological value in both food and non-food industries. Modified starches are designed to overcome one or more of the shortcomings, such as loss of viscosity and thickening power upon cooking and storage, particularly at low pH, retrogradation characteristics, syneresis, etc., of native starches. Oxidation, esterification, hydroxyalkylation, dextrinization, and cross-linking are some of the modifications commonly employed to prepare starch derivatives. In a way, starch modification provides desirable functional attributes as well as offering economic alternative to other hydrocolloid ingredients, such as gums and mucilages, which are unreliable in quality and availability. Resistant starch, a highly retrograded starch fractionformed upon food processing, is another useful starch derivative. It exhibits the beneficial physiological effects of therapeutic and nutritional values akin to dietary fiber. There awaits considerable opportunity for future developments, especially for tailor-made starch derivatives with multiple modifications and with the desired functional and nutritional properties, although the problem of obtaining legislative approval for the use of novel starch derivatives in processed food formulations is still under debate. Nevertheless, it can be predicted that new ventures in starch modifications and their diverse applications will continue to be of great interest in applied research.
Engineering Potato Starch with a Higher Phosphate Content
Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.
2017-01-01
Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069
Encapsulation and delivery of food ingredients using starch based systems.
Zhu, Fan
2017-08-15
Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.
Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter
2016-11-05
The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, S C; Tsai, S; Nesheim, M C
1980-05-01
Several levels of glucose or starches were added to a basal diet that was free of available carbohydrate and low in carbohydrate precursors and fed to male, weanling rats. Rats fed such diets were highly responsive to dietary carbohydrate in growth rate, blood glucose levels and blood ketone bodies. There were no significant differences in the activities of pancreatic amylase, liver glucokinase, glucose-6-phosphatase and fructose-1,6-diphosphatase when dietary carbohydrate varied from 1.5 to 6% of the diet. Under these feeding conditions, a minimum of 6% by weight or 5.8% of the dietary calories has to be provided by carbohydrate to allow the rat an optimum rate of growth. Such diets that are low in glucose precursors were employed as an assay system for glucose availability from chemically cross-bonded starches with various degrees of phosphate crosslinkage. The data showed that introducing low levels of phosphate crosslinkages into the starch had little effect on the glucose availability from the starch.
21 CFR 178.3520 - Industrial starch-modified.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Industrial starch-modified. 178.3520 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... provisions of this section. (a) Industrial starch-modified is identified as follows: (1) A food starch...
21 CFR 178.3520 - Industrial starch-modified.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Industrial starch-modified. 178.3520 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... provisions of this section. (a) Industrial starch-modified is identified as follows: (1) A food starch...
21 CFR 178.3520 - Industrial starch-modified.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Industrial starch-modified. 178.3520 Section 178... § 178.3520 Industrial starch-modified. Industrial starch-modified may be safely used as a component of..., transporting, or holding food, subject to the provisions of this section. (a) Industrial starch-modified is...
Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing
2017-04-01
Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barley callus: a model system for bioengineering of starch in cereals.
Carciofi, Massimiliano; Blennow, Andreas; Nielsen, Morten M; Holm, Preben B; Hebelstrup, Kim H
2012-09-07
Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 - 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers.
Barley callus: a model system for bioengineering of starch in cereals
2012-01-01
Background Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. Results We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 – 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. Conclusions In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers. PMID:22958600
Plasma modification of starch.
Zhu, Fan
2017-10-01
Plasma is a medium of unbound negative and positive particles with the overall electrical charge being roughly zero. Non-thermal plasma processing is an emerging green technology with great potential to improve the quality and microbial safety of various food materials. Starch is a major component of many food products and is an important ingredient for food and other industries. There has been increasing interest in utilizing plasma to modify the functionalities of starch through interactions with reactive species. This mini-review summarises the impact of plasma on composition, chemical and granular structures, physicochemical properties, and uses of starch. Structure-function relationships of starch components as affected by plasma modifications are discussed. Effect of plasma on the properties of wheat flour, which is a typical example of starch based complex food systems, is also reviewed. Future research directions on how to better utilise plasma to improve the functionalities of starch are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fitmore » the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.« less
Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.
Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A
2015-12-01
This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pietrzyk, Sławomir; Fortuna, Teresa; Łabanowska, Maria; Juszczak, Lesław; Gałkowska, Dorota; Bączkowicz, Małgorzata; Kurdziel, Magdalena
2018-02-01
This study was aimed at determining the effect of starch oxidation on its acetylation, structure of starch granules, and generation of free radicals. Corn and waxy corn starches were oxidised by NaClO applied in doses of 10, 20, and 30g Cl/kg of starch, and then acetylated using acetic acid anhydride. The carboxyl, carbonyl, acetyl groups were determined in modified starches. Structural properties of starch granules were evaluated based on molecular weight distribution, gelatinisation, crystallinity, specific surface, intrinsic viscosity. EPR measurements were carried out to establish starch susceptibility to UV irradiation induced generation of free radicals. It was found that the number of carbon centered radicals was dependent on the kind of starch and its chemical modification. Study results allowed concluding that the applied modifications contributed to significant changes in starch granules that were determined not only by the amylose content of starch but also by the degree of its oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silicon tetrachloride plasma induced grafting for starch-based composites
NASA Astrophysics Data System (ADS)
Ma, Yonghui C.
Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma modification. These plasma diagnostic results showed that, to achieve better plasma modification, higher plasma power and lower SiCl4 vapor pressure would be needed; however, it was found that the efficiency of the modification peaked at a certain point of plasma treatment time (˜10 minutes) and there was not much subsequent improvement with prolonged plasma treatment.
USDA-ARS?s Scientific Manuscript database
The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...
NASA Astrophysics Data System (ADS)
Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong
2014-06-01
Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.
Grajales-García, Eva M; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H; Bello-Pérez, Luis A
2012-01-01
Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.
Rodríguez, Ana Priscila García; Martínez, Marcela Gaytán; Barrera-Cortés, Josefina; Ibarra, Jorge E; Bustos, Fernando Martínez
2015-02-01
Bacillus thuringiensis (Bt) is one of the bioinsecticides used worldwide due to its specific toxicity against target pests in their larval stage. Despite this advantage, its use is limited because of their short persistence in field when exposed to ultra violet light and changing environmental conditions. In this work, microencapsulation has been evaluated as a promising method to improve Bt activity. The objective of this study was to develop and characterize native and modified amaranth starch granules and evaluate their potential application as wall materials in the microcapsulation of B thuringiensis serovar kurstaki HD-1 (Bt- HD1), produced by spray drying. Native amaranth starch granules were treated by hydrolyzation, high energy milling (HEM) and were chemically modified by phosphorylation and succinylation. The size of the Bt microcapsules varied from 12.99 to 17.14 μm adequate to protect the spores of Bt from ultraviolet radiation. The aw coefficient of the microcapsules produced by the modified starches after drying was low (0.14-1.88), which prevent microbial growth. Microcapsules prepared with phosphorylated amaranth starch presented the highest bacterial count and active material yield. Different concentrations of the encapsulated Bt formulation in phosphorylated amaranth starch showed a high level of insecticidal activity when tested on M. sexta larvae and has great potential to be developed as a bioinsecticide formulation, also, the level of toxicity is much higher than that found in some of the products commercially available.
Swelling and tensile properties of starch glycerol system with various crosslinking agents
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd
2017-07-01
Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.
Starch Characteristics Linked to Gluten-Free Products.
Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K
2017-04-06
The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.
Vashisht, Deepika; Pandey, Anima; Hermenean, Anca; Yáñez-Gascón, Maria Josefa; Pérez-Sánchez, Horacio; Kumar, K Jayaram
2017-02-01
To meet the ever increasing industrial demand for excipients with desirable properties, modified starch is regarded as an alternative to it. With this in mind, the present study focuses on the modification of starches of Dioscorea from Jharkhand (India) using dry heat treatment with and without ionic gum. Modified starches were prepared using sodium alginate (1% w/w). Native and modified starches were subjected to heat treatment at 130°C for 2h and 4h. The effect of heating and ionic gum on the properties of Dioscorea starch was investigated. The amylose content, water holding capacity, micromeritic properties, swelling power, solubility and morphology of starches were evaluated. Dry heat treatment of starches without gum showed an increment in water-holding capacity after two-hours heating, but no such increment was found after four-hours heating. Oil binding capacity of starches modified with gum varied from 62% to 78%. Strongest effect of heat treatment occurred on the morphology of starches and thereby modified starches showed distorted surface morphology. Amylose content (21.09-21.89%) found to be decreased with the addition of gum which lead to decrease in paste clarity. Starches heated with gum at high-temperature resulted in restrict swelling and slight increase in solubility. Micromeritic properties of the modified starches showed the good flow properties. Further, the modified starches were investigated for in-vitro release studies and that the thermally modified derivatives can be a good prospect in slow release formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of low-fat and low-calorie beef sausage using modified starch as fat replacement agent.
Mohammadi, Mehrdad; Oghabi, Firouz
2012-04-01
The effects of modified waxy maize starch (MWMS, 10-32.5 g kg(-1)) as a replacement for varying levels of oil or both oil and wheat flour (WF) on the chemical and technological characteristics of 60% beef sausages were investigated. Addition of MWMS increased water-holding capacity and decreased moisture content and both cooking and purge losses. Incorporation of MWMS improved organoleptic acceptance compared with control sausages. Sausage formula 5 (F5), containing 20 g kg(-1) MWMS and 50 g kg(-1) WF, was better (P < 0.05) than all other formulae. The total caloric content of the sausages decreased significantly with decreasing fat level (P < 0.05); for example, the decrease in fat content of 57.4% in F5 led to a significant decrease in energy value of 34.9% (P < 0.05). Copyright © 2011 Society of Chemical Industry.
Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L
2005-01-01
The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.
Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki
2017-06-01
The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.
Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.
Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng
2017-11-01
Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Grajales-García, Eva M.; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H.; Bello-Pérez, Luis A.
2012-01-01
Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252
NASA Astrophysics Data System (ADS)
Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad
2017-05-01
Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.
Utilization of modified starch from avocado (Persea americana Mill.) seed in cream soup production
NASA Astrophysics Data System (ADS)
Cornelia, M.; Christianti, A.
2018-01-01
Avocado (Persea americana Mill.) seed was often seen as waste and underutilized resources, especially in the food industry. The aim of this research was to modify the structure of avocado seed starch using the cross-linking method, to improve the viscosity stability in the cream soup. In the preliminary research, starch was isolated from the seed and modified by STPP (sodium tripolyphosphate) with 2%, 4%, and 6% concentration and were reacted for 1, 2, and 3 hours. Starches were analyzed for moisture and ash content, paste clarity, gel strength, swelling power, solubility, yield, and degree of whiteness. Based on the analysis results, the best reaction time and STPP concentration was 6% at 1 hour reaction time. Native starch and the best-modified starch were applied in the cream soup and compared with commercial cream soup. Cream soups were analyzed for viscosity stability using viscometer in 0, 1, 3, and 5 hours after storage in room temperature. The result showed that cream soup using modified starch has better viscosity stability than native starch and commercial cream soup after 5 hours storage, which was 181.7 ± 4.85 cP. Sensory analysis showed that cream soup using modified starch was more acceptable than the others. Avocado seed modified starch has phosphate group that strengthen the starch chain to prevent viscosity breakdown.
Marefati, Ali; Gutiérrez, Gemma; Wahlgren, Marie; Rayner, Marilyn
2016-01-01
The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w) oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable. PMID:27479315
Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix
NASA Astrophysics Data System (ADS)
Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.
2017-07-01
Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.
Metzler-Zebeli, Barbara U; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim
2015-01-01
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.
Metzler-Zebeli, Barbara U.; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim
2015-01-01
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption. PMID:26076487
Starch Characteristics Linked to Gluten-Free Products
Horstmann, Stefan W.; Lynch, Kieran M.; Arendt, Elke K.
2017-01-01
The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products. PMID:28383504
The role and function of chlorine in the preparation of high-ratio cake flour.
Gough, B M; Whitehouse, M E; Greenwood, C T
1978-01-01
The literature on the role of chlorine treatment of flour for use in high-ratio cake production is discussed in relation to current knowledge of cereal chemistry and cake technology. A brief perspective of the present use of chlorine in high-ratio cake flours is included. Investigations of the uptake of gaseous chlorine by flour and its distribution among and chemical action upon the major flour components (water, protein, lipid, and carbohydrate) are assessed. The physical effects of chlorination as demonstrated by experiments with batters and cakes and by physicochemical observations of flour and its fractions are also considered. The characteristics of the starch in flour appear to be critical in high-ratio cakes. Chlorine treatment modifies the gelatinization behavior of the starch granules yet does not change their gelatinization temperature not is there evidence of chemical attack upon the starch molecules. Therefore, it is suggested that chlorine effects the necessary changes in starch behavior by reacting with the noncarbohydrate surface contaminants on the granules. Alternative methods of improving high-ratio cake flours are mentioned, particularly heat-treatment processes.
NASA Astrophysics Data System (ADS)
Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.
2017-12-01
The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.
USDA-ARS?s Scientific Manuscript database
Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...
Benavent-Gil, Yaiza; Rosell, Cristina M
2017-10-01
Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Oyeyinka, Samson A; Singh, Suren; Amonsou, Eric O
2017-01-01
The physicochemical and mechanical properties of biofilm prepared from bambara starch modified with varying concentrations of stearic acid (0%, 2.5%, 3.5%, 5%, 7%, and 10%) were studied. By scanning electron microscopy, bambara starch films modified with stearic acid (≥3.5%) showed a progressively rough surface compared to those with 2.5% stearic acid and the control. Fourier transform infrared spectroscopy spectra revealed a peak shift of approximately 31 cm -1 , suggesting the promotion of hydrogen bond formation between hydroxyl groups of starch and stearic acid. The addition of 2.5% stearic acid to bambara starch film reduced water vapor permeability by approximately 17%. Bambara starch films modified with higher concentration of stearic acid were more opaque and showed significantly high melting temperatures. However, mechanical properties of starch films were generally negatively affected by stearic acid. Bambara starch film may be modified with 2.5% stearic acid for improved water vapor permeability and thermal stability with minimal effect on tensile strength. © 2016 Institute of Food Technologists®.
Calvo-López, Amira Daniela; Martínez-Bustos, Fernando
2017-09-01
Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m 3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m 3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.
Starch-based xerogels: Effect of acetylation on Physicochemical and rheological properties.
Kemas, Chinwe U; Ngwuluka, Ndidi C; Ochekpe, Nelson A; Nep, Elijah I
2017-05-01
This study was aimed at evaluating the physicochemical and rheological properties of starch-based xerogels. The starch from the shoots of Borassus aethiopium was physically modified by xerogelization, and chemically by acetylation, and combination of acetylation and xerogelization. The solubility, swelling and syneresis of the starches were determined by gravimetric techniques. Evaluation of the native starch and derivatives was done using microscopy, Fourier transform infra-red (FTIR), x-ray diffractometry (XRD), and 1 H NMR spectroscopy. Rheological evaluation was done on 10%w/v dispersions using a Bohlin Gemini rheometer (fitted with a 55mm and 2° cone and plate geometry with gap of 70). The diffractograms displayed three peaks, centered on 2θ=15.3, 17.2 and 23.1° for the native and the starch acetate while the xerogel and the starch acetate xerogel were amorphous. The 1 H NMR and FTIR confirmed the presence of acetyl groups at about 2.05ppm and 1720cm -1 , respectively. Acetylation of the native starch resulted in improvement of solubility. The starch acetate-xerogel sample formed viscoelastic gels without the need for heating. Acetylation and/or xerogelization of the native starch inhibited syneresis. Starch acetate-xerogels, may find application as stabilizer or suspending agent in liquid food and pharmaceutical formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Antimicrobial nanostructured starch based films for packaging.
Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V
2015-09-20
Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis
2014-01-01
BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804
NASA Astrophysics Data System (ADS)
Sumardiono, Siswo; Pudjihastuti, Isti; Handayani, Noer Abyor; Kusumayanti, Heny
2018-02-01
Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year). Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta). This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption) were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content) of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.
Maani, Bahareh; Alimi, Mazdak; Shokoohi, Shirin; Fazeli, Fatemeh
2017-06-01
Rice bran samples were treated under different conditions including hydrogen peroxide content (1, 4, and 7 wt%) and media pH (10.5, 11.5, and 12.5). Water holding capacity and color measurement results showed acceptable improvements compared with the untreated native bran confirmed by Fourier transform infrared analysis. Optimization of modification conditions upon characterization results suggested the introduction of 7% hydrogen peroxide at pH = 12.5. Accordingly, 1, 2 and 3 wt% of the rice bran treated under the optimized conditions, was used in salad dressing formulation; as for .3 wt% of modified starch in the formulation of blank sample, 1 wt% of treated rice bran dietary fiber was substituted. Biopolymer swelling and formation of a stable viscous gel network promoted by the chemical treatment of lignocellulosic rice bran restrict the mobility of oil droplets dispersed in the continuous phase which would consequently retard the emulsion instability phenomena. This effect was also confirmed by flow behavior and viscoelastic characterization results. Salad dressing samples containing 1 and 2 wt% treated rice bran showed acceptable physicochemical, rheological and organoleptic properties besides superior nutritional characteristics compared with the commercial modified starch traditionally used in salad dressing formulations. Despite recommended consumption of dietary fibers, addition of unprocessed lignocellulosic materials to food products usually raise negative effects in sensory, color, and texture quality. This study investigates the modification of rice bran, the byproduct of brown rice milling, to substitute modified starch traditionally used in salad dressing formulations to achieve optimum properties desirable for the final product. Optimization of modification conditions upon characterization of the formulated samples in this study would suggest new improved formulation for the commercial product. © 2016 Wiley Periodicals, Inc.
Li, Xiaolei; Fu, Jingchao; Wang, Yujuan; Ma, Fumin; Li, Dan
2017-09-01
Tigernut starch is an underutilized food resource. In this study, pullulanase (PUL) hydrolysis was used to change its physiochemical properties for different food applications. The content of low digestible fractions, resistant starch and slow digestible starch, in PUL modified tigernut starch significantly increased from 2.03% to 25.08% (P<0.05) using 100U/g starch of PUL in the debranching reaction. The paste or dispersion of PUL modified tigernut starch had a significantly decreased viscoelasticity (P<0.05), but the paste still exhibited a typical property of pseudoplasticity. Molecular weight, amylopectin A B2 and B3 chain of PUL modified starch were lower, while amylose content, amylopectin B1 chain were higher than those of natural tigernut starch. The low digestible and viscous tigernut starch is highly valued as a component in some functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of single and dual physical modifications on pinhão starch.
Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra
2015-11-15
Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.
Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald
2011-03-14
The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.
Development of a non-commercial sugar-free barbecue sauce
USDA-ARS?s Scientific Manuscript database
The challenge has always been to be able to manufacture a sugar free sauce. A basic barbecue sauce formulation was used to make 5 sugar-free preparations combining selected levels of xanthan gum, modified waxy maize starch, sucralose, and acesulfame-K. Physical, chemical, microbial and sensory prope...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-62,282] National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers From Page Employment, Island... Adjustment Assistance on December 13, 2007, applicable to workers of National Starch and Chemical Company...
Green natural rubber-g-modified starch for controlling urea release.
Riyajan, Sa-Ad; Sasithornsonti, Yodsathorn; Phinyocheep, Pranee
2012-06-05
The hydrophilicity of natural rubber (NR) was improved by grafting with modified cassava starch (ST) (NR-g-ST) by using potassium persulfate (K2S2O8) as a catalyst. The modified ST was added to NR latex in the presence of Terric16A16 as a non-ionic surfactant at 60 °C for 3 h and cast film on a glass plate to obtain NR-g-ST. The chemical structure of NR-g-ST was confirmed by FTIR. The swelling ratio of NR-g-ST was investigated in water and results showed that the swelling ratio of the modified NR decreased as function of ST. In addition, the tensile strength of the modified NR in the presence of modified ST at 50 phr was the highest value. Also, the thermal stability modified NR-g-ST was higher than of NR/ST blend confirmed by TGA. Finally, the NR-g-ST was used a polymer membrane for controlling urea fertilizer and it easily degraded in soil. This product with good controlled-release and water-retention could be especially useful in agricultural and horticultural applications. Published by Elsevier Ltd.
Ismaya, Wangsa Tirta; Hasan, Khomaini; Kardi, Idar; Zainuri, Amalia; Rahmawaty, Rinrin Irma; Permanahadi, Satyawisnu; El Viera, Baiq Vera; Harinanto, Gunawan; Gaffar, Shabarni; Natalia, Dessy; Subroto, Toto; Soemitro, Soetijoso
2013-05-01
α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.
Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation.
Barros, Frederico; Awika, Joseph; Rooney, Lloyd W
2014-04-01
There is a growing interest to increase resistant starch (RS) in foods through natural modification of starch. Sorghum tannins (proanthocyanidins, PAs) were recently reported to interact with starch, increasing RS. However, there is no information about how the molecular weight profile of PAs affects RS formation. This study investigated how different-molecular-weight PAs from sorghum affected RS formation in different starch models. The levels of RS were higher (331-437 mg g(-1)) when high-amylose starch was cooked with phenolic extracts containing mostly high-molecular-weight PAs compared with extracts containing lower-molecular-weight PAs or monomeric catechin (249-285 mg g(-1)). In general, binding capacity of PAs with amylose increased proportionally with molecular weight. For example, the percentage of PAs bound to amylose increased from 45% (PAs with degree of polymerization (DP) = 6) to 94% (polymeric PAs, DP > 10). The results demonstrate that molecular weight of the PAs directly affects their interaction with starch: the higher the molecular weight, the stronger the binding to amylose and the higher the RS formation. Polymeric PAs from sorghum can naturally modify starch by interacting strongly with amylose and are thus most suitable to produce foods with higher RS. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.
Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L
2016-04-01
The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Yi, Xuenong; Wang, Yulin
2017-06-01
A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.
Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun
2014-10-01
The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.
Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties.
Dhital, Sushil; Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R; Gidley, Michael J
2017-03-24
Recent studies of the mechanisms determining the rate and extent of starch digestion by α-amylase are reviewed in the light of current widely-used classifications for (a) the proportions of rapidly-digestible (RDS), slowly-digestible (SDS), and resistant starch (RS) based on in vitro digestibility, and (b) the types of resistant starch (RS 1,2,3,4…) based on physical and/or chemical form. Based on methodological advances and new mechanistic insights, it is proposed that both classification systems should be modified. Kinetic analysis of digestion profiles provides a robust set of parameters that should replace the classification of starch as a combination of RDS, SDS, and RS from a single enzyme digestion experiment. This should involve determination of the minimum number of kinetic processes needed to describe the full digestion profile, together with the proportion of starch involved in each process, and the kinetic properties of each process. The current classification of resistant starch types as RS1,2,3,4 should be replaced by one which recognizes the essential kinetic nature of RS (enzyme digestion rate vs. small intestinal passage rate), and that there are two fundamental origins for resistance based on (i) rate-determining access/binding of enzyme to substrate and (ii) rate-determining conversion of substrate to product once bound.
Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing
2017-10-01
In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Triyono, Agus; Cecep Erwan Andriansyah, Raden; Luthfiyanti, Rohmah; Rahman, Taufik
2017-12-01
One way to improve functional starch is by modification of starch into dextrin or maltodextrin. Maltodextrin is used in the food industry as a food substitution. Development of enzymatically modified starch technology has been performed with the use of α-amylase at optimum pH of 5.5, temperature 75-85 °C, with enzyme activity of 135 KNU/g. The maltodextrin produced from commercial tapioca has the quality requirements for food according to SNI 1992. The yield of maltodextrin obtained is about 80%. The use of the optimum amount of the α-amylase enzyme is 0.07 % v/w and the substrate amount of tapioca starch is 35%. Analysis of the feasibility of modified starch with the assumption of production scale of 300 kg per day, the economic value of 10 years business, the price of starch is IDR 8,350/kg, from tapioca starch (tapioca) IDR 4,000 - IDR 4,500/kg.
Effect of different fibers on dough properties and biscuit quality.
Blanco Canalis, María S; Steffolani, María E; León, Alberto E; Ribotta, Pablo D
2017-03-01
This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Ye, Aiqian; Hemar, Yacine; Singh, Harjinder
2004-10-10
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.
Electron beam technology for modifying the functional properties of maize starch
NASA Astrophysics Data System (ADS)
Nemţanu, M. R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P. K. W.; Popescu, M. I.; Mitru, E.
2007-09-01
Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch.
Jiang, Huan; Miao, Ming; Ye, Fan; Jiang, Bo; Zhang, Tao
2014-04-01
In this study, partial 4-α-glucanotransferase (4αGT) treatment was used to modulate the fine structure responsible for the slow digestion and resistant property of starch. Normal corn starch modified using 4αGT for 4h showed an increase of slowly digestible starch from 9.40% to 20.92%, and resistant starch from 10.52 to 17.63%, respectively. The 4αGT treatment decreased the content of amylose from 32.6% to 26.8%. The molecular weight distribution and chain length distribution of 4αGT-treated starch showed a reduction of molecular weight and a great number of short (DP<13) and long (DP>30) chains through cleaving and reorganization of starch molecules. Both the short and long chain fractions of modified amylopectin were attributed to the low in vitro digestibility. The viscosity was inversely related to the digestibility of the 4αGT-treated starch. These results suggested that the 4αGT modified starch synthesized the novel amylopectin clusters with slow digestible and resistant character. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2011-0278, FRL-9290-7] National Starch and... National Starch and Chemical Company Site located in Salisbury, Rowan County, North Carolina. In the...- SFUND-2011-0278 or Site name National Starch and Chemical Company Superfund Site by one of the following...
Goudarzi, Vahid; Shahabi-Ghahfarrokhi, Iman
2018-05-21
This paper reports on an experiment in which starch/kefiran/TiO 2 (SKT)-based bio-nanocomposite films were developed and modified by photo-chemical reaction. In so doing, film-forming solutions were exposed to ultraviolet A (UV-A) for different times (1, 6, and 12 h). The obtained results indicated that increasing UV-A exposure time brought about an increase (≈14.9%) in the tensile strength of bio-nanocomposites. However, elongation at break and Young's modulus of irradiated film specimen decreased (≈32%, ≈12%, respectively) by increasing UV-A exposure time, and the moisture-sensitive parameters of specimen decreased using UV-A irradiation. According to the results, the functional properties of irradiated bio-nanocomposite are depended on the ratio of cross-linkages between polymer chains and the potentially produced mono and disaccharide by UV-A. Copyright © 2018. Published by Elsevier B.V.
Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.
Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Sanchez-Rivera, Mirna M; Bello-Pérez, Luis A
2016-11-15
The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6″-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.
The physicochemical properties of a spray dried glutinous rice starch biopolymer.
Laovachirasuwan, Pornpun; Peerapattana, Jomjai; Srijesdaruk, Voranuch; Chitropas, Padungkwan; Otsuka, Makoto
2010-06-15
Glutinous rice starch (GRS) is a biopolymer used widely in the food industry but not at all in the pharmaceutical industry. There are several ways to modify this biopolymer. Physical modification is simple and cheap because it requires no chemicals or biological agents. The aim of this study was to characterize the physicochemical properties of a spray dried glutinous rice starch (SGRS) produced from pregelatinized GRS. The surface morphology changed from an irregular to concave spherical shape as revealed by Scanning Electron Microscopy (SEM). SGRS was almost amorphous as determined by X-ray Diffraction (XRD) spectroscopy. The water molecules became linked through hydrogen bonds to the exposed hydroxyl group of amorphous SGRS as determined by Near Infrared (NIR) spectroscopy. Then, SGRS formed a colloid gel matrix with water and developed a highly viscous gelatinous form as determined using Differential Scanning Calorimetry (DSC) and a stress control type rheometer. In addition, SGRS can swell and produce a gelatinous surface barrier like a hydrophilic matrix biopolymer which controls drug release. Therefore, a novel application of SGRS is as a sustained release modifier for direct compression tablets in the pharmaceutical industry. Copyright 2010 Elsevier B.V. All rights reserved.
Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.
Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok
2014-05-01
This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the frying process while preserving the desired characteristics of fried products. © 2014 Institute of Food Technologists®
Preparation and characterization of aminoethyl hydroxypropyl starch modified with collagen peptide.
Wen, Huigao; Hu, Jin; Ge, Hongyu; Zou, Shengqiong; Xiao, Yao; Li, Ya; Feng, Han; Fan, Lihong
2017-08-01
The preparation of aminoethyl hydroxypropyl starch collagen peptide (AEHPS-COP) was via an enzyme-catalyzed reaction between amino groups in aminoethyl hydroxypropyl starch (AEHPS) and γ-carboxamide groups in collagen peptide (COP) by using microbial transglutaminase (MTGase) as biocatalyst. As an intermediate reactant, AEHPS was synthesized from hydroxypropyl starch (HPS) and 2-chloroethylamine hydrochloride (CEH). The chemical structures of HPS, AEHPS and AEHPS-COP were characterized by Fourier transform infrared spectroscopy (FT-IR) and 13 C nuclear magnetic resonance ( 13 C NMR). The reaction conditions that influenced the degree of substitution (DS) of AEHPS-COP were optimized, which included the reaction temperature, the reaction time, the mass ratio of collagen peptide to aminoethyl hydroxypropyl starch and the pH value. In addition, in vitro antioxidant activities of AEHPS-COP were evaluated through the scavenging activity of hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Furthermore, the methylthiazol tetrazolium (MTT) assay was applied to investigate the cell viability of AEHPS-COP. The results indicated that the AEHPS-COP exhibited better cell viability to L929 mouse fibroblast cells. Therefore, the AEHPS-COP showed a promising potential application in cosmetic, biomedical and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.
2013-01-01
Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Tachibana, Yuya; Maeda, Takuya; Ito, Osamu; Maeda, Yasukatsu; Kunioka, Masao
2009-01-01
We have developed a mulch sheet made by inflation molding of PLA, Ecoflex® and modified starch, which all have different biodegradabilities. A field test of use as an agricultural mulch sheet for mandarin oranges was carried out over two years. The mechanical properties of the mulch sheet were weakened with time during the field test, but the quality of the mandarin oranges increased, a result of the controlled degradation of the sheet. The most degradable modified starch degraded first, allowing control of the moisture on the soil. Accelerator mass spectroscopy was used for evaluation of the biomass carbon ratio. The biomass carbon ratio decreased by degradation of the biobased materials, PLA and modified starch in the mulch sheet. PMID:19812715
Optimization of factors to obtain cassava starch films with improved mechanical properties
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.
Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin
2013-03-01
Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.
Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.
Odeku, Oluwatoyin A; Picker-Freyer, Katharina M
2009-11-01
Starches obtained from four different Dioscorea species-namely, White yam (Dioscorea rotundata), Bitter yam (Dioscorea dumetorum), Chinese yam (Dioscorea oppositifolia), and Water yam (Dioscorea alata)-were modified by cross-linking, hydroxypropylation, and dual modification-cross-linking followed by hydroxypropylation. The physicochemical, material, and tablet properties of the modified starches were investigated with the aim of understanding their properties to determine their potential use for different applications. The tablet formation properties were assessed using 3D modeling, the Heckel equation, and force-displacement profiles. The analyzed tablet properties were elastic recovery, compactibility, and disintegration. The result indicates that the modifications generally increased the swelling power for all the starches in the rank order hydroxypropyl > hydroxypropylated cross-linked > cross-linked (CL) while the solubility did not show a clear-cut pattern. This indicates that hydroxypropylation generally showed the strongest effects on swelling. Furthermore, hydroxypropylation improved the hot water swelling of the CL starches. The modifications did not cause any detectable morphological change in the starch granules shape or size although slight rupture was observed in some granules. CL starch had the lowest water sorption capacity and hydroxypropylation increased the sorption capacity of the CL starches. The material property results indicate that hydroxypropylation and cross-linking did not significantly improve the flowability and compressibility but improved bonding, which resulted in an increased compaction and higher tablet crushing force even though they all disintegrated rapidly. Thus, the modified Dioscorea starches showed potentials for development as new excipients in solid dosage form design, and they could be useful as disintegrants or for Soft tableting.
USDA-ARS?s Scientific Manuscript database
Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua
2014-01-15
A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. Copyright © 2013 Elsevier B.V. All rights reserved.
Ji, Ying
2018-03-01
The digestibility and molecular structure of corn starch mixed with amino acid modified by low-pressure treatment (LPT) was investigated. Amino acid induced a significant increase in the slowly digestible starch (SDS) and decrease in the rapidly digestible starch (RDS) after LPT. The reason is the formation of ester bond between the molecular chains of amino acid and starch. Low pressure treatment altered greatly the morphology of corn starch mixed with or without amino acid. After LPT, less ordered Maltese and more granule fragments were observed for starch-amino acid complex. An increase in size distribution was obvious after LPT and the size distribution curves provided from a new variety. We found that higher enthalpy and relative crystallinity of the starch-amino acid complex were associated with a higher SDS content. It can be inferred that LPT had a greater impact on the digestion and structural characterization of corn starch mixed with amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of various types of starch when used in meat sausages.
Skrede, G
1989-01-01
Technological and sensory properties of meat sausages formulated with 4·0% of either potato flour, modified (acetylated distarch phosphate) potato starch, wheat, corn or tapioca starch were compared. Sausages were analyzed after cooking at temperatures between 65 and 85°C followed by storage at 5°C and -25°C. Characteristics evaluated were weight loss during cooking and storage, instrumentally and sensory assessed firmness, taste and smell of sausages. The results revealed differences in the suitability of starches for use in meat sausages. Part of the differences could be ascribed to differences in gelatination properties of the starches. With the criteria used for evaluating quality, potato flour was rated as the best suited starch followed by wheat starch while tapioca was rated as the least suited. Corn starch required cooking temperatures above 75°C and showed relatively low freeze/thaw stability. The modified potato starch stored well both above and below the freezing point. Copyright © 1989. Published by Elsevier Ltd.
Iur'ev, V P; Gapparov, M M; Vasserman, L A; Genkina, N K
2006-01-01
This paper is a review of the recent literature data related to structure, composition and physico-chemical properties of starches as well as the special methods of processing of the starch containing raw sources producing the food products with increasing content of resistant starches. The prognosis is made about usefulness of such resistant starches for control of some metabolic disorder in human organism and for prophylactic aims.
NASA Astrophysics Data System (ADS)
Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.
2018-01-01
The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2011-0278, FRL-9284-1] National Starch and... entered into a settlement for reimbursement of past response costs concerning the National Starch and... No. EPA-RO4- SFUND-2011-0278 or Site name National Starch and Chemical Company Superfund Site by one...
Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration
2016-04-29
methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on one side Watson, Inc. Dual-sided HPMC moisture...barrier film Hydroxypropyl methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on both sides...Moisture Barrier (BWMB) film #1 Pullulan*, beeswax, glycerin, propylene glycol, starch , polysorbate 80 Water soluble Watson, Inc. Pullulan BWMB film
Application of microbial α-amylase in industry - A review.
de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola
2010-10-01
Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.
Wang, Zhibin; Zhang, Honggang; Pan, Gang
2016-06-15
Flocculant modified soils/clays are being increasingly studied as geo-engineering materials for lake restoration and harmful algal bloom control. However, the potential impacts of adding these materials in aquatic ecological systems remain unclear. This study investigated the potential effects of chitosan, cationic starch, chitosan modified soils (MS-C) and cationic starch modified soils (MS-S) on the aquatic organisms by using a bioassay battery. The toxicity potential of these four flocculants was quantitatively assessed using an integrated biotic toxicity index (BTI). The test system includes four aquatic species, namely Chlorella vulgaris, Daphnia magna, Cyprinus carpio and Limnodrilus hoffmeisteri, which represent four trophic levels in the freshwater ecosystem. Results showed that median effect concentrations (EC50) of the MS-C and MS-S were 31-124 times higher than chitosan and cationic starch, respectively. D. magna was the most sensitive species to the four flocculants. Histological examination of C. carpio showed that significant pathological changes were found in gills. Different from chitosan and cationic starch, MS-C and MS-S significantly alleviated the acute toxicities of chitosan and cationic starch. The toxicity order of the four flocculants based on BTI were cationic starch > chitosan > MS-S > MS-C. The results suggested that BTI can be used as a quantitative and comparable indicator to assess biotic toxicity for aquatic geo-engineering materials. Chitosan or cationic starch modified soil/clay materials can be used at their optimal dosage without causing substantial adverse effects to the bioassay battery in aquatic ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Y. C.; Shih, H. Y.; Chen, J. Y.; Tan, W. J.; Chen, Y. F.
2013-07-01
An optically detectable gas sensor based on the high surface sensitivity of functionalized polyethylenimine/starch In0.15Ga0.85N/GaN strained semiconductor multiple quantum wells (MQWs) has been developed. Due to the excellent piezoelectricity of the MQWs, the change of surface charges caused by chemical interaction can introduce a strain and induce an internal field. In turn, it tilts the energy levels of the MQWs and modifies the optical properties. Through the measurement of the changes in photoluminescence as well as Raman scattering spectra under different concentrations of carbon dioxide gas, we demonstrate the feasibility and high sensitivity of the sensors derived from our methodology.
Kuentz, Martin; Egloff, Peter; Röthlisberger, Dieter
2006-05-01
Many new drugs exhibit poor wetting behaviour and low aqueous solubility. This is particularly an issue for preclinical studies like toxicological trials, in which considerably higher doses and volumes are being administered compared to clinical studies. Preclinical vehicles typically contain high levels of surfactants that can exert biological effects. However, the biological inertness of vehicles is pivotal for the application in preclinical studies stressing the need in finding new excipients to solve formulation problems of today's drug discovery. The present study investigated the technical feasibility of surfactant-free suspensions using a new poorly soluble drug as model. It was shown that octenyl succinate-modified starches adequately wetted the drug and homogenous tasteless suspensions were obtained. The polymer xanthan gum was identified as macroscopically compatible gelling agent. Concentration effects of xanthan, drug and different modified starches were studied in a D-optimal design with respect to rheological properties. The suspensions were also tested in an analytical centrifuge using NIR transmission profiles to obtain a measure of sedimentation stability under accelerated conditions. The modified starches exhibited only little influence on the viscosity as well as on the yield point in contrast to the rheological effects of xanthan gum. This gelling agent was the main stabilising excipient as the modified starches hindered to a lesser extent sedimentation. The most stable suspensions displayed convenient flow properties. The viscosity at 100 s(-1) and 25 degrees C was in technically acceptable range of 120-140 mPa s in view of a application via gavage or a syringe in animal studies. The results demonstrated that surfactant-free drug suspensions with excellent technical performance can be obtained using octenyl succinate-modified starches. The vehicles were tasteless and based on the experience of modified starches in the food industry, the vehicles should exhibit good tolerability. The future use of such surfactant-free drug suspensions in toxicological, pharmacokinetic and pharmacodynamic studies will have to determine their advantage in terms of biological inertness.
Process development of starch hydrolysis using mixing characteristics of Taylor vortices.
Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto
2017-04-01
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.
Comparison of fractionation methods for nitrogen and starch in maize and grass silages.
Ali, M; de Jonge, L H; Cone, J W; van Duinkerken, G; Blok, M C; Bruinenberg, M H; Hendriks, W H
2016-06-01
In in situ nylon bag technique, many feed evaluation systems use a washing machine method (WMM) to determine the washout (W) fraction and to wash the rumen incubated nylon bags. As this method has some disadvantages, an alternate modified method (MM) was recently introduced. The aim of this study was to determine and compare the W and non-washout (D+U) fractions of nitrogen (N) and/or starch of maize and grass silages, using the WMM and the MM. Ninety-nine maize silage and 99 grass silage samples were selected with a broad range in chemical composition. The results showed a large range in the W, soluble (S) and D+U fractions of N of maize and grass silages and the W, insoluble washout (W-S) and D+U fractions of starch of maize silages, determined by both methods, due to variation in their chemical composition. The values for N fractions of maize and grass silages obtained with both methods were found different (p < 0.001). Large differences (p < 0.001) were found in the D+U fraction of starch of maize silages which might be due to different methodological approaches, such as different rinsing procedures (washing vs. shaking), duration of rinsing (40 min vs. 60 min) and different solvents (water vs. buffer solution). The large differences (p < 0.001) in the W-S and D+U fractions of starch determined with both methods can led to different predicted values for the effective rumen starch degradability. In conclusion, the MM with one recommended shaking procedure, performed under identical and controlled experimental conditions, can give more reliable results compared to the WMM, using different washing programs and procedures. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
Madruga, Marta Suely; de Albuquerque, Fabíola Samara Medeiros; Silva, Izis Rafaela Alves; do Amaral, Deborah Silva; Magnani, Marciane; Queiroga Neto, Vicente
2014-01-15
Starches used in food industry are extracted from roots, tubers and cereals. Seeds of jackfruit are abundant and contain high amounts of starch. They are discarded during the fruit processing or consumption and can be an alternative source of starch. The starch was extract from the jackfruit seeds and characterised to chemical, morphological and functional properties. Soft and hard jackfruit seeds showed starch content of 92.8% and 94.5%, respectively. Starch granules showed round and bell shape and some irregular cuts on their surface with type-A crystallinity pattern, similar to cereals starches. The swelling power and solubility of jackfruit starch increased with increasing temperature, showing opaque pastes. The soft seeds starch showed initial and final gelatinisation temperature of 36°C and 56°C, respectively; while hard seeds starch presented initial gelatinisation at 40°C and final at 61°C. These results suggest that the Brazilian jackfruit seeds starches could be used in food products. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ervika Rahayu N., H.; Ariani, Dini; Miftakhussolikhah, E., Maharani P.; Yudi, P.
2017-01-01
Arenga starch-taro (Colocasia esculanta L.) flour noodle is an alternative carbohydrate source made from 75% arenga starch and 25% taro flour, but it has a different color with commercial noodle product. The addition of natural color from turmeric may change the consumer preference and affect chemical characteristic and functional properties of noodle. This research aims to identify chemical characteristic and functional properties of arenga starch-taro flour noodle with turmeric extract addition. Extraction was performed using 5 variances of turmeric rhizome (0.06; 0.12; 0.18; 0.24; and 0.30 g (fresh weight/ml water). Then, noodle was made and chemical characteristic (proximate analysis) as well as functional properties (amylose, resistant starch, dietary fiber, antioxidant activity) were then evaluated. The result showed that addition of turmeric extract did not change protein, fat, carbohydrate, amylose, and resistant starch content significantly, while antioxidant activity was increased (23,41%) with addition of turmeric extract.
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... paperboard products used in food packaging that are generally recognized as safe for their intended use... protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-weekmore » study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill).
Cruz, Bruno R; Abraão, Ana S; Lemos, André M; Nunes, Fernando M
2013-04-15
Starch isolation methods can change their physico-chemical and functional characteristics hindering the establishment of a starch-food functionality relation. A simple high yield and soft isolation method was applied for chestnut (Castanea sativa Mill) starch consisting in steeping and fruit disintegration in a 25 mM sodium bisulfite solution and purification by sedimentation. Starch integrity, physico-chemical composition, morphology and functional properties were determined, being observed significant differences from previous described methods for chestnut starch isolation. The X-ray pattern was of B-type, with a degree of crystallinity ranging from 51% to 9%, dependent on the starch moisture content. The onset, peak, and conclusion gelatinization temperatures were 57.1°C, 61.9°C and 67.9°C, respectively. Total amylose content was 26.6%, and there was not found any evidence for lipid complexed amylose. Swelling power at 90°C was 19 g/g starch, and the amount of leached amylose was 78% of the total amylose content. Native chestnut starch presents a type B pasting profile similar to corn starch but with a lower gelatinization (56.1°C) and peak viscosity (79.5°C) temperatures, making native chestnut starch a potential technological alternative to corn starch, especially in application where lower processing temperatures are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reiner, S J; Reineccius, G A; Peppard, T L
2010-06-01
The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.
Bronkowska, Monika; Orzeł, Dagmara; Łoźna, Karolina; Styczyńska, Marzena; Biernat, Jadwiga; Gryszkin, Artur; Zieba, Tomasz; Kapelko, Małgorzata
2013-01-01
Resistant starch (RS) is part of potato starch that is not digested in the gastrointestinal tract. RS4 is a chemically modified starch (for example by oxidation and esterification) and physically (by heating). The study was aimed at determining the effect of resistant starch on lipid metabolism and activity of hepatic enzymes in Wistar strain rats fed high-fat diets containing 15% of lard or 15% of soybean oil. Four types of diets were administered to the animals (4 groups of males, n = 32): control diet (K1) containing 15% of soybean oil; control diet (K2) containing 15% of lard as well as two groups receiving the same diets with 10% addition of resistant starch RS4 (K1S and K2S). The mean concentration of total cholesterol was lower in the group of animals fed a diet with vegetable oil (39.9 mg/dl) as compared to that reported in the group of rats fed the lard-supplemented diet (55.2 mg/dl). Compared to the control groups in both groups of animals receiving the diet supplemented with resistant starch RS4 the total cholesterol concentration in serum decreased by ca. 25% (differences were statistically significant). In groups of rats receiving oil- or lard-containing diets with the addition of the resistant starch preparation the concentration of triglycerides in serum decreased by ca. 47% and 10%, respectively. A beneficial effect of the resistant starch RS4 added to Wistar rats diets on the lipid metabolism has been shown. The concentrations of total cholesterol and triglycerides in the serum were lower and concentration of HDL-cholesterol was higher in the rats fed with the diets containing the addition of the RS4 preparation as compared to the control groups. Based on the activity of hepatic enzymes the degree of liver damage was lower in groups of rats fed with diets containing resistant starch RS4 as compared to the control groups.
Starch-gum interactions: nutritional and technological implications.
Sudhakar, V; Singhal, R S; Kulkarni, P R
1996-03-01
Starch contributes greatly to the textural properties of many foods. Starch, both native as well as various modified derivative forms offer a great scope to develop a variety of food products having varied texture and mouthfeel.
Pérez, Elevina; Lares, Mary
2005-09-01
The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P < 0.05) moisture, ash, and crude protein content than arrowroot starch, while crude fiber, crude fat, and amylose content of this starch were higher (P < 0.05). Starches of both rhizomes own phosphorus, sodium, potassium, magnesium, iron, calcium, and zinc in their composition. Phosphorus, sodium, and potassium are the higher in both starches. Water absorption, swelling power, and solubility values revealed weak bonding forces in Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P < 0.05) than the Arrowroot starch values. The size (wide and large) of Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties.
Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur
2015-09-01
Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of microbial α-amylase in industry – A review
de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola
2010-01-01
Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:24031565
Peng, Shanli; Xue, Lei; Leng, Xue; Yang, Ruobing; Zhang, Genyi; Hamaker, Bruce R
2015-03-18
The in vivo slow digestion property of octenyl succinic anhydride modified waxy corn starch (OSA-starch) in the presence of tea polyphenols (TPLs) was studied. Using a mouse model, the experimental results showed an extended and moderate postprandial glycemic response with a delayed and significantly decreased blood glucose peak of OSA-starch after cocooking with TPLs (5% starch weight base). Further studies revealed an increased hydrodynamic radius of OSA-starch molecules indicating an interaction between OSA-starch and TPLs. Additionally, decreased gelatinization temperature and enthalpy and reduced viscosity and emulsifiability of OSA-starch support their possible complexation to form a spherical OSA-starch-TPLs (OSAT) complex. The moderate and extended postprandial glycemic response is likely caused by decreased activity of mucosal α-glucosidase, which is noncompetitively inhibited by tea catechins released from the complex during digestion. Meanwhile, a significant decrease of malondialdehyde (MDA) and increased DPPH free radical scavenging activity in small intestine tissue demonstrated the antioxidative functional property of the OSAT complex. Thus, the complex of OSAT, acting as a functional carbohydrate material, not only leads to a flattened and prolonged glycemic response but also reduces the oxidative stress, which might be beneficial to health.
Structures, properties, modifications, and uses of oat starch.
Zhu, Fan
2017-08-15
There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
21 CFR 172.892 - Food starch-modified.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Food starch-modified. 172.892 Section 172.892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION...
21 CFR 172.892 - Food starch-modified.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Food starch-modified. 172.892 Section 172.892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION...
21 CFR 172.892 - Food starch-modified.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Food starch-modified. 172.892 Section 172.892 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.892 Food...
Hoffman, L C; Mellett, F D
2003-10-01
A trained taste panel could not distinguish (P>0.05) between ostrich meat patties containing either 10% pork lard or 10% of a modified starch/protein isolate (fat replacer) mixture. The panel could distinguish between the types of ostrich muscle/meat cuts used with a significant (P<0.05) number preferring ostrich patties made from meat containing a higher collagen content (±3% vs <1%). The chemical analysis of the patties showed that within the meat classes (Class fillet-de-membraned, Class A-very lean off-cuts and Class B-off-cuts containing visual connective tissue and some fat), the patties containing the pork fat had a +6% higher total fat content than those containing the fat replacer. The fatty acid profiles of the various products were in accordance with the meat type and fat or fat replacer used. The mineral profile was as expected for lean ostrich meat that had spices added. It is concluded that fat replacers can be used successfully for the production of low fat ostrich patties without any negative quality attributes being perceived.
Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight weekmore » study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
Ding, Yongbo; Kan, Jianquan
2017-12-01
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Application of ultra high pressure (UHP) in starch chemistry.
Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol
2012-01-01
Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.
Rheology of different hydrocolloids–rice starch blends. Effect of successive heating–cooling cycles
USDA-ARS?s Scientific Manuscript database
Hydrocolloids are frequently used for modifying starch functionality. In the present study the possible interaction of three different hydrocolloids - guar gum, hydroxypropylmethylcellulose (HPMC) and xanthan gum - with rice starch was explored by determining the pasting, viscoelastic and swelling ...
Carbohydrate terminology and classification.
Cummings, J H; Stephen, A M
2007-12-01
Dietary carbohydrates are a group of chemically defined substances with a range of physical and physiological properties and health benefits. As with other macronutrients, the primary classification of dietary carbohydrate is based on chemistry, that is character of individual monomers, degree of polymerization (DP) and type of linkage (alpha or beta), as agreed at the Food and Agriculture Organization/World Health Organization Expert Consultation in 1997. This divides carbohydrates into three main groups, sugars (DP 1-2), oligosaccharides (short-chain carbohydrates) (DP 3-9) and polysaccharides (DP> or =10). Within this classification, a number of terms are used such as mono- and disaccharides, polyols, oligosaccharides, starch, modified starch, non-starch polysaccharides, total carbohydrate, sugars, etc. While effects of carbohydrates are ultimately related to their primary chemistry, they are modified by their physical properties. These include water solubility, hydration, gel formation, crystalline state, association with other molecules such as protein, lipid and divalent cations and aggregation into complex structures in cell walls and other specialized plant tissues. A classification based on chemistry is essential for a system of measurement, predication of properties and estimation of intakes, but does not allow a simple translation into nutritional effects since each class of carbohydrate has overlapping physiological properties and effects on health. This dichotomy has led to the use of a number of terms to describe carbohydrate in foods, for example intrinsic and extrinsic sugars, prebiotic, resistant starch, dietary fibre, available and unavailable carbohydrate, complex carbohydrate, glycaemic and whole grain. This paper reviews these terms and suggests that some are more useful than others. A clearer understanding of what is meant by any particular word used to describe carbohydrate is essential to progress in translating the growing knowledge of the physiological properties of carbohydrate into public health messages.
Rajashekhara, N; Shukla, Vinay J; Ravishankar, B; Sharma, Parameshwar P
2013-10-01
Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar.
Quinoa starch granules as stabilizing particles for production of Pickering emulsions.
Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr
2012-01-01
Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.
Impact of dry heating on physicochemical properties of corn starch and lysine mixture.
Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui
2016-10-01
Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Tsung-Yen; Sun, Nan-Nong; Chau, Chi-Fai
2018-01-01
Corona electrical discharge (CED) belongs to an atmospheric pressure cold plasma. In this study, raw banana starch (indigenous to Taiwan), which contained resistant starch and amylose at a level of 58.4 g/100 g and 14.5 g/100 g, respectively, was treated by CED at 30 kV/cm, 40 kV/cm, and 50 kV/cm for 3 minutes. After the CED treatment, starch analyses showed that there were no apparent changes in the resistant starch and amylose contents. Only surface and nonpenetrative damage caused by plasma etching at different voltage strengths were observed on the starch granules. The CED treatments reduced the total area of diffraction peak, gelatinization enthalpy (by -21% to -38%), and different pasting behaviors including peak viscosity, breakdown, final viscosity, and setback. The CED treatments were capable of increasing relative crystallinity and gelatinization temperature. This study revealed the potential of CED plasma technology as a tool to modify the characteristics of banana starch. Copyright © 2017. Published by Elsevier B.V.
Li, Dandan; Yang, Na; Jin, Yamei; Guo, Lunan; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming
2017-08-15
The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl 2 , FeCl 3 ), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker
2014-02-15
Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Production of PLA-Starch Fibers
USDA-ARS?s Scientific Manuscript database
Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...
USDA-ARS?s Scientific Manuscript database
Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...
USDA-ARS?s Scientific Manuscript database
The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn st...
Hategekimana, Joseph; Masamba, Kingsley George; Ma, Jianguo; Zhong, Fang
2015-06-25
Spray drying technique was used to fabricate Vitamin E loaded nanocapsules using Octenyl Succinic Anhydride (OSA) modified starches as emulsifiers and wall materials. Several physicochemical properties of modified starches that are expected to influence emulsification capacity, retention and storage stability of Vitamin E in nanocapsules were investigated. High Degree of Substitution (DS), low Molecular Weight (Mw) and low interfacial tension improved emulsification properties while Oxygen Permeability (OP) and Water Vapor Permeability (WVP) affected the film forming properties. The degradation profile of Vitamin E fitted well with the Weibull model. Nanocapsules from OSA modified starches MS-A and MS-B retained around 50% of Vitamin E after a period of 60 days at 4-35°C. Reduced retention and short half-life (35 days) in nanocapsules fabricated using MS-C at 35°C were attributed to autoxidation reaction occurred due to poor film forming capacity. These results indicated that low molecular weights OSA modified starches were effective at forming stable Vitamin E nanocapsules that could be used in drug and beverage applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates
ERIC Educational Resources Information Center
Pelter, Michael W.; McQuade, Jennifer
2005-01-01
The experiments that mimic the actual brewing process to explain the science to the nonscience majors is performed using malted barley as the source for both the starch and the amylase enzyme. The experiment introduces the concept of monitoring the progress of chemical reaction and was able to show the chemical breakdown of the starch to simple…
Estimating Starch Content in Roots of Deciduous Trees--A Visual Technique
Philip M. Wargo; Philip M. Wargo
1975-01-01
A visual technique for determining starch content in roots of forest trees, based onz iodine-staining of starch granules, was compared with a chemical method. Although the chemical method was more precise, roots could be sorted with the visual method into groups that are probably biologically important. The visual technique is simple and can be adapted for use in the...
Acetylation and characterization of banana (Musa paradisiaca) starch.
Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O
2000-01-01
Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.
Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A
2014-02-15
To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K
2008-09-01
Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (P<0.05) as the level of substitution with RS III increased from 2.1 to 4.4% of resistant starch content. The butter cake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.
In vitro digestibility of banana starch cookies.
Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino
2004-01-01
Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-02-01
Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch
USDA-ARS?s Scientific Manuscript database
Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...
Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.; Svensson, Birte; Smith, Alison M.; Field, Robert A.
2016-01-01
Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se. PMID:26862201
Organic amaranth starch: A study of its technological properties after heat-moisture treatment.
Bet, Camila Delinski; de Oliveira, Cristina Soltovski; Colman, Tiago André Denck; Marinho, Marina Tolentino; Lacerda, Luiz Gustavo; Ramos, Augusto Pumacahua; Schnitzler, Egon
2018-10-30
Organic amaranth starch (Amaranthus caudatus) was studied after heat-moisture treatment (HMT) using different moisture contents and different times. The starch extracted by the aqueous method presented low lipid and protein content. After HMT, an increase in the thermal stability was identified. The onset and peak temperatures were higher with an increase in moisture content and the times used in the modification. The gelatinisation enthalpy varied due to the heterogeneity of the crystals formed after the structural reorganisation caused by HMT. The relative crystallinity was lower for the physically modified starches. An increase in the pasting temperature was accompanied by a decrease in the viscosity, setback and breakdown, which were proportional to the moisture and time used. The morphology of the HMT-modified samples was not altered; however, agglomerations were noted. Low levels of dispersion homogeneity and suspension stability were observed for the modified samples due to the strong presence of agglomerates. Published by Elsevier Ltd.
Koehorst-van Putten, H J J; Sudarmonowati, E; Herman, M; Pereira-Bertram, I J; Wolters, A M A; Meima, H; de Vetten, N; Raemakers, C J J M; Visser, R G F
2012-02-01
The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality.
Structure, morphology and functionality of acetylated and oxidised barley starches.
El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2015-02-01
Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily
2017-07-01
Background: Studies have shown conflicting associations between the salivary amylase gene ( AMY1 ) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet. Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits. Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage. Results: AMY1 copy number was not associated with BMI ( P = 0.80) or body fat percentage ( P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI ( P -interaction = 0.007) and body fat percentage ( P -interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group ( P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group ( P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch. Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.
Response of a collection of waxy (reduced amylose) wheat breeding lines to Fusarium graminearum
USDA-ARS?s Scientific Manuscript database
Loss of function mutations in the Waxy (Wx) gene encoding granule bound starch synthase I (GBSSI) that synthesizes amylose, result in starch granules containing mostly amylopectin. Wheat grain with this trait has increased usability for some foods due to the ability to modify starch composition and ...
Release of 19 waxy winter wheat germplasm, with observations on their grain yield stability
USDA-ARS?s Scientific Manuscript database
“Waxy” wheats (Triticum aestivum L.) produce endosperm starch devoid, or nearly so, of amylose. Waxy starch consists only of amylopectin, imparts unique cooking properties, and serves as an efficient substrate for the production of modified food starches. To expand the genetic variation of waxy whea...
Evaluation of a modified method to measure total starch in animal feeds
USDA-ARS?s Scientific Manuscript database
The AOAC method 996.11 has been recognized as an accurate, repeatable, and efficient method to measure total starch in animal feeds. However, analyzing starch using the AOAC method can be expensive and associated with technical challenges. The objective of this study was to determine if an alternati...
Starch-assisted synthesis and optical properties of ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei
Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis)more » spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.« less
Preparation and structural characterization of corn starch-aroma compound inclusion complexes.
Zhang, Shu; Zhou, Yibin; Jin, Shanshan; Meng, Xin; Yang, Liping; Wang, Haisong
2017-01-01
Six corn starch inclusion complexes were synthesized using small nonpolar or weak polar aroma compounds (heptanolide, carvone and menthone) and small polar aroma compounds (linalool, heptanol and menthol). The objectives of this study were to (a) investigate the ability of corn starch to form inclusion complexes with these aroma compounds and (b) characterize the structure of the corn starch inclusion complexes. The resulting inclusion ratios were 75.6, 36.9, 43.8, 91.9, 67.2 and 54.7% for heptanolide, carvone, menthone, linalool, heptanol and menthol respectively. The inclusion complexes had laminated structures with a certain amount of holes or blocky constructions. Compared with gelatinized corn starch, the transition temperatures, peak temperatures and enthalpies of the inclusion complexes were significantly different. The major peak of CO at 1771 cm -1 and significant peak shifts revealed the formation of inclusion complexes. X-ray diffractometry (XRD) analyses revealed that the crystallinity of corn starch-polar aroma compound inclusion complexes increased. Based on cross-polarization magic angle spinning 13 C nuclear magnetic resonance (CP-MAS 13 C NMR) results, novel peaks and chemical shifts were attributed to the presence of small aroma compounds, thereby confirming the formation of corn starch inclusion complexes. Small nonpolar and polar aroma compounds can be complexed to corn starch. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa
2017-05-01
Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.
Thombre, Nilima A.; Vishwakarma, Ajit V.; Jadhav, Trupti S.; Kshirsagar, Sanjay J.
2016-01-01
Background: To formulation and development of plasma volume expander (PVE) by using natural and modified starch from Solanum tuberosum. The function of blood circulation is to provide the needs of the body tissues and to maintain an appropriate environment in all tissue fluids of the body for the optimal survival and functions of the cells. Rapid restoration of the blood volume is necessary to decrease reduction in the amount of the blood. The PVEs are isotonic colloidal solutions, act by increasing the osmotic pressure of the intravascular compartment, which leads to the influx of the interstitial fluids through the capillary pore which, in turn, leads to the increase in the volume of the blood. Therefore, there is a need to discover the PVE with less side effects. The main aim of the present study is to use amylopectin as PVEs, fractionated from natural and modified starch obtained from S. tuberosum. Methods: The starch extracted from the normal grains and the tubers of potatoes was selected for the production of starch. Statistical analysis includes in vitro characterization that involves viscosity studies, plasma–product interaction, osmotic pressure detection, molecular weight–viscosity relationship, determination of weight average molecular weight, enzymatic interaction, and in vivo characterization such as toxicity studies and the effect of the products on the blood coagulation. The isolated starch and fractionated amylopectin were analyzed for the physicochemical characteristics. Result and Conclusion: The amylopectin fractionated from isolated starch from grains and tubers of potatoes can be used as PVE, as per the outcome of the study. PMID:28123990
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification
Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad
2016-01-01
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification
NASA Astrophysics Data System (ADS)
Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad
2016-02-01
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.
Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun
2017-08-01
In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sorghum starch properties as affected by growing season, hybrid, and kernel maturity
USDA-ARS?s Scientific Manuscript database
Starch is a widely used component in the food, feed, and biofuel industries. Critical components in the functionality of a starch in a food or industrial system are the thermal properties. The objective of this study was to evaluate the physical and chemical changes that occur in sorghum starch du...
Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.
Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad
2016-01-20
Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reduction of acrylamide content in bread crust by starch coating.
Liu, Jie; Liu, Xiaojie; Man, Yong; Liu, Yawei
2018-01-01
A technique of starch coating to reduce acrylamide content in bread crust was proposed. Bread was prepared in accordance with a conventional procedure and corn or potato starch coating was brushed on the surface of the fermented dough prior to baking. Corn starch coating caused a decrease in acrylamide of 66.7% and 77.1% for the outer and inner crust, respectively. The decrease caused by the potato starch coating was 68.4% and 77.4%, respectively. Starch coating reduced asparagine content significantly (43.4-82.9%; P < 0.01)in both the outer and inner crust. A lower temperature (difference of 10-20 °C) in combination with a higher moisture content (maximum difference of 8%) of bread crust were a result of starch coating, which effectively shortened the time span (4-8 min) over which acrylamide could form and accumulate. The present study demonstrates that starch coating could be a simple, effective and practical application for reducing acrylamide levels in bread crust without changing the texture and crust color of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Li, Dandan; Zhang, Xiwen; Tian, Yaoqi
2016-05-01
Biosynthesis of octenyl succinic anhydride (OSA) starch was investigated using ionic liquids (ILs) as reaction media. Waxy maize starch was pretreated in 1-butyl-3-methylimidazolium chlorine and then esterified with OSA in 1-octyl-3-methylimidazolium nitrate by using Novozyme 435 as catalyst. The degree of substitution of OSA starch reached 0.0130 with 5 wt% starch concentration and 1 wt% lipase dosage based on ILs weight at 50 °C for 3h. The formation of OSA starch was confirmed by fourier transform infrared spectroscopy. Scanning electron microscopy and X-ray diffraction revealed that the morphology and crystal structure of starch were significantly destroyed. Thermogravimetric analysis showed that esterification decreased the thermal stability of starch. The successful lipase-catalyzed synthesis of OSA starch in ILs suggests that ILs are potential replacement of traditional organic solvents for starch ester biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Xuan; Dechesne, Annemarie; Visser, Richard G. F.; Trindade, Luisa M.
2016-01-01
Starch structure strongly influences starch physicochemical properties, determining the end uses of starch in various applications. To produce starches with novel structure and exploit the mechanism of starch granule formation, an (engineered) 4, 6-α-glucanotransferase (GTFB) from Lactobacillus reuteri 121 was introduced into two potato genetic backgrounds: amylose-containing line Kardal and amylose-free mutant amf. The resulting starches showed severe changes in granule morphology regardless of genetic backgrounds. Modified starches from amf background exhibited a significant increase in granule size and starch phosphate content relative to the control, while starches from Kardal background displayed a higher digestibility, but did not show changes in granule size and phosphate content. Transcriptome analysis revealed the existence of a mechanism to restore the regular packing of double helices in starch granules, which possibly resulted in the removal of novel glucose chains potentially introduced by the (engineered) GTFB. This amendment mechanics would also explain the difficulties to detect alterations in starch fine structure in the transgenic lines. PMID:27911907
Xu, Xuan; Dechesne, Annemarie; Visser, Richard G F; Trindade, Luisa M
2016-01-01
Starch structure strongly influences starch physicochemical properties, determining the end uses of starch in various applications. To produce starches with novel structure and exploit the mechanism of starch granule formation, an (engineered) 4, 6-α-glucanotransferase (GTFB) from Lactobacillus reuteri 121 was introduced into two potato genetic backgrounds: amylose-containing line Kardal and amylose-free mutant amf. The resulting starches showed severe changes in granule morphology regardless of genetic backgrounds. Modified starches from amf background exhibited a significant increase in granule size and starch phosphate content relative to the control, while starches from Kardal background displayed a higher digestibility, but did not show changes in granule size and phosphate content. Transcriptome analysis revealed the existence of a mechanism to restore the regular packing of double helices in starch granules, which possibly resulted in the removal of novel glucose chains potentially introduced by the (engineered) GTFB. This amendment mechanics would also explain the difficulties to detect alterations in starch fine structure in the transgenic lines.
Pietrzyk, Sławomir; Fortuna, Teresa; Królikowska, Karolina; Rogozińska, Ewelina; Labanowska, Maria; Kurdziel, Magdalena
2013-09-12
The objective of this study was to determine the effect of enrichment of oxidised starches with mineral compounds on their physicochemical properties and capability for free radical generation. Potato and spelt wheat starches were oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. The modified starches were analysed for: content of mineral elements, colour parameters (L*a*b*), water binding capacity solubility in water at temperature of 50 and 80 °C, and susceptibility to enzymatic hydrolysis with α-amylase. In addition, thermodynamic characteristics of gelatinisation was determined by differential scanning calorimetry (DSC), and the number and character of thermally generated free radicals was assayed using electron paramagnetic resonance (EPR). Based on the results achieved, it was concluded that the quantity of incorporated minerals and changes in the assayed physicochemical parameters depended not only on the botanical type of starch but also on the type of the incorporated mineral element. Copyright © 2013 Elsevier Ltd. All rights reserved.
Puncha-arnon, Santhanee; Uttapap, Dudsadee
2013-01-02
Starch and flour from the same rice grain source (with 20, 25 and 30% moisture content) were exposed to heat-moisture treatment (HMT) at 100 °C for 16 h in order to investigate whether there were differences in their susceptibility to modification by HMT and, if any, to determine the main causes of the differences. HMT had a far greater effect on paste viscosity of flour than of starch. A significant increase in paste viscosity after removal of proteins from HMT flour - as well as images of fast green-stained HMT flour gels - indicated that an important role was played by proteins in affecting properties of the modified samples. Greater effects of HMT on thermal parameters of gelatinization and gel hardness values of flours were observed - more so than those for starches. Following this observation, it was ascertained that components in rice flour other than rice starch granules also underwent alterations during HMT. Copyright © 2012 Elsevier Ltd. All rights reserved.
El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-01-01
Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
The interfacial rheology of polysaccharide adsorption layers of corn fiber gum (CFG), octenyl succinate anhydride-modified starch (OSA-s), gum arabic (GA) and soybean soluble polysaccharides (SSPS) at the oil/water interface and their emulsifying properties in oil-in-water (O/W) emulsions were compa...
Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua
2018-05-02
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.
Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.
Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha
2014-11-04
In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Erni, Philipp; Windhab, Erich J; Gunde, Rok; Graber, Muriel; Pfister, Bruno; Parker, Alan; Fischer, Peter
2007-11-01
Acacia gum is a hybrid polyelectrolyte containing both protein and polysaccharide subunits. We study the interfacial rheology of its adsorption layers at the oil/water interface and compare it with adsorbed layers of hydrophobically modified starch, which for economic and political reasons is often used as a substitute for Acacia gum in technological applications. Both the shear and the dilatational rheological responses of the interfaces are considered. In dilatational experiments, the viscoelastic response of the starch derivative is just slightly weaker than that for Acacia gum, whereas we found pronounced differences in shear flow: The interfaces covered with the plant gum flow like a rigid, solidlike material with large storage moduli and a linear viscoelastic regime limited to small shear deformations, above which we observe apparent yielding behavior. In contrast, the films formed by hydrophobically modified starch are predominantly viscous, and the shear moduli are only weakly dependent on the deformation. Concerning their most important technological use as emulsion stabilizers, the dynamic interfacial responses imply not only distinct interfacial dynamics but also different stabilizing mechanisms for these two biopolymers.
Reddy, Chagam Koteswara; Luan, Fei; Xu, Baojun
2017-12-01
Starches were isolated from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth) and investigated for their physico-chemical, morphological, pasting, crystallinity, thermal and FT-IR spectroscopic characteristics. Statistical analysis of physico-chemical and functional characteristics showed significant (p<0.05) difference between isolated starches from adzuki bean and edible kudzu. The XRD pattern of starches from adzuki bean and edible kudzu showed A-type with reflections (2θ) at 15.0°, 17.03°, 17.89°, 23.18°and 15.12°, 17.03°, 17.77°, 23.3°, respectively. The starch granules from adzuki bean were smooth, round, oval to kidney or irregular while those of edible kudzu starch were spherical, hemispherical and polygonal. Edible kudzu starch exhibited high pasting temperature, gelatinization temperatures, enthalpy and less pasting parameters as compared to starch from adzuki bean. Peaks in FT-IR spectra of both starches shown its carbohydrate nature. Starch from adzuki bean showed high swelling power and solubility as compared to edible kudzu, and enhanced the swelling power and solubility of isolated starches with the temperature raised from 50°C and 90°C. Finally, this work offers data for the application of starches isolated from adzuki bean and edible kudzu that would be applicable for both food and non-food industries. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.-I; Huang, C.-Y.
In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO{sub 3} increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 {mu}mol and 0.14 {mu}mol by the DNS measurement. Moreover, CaCO{sub 3} treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95more » deg. when 15wt% treated CaCO{sub 3} was added. Treated CaCO{sub 3} was confirmed to improve the hydrophobility of starch blends effectively.« less
NASA Astrophysics Data System (ADS)
Wahjuningsih, S. B.; Susanti, S.
2018-01-01
This research was aimed to analyze the chemical, physical, and sensory characteristics of the analog rice developed from a composite formula consisting of mocaf, arrowroot, and red bean flour. Experiment was designed into 5 different composition types i.e B1 (90%: 0%: 10%), B2 (80%:10%: 10%), B3 (70% : 20% : 10%), B4 (60%: 30%:10%), and B5 (50%: 40%: 10%) which in each type was repeated in 4 times. Carrageenan was used as a binder in the making process of those analog rice. Investigation procedure was carried out into several stages such as preparation and characterization of raw materials, production of analog rice in composite formula, then the testing of its chemical and sensory properties. Chemical characteristics were evaluated about the level of starch, amylose, dietary fiber, and resistant starch while sensory characteristics were examined about the texture, flavor, and aroma. The result showed that based on the sensory test, the best composite formula of rice analog was B2 (ratio flour of mocaf: Arrowroot: Red bean = 80:10:10). In addition, B2 formula possessed the chemical characteristics similar with the truth rice either in water content (12.18%), ash (2.63%), protein (6.17%), fat (1.31%), carbohydrate (89.88%), starch (73.29%), amylose (24.91%), total dietary fiber (7.04%), or resistant starch (6.71%). Furthermore, the higher of arrowroot flour proportion, the greater of amylose, dietary fiber and resistant starch containing in the rice analog. In the opposite, its starch content was getting down.
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research has shown that it has a considerable potential in food processing. In our previous study, we reported that CFG could be used to modify the gelling and rheological properties of starch-based food. In this study, starch and CFG...
2015-05-01
starch , sulfuric acid. Other: DI water, nitric acid. A more in depth description of chemical properties and suppliers is included in Appendix C. 21...titrated with thiosulfate colorimetrically until the iodine is reduced back to iodide (turning clear). Starch was added near the end of the titration to...potassium iodide, sodium bicarbonate, sodium thiosulfate, starch , sulfuric acid. Other: DI water, nitric acid;. A more in depth description of chemical
Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.
Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo
2016-07-19
Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.
Nielsen, Tina Skau; Canibe, Nuria; Larsen, Flemming Hofmann
2018-05-18
Intake of butyrylated starches may increase colonic butyrate supply, which can be of public health and clinical benefit by maintaining colonic health. The objective was to investigate if an organocatalytic method with tartaric acid as a catalyst could be applied to produce butyrylated products from different starch sources and to characterize their chemical structure and fermentation capability by using solid-state 13 C MAS NMR (magic angle spinning nuclear magnetic resonance) spectroscopy and an in vitro fermentation model, respectively. Low-amylose and high-amylose potato starch (LAPS and HAPS) and low-amylose and high-amylose maize starch (LAMS and HAMS) were subjected to organocatalytic butyrylation. This resulted in products with an increasing degree of substitution (DS) measured by heterogenous saponification and back titration with the HCl (chemical method) depending on reaction time. NMR analysis, however, showed that the major part of the acylation was induced by tartarate (75⁻89%) and only a minor part (11⁻25%) by butyrate. Generally, the chemical method overestimated the DS by 38% to 91% compared with the DS determination by NMR. Increasing the DS appeared to lower the in vitro fermentation capability of starches independent of the starch source and, therefore, do not seem to present a feasible method to deliver more butyrate to the colon than lower DS products.
Starch digestibility: past, present, and future.
Bello-Perez, Luis A; Flores-Silva, Pamela C; Agama-Acevedo, Edith; Tovar, Juscelino
2018-02-10
In the last century, starch present in foods was considered to be completely digested. However, during the 1980s, studies on starch digestion started to show that besides digestible starch, which could be rapidly or slowly hydrolysed, there was a variable fraction that resisted hydrolysis by digestive enzymes. That fraction was named resistant starch (RS) and it encompasses those forms of starch that are not accessible to human digestive enzymes but can be fermented by the colonic microbiota, producing short-chain fatty acids. RS has been classified into five types, depending on the mechanism governing its resistance to enzymatic hydrolysis. Early research on RS was focused on the methods to determine its content in foods and its physiological effects, including fermentability in the large intestine. Later on, due to the interest of the food industry, methods to increase the RS content of isolated starches were developed. Nowadays, the influence of RS on the gut microbiota is a relevant research topic owing to its potential health-related benefits. This review summarizes over 30 years of investigation on starch digestibility, its relationship with human health, the methods to produce RS and its impact on the microbiome. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Effect of starch type on the physico-chemical properties of edible films.
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-05-01
Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.
Dry Starch Powders Modified Teabag Method
The following is a test protocol for a “tea bag analysis” that was conducted on PMN starches by the Corn Refiners Association. This protocol is one approach to providing information on swellability of high molecular weight polymers.
21 CFR 169.150 - Salad dressing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... liquid egg white or frozen egg white. (d) Starchy paste. It may be prepared from a food starch, food starch-modified, tapioca flour, wheat flour, rye flour, or any two or more of these. Water may be added...
21 CFR 169.150 - Salad dressing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... liquid egg white or frozen egg white. (d) Starchy paste. It may be prepared from a food starch, food starch-modified, tapioca flour, wheat flour, rye flour, or any two or more of these. Water may be added...
21 CFR 169.150 - Salad dressing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... liquid egg white or frozen egg white. (d) Starchy paste. It may be prepared from a food starch, food starch-modified, tapioca flour, wheat flour, rye flour, or any two or more of these. Water may be added...
Resistant starch: promise for improving human health.
Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M
2013-11-01
Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.
Resistant Starch: Promise for Improving Human Health12
Birt, Diane F.; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J.; Rowling, Matthew; Schalinske, Kevin; Scott, M. Paul; Whitley, Elizabeth M.
2013-01-01
Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized. PMID:24228189
NASA Astrophysics Data System (ADS)
Wika Amini, Helda; Masruri; Mariyah Ulfa, Siti
2018-01-01
Cassava starch is a polysaccharide consists of amylose and amylopectin. This research was purposed to modify the starch isolated from local cassava (Manihot esculenta). Modification was undertaken to study the esterification reaction of cassava starch with acetic acid and with isopropyl myristate. Moreover, morphology observation was also conducted both for original starch and its modification yields. It was found that cassava’s starch was isolated in 16.4% yield as a white powder. Esterification on the starch provided DS value 0.549 for ratio 1:2 of starch-acetic acid. It gave DS value 0.356 for ratio 1:3 of starch-isopropyl myristate. Treatment by ultrasonication from 0 to 60 minutes was significantly improved the DS value to 0.549 for starch-acetic acid. But it gave DS value to 0.413 for 30 minute ultrasonication of starch-isopropyl myristate. In addition, morphology of the starch observed by microscope gave different features with starch ester acetate and starch ester myristate. The original starch consists of granules, but starch ester acetate indicates a non-granules shape (amorf solid). Moreover for starch ester myristate shows a rather bigger size of granules, and all of the granules afforded were round and oval.
An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed.
Zhu, L; Jones, C; Guo, Q; Lewis, L; Stark, C R; Alavi, S
2016-04-01
The quantification of total starch content (TS) or degree of starch gelatinization (DG) in animal feed is always challenging because of the potential interference from other ingredients. In this study, the differences in TS or DG measurement in pelleted swine feed due to variations in analytical methodology were quantified. Pelleted swine feed was used to create 6 different diets manufactured with various processing conditions in a 2 × 3 factorial design (2 conditioning temperatures, 77 or 88°C, and 3 conditioning retention times, 15, 30, or 60 s). Samples at each processing stage (cold mash, hot mash, hot pelletized feed, and final cooled pelletized feed) were collected for each of the 6 treatments and analyzed for TS and DG. Two different methodologies were evaluated for TS determination (the AOAC International method 996.11 vs. the modified glucoamylase method) and DG determination (the modified glucoamylase method vs. differential scanning calorimetry [DSC]). For TS determination, the AOAC International method 996.11 measured lower TS values in cold pellets compared with the modified glucoamylase method. The AOAC International method resulted in lower TS in cold mash than cooled pelletized feed, whereas the modified glucoamylase method showed no significant differences in TS content before or after pelleting. For DG, the modified glucoamylase method demonstrated increased DG with each processing step. Furthermore, increasing the conditioning temperature and time resulted in a greater DG when evaluated by the modified glucoamylase method. However, results demonstrated that DSC is not suitable as a quantitative tool for determining DG in multicomponent animal feeds due to interferences from nonstarch transformations, such as protein denaturation.
Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim
2013-01-01
High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826
Kittisuban, Phatcharee; Lee, Byung-Hoo; Suphantharika, Manop; Hamaker, Bruce R
2014-07-17
Seven types of starch (waxy corn, normal corn, waxy rice, normal rice, waxy potato, normal potato, and tapioca) were selected to produce slowly digestible maltodextrins by enzymatic modification using a previously developed procedure. Branching enzyme (BE) alone and in combination with β-amylase (BA) were used to increase the amount of α-1,6 branching points, which are slowly hydrolyzed by mucosal α-glucosidases in the small intestine. The enzymatic treatments of all starches resulted in a reduction of the debranched linear chain length distribution and weight-average molecular weight. After α-amylolysis of the enzymatically synthesized-maltodextrins, the proportion of branched α-limit dextrins increased, and consequently a reduction in rate of glucose release by rat intestinal α-glucosidases in vitro. Among the samples, enzyme-modified waxy starches had a more pronounced effect on an increase in the slow digestion property than normal starches. These enzyme-modified maltodextrins show potential as novel functional foods by slowing digestion rate to attain extended glucose release. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of native and modified banana starch nanoparticles as vehicles for curcumin.
Acevedo-Guevara, Leonardo; Nieto-Suaza, Leonardo; Sanchez, Leidy T; Pinzon, Magda I; Villa, Cristian C
2018-05-01
In recent years, starch nanoparticles have been of great interest for drug delivery due to their relatively easy synthesis, biocompatibility, and vast amount of botanical sources. Native and acetylated starch obtained from green bananas were used for synthesis of curcumin-loaded starch nanoparticles. Mean particle size, encapsulation efficiency, and curcumin release in simulated gastric and intestinal fluids were studied. Both nanosystems showed sizes lower than 250 nm and encapsulation efficiency above 80%, with acetylated banana starch nanoparticles having the capacity to encapsulate more curcumin molecules. Both FTIR and XRD analyses showed that starch acetylation allows stronger hydrogen bond interaction between curcumin and the starch matrix, thus, higher encapsulation efficiency. Finally, curcumin release studies showed that acetylated banana starch nanoparticles allowed more controlled release, probably due to their stronger hydrogen bond interaction with curcumin. Copyright © 2018. Published by Elsevier B.V.
Hu, Wenzhong; Jiang, Aili; Jin, Liming; Liu, Chenghui; Tian, Mixia; Wang, Yanying
2011-06-01
Proper postharvest handling and storage of sweet potato is an important link in the chain from producer to consumer or manufacturing industry. Heat treatments have been used as a non-chemical means to modify the postharvest quality and reduce pathogen levels and disease development of a wide variety of horticultural products. The objective of this study was to investigate the effects of hot water treatment (HWT) on the quality, gelatinisation enthalpy and pasting properties of sweet potato starch during long-term storage. The weight loss, sprouting, spoilage and sugar content of sweet potato were also determined. HWT significantly inhibited the sprouting and decay of sweet potato during the storage period. There were no significant differences (P < 0.05) in the pasting properties and onset (T(O)), peak (T(P)) and endset (T(E)) temperatures of gelatinisation of sweet potato starch among all treatments, especially between heat-treated and non-heat-treated samples. HWT also had no significant impact on the quality of the internal components of the roots. Less than 4% of the yearlong-stored roots were discarded owing to spoilage. HWT supplied a lethal dose of heat to surface pathogens and black spot without damaging the nutritional and processing qualities of sweet potato. HWT was an effective method to reduce root sprouting and deterioration without significant impact on the quality of the internal components of sweet potato. This novel technique will open a new avenue to extend the storage life of sweet potato with good quality and minimal waste. Copyright © 2011 Society of Chemical Industry.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066
Przetaczek-Rożnowska, Izabela; Fortuna, Teresa
2017-11-01
This study aimed at analyzing the effect of conditions of modification process on thermal and rheological properties of phosphorylated pumpkin starch. The esterification process was conducted at 115°C and 145°C for 1, 2, and 3h. The thermodynamic properties of samples were determined using differential scanning calorimetry (DSC), flow curves were plotted and the resulting curves were described the Herschel-Bulkley model, textural properties were evaluated with the TPA method. The data proved that the chemical modification of starch affected its rheological and thermal characteristics, but the direction and extent of the changes were found to depend on both temperature and duration of phoshorylation. The results demonstrated that temperatures of gelatinization of the samples modified at 145°C were higher by 1.4-8.5°C than those of the samples obtained at 115°C. Prolongation of starch modification at 115°C caused reduction of shear stress (from 2.10Pa to 0.86Pa), and higher temperature of esterification also reduced the value of this parameter. The hardness of the samples heated at 145°C was higher by 45-59N than that of heated at 115°C. Adjustment of phosphorylation process caused an increase in gumminess by 1.8-37.9N, wherein higher temperature and process prolongation resulted in the highest gumminess. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-06-22
hazardous materials and eliminating the hazardous waste streams associated with wheat starch , chemical strippers and hand sanding. Additionally, the laser...chemical attack resistance and other special characteristics while providing corrosion protection. The materials used for these purposes are designed...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch , plastic
Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.
Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L
2014-03-30
The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.
The Other Double Helix--The Fascinating Chemistry of Starch
NASA Astrophysics Data System (ADS)
Hancock, Robert D.; Tarbet, Bryon J.
2000-08-01
Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.
Colussi, Rosana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; Vanier, Nathan Levien; Villanova, Franciene Almeida; Marques E Silva, Ricardo; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra
2014-03-15
The high-, medium-, and low-amylose rice starches were isolated by the alkaline method and acetylated by using acetic anhydride for 10, 30, and 90 min of reaction. The degree of substitution (DS), the Fourier-transformed infrared spectroscopy (FTIR), the X-ray diffractograms, the thermal, morphological, and pasting properties, and the swelling power and solubility of native and acetylated starches were evaluated. The DS of the low-amylose rice starch was higher than the DS of the medium- and the high-amylose rice starches. The introduction of acetyl groups was confirmed by FTIR spectroscopy. The acetylation treatment reduced the crystallinity, the viscosity, the swelling power, and the solubility of rice starch; however, there was an increase in the thermal stability of rice starch modified by acetylation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4.
Metzler-Zebeli, Barbara U; Schmitz-Esser, Stephan; Mann, Evelyne; Grüll, Dietmar; Molnar, Timea; Zebeli, Qendrim
2015-12-01
Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Composition, structure, physicochemical properties, and modifications of cassava starch.
Zhu, Fan
2015-05-20
Cassava is highly tolerant to harsh climatic conditions and has great productivity on marginal lands. The supply of cassava starch, the major component of the root, is thus sustainable and cheap. This review summarizes the current knowledge of the composition, physical and chemical structures, physicochemical properties, nutritional quality, and modifications of cassava starch. Research opportunities to better understand this starch are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modified starch containing liquid fuel slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, G.W.
1978-04-04
A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.
Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles
NASA Astrophysics Data System (ADS)
Meena, Sharma, Annu
2018-05-01
This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.
Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative
Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas
2017-01-01
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963
Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.
Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas
2017-09-30
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.
Structural and molecular basis of starch viscosity in hexaploid wheat.
Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K
2008-06-11
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Porous starch extracted from Chinese rice wine vinasse: characterization and adsorption properties.
Li, Hongyan; Jiao, Aiquan; Wei, Benxi; Wang, Yong; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi
2013-10-01
Chinese rice wine vinasse (the fermentation residue after removal of the crude wine or beer) contains 20-30% residual native starch. These starches are partly hydrolyzed by amylase and glucoamylase during rice wine fermentation, indicating that it is a potential source of porous starch, which is a value-added material. In the present study, morphological, short-range order, crystalline, and thermal studies were determined to characterize the structural and chemical properties of vinasse starch. The results showed that vinasse starch granule had a rough and porous shape and was much more ordered than native starch. Vinasse starch also could tolerate a higher temperature than native starch. The water and oil adsorptive capacities of vinasse starch were 1.89 and 4.14 times higher than that of native rice starch. These results suggest that vinasse is an effective and economical source of porous starch for using as adsorbent. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Effect of high pressure on rheological and thermal properties of quinoa and maize starches.
Li, Guantian; Zhu, Fan
2018-02-15
Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Yun; Winkworth-Smith, Charles G; Wang, Yu; Liang, Jianfen; Foster, Tim J; Cheng, Yongqiang
2014-12-19
The effects of konjac glucomannan (KGM) on thermal behavior of wheat starch have been studied in the presence of low concentrations of Na2CO3 (0.1-0.2 wt% of starch). Confocal laser scanning microscopy (CLSM) allows the visualization of the starch gelatinization process and granule remnants in starch pastes. Heating the starch dispersion in KGM-Na2CO3 solution significantly delays granule swelling and inhibits amylose leaching, whereas Na2CO3 alone, at the same concentration, has little effect. Na2CO3 assists KGM in producing the extremely high viscosity of starch paste, attributing to a less remarkable breakdown of viscosity in subsequent heating, and protecting starch granules against crystallite melting. The distinct partially networked film around the surface of starch granules is evident in the CLSM images. We propose that Na2CO3 could trigger the formation of complexes between KGM and starch polymers, which exerts a protective effect on granular structure and modifying gelatinization characteristics of the mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.
2015-06-22
hazardous materials and eliminating the hazardous waste streams associated with wheat starch , chemical strippers and hand sanding. Additionally, the laser...chemical attack resistance and other special characteristics while providing corrosion protection. The materials used for these purposes are designed...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch , plastic
2014-01-01
Background Perceptions of food products start when flavor compounds are released from foods, transported and appropriate senses in the oral and nose are triggered. However, the long-term stability of flavor compounds in food product has been a major concern in the food industry due to the complex interactions between key food ingredients (e.g., polysaccharides and proteins). Hence, this study was conducted to formulate emulsion-based beverage using natural food emulsifiers and to understand the interactions between emulsion compositions and flavor compounds. Results The influences of modified starch (x 1 ), whey protein isolate (x 2 ), soursop flavor oil (x 3 ) and deionized water (x 4 ) on the equilibrium headspace concentration of soursop volatile flavor compounds were evaluated using a four-component with constrained extreme vertices mixture design. The results indicated that the equilibrium headspace concentration of soursop flavor compounds were significantly (p < 0.05) influenced by the matrix and structural compositions of the beverage emulsions. Interface formed using modified starch and whey protein isolate (WPI) proved to be capable of inhibiting the release of volatile flavor compounds from the oil to the aqueous phase. Modified starch could retard the overall flavor release through its hydrophobic interactions with volatile flavor compounds and viscosity enhancement effect. Excessive amount of modified starch was also shown to be detrimental to the stability of emulsion system. However, both modified starch and WPI showed to be a much more effective barrier in inhibiting the flavor release of flavor compounds when used as individual emulsifier than as a mixture. Conclusions Overall, the mixture design can be practical in elucidating the complex interactions between key food components and volatile flavor compounds in an emulsion system. These studies will be useful for the manufacturers for the formulation of an optimum beverage emulsion with desirable emulsion properties and desirable flavor release profile. PMID:24708894
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-04-01
Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3-l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L -1 optically pure (98%) L-lactic acid in 20 h from 50 g L -1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus . The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.
2018-05-01
Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.
Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch.
Wang, Hongwei; Wang, Zhaoyuan; Li, Xiaoxi; Chen, Ling; Zhang, Binjia
2017-09-01
The pasting and digestibility of a red adzuki bean starch were simultaneously modulated by heat-moisture treatment (HMT) through altering the multi-scale structure. HMT, especially at high moisture content, could disrupt the granule integrity, semicrystalline lamellae, molecular order (crystallites) and molecular chains. Also, certain rearrangement of starch molecules occurred to form ordered structures with increased thermal stability as shown by DSC. This concomitant disordering and reassembly in the multi-scale structure converted the fractions of resistant starch (RS) and rapidly digestible starch (RDS) into that of slowly digestible starch (SDS). Furthermore, the emergence of thermally-stable orders increased the pasting temperature but suppressed the swelling of granules during heating. Hence, HMT-modified red adzuki starch may serve as a potential thickener/gelling agent with slow digestion rate for various foods. Copyright © 2017. Published by Elsevier B.V.
Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M
2017-05-01
Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films
USDA-ARS?s Scientific Manuscript database
The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...
Code of Federal Regulations, 2010 CFR
2010-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2012 CFR
2012-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2014 CFR
2014-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2013 CFR
2013-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2011 CFR
2011-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Ashwar, Bilal Ahmad; Gani, Adil; Shah, Asima; Masoodi, Farooq Ahmad
2017-12-01
Starches extracted from four different rice cultivars were phosphorylated by using STMP/STPP to make modified food starches with high contents of type 4 resistant starch (RS4). The results revealed 10- fold improvement in RS4 content by the phosphorylation of starch. The phosphorus % and DS values of rice starches ranged from 0.33 to 0.35, and 0.016 to 0.018, respectively. FT-IR spectroscopy showed reduction of OH stretching band at 3290cm-1 and the appearance of PO at 1244-1266cm-1 which confirms crosslinking of starch with STMP/STPP. Phosphorylation was found to increase water absorption capacity, oil absorption capacity, bile-acid binding and lightness, whereas amylose content, swelling power, solubility index and light transmittance were decreased with phosphorylation. DSC analyses revealed increase in thermal transition temperatures of the crosslinked starches which suggests that the application of STMP/STPP as a crosslinker can improve the integrality and stability of starch. SEM micro-graphs revealed that phosphorylated rice starch granules retained their integrity, while some fissures appeared on the surface of some granules. XRD analysis revealed decreased crystallinity of RS4 rice starches. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing
2017-10-01
In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xiaolei; Fei, Teng; Wang, Yong; Zhao, Yakun; Pan, Yutian; Li, Dan
2018-04-18
A GtfB enzyme 4,6-α-glucanotransferase from Streptococcus thermophilus lacking 761 N-terminal amino acids was heterologously expressed in Escherichia coli. Purified S. thermophilus GtfB showed transglycosylation activities toward starch, resulting in branch points of (α1→6)-glycosidic linkages plus linear chains of (α1→4)-glycosidic linkages. After wheat starch was modified at a rate of 0.1 g/mL by 1-4 U/g starch GtfB at pH 6.0 and 40 °C for 1 h, the weight-averaged molecular weight decreased from 1.70 × 10 7 g/mol to 1.21 × 10 6 to 3.41 × 10 6 g/mol, the amylose content decreased from 22.07 to 16.34-17.11%, and that of amylopectin long-branch chains decreased from 26.4 to 10.25-15.64% ( P < 0.05). After the GtfB-modified wheat starches were gelatinized and stored at 4 °C for 1-2 weeks, their endothermic enthalpies were significantly lower than that of the control sample ( P < 0.05), indicating low retrogradation rates.
Falade, Kolawole O; Ayetigbo, Oluwatoyin E
2017-05-01
The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.
Mazurek-Wadołkowska, Edyta; Winnicka, Katarzyna; Czyzewska, Urszula; Miltyk, Wojciech
2016-07-01
High profitability and simplicity of direct compression, encourages pharmaceutical industry to create universal excipients to improve technology process. Prosolv® SMCC - silicified microcrystalline cellulose and Starch 1500® - pregelatinized starch, are the example of multifunctional excipients. The aim of the present study was to evaluate the stability of theophylline (API) in the mixtures with excipients with various physico-chemical properties (Prosolv® SMCC 90, Prosolv® SMCC HD 90, Prosolv* SMCC 50®, Starch 1500® and magnesium stearate). The study presents results of thermal analysis of the mixtures with theophylline before and after 6 months storage of the tablets at various temperatures and relative humidity conditions (25 ± 2°C/40 ± 5% RH, 40 ± 2°C/75 ± 5% RH). It was shown that high concentration of Starch 1500® (49%) affects the stability of the theophylline tablets with Prosolv® SMCC. Prosolv® SMCC had no effect on API stability as confirmed by the differential scanning calorimetry (DSC). Changes in peak placements were observed just after tabletting process, which might indicate that compression accelerated the incompatibilities between theophylline and Starch 1500. TGA analysis showed loss in tablets mass equal to water content in starch. GC-MS study established no chemical decomposition of theophylline. We demonstrated that high content of Starch 1500® (49%) in the tablet mass, affects stability on tablets containing theophylline and Prosolv® SMCC.
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
Starch Applications for Delivery Systems
NASA Astrophysics Data System (ADS)
Li, Jason
2013-03-01
Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion
Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.
2012-01-01
amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn2+-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule. PMID:22121198
Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions.
Wang, Chan; Fu, Xiong; Tang, Chuan-He; Huang, Qiang; Zhang, Bin
2017-07-15
This study investigated structure and morphology of starch spherulites prepared from debranched waxy maize and waxy potato starches. Debranched waxy potato starch favored the formation of B-type crystals with longer branch chains (average chain length, 26.14), whereas A-type polymorphic aggregates were generated from debranched waxy maize under same recrystallization condition. Spherulites had smaller particle size distribution (D[3,2], ∼3.7μm), higher dissociation temperature (80-120°C) and crystallinity (80∼90%), compared to native waxy starches. Intact spherulites could be used as an edible particle emulsifier after modifying by octenylsuccinic anhydride (OSA). The emulsion produced using 2wt.% of octenylsuccinate (OS) starch spherulites as emulsifier was quite stable over 2months, and its Pickering emulsions displayed protective effect on stability of oil droplets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela
2016-07-01
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guazzotti, V; Marti, A; Piergiovanni, L; Limbo, S
2014-01-01
Partition and diffusion experiments were carried out with paper and board samples coated with different biopolymers. The aim was to evaluate the physicochemical behaviour and barrier properties of bio-coatings against migration of typical contaminants from recycled paper packaging. Focus was directed towards water-based, renewable biopolymers, such as modified starches (cationic starch and cationic waxy starch), plant and animal proteins (gluten and gelatine), poured onto paper with an automatic applicator. Additionally, a comparison with polyethylene-laminated paper was performed. Microstructural observations of the bio-coated paper allowed the characterisation of samples. From the partitioning studies, considerable differences in the adsorption behaviour of the selected contaminants between bio-coated or uncoated paper and air were highlighted. For both the polar and non-polar compounds considered (benzophenone and diisobutyl phthalate, respectively), the lowest values of partition coefficients were found when paper was bio-coated, making it evident that biopolymers acted as chemical/physical barriers towards these contaminants. These findings are discussed considering the characteristics of the tested biopolymers. Diffusion studies into the solid food simulant poly 2,6-diphenyl-p-phenylene oxide, also known as Tenax(®), confirmed that all the tested biopolymers slowed down migration. The Weibull kinetic model was fitted to the experimental data to compare migration from paper and bio-coated paper. Values found for β, an index determining the pattern of curvature, ranged from 1.1 to 1.7 for uncoated and polyethylene paper, whereas for bio-coated papers they ranged from 2.2 to 4.9, corresponding to the presence of an evident lag phase due to barrier properties of the tested bio-coatings.
Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate
Kiangkitiwan, Nopparut; Srikulkit, Kawee
2013-01-01
Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883
USDA-ARS?s Scientific Manuscript database
A modified wet method was developed to fractionate ground oat groats into 4 fractions enriched with beta-glucan (BG), protein, starch, and other carbohydrates (CHO), respectively. Effects of defatting oats and centrifuge force for separation were also investigated. Results show that, depending on ...
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-01-01
BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690
Gu, Xiaotian; Huang, Tianqi; Ding, Mengqiu; Lu, Weiping; Lu, Dalei
2018-02-01
Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Devadason, I Prince; Anjaneyulu, A S R; Babji, Y
2010-01-01
The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.
Resistant Starch Regulates Gut Microbiota: Structure, Biochemistry and Cell Signalling.
Yang, Xiaoping; Darko, Kwame Oteng; Huang, Yanjun; He, Caimei; Yang, Huansheng; He, Shanping; Li, Jianzhong; Li, Jian; Hocher, Berthold; Yin, Yulong
2017-01-01
Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota. © 2017 The Author(s). Published by S. Karger AG, Basel.
Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-01-01
The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.
Osundahunsi, Oluwatooyin Faramade; Seidu, Kudirat Titilope; Mueller, Rudolf
2014-05-15
Starches from cultivars of cassava were modified with acetic anhydride. Treatment with sulphurdioxide was compared with native. The starches were evaluated for functional properties and moisture isotherms were calculated. Addition of 3.5% acetic anhydride resulted in starches with DS of 1.66% and 3.25% in sweet and bitter cultivars. Sweet starch alone will be applicable for food. Least gelation concentrations for the native were 14% and 10% against 6% and 8% acetylated samples, respectively. Degree of substitution (DS) was reduced with SO2 by 45% and 39% in sweet and bitter cultivar with 150 mg/kg starch, respectively. Swelling power and solubility increased with DS. Exudates from samples varied. Monolayer values of the starches were between 1.05% and 9.16% under 18 °C and 30 °C that simulated distribution and storage. R(2) value of water adsorbed and water activity ranged from 50% to 97%. X-ray patterns were not disrupted. Copyright © 2014. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, T.W.
1990-12-31
The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of the gene that encodes for ADPglucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. During the last two years we have obtained information on the structure of this enzyme from both potato tuber andmore » rice endosperm, using a combination of biochemical and molecular biological approaches. Moreover, we present evidence that this enzyme may be localized at discrete regions of the starch grain within the amyloplast, and plays a role in controlling overall starch biosynthesis in potato tubers.« less
Tan, Xiaoyan; Li, Xiaoxi; Chen, Ling; Xie, Fengwei; Li, Lin; Huang, Jidong
2017-04-01
Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B→A+B→A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6nm -1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2°C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali
2014-08-01
The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.
Structural modification in the formation of starch - silver nanocomposites
NASA Astrophysics Data System (ADS)
Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal
2016-05-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi
2015-02-17
Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.
Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel
2017-08-01
Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Tao, Furong; Shi, Chengmei; Cui, Yuezhi
2018-04-24
Among the natural polymers able to form edible films, starch and gelatin (Gel) are potential sources. Corn starch is a polysaccharide widely produced around the world, and gelatin differs from other hydrocolloids as a fully digestible protein, containing nearly all the essential amino acids, except tryptophan. Based on this, with advantages such as abundance, relatively low cost, biodegradability, and edibility, studies considering alternative systems for food protection that utilize biopolymers have increased significantly in the recent years. A novel macromolecular crosslinker Starch-BTCAD-NHS (starch - butanetetracarboxylic acid dianhydride - N-hydroxysuccinimide, SBN) was successfully prepared to modify gelatin film. Compared with the blank gelatin films, the resulting SBN-Gel films exhibited the improved surface hydrophobicity, the higher tense strength and elongation-at-break, the lower Young's modulus values, the greater opacity, the poorer water vapor uptake properties and better anti-degradation capacity. The modified gelatin film material with advanced properties obtained in this work was safe, stable eco-friendly and biorefractory, and was an ideal choice to form a packaging in food industry. Also, the crosslinking SBN-gelatin coating was effective in reducing the corruption and extending the shelf life for the peeled apple substantially. This article is protected by copyright. All rights reserved.
Improvement of rheological, thermal and functional properties of tapioca starch using gum arabic
USDA-ARS?s Scientific Manuscript database
The addition of gum arabic (GA) to native tapioca starch (TS) to modify the functionality of TS was investigated. GA is well known for its stabilizing, emulsifying, and thickening properties. The effects of adding GA (0.1-1.0%) on pasting, rheological and solubility properties of TS (5%) were analy...
Dash, Satyabrata; Swain, Sarat K
2013-09-12
Starch/silicon carbide (starch/SiC) bionanocomposites were synthesized by solution method using different wt% of silicon carbide with starch matrix. The interaction between starch and silicon carbide was studied by Fourier transform infrared (FTIR) spectroscopy. The structure of the bionanocomposites was investigated by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). Thermal property of starch/SiC bionanocomposites was measured and a significant enhancement of thermal resistance was noticed. The oxygen barrier property of the composites was studied and a substantial reduction in permeability was observed as compared to the virgin starch. The reduction of oxygen permeability with enhancement of thermal stability of prepared bionanocomposites may enable the materials suitable for thermal resistant packaging and adhesive applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao
The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into themore » outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.« less
Jelkmann, Max; Bonengel, Sonja; Menzel, Claudia; Markovic, Svetislav; Bernkop-Schnürch, Andreas
2018-05-11
The purpose of this study was to develop a novel thiolated starch polymer with improved mucoadhesive properties by conjugation of cysteamine to starch as a natural polymer of restricted mucoadhesive properties. Aldehyde substructures were integrated into starch via oxidative cleavage of vicinal diols by increasing amounts of sodium periodate followed by covalent attachment of cysteamine to oxidized starch via reductive amination. Thiol groups were quantified via Ellman's reaction and their impact on mucoadhesion was analyzed by rheological investigations, the rotating cylinder method and tensile studies on porcine mucosa. The total amount of immobilized thiol groups revealed a correlation between degree of oxidation and thiolation. Modified starch demonstrated an up to 1.66-fold increase in water uptake in comparison to native starch. Modification of starch resulted in greatly improved cohesive properties and improvement in mucoadhesion. Rheological investigations revealed a 2- to 4-fold rise in viscosity of mucus. Tensile studies revealed a linear correlation between degree of oxidation/thiolation and enhancement of maximum detachment force and total work adhesion. In terms of these results, thiolated starch is a new, promising, polymer in the field of mucoadhesive drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T
2012-01-15
The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.
He, Jinhua; Liu, Jie; Zhang, Genyi
2008-01-01
The mechanism and molecular structure of the slowly digestible waxy maize starch prepared by octenyl succinic anhydride (OSA) esterification and heat-moisture treatment were investigated. The in vitro Englyst test showed a proportion of 28.3% slowly digestible starch (SDS) when waxy maize starch was esterified with 3% OSA (starch weight based, and it is named OSA-starch), and a highest SDS content of 42.8% was obtained after OSA-starch (10% moisture) was further heated at 120 degrees C for 4 h (named HOSA-starch). The in vivo glycemic response of HOSA-starch, which showed a delayed appearance of blood glucose peak and a significant reduction (32.2%) of the peak glucose concentration, further confirmed its slow digestion property. Amylopectin debranching analysis revealed HOSA-starch had the highest resistance to debranching enzymes of isoamylase and pullulanase, and a simultaneous decrease of K m and V m (enzyme kinetics) was also shown when HOSA-starch was digested by either alpha-amylase or amyloglucosidase, indicating that the slow digestion of HOSA-starch resulted from an uncompetitive inhibition of enzyme activity during digestion. Size exclusion chromatography analysis of HOSA-starch showed fragmented amylopectin molecules with more nonreducing ends that are favorable for RS conversion to SDS by the action of amyloglucosidase in the Englyst test. Further solubility analysis indicates that the water-insolubility of HOSA-starch is caused by OSA-mediated cross-linking of amylopectin and the hydrophobic interaction between OSA-modified starch molecules. The water-insolubility of HOSA-starch would decrease its enzyme accessibility, and the digestion products with attached OSA molecules might also directly act as the uncompetitive inhibitor to reduce the enzyme activity leading to a slow digestion of HOSA-starch.
Newman, Monica A.; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U.
2017-01-01
Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05) and glucose (p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles. PMID:28300770
Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U
2017-03-16
Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p < 0.05) and glucose ( p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased ( p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced ( p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased ( p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased ( p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.
Resistant starch in food: a review.
Raigond, Pinky; Ezekiel, Rajarathnam; Raigond, Baswaraj
2015-08-15
The nutritional property of starch is related to its rate and extent of digestion and absorption in the small intestine. For nutritional purposes, starch is classified as rapidly available, slowly available and resistant starch (RS). The exact underlying mechanism of relative resistance of starch granules is complicated because those factors are often interconnected. The content of RS in food is highly influenced by food preparation manner and processing techniques. Physical or chemical treatments also alter the level of RS in a food. Commercial preparations of RS are now available and can be added to foods as an ingredient for lowering the calorific value and improving textural and organoleptic characteristics along with increasing the amount of dietary fiber. RS has assumed great importance owing to its unique functional properties and health benefits. The beneficial effects of RS include glycemic control and control of fasting plasma triglyceride and cholesterol levels and absorption of minerals. This review attempts to analyze the information published, especially in the recent past, on classification, structure, properties, applications and health benefits of RS. © 2014 Society of Chemical Industry.
Shi, Yingge; Xu, Dazhuang; Liu, Meiying; Fu, Lihua; Wan, Qing; Mao, Liucheng; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2018-01-01
Fluorescent organic nanoparticles (FONs) have been regarded as the promising candidates for biomedical applications owing to their well adjustment of chemical structure and optical properties and good biological properties. However, the preparation of FONs from the natural derived polymers has been rarely reported thus far. In current work, we reported a novel strategy for preparation of FONs based on the self-polymerization of starch-dopamine conjugates and polyethyleneimine in rather mild experimental conditions, including air atmosphere, aqueous solution, absent catalysts and at room temperature. The morphology, chemical structure and optical properties of the resultant starch-based FONs were investigated by different characterization techniques. Biological evaluation results demonstrated that these starch-based FONs possess good biocompatibility and fluorescent imaging performance. More importantly, the novel strategy might also be extended for the preparation of many other carbohydrate polymers based FONs with different structure and functions. Therefore, this work opens a new avenue for the preparation and biomedical applications of luminescent carbohydrate polymers. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.
Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra
2017-08-01
Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M
2014-07-15
The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.
Monteiro, M K S; Oliveira, V R L; Santos, F K G; Barros Neto, E L; Leite, R H L; Aroucha, E M M; Silva, R R; Silva, K N O
2018-03-01
Complete factorial planning 2 3 was applied to identify the influence of the cassava starch(A), glycerol(B) and modified clay(C) content on the water vapor permeability(WVP) of the cassava starch films with the addition of bentonite clay as a filler, its surface was modified by ion exchange from cetyltrimethyl ammonium bromide. The films were characterized by X-ray diffraction(XRD), fourier transform by infrared radiation(FTIR), atomic force microscopy(AFM) and scanning electron microscopy(SEM). The factorial analysis suggested a mathematical model thats predicting the optimal condition of the minimization of WVP. The influence of each individual factor and interaction in the WVP was investigated by Pareto graph, response surface and the optimization was established by the desirability function. The sequence of the degree of statistical significance of the investigated effects on the WVP observed in the Pareto graph was C>B>A>BC>AC. Interactions AB, BC and AC showed that the modified clay was the factor of greater significance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cakrawati, Dewi; Rahmawati, Puji
2016-04-01
Toddler biscuit is complementary food given to infants to help meet their nutritional needs. This research was undertaken to develop toddler biscuit with subtitution of physically modified potato flour. There were two puposes of the research, first to know the characteristics of physically modification on potato flour; secondly to know biscuit characteristics with modified potato flour substitution. There were two factor analysis in the development of biscuit; first factor was pre heating mehods and substitution rate. The research was conducted with experimental method using split plot design. The functional properties on modified potato flour as swelling capacity, water absorption capacity, solubility and viscocity were analyzed. Organoleptic analysis using quality hedonic test showed no interaction between potato starch modification and concentration of modified potato flour. Quality hedonic test showed all toddler biscuit socred in the range of “slightly like” to “like moderately”. Modifying potato starch by boiling and steaming with flour concentration of 30% producing toddler biscuit with organoleptic characteristics acceptable according to the panelists.
Sánchez-Rivera, Mirna M; Almanza-Benitez, Sirlen; Bello-Perez, Luis A; Mendez-Montealvo, Guadalupe; Núñez-Santiago, María C; Rodriguez-Ambriz, Sandra L; Gutierrez-Meráz, Felipe
2013-02-15
The effect of iodine concentration on the acetylation of starches with low and moderate degree of substitution (DS<0.5) and its impact on the physicochemical feature and structural features was evaluated. The acetylated starches were prepared with 0.03 mol anhydroglucose unit, 0.12 mol of anhydride acetic, and 0.6, 0.9 or 1.4 mM of molecular iodine as catalyst in a sealed Teflon vessel using microwave heating (600 W/2 min). Pasting profile and rheological properties were obtained under steady flow; dynamic oscillatory test was used. Structural features were obtained by HPSEC-RI. In acetylated starches, DS and acetyl groups increased when the iodine concentration increased, corn starch showed higher values than banana starch. The viscosity of acetylated starches decreased relative to unmodified starches while, acetylated corn starch had lower value than acetylated banana starch. In the flow curves, a non-Newtonian pattern (shear-thinning) was shown in the pastes of native and modified starches. Storage modulus (G') and loss modulus (G") showed low dependence on frequency (G'αω(0.1); G"αω(0.2)) on frequency sweep test, which is characteristic of a viscoelastic gel. Debranched native banana and corn starches presented trimodal chain-length distribution. The pattern was maintained in the acetylated starches, but with different level of short and long chains. The structural differences in native and acetylated samples explain the rheological characteristics in both starches. Copyright © 2012 Elsevier Ltd. All rights reserved.
Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis.
Navarro, S D; Mauro, M O; Pesarini, J R; Ogo, F M; Oliveira, R J
2015-03-06
Resistant starch is formed from starch and its degradation products and is not digested or absorbed in the intestine; thus, it is characterized as a fiber. Because fiber intake is associated with the prevention of DNA damage and cancer, the potential antigenotoxic, antimutagenic, and anticarcinogenic capabilities of resistant starch from green banana flour were evaluated. Animals were treated with 1,2-dimethylhydrazine and their diet was supplemented with 10% green banana flour according to the following resistant starch protocols: pretreatment, simultaneous treatment, post-treatment, and pre + continuous treatment. The results demonstrated that resistant starch is not genotoxic, mutagenic, or carcinogenic. The results suggest that resistant starch acts through desmutagenesis and bio-antimutagenesis, as well as by reducing aberrant crypt foci, thereby improving disease prognosis. These findings imply that green banana flour has therapeutic properties that should be explored for human dietary applications.
Structural modification in the formation of starch – silver nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less
USDA-ARS?s Scientific Manuscript database
Consumption of resistant starch (RS) may lead to reduced glycemia, improved satiety, and beneficial changes in gut microbiota due to its unique digestive and absorptive properties. We developed a standardized protocol for preparation of potatoes in order to assess their RS content and modified a com...
NASA Astrophysics Data System (ADS)
Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.
2018-05-01
Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.
NASA Astrophysics Data System (ADS)
Ali, H. E.; Abdel Ghaffar, A. M.
2017-01-01
Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.
Starch: chemistry, microstructure, processing and enzymatic degradation
USDA-ARS?s Scientific Manuscript database
Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...
López, O V; Versino, F; Villar, M A; García, M A
2015-12-10
Biocomposites films based on thermoplastic corn starch (TPS) containing 0.5% w/w fibrous residue from Pachyrhizus ahipa starch extraction (PASR) were obtained by melt-mixing and compression molding. PASR is mainly constituted by remaining cell walls and natural fibers, revealed by Scanning Electron Microscopy (SEM). Chemical composition of the residue indicated that fiber and starch were the principal components. Biocomposites thermo-stability was determined by Thermo-Gravimetric Analysis. A continuous PASR-TPS interface was observed by SEM, as a result of a good adhesion of the fibrous residue to starch matrix. Likewise, films containing PASR presented fewer superficial cracks than TPS ones, whereas their fracture surfaces were more irregular. Besides, the presence of PASR increased starch films roughness, due to fibers agglomerates. Films reinforced with PASR showed significantly lower water vapor permeability (WVP). In addition, PARS filler increased maximum tensile strength and Young's modulus of TPS films, thus leading to more resistant starch matrixes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Castaño, J; Rodríguez-Llamazares, S; Contreras, K; Carrasco, C; Pozo, C; Bouza, R; Franco, C M L; Giraldo, D
2014-11-04
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 μm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 °C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Santacruz, Stalin
2014-06-15
The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paraformaldehyde-Resistant Starch-Fermenting Bacteria in “Starch-Base” Drilling Mud
Myers, G. E.
1962-01-01
Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde. PMID:13936949
Microstructural and techno-functional properties of cassava starch modified by ultrasound.
Monroy, Yuliana; Rivero, Sandra; García, María A
2018-04-01
This work was focused on the correlation between the structural and techno-functional properties of ultrasound treated cassava starch for the preparation of tailor-made starch-based ingredients and derivatives. Furthermore, the effect of treatment time, sample conditioning and ultrasound amplitude was studied. Ultrasonic treatment of cassava starch induced structural disorganization and microstructural changes evidenced mainly in the morphological characteristics of the granules and in their degrees of crystallinity. These structural modifications were supported by ATR-FTIR and SEM and CSLM studies as well as DRX and thermal analysis. The selection of the processing conditions is critical due to the complete gelatinization of the starch was produced with the maximum amplitude tested and without temperature control. Rheological dynamical analysis indicated changes at the molecular level in starch granules due to the ultrasound treated, revealing the paste stability under refrigeration condition. PCA allow to establish the interrelationships between microstructural and techno-functional properties. In summary, different starch derivatives could be obtained by adjusting the ultrasound treatment conditions depending on their potential applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Lutfi, Zubala; Nawab, Anjum; Alam, Feroz; Hasnain, Abid; Haider, Syed Zia
2017-10-01
This study was performed to determine the effect of xanthan, guar, CMC and gum acacia on functional and pasting properties of starch isolated from water chestnut (Trapa bispinosa). Morphological properties of water chestnut starch with CMC were studied by scanning electron microscopy (SEM). The addition of hydrocolloids significantly enhanced the solubility of water chestnut starch (WCS) while reduced swelling power and freeze-thaw stability. The hydrophilic tendency of WCS was increased by xanthan gum; however, with addition of gum acacia it decreased significantly. Starch was modified with guar and gum acacia exhibited highest% syneresis. Guar gum was found to be effective in increasing the clarity of water chestnut starch paste. The addition of CMC significantly reduced the pasting temperature of WCS indicating ease of gelatinization. The setback was accelerated in the presence of xanthan gum but gum acacia delayed this effect during the cooling of the starch paste. Only xanthan gum was found to be effective in increasing breakdown showing good paste stability of WCS. Copyright © 2017 Elsevier B.V. All rights reserved.
Bernardino-Nicanor, Aurea; Acosta-García, Gerardo; Güemes-Vera, Norma; Montañez-Soto, José Luis; de Los Ángeles Vivar-Vera, María; González-Cruz, Leopoldo
2017-03-01
Starches isolated from four ayocote bean varieties were modified by thermal treatment to determinate the effect of the treatment on the structural changes of ayocote bean starch. Scanning electron microscopy indicates that the starch granules have oval and round shapes, with heterogeneous sizes and fractures when the extraction method is used. The presence of new bands at 2850 and 1560 cm -1 in the FT-IR spectra showed that the thermal treatment of ayocote beans induced an interaction between the protein or lipid and the amylose or amylopectin, while the sharpest band at 3400 cm -1 indicated a dehydration process in the starch granule in addition to the presence of the band at 1260 cm -1 , indicating the product of the retrogradation process. The thermal treatment reduced the crystallinity as well as short-range order. Raman spectroscopy revealed that acute changes occurred in the polysaccharide bonds after thermal treatment. This study showed that the thermal treatment affected the structural properties of ayocote bean starches, the interactions of the lipids and proteins with starch molecules and the retrogradation process of starch.
Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.
Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin
2015-01-22
This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Starch hydrogels: The influence of the amylose content and gelatinization method.
Biduski, Bárbara; Silva, Wyller Max Ferreria da; Colussi, Rosana; Halal, Shanise Lisie de Mello El; Lim, Loong-Tak; Dias, Álvaro Renato Guerra; Zavareze, Elessandra da Rosa
2018-07-01
Gelatinization and retrogradation, influenced by amylose and amylopectin ratio, are important characteristics for starch hydrogels elaboration. The objective of this study was to evaluate the influence of amylose content and the gelatinization method on the physicochemical characteristics of native and cross-linked rice starch hydrogels. The native and cross-linked starches were gelatinized with heating or alkaline solution, added polyvinyl alcohol, frozen and then freeze-dried. The cross-linked starch had a low final viscosity (101.38 RVU), which made the heat-induced gelatinized hydrogel readily disintegrated in water. However, modified starch hydrogels obtained by alkaline-induced gelatinization resulted in a more rigid structure than the native starch hydrogels. In addition, the starch sample with high amylose content had lower water absorption (322.2%) due to the greater stiffness of the hydrogel structure that resisted swelling. The alkaline-gelatinization resulted in stiffer hydrogels with lower water absorption (322.2 to 534.8%), while the heat-gelatinized behaved as a superabsorbent (658.7 to 1068.5%). The variability of the hydrogels properties of this study can enable a range of applications due to different amylose contents and gelatinization methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Razzaq, Hussam A A; Sutton, Kevin H; Motoi, Lidia
2013-08-30
Health outcomes associated with sustained elevated blood glucose may be better managed by limiting glucose availability for uptake. Glucose release from consumed starch may be altered using various methods, but many are not suitable for high-carbohydrate foods. This study describes an approach to protect starch granules, while generally maintaining their physical characteristics, with an extract from barley using spray-drying. The use of the extract resulted in the coating of the starch granules with a film-like material composed of β-glucans and proteins. This coincided with a reduction in starch digestion and a significant increase in the indigestible (resistant) starch component. Substitution of the starch component in a model snack bar by the coated starch was also associated with lowering starch digestion in the bar. The barley extract provides a physical barrier that may limit the exposure of starch to the digestive enzymes and water, with a consequent reduction in starch digestion and the rate of glucose release. It is possible, therefore, to produce wheat starch with lower digestibility and glucose release rate that may be used as a healthier substitute in high-carbohydrate foods by coating the granules with polymers extracted from barley cereals through spray-drying. © 2013 Society of Chemical Industry.
Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min
2016-11-01
A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.
Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar
2016-04-01
Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao
2017-08-15
The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.
One hundred years of commercial food carbohydrates in the United States.
BeMiller, James N
2009-09-23
Initiation and development of the industries producing specialty starches, modified food starches, high-fructose sweeteners, and food gums (hydrocolloids) over the past century provided major ingredients for the rapid and extensive growth of the processed food and beverage industries. Introduction of waxy maize starch and high-amylose corn starch occurred in the 1940s and 1950s, respectively. Development and growth of the modified food starch industry to provide ingredients with the functionalities required for the fast-growing processed food industry were rapid during the 1940s and 1950s. The various reagents used today for making cross-linked and stabilized starch products were introduced between 1942 and 1961. The initial report of enzyme-catalyzed isomerization of glucose to fructose was made in 1957. Explosive growth of high-fructose syrup manufacture and use occurred between 1966 and 1984. Maltodextrins were introduced between 1967 and 1973. Production of methylcelluloses and carboxymethylcelluloses began in the 1940s. The carrageenan industry began in the 1930s and grew rapidly in the 1940s and 1950s; the same is true of the development and production of alginate products. The guar gum industry developed in the 1940s and 1950s. The xanthan industry came into being during the 1950s and 1960s. Microcrystalline cellulose was introduced in the 1960s. Therefore, most carbohydrate food ingredients were introduced in about a 25 year period between 1940 and 1965. Exceptions are the introduction of maltodextrins and major developments in the high-fructose syrup industry, which occurred in the 1970s.
Butardo, Vito M.; Fitzgerald, Melissa A.; Bird, Anthony R.; Gidley, Michael J.; Flanagan, Bernadine M.; Larroque, Oscar; Resurreccion, Adoracion P.; Laidlaw, Hunter K. C.; Jobling, Stephen A.; Morell, Matthew K.; Rahman, Sadequr
2011-01-01
The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed. PMID:21791436
Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase.
Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G
2016-11-01
Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.
In vitro digestibility of normal and waxy corn starch is modified by the addition of Tween 80.
Vernon-Carter, E J; Alvarez-Ramirez, J; Bello-Perez, L A; Garcia-Hernandez, A; Roldan-Cruz, C; Garcia-Diaz, S
2018-05-15
Aqueous dispersions of normal and waxy corn starch (3% w/w) were mixed with Tween 80 (0, 7.5, 15, 22.5 and 30 g/100 g of starch), and gelatinized (90 °C, 20 min). Optical microscopy of the gelatinized starch dispersions (GSD x ; x = Tween 80 concentration) revealed that the microstructure was characterized by a continuous phase of leached amylose and amylopectin entangled chains, and a dispersed phase of insoluble remnants, called ghosts, on whose surface small granules were observed, imputed to Tween 80. The apparent viscosity of the GSD x decreased as the concentration of Tween 80 increased (up to about 70-90%). FTIR analysis of dried GSD x indicated that Tween 80 addition decreased short-range ordering. The content of rapidly digestible starch (RDS) and resistant starch (RS) fractions tended to increase significantly, at the expense of a significant decrease of slowly digestible starch (SDS) fraction, an effect that may be attributed to the increase of amorphous structures and starch chain-surfactant complexes. The RDS and RS increase was more pronounced for normal than for waxy corn starch, and the significance of the increase was dependent on Tween 80 concentration. Overall, the results showed that surfactant can affect largely the digestibility of starch chains. Copyright © 2018 Elsevier B.V. All rights reserved.
Arfa, Afef Ben; Preziosi-Belloy, Laurence; Chalier, Pascale; Gontard, Nathalie
2007-03-21
Soy protein isolates (SPI) and octenyl-succinate (OSA) modified starch were used as paper coating and inclusion matrices of two antimicrobial compounds: cinnamaldehyde and carvacrol. Antimicrobial compound losses from the coated papers were evaluated after the coating and drying process, and the two matrices demonstrated retention ability that depended on the compound nature and concentration. Whereas carvacrol losses ranged between 12 and 45%, cinnamaldehyde losses varied from 43 to 76%. The losses were always higher from OSA-starch-coated papers than from SPI-coated papers. During storage in accelerated conditions, at 30 degrees C and 60% relative humidity, carvacrol retention from coated papers was found to be similar whatever the coating matrices and the carvacrol rate. In contrast, the retention from SPI-coated papers was particularly high for the cinnamaldehyde concentration of 30% (w/w) compared to the lowest (10% w/w) or highest concentration (60% w/w). Compared to carvacrol, faster release was observed, particurlarly when OSA-starch was used. The antimicrobial properties of the coated papers were shown against Escherichia coli and Botrytis cinerea and explained by favorable conditions of total release of the antimicrobial agents.
Dielectric spectroscopy of Ag-starch nanocomposite films
NASA Astrophysics Data System (ADS)
Meena; Sharma, Annu
2018-04-01
In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.
Encapsulation of Organic Chemicals within a Starch Matrix.
ERIC Educational Resources Information Center
Wing, R. E.; Shasha, B. S.
1983-01-01
Three experiments demonstrating the feasibility of encapsulating liquids within a starch matrix are described, including encapsulation of linseed oil using the zanthate method and of turpentine and butylate using the calcium adduct procedure. Encapsulated materials, including pesticides, are slowly released from the resulting matrix. Considers…
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Influence of starch on microalgal biomass recovery, settleability and biogas production.
Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica
2015-06-01
In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prusty, Kalyani; Swain, Sarat K
2016-03-30
Starch hybrid polyethylhexylacrylate (PEHA)/polyvinylalcohol (PVA) nanocomposite thin films are prepared by different composition of nano CaCO3 in aqueous medium. The chemical interaction of nano CaCO3 with PEHA in presence of starch and PVA is investigated by Fourier transforms infrared spectroscopy (FTIR). X-ray diffraction (XRD) is used in order to study the change in crystallite size and d-spacing during the formation of nanocomposite thin film. The surface morphology of nanofilms is studied by scanning electron microscope (SEM). The topology and surface roughness of the films is noticed by atomic force microscope (AFM). The tensile strength, thermal stability and thermal conductivity of films are increased with increase in concentrations of CaCO3 nanopowder. The chemical resistance and biodegradable properties of the nanocomposite thin films are also investigated. The growth of bacteria and fungi in starch hybrid PEHA film is reduced substantially with imprint of nano CaCO3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.
2015-01-01
Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042
Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends
Oladunmoye, Olufunmilola O; Aworh, Ogugua C; Maziya-Dixon, Bussie; Erukainure, Ochuko L; Elemo, Gloria N
2014-01-01
High-quality cassava starch (HQCS) produced from high-yielding low-cyanide improved cassava variety, TMS 30572, was mixed with durum wheat semolina (DWS) on a replacement basis to produce flour samples containing 0, 20, 30, 50, 70, and 100% cassava starch. They were analyzed for chemical composition (proximate, amylose, free sugars, starch, wet gluten, and cyanide) and functional properties (pasting, swelling power, solubility, water absorption, water binding, starch damage, diastatic and α-amylase activity, dough mixing, and stability). Protein, carbohydrate, fat, and ash of flour samples ranged from 0.75–12.31%, 70.87–87.80%, 0.95–4.41%, and 0.12–0.83%, respectively. Cyanide levels in all the flour samples were less than 0.1 ppm. Amylose content varied between 19.49% for cassava and 28.19% for wheat, correlating significantly with protein (r = 0.95, P = 0.004) and ash contents (r = 0.92, P = 0.01) at 5%. DWS and HQCS had similar pasting temperatures (50.2–53°C), while other pasting properties increased with increasing levels of HQCS. Dough mixing stability of samples decreased with increasing levels of HQCS. All the flour samples had α-amylase activity greater than 200. Both HQCS and DWS compare favorably well in swelling power (7.80–9.01%); but the solubility of wheat starch doubled that of cassava. Starch damage varied between 3.3 and 7.2 AACC for semolina and starch, with the latter having higher absorption rate (97%), and the former, higher absorption speed (67 sec). Results obtained showed positive insight into cassava–wheat blend characteristics. Data thus generated provide additional opportunities of exploiting cassava utilization and hence boost its value–addition potentials for product development. PMID:24804071
Antibacterial and antiviral study of dialdehyde polysaccharides
NASA Astrophysics Data System (ADS)
Song, Le
Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was successfully predicated the response of bacteria to dialdehyde starch with time. Inactivation of bacteria by dialdehyde starch was speculated to be the crosslinking-interaction between the dialdehyde starch and the bacterial surface. Amino groups of bacterial surfaces were blocked by dialdehyde starch. This crosslinking action was also suggested from the preliminary study of the bacterial dehydrogenase activity. However, membrane damage was found in the dialdehdye starch treated bacteria from the fluorescent study.
All-natural bio-plastics using starch-betaglucan composites.
Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas
2017-09-15
Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Chávez-Murillo, Carolina E; Agama-Acevedo, Edith; Tovar, Juscelino
2007-11-01
Beans are rich and inexpensive sources of proteins and carbohydrates around the world, but particularly in developing countries. However, many legume varieties are still underutilized. In this study, physical characteristics of the seeds of three Phaseolus lunatus cultivars were characterized. Also, the chemical composition and starch digestibility in the cooked beans were assessed. 'Comba floja' variety exhibited the highest thousand-kernel weight whereas the lowest was found in 'comba violenta'. This agrees with seed dimensions: 'comba floja' had the Longest seeds (16.36 mm) and 'comba violenta' the shortest ones (13.98 mm). All samples exhibited high protein content, but levels in 'comba blanca' variety (216 g kg(-1)) were lower than the in other two cultivars. Total starch (370-380 g kg(-1)) and potentially available starch content (330-340 g kg(-1)) were similar in the three varieties. Resistant starch level in the cooked seeds ranged between 38 and 45 g kg(-1). Low enzymatic hydrolysis indices (HI) were recorded (30.2-35%), indicating a low digestion rate for Phaseolus lunatus starch. HI-based predicted glycemic indices ranged between 34% and 39%, which suggests a 'slow carbohydrate' feature for this legume. Phaseolus lunatus beans appear to be a good source of protein and slow-release carbohydrates with potential benefits for human health. Copyright © 2007 Society of Chemical Industry.
Hall, Mary Beth
2015-01-01
Starch, glycogen, maltooligosaccharides, and other α-1,4- and α-1,6-linked glucose carbohydrates, exclusive of resistant starch, are collectively termed "dietary starch". This nutritionally important fraction is increasingly measured for use in diet formulation for animals as it can have positive or negative effects on animal performance and health by affecting energy supply, glycemic index, and formation of fermentation products by gut microbes. AOAC Method 920.40 that was used for measuring dietary starch in animal feeds was invalidated due to discontinued production of a required enzyme. As a replacement, an enzymatic-colorimetric starch assay developed in 1997 that had advantages in ease of sample handling and accuracy compared to other methods was considered. The assay was further modified to improve utilization of laboratory resources and reduce time required for the assay. The assay is quasi-empirical: glucose is the analyte detected, but its release is determined by run conditions and specification of enzymes. The modified assay was tested in an AOAC collaborative study to evaluate its accuracy and reliability for determination of dietary starch in animal feedstuffs and pet foods. In the assay, samples are incubated in screw cap tubes with thermostable α-amylase in pH 5.0 sodium acetate buffer for 1 h at 100°C with periodic mixing to gelatinize and partially hydrolyze α-glucan. Amyloglucosidase is added, and the reaction mixture is incubated at 50°C for 2 h and mixed once. After subsequent addition of water, mixing, clarification, and dilution as needed, free + enzymatically released glucose are measured. Values from a separate determination of free glucose are subtracted to give values for enzymatically released glucose. Dietary starch equals enzymatically released glucose multiplied by 162/180 (or 0.9) divided by the weight of the as received sample. Fifteen laboratories that represented feed company, regulatory, research, and commercial feed testing laboratories analyzed 10 homogenous test materials representing animal feedstuffs and pet foods in duplicate using the dietary starch assay. The test samples ranged from 1 to 70% in dietary starch content and included moist canned dog food, alfalfa pellets, distillers grains, ground corn grain, poultry feed, low starch horse feed, dry dog kibbles, complete dairy cattle feed, soybean meal, and corn silage. The average within-laboratory repeatability SD (sr) for percentage dietary starch in the test samples was 0.49 with a range of 0.03 to 1.56, and among-laboratory repeatability SDs (sR) averaged 0.96 with a range of 0.09 to 2.69. The HorRat averaged 2.0 for all test samples and 1.9 for test samples containing greater than 2% dietary starch. The HorRat results are comparable to those found for AOAC Method 996.11, which measures starch in cereal products. It is recommended that the dietary starch method be accepted for Official First Action status.
Evaluation of a High Throughput Starch Analysis Optimised for Wood
Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco
2014-01-01
Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes. PMID:24523863
Seifried, Natascha; Steingaß, Herbert; Schipprack, Wolfgang; Rodehutscord, Markus
2016-10-01
The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0-8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information on ruminal degradation of CP and starch from maize grains.
Xu, Guanbao; Li, Jingen; Liu, Qian; Sun, Wenliang; Jiang, Min; Tian, Chaoguang
2018-05-24
Thermophilic fungus Myceliophthora thermophila has great capacity for biomass degradation and is an attractive option for use as cell factory to produce chemicals directly from renewable polysaccharides, such as starch, rather than monomer glucose. To date, there has been no transcriptomic analysis of this thermophilic fungus on starch. This study determined the transcriptomic profile of M. thermophila responding to soluble starch and a 342-gene set was identified as a "starch regulon", including the major amylolytic enzyme (Mycth_72393). Its overexpression led to increased amylase activities on starch by 35%. Furthermore, overexpressing the key amylolytic enzyme regulator AmyR in M. thermophila significantly increased amylase activity by 30%. Deletion of amyR by the CRISPR/Cas9 system led to the relief of carbon catabolite repression and 3-fold increased lignocellulase activities on cellulose. This study will accelerate rational fungal strain engineering for biochemical production from biomass substrates such as raw corn starch and even crop straw. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashri, Airul; Lazim, Azwan
2014-09-01
The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.
Slavutsky, Aníbal M; Bertuzzi, María A
2014-09-22
Water transport in edible films based on hydrophilic materials such as starch, is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure. Cellulose nanocrystals (CNC) were obtained from sugarcane bagasse. Starch and starch/CNC films were formulated and their water barrier properties were studied. The measured film solubility, contact angle, and water sorption isotherm indicated that reinforced starch/CNC films have a lower affinity to water molecules than starch films. The effects that the driving force and the water activity (aw) values at each side of the film have on permeability were analyzed. Permeability, diffusivity, and solubility coefficients indicated that the permeation process depends mostly on the tortuous pathway formed by the incorporation of CNC and therefore were mainly controlled by water diffusion. The interaction between CNC and starch chain is favoured by the chemical similarities of both molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resistant starch intakes in the United States.
Murphy, Mary M; Douglass, Judith Spungen; Birkett, Anne
2008-01-01
Dietary fiber represents a broad class of undigested carbohydrate components. The components vary in chemical and physical nature and in their physiological outcomes. Resistant starch is starch that escapes digestion in the small intestine and that may be fermented in the large intestine. The purpose of this study was to estimate consumption of resistant starch by the US population and to identify key sources of dietary resistant starch. A database of resistant starch concentrations in foods was developed from the publicly available literature. These concentrations were linked to foods reported in 24-hour dietary recalls from participants in the 1999-2002 National Health and Nutrition Examination Surveys and estimates of resistant starch intakes were generated. The study population included 18,305 nonbreastfeeding individuals in the United States. The dietary intake of resistant starch was determined for 10 US subpopulations defined by age, sex, and race/ethnicity. Three estimates of resistant starch intake were made for each person based on the minimum, mean, and maximum concentrations of resistant starch in the foods consumed. Americans aged 1 year and older were estimated to consume approximately 4.9 g resistant starch per day based on mean resistant starch concentrations (range 2.8 to 7.9 g resistant starch per day). Breads, cooked cereals/pastas, and vegetables (other than legumes) contributed 21%, 19%, and 19% of total resistant starch intake, respectively, and were top sources of resistant starch. Findings from this study suggest that the estimated intake of resistant starch by Americans is approximately 3 to 8 g per person per day. These estimates of resistant starch intake provide a valuable reference for researchers and food and nutrition professionals and will allow for more accurate estimates of total intakes of carbohydrate compounds that escape digestion in the small intestine.
Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.
ERIC Educational Resources Information Center
Wright, Stephen W.
2002-01-01
Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)
Preparation of potato starch microfibers obtained by electro wet spinning
NASA Astrophysics Data System (ADS)
Cárdenas, W.; Gómez-Pachon, E. Y.; Muñoz, E.; Vera-Graziano, R.
2016-07-01
Starch is one of the most abundant biopolymer in nature. It has been primarily used as a thickener in the food industry. Starch is found in greater amounts in the potato tubers, which is one of the largest food productions in the region of Boyacá-Colombia. Thus, potatoes are a viable source of starch. The main objective of this study is the preparation and characterization of native starch's microfiber by electro wet-spinning technique. The parameters that were changed for each treatment were as follows: the amount of potential applied to the solution, the distance between the needle and the collector and the rate of injection of the solution in order to determine the physical and chemical properties of the membranes, conformed by potatoes starch microfiber. Diverse instrumental analysis techniques were applied. They were: Scanning Electron Microscopy (SEM) to determine the morphologies and diameters of microfibers, Fourier Transform Infrared Spectroscopy (FTIR) to determine the chemical changes, Thermogravimetric Analysis (TGA) and Differential Calorimetry Scanning (DSC) to obtain the thermal transitions and the temperatures of useful. The microfibers were analysed in order to determine their structural properties and thus define the range of application. In conclusion, potatoes starch microfibers were obtained with average diameters of 15, 17, 23 and 25 micrometres, besides the fibers presented a degradation temperature of 304 °C, indicating that fibers are available with diameters of small scale, with good thermal properties. This study will enable the implementation of the microfibers to obtain bio packaging for food products and other applications.
Slade, Louise; Levine, Harry
2018-04-13
This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.
Kaur, Maninder; Sandhu, Kawaljit Singh; Ahlawat, RavinderPal; Sharma, Somesh
2015-03-01
Mung bean was subjected to different processing conditions (soaking, germination, cooking and autoclaving) and their textural, pasting and in vitro starch digestibility characteristics were studied. A significant reduction in textural properties (hardness, cohesiveness, gumminess and chewiness) after cooking and autoclaving treatment of mung bean was observed. Flours made from differently processed mung bean showed significant differences (P < 0.05) in their pastin g characteristics. Peak and final viscosity were the highest for flour from germinated mung bean whereas those made from autoclaved mung bean showed the lowest value. in vitro starch digestibility of mung bean flours was assessed enzymatically using modified Englyst method and the parameters studied were readily digestible starch (RDS), slowly digestible starch (SDS), resistant starch (RS) and total starch (TS) content. Various processing treatments increased the RDS contents of mung bean, while the SDS content was found to be the highest for soaked and the lowest for the autoclaved sample. Germinated sample showed higher amount of digestible starch (RDS + SDS) as compared to raw and soaked samples. Flours from raw and soaked samples showed significantly low starch hydrolysis rate at all the temperatures with total hydrolysis of 29.9 and 31.2 %, respectively at 180 min whereas cooked and autoclaved samples showed high hydrolysis rates with 50.2 and 53.8 % of these hydrolyzing within 30 min of hydrolysis.
Modified Antifreeze Liquids for Use on Surfaces
NASA Technical Reports Server (NTRS)
Lynn, R. O.
1983-01-01
Report presents results of evaluation of two antifreeze liquids, dimethyl sulfoxide and ethylene glycol and five viscosity modifiers: gelatin, gum tragacanth, starch, agarose powder and citrus pectin. Purpose of evaluation to find best way of dealing with frost formation on Space Shuttle.
Investigation on the pitting of potato starch granules during high frequency ultrasound treatment.
Bai, Wenzhe; Hébraud, Pascal; Ashokkumar, Muthupandian; Hemar, Yacine
2017-03-01
In this paper, the pitting of potato starch granules in aqueous suspensions (1%) by high-frequency high-power ultrasound (850kHz at a power of 0.2W, 2W or 3.7W; and also 500kHz and 1MHz at a power of 2W) is reported. The number of pits per starch granules was found to be independent of the amylose content of starches, and the surface properties of starch granules as modified through SDS and ethanol washing. At 850kHz, the maximum number of pits per starch granule, for both normal and waxy starches, did not exceed 11. However, a close inspection of fractionated starch granules based on their sizes showed that there is an optimum granule size for which a maximum pit number is obtained. For example, starch granules with diameter size range of ∼15 to ∼30μm had a maximum pit number (between 10 and 20 pits per granule) when sonicated (2W, 850kHz and 30min); while sonication of small (<10μm) and very large (>45μm) granules resulted in a smaller number of pits per granule (∼5). Further, the maximum number of pits per granules is also found to be proportional to the ultrasound frequency, with values of approximately 7, 10 and 11 at 0.50, 0.85, and 1MHz, respectively. FTIR measurements did not show any breakup of starch molecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Starch and protein chemistry and functional properties
USDA-ARS?s Scientific Manuscript database
Starch and protein are the major constituents of all cereal grains and are an important source of nutrition for humans and animals. Worldwide, sorghum and the millets are basic food staples for millions of people and are important sources of animal feed, and in some cases fuel. The chemical properti...
Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.
Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron
2018-03-01
Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Ellouzi, Soumaya Zouari; Driss, Dorra; Maktouf, Sameh; Neifar, Mohamed; Kobbi, Ameni; Kamoun, Hounaida; Chaabouni, Semia Ellouze; Ghorbel, Raoudha Ellouze
2015-09-01
In this paper, starch was extracted from fresh pasta by-product (PS) and its chemical composition and physical and microscopic characteristics were determined. Commercial wheat starch (CS) was used as reference. In general, purity was similar between starches studied. However, others compounds such as protein, lipid and ash were significantly different. PS starch granules had large lenticular-shape (25-33 μm) and small spherical-shape (5-8 μm). The pH and color of PS starch were similar to those reported for CS starch. On the other hand, PS had higher water absorption capacity, viscosity and cooking stability than CS. The gelatinization temperature of PS was similar to that of CS (60 and 61 °C). At high temperature (90 °C) both starches had similar rheological behavior. The results achieved suggest that PS starch has potential for application in food systems requiring high processing temperatures such the manufacture of sugar snap cookie. The effects of PS starch addition on the dough making stage and the final cookie quality were analyzed. Improvements in dough cohesiveness (24 %) and springiness (10 %) were significant relative to those of CS dough. Texture profile analysis confirmed the rheological changes.
Hunsberger, Monica; Mehlig, Kirsten; Börnhorst, Claudia; Hebestreit, Antje; Moreno, Luis; Veidebaum, Toomas; Kourides, Yiannis; Siani, Alfonso; Molnar, Dénes; Sioen, Isabelle; Lissner, Lauren
2015-12-08
Previous research has found an association between being overweight and short sleep duration. We hypothesized that this association could be modified by a high carbohydrate (HC) diet and that the timing and type (starch or sugar) of intake may be an important factor in this context. Participants in the prospective, eight-country European study IDEFICS were recruited from September 2007 to June 2008, when they were aged two to nine years. Data on lifestyle, dietary intake and anthropometry were collected on two occasions. This study included 5944 children at baseline and 4301 at two-year follow-up. For each meal occasion (morning, midday, and evening), starch in grams and sugar in grams were divided by total energy intake (EI), and quartiles calculated. HC-starch and HC-sugar intake categories were defined as the highest quartile for each meal occasion. In a mutually adjusted linear regression model, short sleep duration as well as HC-starch in the morning were positively associated with body mass index (BMI) z-scores at baseline. HC-starch at midday was positively associated with body mass index (BMI) z-scores in children with short sleep duration, and negatively associated with BMI z-scores in those with normal sleep. After adjustment for baseline BMI z-scores, associations between total HC from starch or sugar and high BMI z-scores at two-year follow-up did not persist. Our observations offer a perspective on optimal timing for macronutrient consumption, which is known to be influenced by circadian rhythms. Reduced carbohydrate intake, especially during morning and midday meals, and following nocturnal sleep duration recommendations are two modifiable factors that may protect children from being overweight in the future.
Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne
2012-06-01
Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.
Can bread processing conditions alter glycaemic response?
Lau, Evelyn; Soong, Yean Yean; Zhou, Weibiao; Henry, Jeyakumar
2015-04-15
Bread is a staple food that is traditionally made from wheat flour. This study aimed to compare the starch digestibility of western baked bread and oriental steamed bread. Four types of bread were prepared: western baked bread (WBB) and oriental steamed bread (OSB), modified baked bread (MBB) made with the OSB recipe and WBB processing, and modified steamed bread (MSB) made with the WBB recipe and OSB processing. MBB showed the highest starch digestibility in vitro, followed by WBB, OSB and MSB. A similar trend was observed for glycaemic response in vivo. MBB, WBB, OSB and MSB had a glycaemic index of 75±4, 71±5, 68±5 and 65±4, respectively. Processing differences had a more pronounced effect on starch digestibility in bread, and steamed bread was healthier in terms of glycaemic response. The manipulation of processing conditions could be an innovative route to alter the glycaemic response of carbohydrate-rich foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.
2018-03-01
Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.
Kim, Jong Hun; Kim, Jiyeon; Park, Eun Young; Kim, Jong-Yea
2017-07-15
To modify starch granular structure, normal maize starch was subjected to dry heating with various amounts of 1.0M HCl (1.2, 1.4 or 1.6mL) and different treatment times (2, 4 or 8h). For all reaction conditions, at least 80% of the starch substance was recovered, and amylose and amylopectin B1 chains were preferentially cleaved. As acidic condition and/or treatment time increased, the treated granules were readily fragmented by homogenization. The treatment appeared to alter short-range crystalline structure (FT-IR), but long-range crystalline structure (XRD) remained intact. Homogenization for 60min fragmented the treated starch granules (subjected to reaction condition of 1.4mL/4h, 1.6mL/2h, and 1.6mL/4h) into nanoparticles consisting of individual platelet-like and spherical particles with diameters less than 100nm. However, the fragmentation caused obvious damage in the long-range crystalline structure of starch nanoparticles, while the short-range chain associations remained relatively intact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Engineering yeasts for raw starch conversion.
van Zyl, W H; Bloom, M; Viktor, M J
2012-09-01
Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10 % of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.
Zhang, Hao; Yu, Chao; Hou, Danping; Liu, Hailang; Zhang, Huiting; Tao, Rongrong; Cai, Han; Gu, Junfei; Liu, Lijun; Zhang, Zujian; Wang, Zhiqin; Yang, Jianchang
2018-01-01
The improvement of rice cultivars plays an important role in yield increase. However, little is known about the changes in starch quality and mineral elements during the improvement of rice cultivars. This study was conducted to investigate the changes in starch quality and mineral elements in japonica rice cultivars. Twelve typical rice cultivars, applied in the production in Jiangsu province during the last 60 years, were grown in the paddy fields. These cultivars were classified into six types according to their application times, plant types and genotypes. The nitrogen (N), phosphorus (P) and, and potassium (K) were mainly distributed in endosperm, bran and bran, respectively. Secondary and micromineral nutrients were distributed throughout grains. With the improvement of cultivars, total N contents gradually decreased, while total P, K and magnesium contents increased in grains. Total copper and zinc contents in type 80'S in grains were highest. The improvement of cultivars enhanced palatability (better gelatinisation enthalpy and amylose content), taste (better protein content) and protein quality (better protein components and essential amino acids). Correlation analysis indicated the close relationship between mineral elements and starch quality. The mineral elements and starch quality of grains during the improvement of japonica rice cultivars are improved. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Structural, thermal, and morphological characteristics of cassava amylodextrins.
Costa, Mariana Souza; Volanti, Diogo Paschoalini; Grossmann, Maria Victória Eiras; Franco, Célia Maria Landi
2018-05-01
Amylodextrins from cassava starch were obtained by acid hydrolysis, and their structural, thermal and morphological characteristics were evaluated and compared to those from potato and corn amylodextrins. Cassava starch was the most susceptible to hydrolysis due to imperfections in its crystalline structure. The crystalline patterns of amylodextrins remained unchanged, and crystallinity and peak temperature increased with hydrolysis time, whereas thermal degradation temperature decreased, independent of treatment time and starch source. Cassava amylodextrins had similar structural and morphological characteristics to those from corn amylodextrins due to their A-type crystalline arrangements. A-amylodextrins were structurally and thermally more stable than potato amylodextrins (B-type). Starch nanocrystals (SNC) were observed by transmission electron microscopy from the third day of hydrolysis in cassava amylodextrins, whereas potato and corn amylodextrins displayed SNC only on the fifth day. A-SNC displayed platelet shapes, whereas B-SNC were rounded. The SNC shape was related to the packing form and geometry of unit cells of allomorphs A and B. Microstructures (agglomerated crystalline particles) and nanostructures (double helix organization) were observed for amylodextrins. Cassava starch was shown to be a promising material for SNC production, since it requires less hydrolysis time to obtaining more stable crystals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M
2017-07-15
Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A
2014-08-01
Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.
Nazarian Firouzabadi, Farhad; Kok-Jacon, Géraldine A; Vincken, Jean-Paul; Ji, Qin; Suurs, Luc C J M; Visser, Richard G F
2007-10-01
It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more intimate contact with growing starch granules, and to facilitate the incorporation of mutan polymers in starch. Fusion proteins of the appropriate size were evidenced in starch granules, particularly in the amf background. The starches from the various GtfICAT/SBD transformants seemed to contain less mutan than those from transformants with GtfICAT alone, suggesting that the appended SBD might inhibit the activity of GtfICAT in the engineered fusion proteins. Scanning electron microscopy showed that expression of SBD-GtfICAT resulted in alterations of granule morphology in both genetic backgrounds. Surprisingly, the amf starches containing SBD-GtfICAT had a spongeous appearance, i.e., the granule surface contained many small holes and grooves, suggesting that this fusion protein can interfere with the lateral interactions of amylopectin sidechains. No differences in physico-chemical properties of the transgenic starches were observed. Our results show that expression of granule-bound and "soluble" GtfICAT can affect starch biosynthesis differently.
Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes
Guerra, Nelson P.; Pastrana Castro, Lorenzo
2012-01-01
The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P < 0.05) and K M increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116
Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods
USDA-ARS?s Scientific Manuscript database
Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...
Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes.
Lin, Shi-Tsung; Thirumavalavan, Munusamy; Jiang, Ting-Yan; Lee, Jiunn-Fwu
2014-05-25
A complete set of experiments in two aspects of studies combining the various factors affecting both the preparation and photocatalytic activity of ZnO/Zn nanocomposite obtained using corn starch and cellulose (native and modified) as chelating agents for the photodegradation of methylene blue, and congo red was carried out and discussed. The resulting ZnO/Zn nanoparticles obtained using modified polysaccharides exhibited super catalytic capability. The ZnO/Zn nanoparticles possessed favored surface area (11.8443-15.7100m(2)/g) and pore size (12.3473-13.7453nm). The photocatalytic degradation of nano ZnO/Zn was directly proportional to the surface area of nano ZnO/Zn. Regardless of the dye pollutants, nano ZnO/Zn obtained using modified corn starch showed enhanced catalytic activity than that of cellulose and methylene blue had comparatively faster degradation rate. Our findings shed light on the optimization of both preparation conditions of photocatalysts and their photocatalytic experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong
2010-11-01
Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.
Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl
NASA Astrophysics Data System (ADS)
Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat
2015-09-01
Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.
Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko
2015-08-30
High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.
Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Millan-Malo, Beatriz M; Rodriguez-Garcia, Mario E
2018-07-01
This work is focused on the chemical, structural, morphological, thermal, IR vibrational, and pasting characterization of isolated white, yellow, and purple Arracacha starches from Colombia. Inductive couple plasma showed that these starches are rich in potassium. Scanning Electron Microscopy (SEM) images show that the starch granules are formed by ovoid fully filled Lego-like starch microparticles, the circular cross-section has a diameter between 9 and 15μm and mayor axis between 20 and 30μm. Each one of these ovoids is formed by irregular wedge-shaped 6 to 10 isolated starch granules with an average size between 4 and 12μm. The amylose content ranged between 31 and 36%. Arracacha starches exhibited high viscosity values (between 20.000 and 28.000cP), which could be influenced by the high content of potassium ions, due to the C-H~K Van Der Waals interaction that was identified by using IR spectroscopy. According to the X-ray diffraction analysis, the starch patterns exhibited broad diffracted peaks which could be associated with the existence of nano-crystals and lamellae; the Differential Scanning calorimetry (DSC) result showed starches with a low gelatinization temperature of about 60°C. Copyright © 2018 Elsevier B.V. All rights reserved.
Physicochemical properties of quinoa flour as affected by starch interactions.
Li, Guantian; Zhu, Fan
2017-04-15
There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yi; Zeng, Hongliang; Wang, Ying; Zeng, Shaoxiao; Zheng, Baodong
2014-07-15
Lotus seed resistant starch (LRS) is a type of retrograded starch that is commonly known as resistant starch type 3 (RS3). The structural and crystalline properties of unpurified LRS (NP-LRS3), enzyme purified LRS after drying (GP-LRS3), and enzyme purified LRS (ZP-LRS3) were characterized. The result showed that the molecular weights of NP-LRS3, GP-LRS3, and ZP-LRS3 were 0.102 × 10(6), 0.014 × 10(6), and 0.025 × 10(6)Da, respectively. Compared with native starch and high amylose maize starch (HAMS), LRS lacked the polarization cross and the irregularly shaped LRS granules had a rougher surface, B-type crystal structure, and greater level of molecular order. The FT-IR measurements indicated no differences in the chemical groups. Analysis by (13)C NMR indicated an increased propensity for double helix formation and higher crystallinity in LRS than in the two other types of starch. Moreover, LRS was more effective than either glucose or HAMS in promoting the proliferation of bifidobacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.
de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M
2013-10-15
Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.
Structural changes of starch during baking and staling of rye bread.
Mihhalevski, Anna; Heinmaa, Ivo; Traksmaa, Rainer; Pehk, Tõnis; Mere, Arvo; Paalme, Toomas
2012-08-29
Rye sourdough breads go stale more slowly than wheat breads. To understand the peculiarities of bread staling, rye sourdough bread, wheat bread, and a number of starches were studied using wide-angle X-ray diffraction, nuclear magnetic resonance ((13)C CP MAS NMR, (1)H NMR, (31)P NMR), polarized light microscopy, rheological methods, microcalorimetry, and measurement of water activity. The degree of crystallinity of starch in breads decreased with hydration and baking to 3% and increased during 11 days of storage to 21% in rye sourdough bread and to 26% in wheat bread. (13)C NMR spectra show that the chemical structures of rye and wheat amylopectin and amylose contents are very similar; differences were found in the starch phospholipid fraction characterized by (31)P NMR. The (13)C CP MAS NMR spectra demonstrate that starch in rye sourdough breads crystallize in different forms than in wheat bread. It is proposed that different proportions of water incorporation into the crystalline structure of starch during staling and changes in starch fine structure cause the different rates of staling of rye and wheat bread.
Engelsen, Søren Balling; Madsen, Anders Østergaard; Blennow, Andreas; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Larsen, Sine
2003-04-24
The only known in planta substitution of starch is phosphorylation. Whereas the function of starch phosphorylation is poorly understood, phosphorylated starch possesses improved functionality in vitro. Molecular models of native crystalline starch are currently being developed and the starch phosphorylating enzyme has recently been discovered. Accordingly, it is desirable to obtain a more exact description of the molecular structures of phosphorylated starch. We have determined the crystal structure of methyl alpha-D-glucopyranoside 6-O-phosphate as its potassium salt which is thought to be the starch phosphate counterion in vivo. From this structure and previously known glucophosphate structures we describe the possible 6-O-phosphate geometries and through modeling extrapolate the results to the double helical structure of the crystalline part of amylopectin. The geometries of the existing crystal structures of 6-O-phosphate groups were found to belong to two main adiabatic valleys. One of these conformations could be fitted into the double helical amylopectin part without perturbing the double helical amylopectin structure and without creating steric problems for the hexagonal chain-chain packing.
Composition and physical properties of starch in microgravity-grown plants.
Kuznetsov, O A; Brown, C S; Levine, H G; Piastuch, W C; Sanwo-Lewandowski, M M; Hasenstein, K H
2001-01-01
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Composition and physical properties of starch in microgravity-grown plants
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Brown, C. S.; Levine, H. G.; Piastuch, W. C.; Sanwo-Lewandowski, M. M.; Hasenstein, K. H.; Sager, J. C. (Principal Investigator)
2001-01-01
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
2010-01-01
Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values. PMID:21114817
Doué, Ginette; Bédikou, Micaël; Koua, Gisèle; Mégnanou, Rose-Monde; Niamké, Sébastien
2014-01-01
The enzymatic and acid hydrolysis have converted eight new starches into a range of chain lengths mainly including glucose, maltose, and maltodextrins as observed on TLC plates, irrespective to the starch variety and treatment. Results of the enzymatic hydrolysis have highlighted the possibility of the use of V4 and V64, which can be labelled as "dietary fibres", to enhance the organoleptic qualities of foods and for fibre fortification of low-calorie products. Concerning V66 and V69, they have much relevant in food, textile and pharmaceutical applications. The acid hydrolysis showed that V73 is the best starch in the chemical industry for making environment-friendly products such as plastics. Because starch is a natural component that degrade quickly in normal composting condition, the whole studied starches could be advised for various utilizations in the food, textile, paper, biofuel, pharmaceutical and plastic industries for sustainable development.
Bharath Kumar, S; Prabhasankar, P
2015-08-01
Starch profile reflects functional characteristics like digestibility and product quality. A study was aimed to incorporate rajma in noodle processing to improve product and nutritional quality and also to reduce starch digestibility. It is known that some of the pulses like Kidney beans have an isoforms of Starch-Branching-Enzyme (SBE) helps in converting amylose to amylopectin. Rajma flour was incorporated at 10%, 20% and 30% with Triticumdurum and subjected to rheological, physico-chemical and amylose/amylopectin determination using High-Performance-Size-Exclusion-Chromatography (HPSEC). Results revealed that rajma flour decreased peak-viscosity from 954 to 683 BU and increased water absorption. Protein and dietary fiber content increased significantly. Sensory profile showed higher overall quality (>8.5). In vitro starch digestibility reduced from 65% to 49%. Starch profile from HPSEC showed changes in amylose:amylopectin peak, this may be because of the presence of SBE, further studies may be required to support the hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian
2012-05-01
A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.
Assessment of the mobile bag method for estimation of in vivo starch digestibility.
Ghoorchi, T; Lund, P; Larsen, M; Hvelplund, T; Hansen-Møller, J; Weisbjerg, M R
2013-02-01
The objective was to assess the ability of the in situ mobile nylon bag method for predicting small intestinal and total tract starch digestibility. Starch disappearance was measured for 18 samples of different cereals and legumes subjected to different physical and chemical processing methods and compared with coherent in vivo digestibility. Starch disappearance was measured both with and without initial ruminal pre-incubation during 4 h. Bags were retrieved from either the ileal cannula or faeces. Two dry Danish Holstein cows fitted with rumen cannulas were used for rumen pre-incubations and two lactating Danish Holstein cows fitted with duodenal and ileal cannulas were used for intestinal incubations. Rumen pre-incubation had no significant effect on disappearance from bags recovered in faeces. The disappearance of legume starch was lower, both in the rumen and small intestine, compared with starch from barley, wheat, oats, ear maize and maize. Transit times of the mobile bags from duodenum to ileum were not significantly different between feeds. A weak positive correlation was found between in vivo small intestinal and total tract digestibility of starch and disappearance obtained using the mobile bag technique across a broad range of starch sources. Omitting two less conventional starch sources (NaOH wheat and xylose-treated barley) resulted in a high (0.87) correlation between total tract in vivo digestibility and mobile bag disappearance. The use of the mobile bag method for estimation of in vivo starch digestibility will therefore depend on the starch type.
Liu, Ju-Han; Cheng, Yung-Yi; Hsieh, Chen-Hsi; Tsai, Tung-Hu
2017-12-15
Commercial pharmaceutical herbal products have enabled people to take traditional Chinese medicine (TCM) in a convenient and accessible form. However, the quantity and quality should be additionally inspected. To address the issue, a combination of chemical and physical inspection methods were developed to evaluate the amount of an herbal formula, Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), in clinical TCM practice. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) method with electrospray ionization was developed to measure the herbal biomarkers of guanosine, atractylenolide III, glycyrrhizic acid, dehydrocostus lactone, hesperidin, and oleanolic acid from XSLJZT. Scanning electron microscopy (SEM) photographs and light microscopy photographs with Congo red and iodine-KI staining were used to identify the cellulose fibers and starch content. Furthermore, solubility analysis, swelling power test, and crude fiber analysis were contributed to measure the starch additive in pharmaceutical products. The results demonstrated large variations in the chemical components of different pharmaceutical brands. The SEM photographs revealed that the starch was oval, smooth, and granular, and that the raw herbal powder appears stripy, stretched, and filiform. The stained light microscopy photographs of all of the pharmaceutical products showed added starch and raw herbal powder as extenders. The developed chemical and physical methods provide a standard operating procedure for the quantity control of the herbal pharmaceutical products of XSLJZT.
Ferguson, Lynnette R; Zhu, Shuotun; Kestell, Philip
2003-06-01
It has commonly been believed that increasing fibre in the diet should reduce the incidence of cancers, especially those of the colon and rectum. The earliest definitions of dietary fibre restricted the term to plant cell walls in which non-starch polysaccharides are key chemical components. However, new definitions encompass a wider range of materials, including starches resistant to digestion in the colon (resistant starches). Nevertheless, most definitions require that "dietary fibres" show physiological effects considered beneficial against cancer, including enhanced laxation and faecal bulking. On theoretical grounds, such properties might be expected to dilute the concentration of any carcinogen present and move it more rapidly through the colon, thereby reducing bioavailability. We have compared the properties of two dietary fibre preparations that are primarily non-starch polysaccharides with two resistant starch preparations for effects on carcinogen disposition in a rodent model. Although both preparations enhanced laxation and faecal bulking, only the non-starch polysaccharide preparation reduced carcinogen biovailability. Indeed, carcinogen biovailability was significantly enhanced by resistant starch. We suggest that there may be fundamental differences in the manner by which non-starch polysaccharides or resistant starches affect carcinogen disposition, and express concern that the events seen with the resistant starches [RS] are unlikely to be beneficial with respect to protection against cancer by exogenous carcinogens. Furthermore, the data reveal that the observation of enhanced laxation and faecal bulking does not necessarily imply a reduction in carcinogen bioavailability.
Awoyale, Wasiu; Sanni, Lateef O; Shittu, Taofik A; Adegunwa, Mojisola O
2015-01-01
The effect of storage on the chemical, microbiological, and sensory properties of cassava starch-based custard powder (CbCP) blends as mixture of yellow-fleshed cassava root starch (YfCRS) (90–98%) and whole egg powder (WEP) (2–10%) was investigated. These were prepared using central composite rotatable design, and separately packaged in polyvinyl chloride plastic can and stored in storage box (30 ± 2°C). The chemical and microbiological analyses of the stored CbCP were evaluated at 3 weeks intervals, while the sensory property was determined at 6 weeks interval for 24 weeks. The result showed that the protein, fat, and the total-β-carotene contents of the CbCP decreased significantly (P ≤ 0.001) after storage while moisture content and microbiological load increased. All the CbCP sensory attributes were accepted at the end of storage, except taste and color. The CbCP gruel prepared from 94% YfCRS: 0.34% WEP and 90% YfCRS: 2% WEP blends were the most acceptable after storage. PMID:26405528
Awoyale, Wasiu; Sanni, Lateef O; Shittu, Taofik A; Adegunwa, Mojisola O
2015-09-01
The effect of storage on the chemical, microbiological, and sensory properties of cassava starch-based custard powder (CbCP) blends as mixture of yellow-fleshed cassava root starch (YfCRS) (90-98%) and whole egg powder (WEP) (2-10%) was investigated. These were prepared using central composite rotatable design, and separately packaged in polyvinyl chloride plastic can and stored in storage box (30 ± 2°C). The chemical and microbiological analyses of the stored CbCP were evaluated at 3 weeks intervals, while the sensory property was determined at 6 weeks interval for 24 weeks. The result showed that the protein, fat, and the total-β-carotene contents of the CbCP decreased significantly (P ≤ 0.001) after storage while moisture content and microbiological load increased. All the CbCP sensory attributes were accepted at the end of storage, except taste and color. The CbCP gruel prepared from 94% YfCRS: 0.34% WEP and 90% YfCRS: 2% WEP blends were the most acceptable after storage.
Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng
2017-10-01
Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Engineering Escherichia coli K12 MG1655 to use starch
2014-01-01
Background To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. Results We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. Conclusion The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals. PMID:24886307
Effect of starch structure on glucose and insulin responses in adults.
Behall, K M; Scholfield, D J; Canary, J
1988-03-01
Twelve women and 13 men were given meals containing cornstarch with 70% of the starch in the form of amylopectin or amylose to determine if differences in glycemic response result from different chemical structure. Blood was drawn before and 30, 60, 120, and 180 min after each meal. The meals consisted of starch crackers fed at the rate of 1 g carbohydrate from starch per kilogram body weight. The amylose meal resulted in a significantly lower glucose peak at 30 min than did the amylopectin meal. Plasma insulin response was significantly lower 30 and 60 min after amylose than after the amylopectin meal. Summed insulin above fasting was significantly lower after amylose while summed glucose was not significantly different between the two meals. The sustained plasma glucose levels after the amylose meal with reduced insulin requirement suggest amylose starch may be of potential benefit to carbohydrate-sensitive or diabetic individuals.
Rakhesh, Nisha; Fellows, Christopher M; Sissons, Mike
2015-01-01
The incorporation of fibres, whether insoluble or soluble, in durum wheat pasta negatively impacts desirable end-use properties, especially if incorporated in significant amounts. Fibres can disrupt the starch-protein matrix of the dough during pasta preparation and can also often swell more readily with water than starch, competing with the starch for water during dough development. Similar degrees of substitution with different fibres gave markedly different impacts on firmness, stickiness, cooking loss and sensory attributes, suggesting that results obtained for one fibre cannot readily be generalized to other fibres. The in vitro starch digestibility of the pastas was significantly reduced when resistant starch, β-glucan-enriched flour, carboxymethyl cellulose or guar gum was incorporated but increased when pollard or inulin was added. In many instances, different sources of the same fibre gave dramatically different impacts on the properties of cooked durum wheat pasta. © 2014 Society of Chemical Industry.
Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W
2016-11-15
The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mid-infrared spectroscopy and chemometrics in corn starch classification
NASA Astrophysics Data System (ADS)
Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.
1997-06-01
The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.
Packing properties of starch-based powders under mild mechanical stress.
Zanardi, I; Gabbrielli, A; Travagli, V
2009-07-01
This study reports the ability to settle of commercial pharmaceutical grade starch samples, both native and pregelatinized. The experiments were carried out under different relative humidity (RH%) conditions and the packing properties were evaluated using both official pharmacopoeial monograph conditions and also modified conditions in order to give a deeper knowledge of tapping under mild mechanical stress. The technique adopted, simulating common pharmaceutical operating practices, appears to be useful to estimate some technologically relevant features of diluent powder materials. Moreover, a general mathematical function has been applied to the experimental data; this could be appropriate for adequately describing material settling patterns and offers practical parameters for characterizing starch powders within the context of a pharmaceutical quality system.
Urea encapsulation in modified starch matrix for nutrients retention
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariff, Mohd. Hazwan Bin Mohd.; Ariwahjoedi, Bambang
2014-10-01
It has been estimated that 20-70% of the used urea goes to the environment via leaching, nitrification and volatilization which not only harms the environment but also reduces the urea efficiency. By coating the urea granules, the farmers can achieve high urea performance through controlling the excess release of nitrogen. Up until now, different materials have been tested for nutrients retention. However, most of them are either expensive or unfriendly to the environment. Being cheap and biodegradable materials, the starches may also be used to coat the urea fertilizer for controlling the nutrients release. However, the pure starches do not meet the standards set by many industrial processes due to their slow tacking and too low viscosities and should be modified for getting smooth, compact and mechanically stronger coatings. In these studies, the tapioca starch was modified by reacting it with urea and different masses of borax. The prepared solutions were used to coat the urea granules of 3.45 mm average diameter. Different volumes (1, 1.5 and 2 mL) of each solution were used to coat 30 g of urea fluidized above the minimum level of fluidization. It was noticed that the coating thickness, percent coating, dissolution rate and percent release follow an increasing trend with an increase of solution volume; however, some random results were obtained while investigating the solution volume effects on the percent release. It was seen that the nutrients percent release over time increases with an increase in solution volume from 1 to 1.5 mL and thereafter reaches to a steady state. It confirms that the 1.5 mL of solution for 30 g urea samples will give the optimized coating results.
Gök, Mehmet Koray; Özgümüş, Saadet; Demir, Kamber; Cirit, Ümüt; Pabuccuoğlu, Serhat; Cevher, Erdal; Özsoy, Yıldız; Bacınoğlu, Süleyman
2016-01-20
The aim of this study was to prepare and evaluate the mucoadhesive, biocompatible and biodegradable progesterone containing vaginal tablets based on modified starch copolymers for the estrus synchronization of ewes. Starch-graft-poly(acrylic acid) copolymers (S-g-PAA) were synthesized and characterized. The vaginal tablets were fabricated with S-g-PAA and their equilibrium swelling degree (Qe) and matrix erosion (ME%) were determined in lactate buffer solution. In vitro, mucoadhesive properties of the tablets were investigated by using ewe vaginal mucosa and in vivo residence time were also investigated. In vitro and in vivo progesterone release profiles from the tablets were compared with two commercial products. Tablet formulation containing wheat starch based grafted copolymer (WS-g-PAA)gc indicated promising results and might be convenient as an alternative product to the commercial products in veterinary medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch.
Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Hasnain, Abid
2016-12-01
The effects of different concentrations of guar and xanthan gums on functional properties of mango kernel starch (MKS) were studied. Both guar and xanthan gum enhanced the water absorption of MKS. The addition of xanthan gum appeared to reduce the SP (swelling power) and solubility at higher temperatures while guar gum significantly enhanced the SP as well as solubility of MKS. The addition of both gums produced a reinforcing effect on peak viscosity of MKS as compared to control. Pasting temperature of MKS was higher than that of starch modified by gums indicating ease of gelatinization. Guar gum played an accelerative effect on setback but xanthan gum delayed the setback phenomenon during the cooling of the starch paste. Both gums were found to be effective in reducing the syneresis while gel firmness was markedly improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose.
Setyawati, Yohana Dwi; Ahsan, Sitti Faika; Ong, Lu Ki; Soetaredjo, Felycia Edi; Ismadji, Suryadi; Ju, Yi-Hsu
2016-07-15
In this study, a modified aqueous leaching method by complex formation of amylose with glycerol was employed for reducing the amylose content of starch in broken white rice to less than 2%, so that the resulting starch can be classified to that of glutinous rice flour. By employing ultrasonication in alkaline condition, extraction of amylose could be performed by washing at lower temperature in shorter time compared to the existing aqueous leaching method. The effects of glycerol concentration, alkali concentration, ultrasonication and treatment time on the amylose content of the treated starch were systematically investigated. Under optimum condition, amylose content of broken white rice starch can be reduced from 27.27% to 1.43% with a yield of 80.42%. The changes in the physicochemical properties of the rice flour before and after treatment were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chemecology, 1995
1995-01-01
Includes articles and classroom activities about chemicals in the body entitled: "Your Body's Chemical Factory,""Testing for Catalase Activity,""How Sweet It IS...,""Milking Calcium for All It's Worth," and "Testing for Starch in Plant Products." (MKR)
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN
2018-02-01
Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p<0.05) with respect to Batu banana flour substitution, but not to processing method (p>0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (p<0.05). Together these results show that Batu banana flour could be a promising ingredient for the production of snacks suitable for consumption by DM patients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility
Kim, Jae-Eung; Kim, Eui-Jin; Chen, Hui; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival
2017-11-01
Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H 2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H 2 /L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H 2 -based mass and an electricity density of more than 3000Wh/kg of starch. Copyright © 2017. Published by Elsevier Inc.
Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.
2015-01-01
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis. PMID:25710501
Atomic force microscopy of pea starch: origins of image contrast.
Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J
2004-01-01
Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.
Wang, Rongliang; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong
2014-01-01
Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α-amylase from Aspergillus oryzae as well as α-amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers.
Zhang, Yi; Wang, Ying; Zheng, Baodong; Lu, Xu; Zhuang, Weijing
2013-11-01
Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.
NASA Astrophysics Data System (ADS)
Galih Saputri, Diani; Khairuddin; Dwi Nurhayati, Nanik; Pham, Trinh
2017-11-01
The use of starch as biodegradable base material for packaging application was of great interest as an environmentally friendly alternative to the present use of polyethylene and polyvinyl chloride. However, starch tended to be brittle and had a lack of stability due to exposure to water. Several aproaches have been done to improve shellac properties including through chemical modification, mixing with polymers, clays, and plasticizers. The present study related to optimization of starch properties when mixing with polyethylene glycol (PEG) coated on the paper. The aim was to obtain the temperature and mixing time between starch and PEG so produced composites with optimal barrier properties. The composites of PEG/starch 10 % w/w were prepared using solvent casting and coated on paper surface, and dried in the oven for 12 hours at 40°C. Water Vapour Transmitter Rate (WVTR) (Payne cup method) showed that 70°C was the optimum temperature when mixing time was 30 minutes. Moreover, it showed that the optimum mixing time was 30 minutes when mixing temperature was 80 and 70 °C. Fourier Transform Infra Red (FTIR) showed a strong interaction between PEG400 and starch.
Romero-Lopez, Maria R; Osorio-Diaz, Perla; Bello-Perez, Luis A; Tovar, Juscelino; Bernardino-Nicanor, Aurea
2011-01-01
Orange is a tropical fruit used in the juice industry, yielding important quantities of by products. The objective of this work was to obtain a dietary fiber-rich orange bagasse product (DFROBP), evaluate its chemical composition and its use in the preparation of a bakery product (muffin). Muffins containing two different levels of DFROBP were studied regarding chemical composition, in vitro starch digestibility, predicted glyceamic index and acceptability in a sensory test. DFROBP showed low fat and high dietary fiber contents. The soluble and insoluble dietary fiber fractions were balanced, which is of importance for the health beneficial effects of fiber sources. DFROBP-containing muffins showed the same rapidly digestible starch content as the reference muffin, whilst the slowly digestible starch level increased with the addition of DFROBP. However, the resistant starch content decreased when DFROBP increased in the muffin. The addition of DFROBP to muffin decreased the predicted glyceamic index, but no difference was found between the muffins prepared with the two DFROBP levels. The sensory score did not show difference between control muffin and that added with 10% of DFROBP. The addition of DFROBP to bakery products can be an alternative for people requiring low glyceamic response.
Cheng, Li; Zhang, Dongli; Gu, Zhengbiao; Li, Zhaofeng; Hong, Yan; Li, Caiming
2018-05-01
Acetylated nanofibrillated cellulose (ANFC) with different degrees of substitution (DS) was prepared from corn-stalk microcrystalline cellulose (MCC) using chemical-mechanical combined processes. The physicochemical properties of nanofibrillated cellulose (NFC) and ANFC were investigated together with the influence of added nanoparticles on the mechanical properties of starch films. The acetylation reaction was monitored by Fourier transform infrared (FT-IR) and titration. Particle size and morphological of NFC and ANFC were studied by atomic force microscope (AFM). The results suggested that NFC had nano-order-unit web-like network with mean diameter of ~24 nm. The thermostability of all samples was found to decrease as the modification extent rose, and mechanical disposal revealed no significant influence on the DS and crystalline structure of cellulose. The ANFC with the DS value of 0.35 demonstrated the best enhancement effect on starch films, with increased tension strength (TS) by 201%. The tensile tests confirmed that the web-like network structure of NFC was more conducive to strength, and proper chemical modification could improve the uniform dispersion of nano-fillers in starch to result in higher strength performances. Copyright © 2018 Elsevier B.V. All rights reserved.
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066
Senanayake, Suraji; Gunaratne, Anil; Ranaweera, K K D S; Bamunuarachchi, Arthur
2014-01-01
Different heat–moisture levels were applied to native starches from different cultivars of sweet potatoes available in Sri Lanka (Wariyapola red, Wariyapola white, Pallepola variety, Malaysian variety and CARI 273) to study the digestibility level. Samples were treated with 20, 25, and 30% moisture at 85°C and 120°C for 6 h and in vitro starch digestibility was tested with porcine pancreatin enzyme. A range of 19.3–23.5% digestibility was shown by the native starches with no significant difference (P < 0.05). Significant changes were observed in the digestibility level of the hydrothermally modified starches and the moisture content showed a positive impact on the digestibility. Heat–moisture treatment at 85°C brought an overall increase in digestibility and temperature beyond 85°C had a negative impact. No significant difference (P < 0.05) in the digestibility was observed with 20% and 25% moisture at 85°C and increased level were seen at 85°C and 30% moisture. PMID:25473497
Ares, Florencia; Arrarte, Eloísa; De León, Tania; Ares, Gastón; Gámbaro, Adriana
2012-10-01
Sensory characteristics play a key role in determining consumers' acceptance of functional foods. In this context, the aim of the present work was to apply a combination of sensory and consumer methodologies to the development of chocolate milk desserts enriched with resistant starch. Chocolate milk desserts containing modified waxy maize starch were formulated with six different concentrations of two types of resistant starch (which are part of insoluble dietary fiber). The desserts were evaluated by trained assessors using Quantitative Descriptive Analysis. Moreover, consumers scored their overall liking and willingness to purchase and answered an open-ended question. Resistant starch caused significant changes in the sensory characteristics of the desserts and a significant decrease in consumers' overall liking and willingness to purchase. Consumer data was analyzed applying survival analysis on overall liking scores, considering the risk on consumers liking and willing to purchase the functional products less than their regular counterparts. The proposed methodologies proved to be useful to develop functional foods taking into account consumers' perception, which could increase their success in the market.
Brummell, David A; Watson, Lyn M; Zhou, Jun; McKenzie, Marian J; Hallett, Ian C; Simmons, Lyall; Carpenter, Margaret; Timmerman-Vaughan, Gail M
2015-04-29
Starch is biosynthesised by a complex of enzymes including various starch synthases and starch branching and debranching enzymes, amongst others. The role of all these enzymes has been investigated using gene silencing or genetic knockouts, but there are few examples of overexpression due to the problems of either cloning large genomic fragments or the toxicity of functional cDNAs to bacteria during cloning. The aim of this study was to investigate the function of potato STARCH BRANCHING ENZYME II (SBEII) using overexpression in potato tubers. A hybrid SBEII intragene consisting of potato cDNA containing a fragment of potato genomic DNA that included a single intron was used in order to prevent bacterial translation during cloning. A population of 20 transgenic potato plants exhibiting SBEII overexpression was generated. Compared with wild-type, starch from these tubers possessed an increased degree of amylopectin branching, with more short chains of degree of polymerisation (DP) 6-12 and particularly of DP6. Transgenic lines expressing a GRANULE-BOUND STARCH SYNTHASE (GBSS) RNAi construct were also generated for comparison and exhibited post-transcriptional gene silencing of GBSS and reduced amylose content in the starch. Both transgenic modifications did not affect granule morphology but reduced starch peak viscosity. In starch from SBEII-overexpressing lines, the increased ratio of short to long amylopectin branches facilitated gelatinisation, which occurred at a reduced temperature (by up to 3°C) or lower urea concentration. In contrast, silencing of GBSS increased the gelatinisation temperature by 4°C, and starch required a higher urea concentration for gelatinisation. In lines with a range of SBEII overexpression, the magnitude of the increase in SBEII activity, reduction in onset of gelatinisation temperature and increase in starch swollen pellet volume were highly correlated, consistent with reports that starch swelling is greatly dependent upon the amylopectin branching pattern. This work reports the first time that overexpression of SBEII has been achieved in a non-cereal plant. The data show that overexpression of SBEII using a simple single-intron hybrid intragene is an effective way to modify potato starch physicochemical properties, and indicate that an increased ratio of short to long amylopectin branches produces commercially beneficial changes in starch properties such as reduced gelatinisation temperature, reduced viscosity and increased swelling volume.
Sato, Ai; Truong, Van-Den; Johanningsmeier, Suzanne D; Reynolds, Rong; Pecota, Kenneth V; Yencho, G Craig
2018-01-01
Sweetpotato French fries (SPFF) are growing in popularity, however limited information is available on SPFF textural properties in relation to chemical composition. This study investigated the relationship between chemical components of different sweetpotato varieties and textural characteristics of SPFF. Sixteen sweetpotato genotypes were evaluated for (1) chemical constituents; (2) instrumental and sensory textural properties of SPFF; and (3) the relationship between chemical components, instrumental measurements, and sensory attributes. Dry matter (DM), alcohol-insoluble solids (AIS), starch, sugar, and oil content, and also α- and β-amylase activities were quantified in raw sweetpotatoes and SPFF. Peak force and overall hardness describing instrumental textural properties of SPFF were measured using a texture analyzer. Descriptive sensory analysis was conducted and 10 attributes were evaluated by a trained panel. Results showed that DM, AIS, and starch content in raw sweetpotatoes were significantly correlated (P < 0.05) with instrumental peak force and overall hardness (r = 0.41 to 0.68), and with sensory surface roughness, hardness, fracturability, and crispness (r = 0.63 to 0.90). Total sugar content in raw sweetpotatoes was positively correlated with sensory smoothness and moistness (r = 0.77), and negatively correlated with instrumental peak force and overall hardness (r = -0.62 to -0.69). Instrumental measurements were positively correlated with sensory attributes of hardness, fracturability, and crispness (r = 0.68 to 0.96) and negatively correlated with oiliness, smoothness, moistness, and cohesiveness (r = -0.61 to -0.91). Therefore, DM, AIS, starch, and total sugar contents and instrumental measurements could be used as indicators to evaluate sweetpotato genotypes for SPFF processing. In recent years, sweetpotato French fries (SPFF) have grown in popularity, but limited information is available on SPFF textural properties in relation to the differences in chemical constituents among sweetpotato varieties. This study demonstrated that sensory texture attributes of SPFF varied widely and were significantly correlated with chemical components such as dry matter, starch, and total sugar contents of raw sweetpotatoes and instrumental texture measurements of SPFF. The knowledge generated from this study will benefit the food industry and breeding programs with the selection of sweetpotato varieties for improved SPFF quality. © 2017 Institute of Food Technologists®.
[Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].
Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an
2016-03-01
A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.
Wettability measurement apparatus for porous material using the modified Washburn method
NASA Astrophysics Data System (ADS)
Thakker, Manish; Karde, Vikram; Shah, Dinesh O.; Shukla, Premal; Ghoroi, Chinmay
2013-12-01
In this work a cost-effective instrument for measuring the wettability of powder materials was designed and developed, which works on the modified Washburn method. The instrument measures the mass gain against time due to penetration of the liquid into the powder materials using a microbalance and LabVIEW-based data acquisition system. The wettability characteristic of different powders was determined from the contact angle using the modified Washburn equation. To demonstrate the performance of the developed instrument, the wettability of as-received corn starch and nano-coated corn starch powders was estimated with water as a test liquid. The corn starch powders coated with hydrophilic grade (Aerosil 200P) and hydrophobic grade (Aerosil R972) nanoparticles at different coating levels showed expected changes in their contact angle. Some of the results were also verified against the available standard instrument for wettability measurement and found to be consistent. The present configuration of the instrument costs about 500 US which is 15 to 20 times less than the available advanced models. The developed instrument is thus a cost-effective solution for wettability measurement which can be used for materials in food processing, pharmaceuticals, horticulture, textile manufacturing, civil engineering etc. The developed instrument is expected to help many small scale industries or research labs who cannot afford an expensive instrument for wettability studies.
Ulu, Ahmet; Koytepe, Suleyman; Ates, Burhan
2016-11-20
We prepared biodegradable P(MAA-co-MMA)-starch composite as carrier matrix for the immobilization of l-asparaginase (l-ASNase), an important chemotherapeutic agent in acute lymphoblastic leukemia. Chemical characteristics and thermal stability of the prepared composites were determined by FT-IR, TGA, DTA and, DSC, respectively. Also, biodegradability measurements of P(MAA-co-MMA)-starch composites were carried out to examine the effects of degradation of the starch. Then, l-ASNase was immobilized on the P(MAA-co-MMA)-starch composites. The surface morphology of the composite before and after immobilization was characterized by SEM, EDX, and AFM. The properties of the immobilized l-ASNase were investigated and compared with the free enzyme. The immobilized l-ASNase had better showed thermal and pH stability, and remained stable after 30days of storage at 25°C. Thus, based on the findings of the present work, the P(MAA-co-MMA)-starch composite can be exploited as the biocompatible matrix used for l-ASNase immobilization for medical applications due to biocompatibility and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... dechlorination as an active treatment process to address groundwater contamination, and selecting monitored... Packaging Inc.; Ethox Chemicals, LLC; Expert Management Inc. on behalf of National Starch and Chemical...
Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.
Shi, Wenqing; Bi, Lei; Pan, Gang
2016-07-01
Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. Copyright © 2016. Published by Elsevier B.V.
Moser, Sydney; Lim, Jongbin; Chegeni, Mohammad; Wightman, JoLynne D.; Hamaker, Bruce R.; Ferruzzi, Mario G.
2016-01-01
While the potential of dietary phenolics to mitigate glycemic response has been proposed, the translation of these effects to phenolic rich foods such as 100% grape juice (GJ) remains unclear. Initial in vitro screening of GJ phenolic extracts from American grape varieties (V. labrusca; Niagara and Concord) suggested limited inhibitory capacity for amylase and α-glucosidase (6.2%–11.5% inhibition; p < 0.05). Separately, all GJ extracts (10–100 µM total phenolics) did reduce intestinal trans-epithelial transport of deuterated glucose (d7-glu) and fructose (d7-fru) by Caco-2 monolayers in a dose-dependent fashion, with 60 min d7-glu/d7-fru transport reduced 10%–38% by GJ extracts compared to control. To expand on these findings by assessing the ability of 100% GJ to modify starch digestion and glucose transport from a model starch-rich meal, 100% Niagara and Concord GJ samples were combined with a starch rich model meal (1:1 and 1:2 wt:wt) and glucose release and transport were assessed in a coupled in vitro digestion/Caco-2 cell model. Digestive release of glucose from the starch model meal was decreased when digested in the presence of GJs (5.9%–15% relative to sugar matched control). Furthermore, transport of d7-glu was reduced 10%–38% by digesta containing bioaccessible phenolics from Concord and Niagara GJ compared to control. These data suggest that phenolics present in 100% GJ may alter absorption of monosaccharides naturally present in 100% GJ and may potentially alter glycemic response if consumed with a starch rich meal. PMID:27399765
Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven; Bach Knudsen, Knud Erik
2017-05-01
Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset of diabetes in male Zucker diabetic fatty (ZDF) rats. Methods: Forty-eight male ZDF rats, aged 5 wk, were divided into 4 groups and fed experimental diets for 9 wk that contained 52.95% starch: gelatinized corn starch (S), glucidex (GLU), resistant starch (RS), or enzymatically modified starch (EMS). Blood glucose after feed deprivation was assessed every second week; blood samples taken at run-in and at the end of the experiment were analyzed for glycated hemoglobin (HbA1c) and plasma glucose, insulin, and lipids. During weeks 2 and 8, urine was collected for metabolomic analysis. Results: Based on blood glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0-18.9 mmol/L), and rats fed RS had lower HbA1c (4.9%) than rats fed the S, GLU, and EMS (5.6-6.1%) diets. The homeostasis model assessment of insulin resistance was significantly lower in rats fed RS than in rats fed the other diets (185 compared with 311-360), indicating that rats fed the S, GLU, and EMS diets were diabetic, and a 100% higher urine excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism. Conclusions: EMS did not delay the onset of diabetes in ZDF rats, whereas rats fed RS showed no signs of diabetes. © 2017 American Society for Nutrition.
Metzler-Zebeli, B U; Ertl, R; Grüll, D; Molnar, T; Zebeli, Q
2017-07-01
Dietary effects on the host are mediated via modulation of the intestinal mucosal responses. The present study investigated the effect of an enzymatically modified starch (EMS) product on the mucosal expression of genes related to starch digestion, sugar and short-chain fatty acid (SCFA) absorption and incretins in the jejunum and cecum in growing pigs. Moreover, the impact of the EMS on hepatic expression of genes related to glucose and lipid metabolism, and postprandial serum metabolites were assessed. Barrows (n=12/diet; initial BW 29 kg) were individually fed three times daily with free access to a diet containing either EMS or waxy corn starch as control (CON) for 10 days. The enzymatic modification led to twice as many α-1,6-glycosidic bonds (~8%) in the amylopectin fraction in the EMS in comparison with the non-modified native waxy corn starch (4% α-1,6-glycosidic bonds). Linear discriminant analysis revealed distinct clustering of mucosal gene expression for EMS and CON diets in jejunum. Compared with the CON diet, the EMS intake up-regulated jejunal expression of sodium-coupled monocarboxylate transporter (SMCT), glucagon-like peptide-1 (GLP1) and gastric inhibitory polypeptide (GIP) (P<0.05) and intestinal alkaline phosphatase (ALPI) (P=0.08), which may be related to greater luminal SCFA availability, whereas cecal gene expression was unaffected by diet. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) expression tended (P=0.07) to be down-regulated in pigs fed the EMS diet compared with pigs fed the CON diet, which may explain the trend (P=0.08) of 30% decrease in serum triglycerides in pigs fed the EMS diet. Furthermore, pigs fed the EMS diet had a 50% higher (P=0.03) serum urea concentration than pigs fed the CON diet potentially indicating an increased use of glucogenic amino acids for energy acquisition in these pigs. Present findings suggested the jejunum as the target site to influence the intestinal epithelium and altered lipid and carbohydrate metabolism by EMS feeding.
Mass transfer kinetics during deep fat frying of wheat starch and gluten based snacks
NASA Astrophysics Data System (ADS)
Sobukola, O. P.; Bouchon, P.
2014-06-01
Mass transfer (moisture loss and oil uptake) kinetics during deep fat frying of wheat starch and gluten based snacks was investigated. Both followed a modified first order reaction. Activation energies, z-value, and highest values of D and k for moisture loss and oil uptake were 28.608 kJ/mol, 129.88 °C, 490 and 0.0080 s-1; and 60.398 kJ/mol, 61.79 °C, 1,354.71 and 0.0052 s-1, respectively.
Robust and biodegradable polymer of cassava starch and modified natural rubber.
Riyajan, Sa-Ad
2015-12-10
The application of starch based materials for packaging purposes has attracted significant interest because they are both cheap and renewable resources. The study investigated the preparation and properties of a novel biopolymer sheet produced from a blend of maleated epoxidized natural rubber (MENR) and natural rubber-g-cassava starch (NR-g-CSt). The water resistance, toluene resistance and elongation at break of the polymer blend were enhanced after the addition of the MENR compared to pristine NR-g-CSt. The maximum tensile strength and thermal stability of the NR-g-CSt/MENR blend were found in the 100:50 NR-g-CSt:MENR blend. The novel films demonstrated good biodegradability in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Xiaojing; Ji, Na; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie
2017-09-13
Starch nanoparticles were potential texture modifiers. However, they have strong tendency to aggregate and poor water dispersibility, which limited their application. The interaction between glucan (prepared from starch by enzymatic modification) and protein could significantly improve the dispersity of starch nanoparticles and, thus, enhance the rheological properties of food gels. In this work, glucan/protein hybrid nanoparticles were successfully developed for the first time using short linear glucan (SLG) and edible proteins [soy protein isolate (SPI), rice protein (RP), and whey protein isolate (WPI)]. The results showed that the SLG/SPI hybrid nanoparticles exhibited hollow structures, of which the smallest size was approximately 10-20 nm when the SLG/SPI ratio was 10:5. In contrast, SLG/RP nanoparticles displayed flower-like superstructures, and SLG/WPI nanoparticles presented stacked lamellar nanostructures with a width of 5-10 nm and a length of 50-70 nm. In comparison to bare SLG nanoparticles, SLG/SPI and SLG/WPI hybrid nanoparticles had higher melting temperatures. The addition of all nanoparticles greatly increased the storage modulus of corn starch gels and decreased loss tangent values. Importantly, the G' value of starch gels increased by 567% with the addition of flower-like SLG/RP superstructures.
Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar
2014-01-01
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.
Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.
Fettke, Joerg; Hejazi, Mahdi; Smirnova, Julia; Höchel, Erik; Stage, Marion; Steup, Martin
2009-01-01
Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.
McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-01-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551
McNamee, Cathy E; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-01-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.
NASA Astrophysics Data System (ADS)
McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn
2018-05-01
Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e. the natural particle found inside the plant, at air/aqueous interfaces and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.
Production of a protein-rich extruded snack base using tapioca starch, sorghum flour and casein.
Patel, Jiral R; Patel, Ashok A; Singh, Ashish K
2016-01-01
A protein-rich puffed snack was produced using a twin screw extruder and the effects of varying levels of tapioca starch (11 to 40 parts), rennet casein (6 to 20 parts) and sorghum flour (25 to 75 parts) on physico-chemical properties and sensory attributes of the product studied. An increasing level of sorghum flour resulted in a decreasing whiteness (Hunter L* value) of the snack. Although the starch also generally tended to make the product increasingly darker, both starch and casein showed redness parameter (a* value) was not significantly influenced by the ingredients levels, the yellow hue (b* value) generally declined with the increasing sorghum level. Tapioca starch significantly increased the expansion ratio and decreased the bulk density and hardness value of the snack, whereas the opposite effects seen in case of sorghum flour. While the water solubility index was enhanced by starch, water absorption index was appreciably improved by sorghum. Incorporation of casein (up to 25 %) improved the sensory color and texture scores, and so also the overall acceptability rating of the product. Sorghum flour had an adverse impact on all the sensory attributes whereas starch only on the color score. The casein or starch level had no perceivable effect on the product's flavor score. The response surface data enabled optimization of the snack-base formulation for the desired protein level or desired sensory characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David N.; Apel, William A.; Thompson, Vicki S.
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extractsmore » are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less
Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.
2016-03-22
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2013-07-23
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2014-04-08
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Arabidopsis plants perform arithmetic division to prevent starvation at night
Scialdone, Antonio; Mugford, Sam T; Feike, Doreen; Skeffington, Alastair; Borrill, Philippa; Graf, Alexander; Smith, Alison M; Howard, Martin
2013-01-01
Photosynthetic starch reserves that accumulate in Arabidopsis leaves during the day decrease approximately linearly with time at night to support metabolism and growth. We find that the rate of decrease is adjusted to accommodate variation in the time of onset of darkness and starch content, such that reserves last almost precisely until dawn. Generation of these dynamics therefore requires an arithmetic division computation between the starch content and expected time to dawn. We introduce two novel chemical kinetic models capable of implementing analog arithmetic division. Predictions from the models are successfully tested in plants perturbed by a night-time light period or by mutations in starch degradation pathways. Our experiments indicate which components of the starch degradation apparatus may be important for appropriate arithmetic division. Our results are potentially relevant for any biological system dependent on a food reserve for survival over a predictable time period. DOI: http://dx.doi.org/10.7554/eLife.00669.001 PMID:23805380
NASA Astrophysics Data System (ADS)
Amin, A. M. Mohd; Sauid, S. Mohd; Hamid, K. H. Ku; Musa, M.
2018-05-01
The biodegradation study of thermoplastic starch (TPS) films derived from Tacca leontopetaloides starch; namely TPS/GLY, TPS/ACE and TPS/BCHR were investigated under controlled composting conditions. A manual set-up test rig in laboratory scale was built according to ISO 14855-1: 2012. The biodegradation percentage was determined by measuring the amount of CO2 evolved using titration method and validated by automatic system (Arduino UNO System) that detected the CO2 evolved. After 45 days under controlled composting condition, results indicated that TPS/GLY degraded the fastest, followed by TPS/BCHR and the TPS/ACE had the slowest degradation. The biodegradation process of TPS/GLY, TPS/ACE and TPS/BCHR also exhibited two stages with different degradation speeds. From these results, it indicated that chemical modification of the TPS films by adding acetic acid and rice husk bio-char to the thermoplastic starch can have a major impact on the biodegradation rate and final biodegradation percentage.
End-of-life of starch-polyvinyl alcohol biopolymers.
Guo, M; Stuckey, D C; Murphy, R J
2013-01-01
This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. Copyright © 2012 Elsevier Ltd. All rights reserved.
Harnessing Functionalized Polysaccharides for Medical and Dental Applications
NASA Astrophysics Data System (ADS)
Jones, Nathan A.
Polysaccharides are an important class of biomolecules with many different biological functions and unique properties, thus it is unsurprising that polysaccharides are heavily researched as materials solutions in medicine and dentistry. This dissertation explores the potential of harnessing inherent and well-understood biological properties of polysaccharides, using chemical and materials modification techniques to create clinically useful systems for medical and dental challenges. Engineered polysaccharides systems were prepared and characterized, including starch nanoparticles with control of particle size, charge, loading, and attachment of functional molecules, and glycocalyx-mimetic polymer brushes. These systems were applied as a diagnostic aid for dental caries, as an anti-bacterial treatment, and in targeting tumor-associated macrophages. In the first application, fluorescent cationic (+5.8+/-1.2 mV) starch nanoparticles (size 101+/-56 nm) were prepared to target and adhere to early caries lesions to facilitate optical detection, test lesion activity, and monitor the impact of remineralization treatments in vitro. In the second application, similarly designed starch nanoparticles (size 440+/-58 nm) were loaded with antibacterial copper nanoparticles (6-7nm size, ˜0.35% loading) to create a system which targets bacteria electrostatically and by their enzymatic metabolic processes. This system showed high antibacterial efficacy (3-log and 7-log bacterial reductions for S. aureus and B. subtilis, respectively, for copper nanoparticle dose of 17 mug/ml). The final application demonstrated high positive predictive value (>0.8 for M2 over M1) for cellular binding of glycocalyx-mimetic mannose-coatings with M2-polarized tumor-associated macrophages, with potential applications in cancer diagnostics and therapeutics. These examples highlight the utility of modified polysaccharides in the design of clinically useful systems in medicine and dentistry.
Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).
Ortega-Toro, Rodrigo; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Cerruti, Pierfrancesco; Talens Oliag, Pau; Chiralt Boix, M Amparo; Malinconico, Mario
2016-08-20
The use of a modified poly(ε-caprolactone) (gPCL) to enhance polymer miscibility in films based on thermoplastic starch (S) and poly(ε-caprolactone) is reported. PCL was functionalized by grafting with maleic anyhdride (MA) and/or glycidyl methacrylate (GMA) by reactive blending in a batch mixer. gPCL based materials were analysed in terms of their grafting degree, structural and thermal properties. Blends based on starch and PCL (wt. ratio 80:20) with including gPCL (0, 2.5 and 5wt.%), as a compatibilizer, were obtained by extrusion and compression moulding, and their structural, thermal, mechanical and barrier properties were investigated. Blends containing gPCL evidenced better interfacial adhesion between starch and PCL domains, as deduced from both structural (XRD, FTIR, SEM) and bulk properties (DSC, TGA). Moreover, grafted PCL-based compatibilizers greatly improved functional properties of S-PCL blend films, as pointed out from mechanical performance and higher barrier properties, valuable to meet the food packaging requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.
Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra
2015-07-01
Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Lu, Jiangang
2018-05-01
Corn starch is an important material which has been traditionally used in the fields of food and chemical industry. In order to enhance the rapidness and reliability of the determination for starch content in corn, a methodology is proposed in this work, using an optimal CC-PLSR-RBFNN calibration model and near-infrared (NIR) spectroscopy. The proposed model was developed based on the optimal selection of crucial parameters and the combination of correlation coefficient method (CC), partial least squares regression (PLSR) and radial basis function neural network (RBFNN). To test the performance of the model, a standard NIR spectroscopy data set was introduced, containing spectral information and chemical reference measurements of 80 corn samples. For comparison, several other models based on the identical data set were also briefly discussed. In this process, the root mean square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set were used to make evaluations. As a result, the proposed model presented the best predictive performance with the smallest RMSEP (0.0497%) and the highest Rp2 (0.9968). Therefore, the proposed method combining NIR spectroscopy with the optimal CC-PLSR-RBFNN model can be helpful to determine starch content in corn.
Romero-Lopez, Maria R.; Osorio-Diaz, Perla; Bello-Perez, Luis A.; Tovar, Juscelino; Bernardino-Nicanor, Aurea
2011-01-01
Orange is a tropical fruit used in the juice industry, yielding important quantities of by products. The objective of this work was to obtain a dietary fiber-rich orange bagasse product (DFROBP), evaluate its chemical composition and its use in the preparation of a bakery product (muffin). Muffins containing two different levels of DFROBP were studied regarding chemical composition, in vitro starch digestibility, predicted glyceamic index and acceptability in a sensory test. DFROBP showed low fat and high dietary fiber contents. The soluble and insoluble dietary fiber fractions were balanced, which is of importance for the health beneficial effects of fiber sources. DFROBP-containing muffins showed the same rapidly digestible starch content as the reference muffin, whilst the slowly digestible starch level increased with the addition of DFROBP. However, the resistant starch content decreased when DFROBP increased in the muffin. The addition of DFROBP to muffin decreased the predicted glyceamic index, but no difference was found between the muffins prepared with the two DFROBP levels. The sensory score did not show difference between control muffin and that added with 10% of DFROBP. The addition of DFROBP to bakery products can be an alternative for people requiring low glyceamic response. PMID:21731434
Pasta quality as impacted by the type of flour and starch and the level of egg addition.
Saleh, Mohammed; Al-Ismail, Khalid; Ajo, Radwan
2017-10-01
This study investigated the effects of substituting wheat flour with fractions of different starch types and egg levels on pasta quality. First order mixture response surface model was used where the effects of various starch types and egg levels on pasta quality were evaluated. Coefficients of estimation were determined and fractional contribution of wheat, starch type and egg levels were evaluated. Egg levels negatively (p < .05) impacted treatments pasting viscosities, except in potato starch and rice flour. Stabilized rice bran peak viscosity increased from 215.0 to 3420.0 cP with decrease in egg level from 33 to 0%. Flow behavior index of treatments solution with various fractions of starch types and egg level ranged from 0.34 to 1.42 and was significantly (p < .05) lower than control (i.e., 2.15) indicating a better fit as a shear thinning model. Water holding capacity values of acorn starch and lupine flour were the greatest among treatment ranging from 86.8% to 176.0% and from 83.3% to 152.0%, respectively. Results also showed a possible modification of cooked pasta quality including firmness, stickiness, cooking loss, and water uptake, keeping with consumer acceptability through varying starch type and egg level. Results show that flour and starch type and egg level interaction play significant role in pasta blends formulation. Moreover, substitution of wheat flour with acorn, native or modified corn and potato starches fractions, as well as with lupine, rice, tapioca, and stabilized rice bran flours would have significant effects on the physical properties and acceptability of various cereal products. For instance, the use of rice bran in potentially developed products would enhance the consumption of whole grain foods, resulting in improved intake of fiber and other healthy components. © 2016 Wiley Periodicals, Inc.
Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis[C][W][OPEN
Ortiz-Marchena, M. Isabel; Albi, Tomás; Lucas-Reina, Eva; Said, Fatima E.; Romero-Campero, Francisco J.; Cano, Beatriz; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico
2014-01-01
Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process. PMID:24563199
NASA Astrophysics Data System (ADS)
Lubis, M.; Harahap, M. B.; Manullang, A.; Alfarodo; Ginting, M. H. S.; Sartika, M.
2017-01-01
Starch is a natural polymer that can be used for the production of bioplastics because its source is abundant, renewable and easily degraded. Jackfruit seeds can be used as raw material for bioplastics because its contains starch. The aim of this study to determine the characteristics of jackfruit seeds and determine the effect of chitosan and sorbitol on the physicochemical properties of bioplastics from jackfruit seeds. Starch is extracted from jackfruit seeds were then characterized to determine its chemical composition. In the manufacture of bioplastics starch composition jackfruit seeds - chitosan used was 7: 3, 8: 2 and 9: 1 (g/g), while the concentration of sorbitol used was 20%, 25%, 30%, 35%, and 40% by weight dry ingredients. From the analysis of jackfruit seed starch obtained water content of 6.04%, ash content of 1.08%, the starch content of 70.22%, 16.39% amylose content, amylopectin content of 53.83%, 4.68% protein content, fat content 0.54%. The best conditions of starch bioplastics jackfruit seeds obtained at a ratio of starch: chitosan (w/w) = 8: 2 and the concentration of plasticizer sorbitol 25% with tensile strength 13.524 MPa. From the results of FT-IR analysis indicated an increase for the OH group and the group NH on bioplastics due to the addition of chitosan and sorbitol. The results of mechanical tests is further supported by analysis of scanning electron microscopy (SEM) showing jackfruit seed starch has a small granule size with the size of 7.6 μm and in bioplastics with chitosan filler and plasticizer sorbitol their fracture surface is smooth and slightly hollow compared bioplastics without fillers chitosan and plasticizer sorbitol.
Baran, Talat
2017-06-15
In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M. N. M.; Kadhum, Abdul Amir H.; Nassir, Mohamed H.
2017-01-01
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10−3 J/mm2, respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%. PMID:28773134
Design starch: stochastic modeling of starch granule biogenesis.
Raguin, Adélaïde; Ebenhöh, Oliver
2017-08-15
Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M N M; Kadhum, Abdul Amir H; Al-Amiery, Ahmed A; Nassir, Mohamed H
2017-07-10
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10 -3 J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
Composition and process for making an insulating refractory material
Pearson, A.; Swansiger, T.G.
1998-04-28
A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.A.; Miller, D.
Fatty acids, including myristic, palmitic, and oleic acids, used in concentrations of 1% caused the bread stored for 4 days to be softer than untreated bread. Superimposing bacterial alpha-amylase also assisted in maintaining softer crumb. Fatty acids have little effect on the hot paste viscosity but do affect the cooling cycle viscosity. Modified starches have not proven satisfactory for use in bread production. Irradiation of the starch with gamma rays reduced the baking value. (auth)
Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C
2011-03-01
While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wang, Chun-Ping; Pan, Zhi-Fen; Nima, Zha-Xi; Tang, Ya-Wei; Cai, Peng; Liang, Jun-Jun; Deng, Guang-Bing; Long, Hai; Yu, Mao-Qun
2011-03-15
The starch granule-associated proteins (SGAPs) are the minor components of the starch granules and a majority of them are believed to be starch biosynthetic enzymes. The Qinghai-Tibet Plateau in China, one of the centres of origin of cultivated barley, is abundant in hull-less barley resources which exhibit high polymorphism in SGAPs. The SGAPs of hull-less barley from Qinghai-Tibet Plateau were analysed by one-dimensional (1-D) SDS-PAGE, 2-D PAGE and ESI-Q-TOF MS/MS. In the 1-D SDS-PAGE gel, four proteins including a 80 kDa starch synthase, actin, actin 4 and ATP synthase β-subunit were identified as novel SGAPs. A total of six different bands were identified as starch granule-bound starch synthase I (GBSSI) and the segregation of the novel GBSSI bands in F(1) and F(2) seeds derived from yf127 × yf70 was in accordance with Mendel's law. In the 2-D PAGE gel, 92 spots were identified as 42 protein species which could be classified into 15 functional groups. Thirteen protein species were identified as SGAPs for the first time and multiple spots were identified as GBSSI. This study revealed novel SGAPs in hull-less barley from the Qinghai-Tibet Plateau in China and these will be significant in further studies of starch biosynthesis in barley. Copyright © 2011 Society of Chemical Industry.
Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun
2016-05-20
Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Calderón-Castro, Abraham; Vega-García, Misael Odín; de Jesús Zazueta-Morales, José; Fitch-Vargas, Perla Rosa; Carrillo-López, Armando; Gutiérrez-Dorado, Roberto; Limón-Valenzuela, Víctor; Aguilar-Palazuelos, Ernesto
2018-03-01
Starch is an attractive raw material as ingredient for edible film manufacture because of its low cost, abundant availability, renewability, and biodegradability. Nevertheless, starch based films exhibit several disadvantages such as brittleness and poor mechanical and barrier properties, which restrict its application for food packaging. The use of the extrusion technology as a pretreatment of the casting technique to change the starch structure in order to obtain edible films, may constitute an alternative to generate coatings with good functional properties and maintain longer the postharvest quality and shelf life of fruits. For this reason, the objective of this study was to optimize the conditions of an extrusion process to obtain a formulation of modified starch to elaborate edible films with good functional properties using the casting technique and assess the effect during the storage when applied on a model fruit. The best conditions of the extrusion process and concentration of plasticizers were obtained using response surface methodology. From optimization study, it was found that appropriate conditions to obtain starch edible films with the best mechanical and barrier properties were an extrusion temperature of 100 °C and a screw speed of 120 rpm, while the glycerol content was 16.73%. Also, once applied in fruit, the loss of quality attributes was diminished.
Larkin, Theresa A; Price, William E; Astheimer, Lee B
2007-10-01
Probiotics and prebiotics that affect gut microflora balance and its associated enzyme activity may contribute to interindividual variation in isoflavone absorption after soy intake, possibly enhancing isoflavone bioavailability. This study examined the effects of the consumption of bioactive yogurt (a probiotic) or resistant starch (a known prebiotic) in combination with high soy intake on soy isoflavone bioavailability. Using a crossover design, chronic soy consumption was compared with soy plus probiotic yogurt or resistant starch in older male and postmenopausal females (n = 31). Isoflavone bioavailability was assessed at the beginning and end of each 5-wk dietary period by sampling plasma and urine after a standardized soy meal. Chronic soy intake did not significantly affect plasma or urinary isoflavones after the soy meal and there were no significant effects of probiotic or resistant starch treatment. However, there were trends for increased circulating plasma daidzein and genistein after the probiotic treatment and for increased plasma daidzein and genistein 24 h after soy intake with resistant starch treatment. Neither treatment induced or increased equol production, although there was a trend for increased plasma equol in "equol-positive" subjects (n = 12) after probiotic treatment. The weak or absence of effects of probiotic yogurt or resistant starch supplement to a chronic soy diet suggests that gut microflora were not modified in a manner that significantly affected isoflavone bioavailability or metabolism.
Tessari, Paolo; Lante, Anna
2017-01-01
Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes. PMID:28304350
Fox, Glen; Manley, Marena
2014-01-30
Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.
Läufer, Albrecht
2017-03-07
Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.
Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same
Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy
2015-03-10
Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.
NASA Astrophysics Data System (ADS)
Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal
2015-12-01
Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).
Padalino, Lucia; Caliandro, Rocco; Chita, Giuseppe; Conte, Amalia; Del Nobile, Matteo Alessandro
2016-11-20
The influence of drying temperature on the starch crystallites and its impact on durum wheat pasta sensory properties is addressed in this work. In particular, spaghetti were produced by means of a pilot plant using 5 different drying temperature profiles. The sensory properties, as well as the cooking quality of pasta were assessed. X-ray powder diffraction was used for investigating changes in the crystallinity content of the samples. Starch crystallinity, size and density of the starch crystallites were determined from the analysis of the diffraction profiles. As expected, spaghetti sensory properties improved as the drying temperatures increased. In particular, attributes as resistance to break for uncooked samples and firmness, elasticity, bulkiness and stickiness for cooked samples, all benefit from drying temperature increase. The spaghetti cooking quality was also positively affected by the drying temperature increase. Diffraction analysis suggested that the improvement of sensory properties and cooking quality of pasta were directly related to the increase in density of both physical crosslink of starch granules and chemical crosslink of protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of a starch based desiccant wheel dehumidifier
NASA Astrophysics Data System (ADS)
Beery, Kyle Edward
Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.
How chemical ripeners of sugarcane affect the starch and color quality of juices
USDA-ARS?s Scientific Manuscript database
The application of chemical ripeners is an important component of sugarcane cultivation management to increase sucrose concentrations. Unfortunately, very little information is available concerning the effects of ripener on quality parameters which are critical to both factory and refinery processi...
Chemical Changes in Carbohydrates Produced by Thermal Processing.
ERIC Educational Resources Information Center
Hoseney, R. Carl
1984-01-01
Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)
Centeno, Danilo C.; Osorio, Sonia; Nunes-Nesi, Adriano; Bertolo, Ana L.F.; Carneiro, Raphael T.; Araújo, Wagner L.; Steinhauser, Marie-Caroline; Michalska, Justyna; Rohrmann, Johannes; Geigenberger, Peter; Oliver, Sandra N.; Stitt, Mark; Carrari, Fernando; Rose, Jocelyn K.C.; Fernie, Alisdair R.
2011-01-01
Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species. PMID:21239646
Enzymatic modification of natural and synthetic polymers using lipases and proteases
NASA Astrophysics Data System (ADS)
Chakraborty, Soma
Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and corresponding copolymers. As an alternative to chemical hydrolysis a mild and selective enzymatic method was discovered. Fifteen proteases were evaluated for this transformation. Of these, PROT 7 was the most active. Within 24h PROT 7 gave products with 44% hydrolysis. Further hydrolysis was not observed by extending the reaction time because poly(vinylformamide-co-40%vinylamine) is a poor substrate for further hydrolysis. The sequence distribution of copolymers formed by chemical hydrolysis and enzymatic hydrolysis was compared. Chemical hydrolysis gave random copolymer. In contrast, PROT 7 gave block-like arrangement of VAm units.
Pre-diabetes Modifiable Risk Factors
... for example, if you are a highly trained athlete or if you are underweight.) Eating healthy foods in the right amounts Diets that include high levels of sugar, starches and fats often overload the body with more glucose than ...
Wang, Kaiqiang; Li, Cheng; Wang, Bingzhi; Yang, Wen; Luo, Shuizhong; Zhao, Yanyan; Jiang, Shaotong; Mu, Dongdong; Zheng, Zhi
2017-12-01
Wheat gluten comprises a good quality and inexpensive vegetable protein with an ideal amino acid composition. To expand the potential application of wheat gluten in the food industry, the effect of different additives on the physicochemical and structural properties of wheat gluten/starch mixtures during twin-screw extrusion was investigated. Macromolecules were observed to form in wheat gluten/starch mixtures during twin-screw extrusion, which may be attributed to the formation of new disulfide bonds and non-covalent interactions, as well as Maillard reaction products. Additionally, the water retention capacity and in vitro protein digestibility of all extruded wheat gluten/starch products significantly increased, whereas the nitrogen solubility index and free sulfhydryl group (SH) content decreased, during twin-screw extrusion. Secondary structural analysis showed that α-helices disappeared with the concomitant increase of antiparallel β-sheets, demonstrating the occurrence of protein aggregation. Microstructures suggested that the irregular wheat gluten granular structure was disrupted, with additive addition favoring transformation into a more layered or fibrous structure during twin-screw extrusion. The findings of the present study demonstrate that extrusion might affect the texture and quality of extruded wheat gluten-based foods and suggest that this process might serve as a basis for the high-value application of wheat gluten products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Donlao, Natthawuddhi; Ogawa, Yukiharu
2017-02-01
Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Vemmer, Marina; Schumann, Mario; Beitzen-Heineke, Wilhelm; French, Bryan W; Vidal, Stefan; Patel, Anant V
2016-11-01
CO 2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO 2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO 2 over a period of several weeks. The addition of starch improved CO 2 release, resulting in significantly higher CO 2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
The impact of germination on the characteristics of brown rice flour and starch.
Xu, Jie; Zhang, Hui; Guo, Xiaona; Qian, Haifeng
2012-01-30
In recent years, germinated brown rice as a functional food has received great attention with its improved sensory and nutritional properties. Particularly of interest are the high levels of γ-amino butyric acid (GABA) which can be obtained during germination. However, more studies are needed to fully understand the effect of germination on the physicochemical properties of brown rice. Germination altered the chemical composition of brown rice, resulting in an increase in reducing sugar and ash content, and a reduction in amylose. Solubility, paste viscosity, transition temperatures (T(o) , T(p) and T(c) ) and percentage of retrogradation (%Retrogradation) were decreased, while swelling power and turbidity were significantly increased. Scanning electron micrographs indicated that starch granules from germinated brown rice became smaller and less homogeneous. Moreover, germination shortened the chain length of amylopectin and amylose molecules. This investigation provides information on changes in the characteristics of rice flour and rice starch during germination, leading to a better understanding on the chemistry of brown rice germination. Copyright © 2011 Society of Chemical Industry.
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Mejía-Agüero, Luisa Elena; Galeno, Florangel; Hernández-Hernández, Oswaldo; Matehus, Juan; Tovar, Juscelino
2012-02-01
Cassava cultivars are classified following different criteria, such as cyanogenic glucoside content or starch content. Here, flours from the roots of 25 cassava varieties cultivated simultaneously in a single plantation, were characterized in terms of starch content (SC), amylose content (AC), α-amylolysis index (AI) and gel formation ability. Resistant starch content (RS) was measured in 10 of the samples. Cassava flours exhibited high SC, low AC and low AI values, with differences among varieties. Cluster analysis based on these parameters divided the cultivars in four groups differing mainly in SC and AC. AI and AC were inversely correlated (r = -0.59, P < 0.05) in 18 of the cultivars, suggesting AC as an important factor governing the susceptibility to enzymatic hydrolysis of starch in raw cassava. Differences in susceptibility to amylolysis, assessed by RS, were also recorded in the sample subset analyzed. Most flours yielded pastes or gels upon heating and cooling. Gels differed in their subjective grade of firmness, but none exhibited syneresis, confirming the low retrogradation proclivity of cassava starch. Some differences were found among cassava samples, which may be ascribed to inter-cultivar variation. This information may have application in further agronomic studies or for developing industrial uses for this crop. Copyright © 2011 Society of Chemical Industry.
Majeed, Toiba; Wani, Idrees Ahmed; Hussain, Peerzada Rashid
2017-08-01
Starch isolated from lentil was subjected to two treatments namely sonication and, a dual treatment of sonication and irradiation at a dose of 5kGy. Lentil yielded 26.12±1.56g starch/100g of lentil. Chemical composition of native starch revealed 7.83±0.28% moisture, 0.23±0.30% protein, 0.35±0.05% fat and 0.10±0.00% ash. The results revealed that pasting properties of lentil starch were not affected upon sonication. However, these decreased significantly (p≤0.05) upon dual treatments. Amylose content of native starch was 31.16±1.80g/100g which showed a decrease upon sonication and dual treatments. Sonication and dual treatments (sonication and irradiation) decreased hunter 'L' value while 'a' and 'b' values showed an increase. Syneresis decreased more or less insignificantly upon sonication. However, a significant decrease in syneresis was observed after 120h storage following dual treatments. Sonication did not decrease the functional properties significantly while as dual treatment induced a significant decrease in functional properties. FT-IR analysis revealed a decrease in the intensities of OH, CH and OC stretches and CH 2 bending upon sonication and dual treatments. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing and simulation of membrane technology for modifying starchy wastewater treatment
NASA Astrophysics Data System (ADS)
Hedayati Moghaddam, Amin; Hazrati, Hossein; Sargolzaei, Javad; Shayegan, Jalal
2017-10-01
In this study, a hydrophilic polyethersulfone membrane was used to modify the expensive and low efficient conventional treatment method of wheat starch production that would result in a cleaner starch production process. To achieve a cleaner production, the efficiency of starch production was enhanced and the organic loading rate of wastewater that was discharged into treatment system was decreased, simultaneously. To investigate the membrane performance, the dependency of rejection factor and permeate flux on operative parameters such as temperature, flow rate, concentration, and pH of feed were studied. Response surface methodology (RSM) has been applied to arrange the experimental layout which reduced the number of experiments and also the interactions between the parameters were considered. The maximum achieved rejection factor and permeate flux were 97.5% and 2.42 L min-1 m-2, respectively. Furthermore, a fuzzy inference system was selected to model the non-linear relations between input and output variable which cannot easily explained by physical models. The best agreement between the experimental and predicted data for permeate flux was denoted by correlation coefficient index ( R 2) of 0.9752 and mean square error (MSE) of 0.0072 where defuzzification operator was center of rotation (centroid). Similarly, the maximum R 2 for rejection factor was 0.9711 where the defuzzification operator was mean of maxima (mom).
Abebe, Workineh; Collar, Concha; Ronda, Felicidad
2015-01-22
Tef grain is becoming very attractive in the Western countries since it is a gluten-free grain with appreciated nutritional advantages. However there is little information of its functional properties and starch digestibility and how they are affected by variety type and particle size distribution. This work evaluates the effect of the grain variety and the mill used on tef flour physico-chemical and functional properties, mainly derived from starch behavior. In vitro starch digestibility of the flours by Englyst method was assessed. Two types of mills were used to obtain whole flours of different granulation. Rice and wheat flours were analyzed as references. Protein molecular weight distribution and flour structure by SEM were also analyzed to justify some of the differences found among the cereals studied. Tef cultivar and mill type exhibited important effect on granulation, bulking density and starch damage, affecting the processing performance of the flours and determining the hydration and pasting properties. The color was darker although one of the white varieties had a lightness near the reference flours. Different granulation of tef flour induced different in vitro starch digestibility. The disc attrition mill led to higher starch digestibility rate index and rapidly available glucose, probably as consequence of a higher damaged starch content. The results confirm the adequacy of tef flour as ingredient in the formulation of new cereal based foods and the importance of the variety and the mill on its functional properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-01
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-15
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.
Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films
NASA Astrophysics Data System (ADS)
Akhavan, Azam; Khoylou, Farah; Ataeivarjovi, Ebrahim
2017-09-01
In this study starch/PVA/ZnO nanocomposite films with antibacterial activity were prepared and modified using gamma irradiation for packaging applications. ZnO nanoparticles (NPs) were synthesized from Zn(OH)2 using hydrothermal process and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared ZnO NPs were incorporated into blend films of starch and poly (vinyl alcohol) (PVA) with different concentrations from 0.1 to 1 wt% using solution casting method. The results of SEM confirmed good dispersion of ZnO NPs into the films while FTIR spectroscopy showed interactions between ZnO particles and starch/PVA blend. The nanocomposite films were irradiated at the dose range of 1-5 kGy. It was found that gamma irradiation induces a significant reduction in water absorptions of the films at the dose of 3 kGy. Different trends were observed for the tensile and elongation properties of the irradiated films. Based on the results, the bacterial growth on the films was effectively inhibited when the dosage of ZnO NPs was only 0.5 wt%.
Toward detecting California shrubland canopy chemistry with AIS data
NASA Technical Reports Server (NTRS)
Price, Curtis V.; Westman, Walter E.
1987-01-01
Airborne Imaging Spectrometer (AIS)-2 data of coastal sage scrub vegetation were examined for fine spectral features that might be used to predict concentrations of certain canopy chemical constituents. A Fourier notch filter was applied to the AIS data and the TREE and ROCK mode spectra were ratioed to a flat field. Portions of the resulting spectra resemble spectra for plant cellulose and starch in that both show reduced reflectance at 2100 and 2270 nm. The latter are regions of absorption of energy by organic bonds found in starch and cellulose. Whether the relationship is sufficient to predict the concentration of these chemicals from AIS spectra will require testing of the predictive ability of these wavebands with large field sample sizes.
Hellemans, Tom; Abera, Gifty; De Leyn, Ingrid; Van der Meeren, Paul; Dewettinck, Koen; Eeckhout, Mia; De Meulenaer, Bruno; Van Bockstaele, Filip
2017-12-01
Chemical composition, granular morphology and pasting properties of native starch extracted from tubers of Plectranthus edulis were analyzed. Starch was extracted from tubers of 6 accessions collected from 4 different areas in Ethiopia. Particle size analysis (PSA) and cryo-scanning electron microscope (cryo-SEM) imaging were used to examine the granular morphology and visualize the starch paste, respectively. Pasting properties, water absorption, and gelation capacity were compared. A wide range was found for the amylose (14.2% to 23.9%), calcium (216 to 599), potassium (131 to 878), and phosphorus (1337 to 2090) contents (parts per million per dry matter). PSA showed a bimodal distribution containing small spherical (14.6 μm) and large ellipse-shaped (190.4 μm) granules. Major differences were found for the pasting with peak viscosities differing from 3184 to 7312 mPa⋅s. Starch from accessions Chencha and Inuka showed a difference in packing density as clearly seen through cryo-SEM image at 75% of the peak viscosity (PV), and the granular integrity was mainly responsible for the significant difference in their PV and breakdown. Principal component analysis revealed 2 distinct groups: native starch extracted from accessions at the Wolayta zone (Inuka, Lofua, and Chenqoua) and other accessions (Jarmet, Arjo white, and Chencha). The study revealed the potential of P. edulis starch for its application in food industries. However, the inherent variation due to environmental conditions on physicochemical properties of the starch needs further investigation. Plectranthus edulis is cultivated in considerable amounts throughout Ethiopia, which makes it a valuable starch source. Due to its low tendency to retrograde, it could be applied in food industry as an equivalent for the current starch sources. Moreover, the low amylose content makes it preferable for an application in refrigerated foods as this unique quality trait prevents syneresis in end products during storage. Based on the significantly higher pasting temperature of the studied P. edulis starch extracts, it can form an alternative for potato starch, which is less suitable for its use in pasteurized foods. © 2017 Institute of Food Technologists®.
Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.
Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P
2016-01-01
The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Composition and process for making an insulating refractory material
Pearson, Alan; Swansiger, Thomas G.
1998-04-28
A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.
21 CFR 178.3520 - Industrial starch-modified.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., packing, processing, preparing, treating, packaging, transporting, or holding food, subject to the... and paperboard intended for food packaging. β-Diethylaminoethyl chloride hydrochloride, not to exceed... and paperboard intended for food packaging. 2,3-Epoxypropyltrimethylammonium chloride, not to exceed 5...
21 CFR 178.3520 - Industrial starch-modified.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., packing, processing, preparing, treating, packaging, transporting, or holding food, subject to the... and paperboard intended for food packaging. β-Diethylaminoethyl chloride hydrochloride, not to exceed... and paperboard intended for food packaging. 2,3-Epoxypropyltrimethylammonium chloride, not to exceed 5...
Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid
2010-01-01
A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461
Mathers, John C; Movahedi, Mohammad; Macrae, Finlay; Mecklin, Jukka-Pekka; Moeslein, Gabriela; Olschwang, Sylviane; Eccles, Diana; Evans, Gareth; Maher, Eamonn R; Bertario, Lucio; Bisgaard, Marie-Luise; Dunlop, Malcolm; Ho, Judy W C; Hodgson, Shirley; Lindblom, Annika; Lubinski, Jan; Morrison, Patrick J; Murday, Victoria; Ramesar, Raj; Side, Lucy; Scott, Rodney J; Thomas, Huw J W; Vasen, Hans; Gerdes, Anne-Marie; Barker, Gail; Crawford, Gillian; Elliott, Faye; Pylvanainen, Kirsi; Wijnen, Juul; Fodde, Riccardo; Lynch, Henry; Bishop, D Timothy; Burn, John
2012-12-01
Observational studies report that higher intake of dietary fibre (a heterogeneous mix including non-starch polysaccharides and resistant starches) is associated with reduced risk of colorectal cancer, but no randomised trials with prevention of colorectal cancer as a primary endpoint have been done. We assessed the effect of resistant starch on the incidence of colorectal cancer. In the CAPP2 study, individuals with Lynch syndrome were randomly assigned in a two-by-two factorial design to receive 600 mg aspirin or aspirin placebo or 30 g resistant starch or starch placebo, for up to 4 years. Randomisation was done with a block size of 16. Post-intervention, patients entered into double-blind follow-up; participants and investigators were masked to treatment allocation. The primary endpoint for this analysis was development of colorectal cancer in participants randomly assigned to resistant starch or resistant-starch placebo with both intention-to-treat and per-protocol analyses. This study is registered, ISRCTN 59521990. 463 patients were randomly assigned to receive resistant starch and 455 to receive resistant-starch placebo. At a median follow-up 52·7 months (IQR 28·9-78·4), 53 participants developed 61 primary colorectal cancers (27 of 463 participants randomly assigned to resistant starch, 26 of 455 participants assigned to resistant-starch placebo). Intention-to-treat analysis of time to first colorectal cancer showed a hazard ratio (HR) of 1·40 (95% CI 0·78-2·56; p=0·26) and Poisson regression accounting for multiple primary events gave an incidence rate ratio (IRR) of 1·15 (95% CI 0·66-2·00; p=0·61). For those completing 2 years of intervention, per-protocol analysis yielded a HR of 1·09 (0·55-2·19, p=0·80) and an IRR of 0·98 (0·51-1·88, p=0·95). No information on adverse events was gathered during post-intervention follow-up. Resistant starch had no detectable effect on cancer development in carriers of hereditary colorectal cancer. Dietary supplementation with resistant starch does not emulate the apparently protective effect of diets rich in dietary fibre against colorectal cancer. European Union, Cancer Research UK, Bayer Corporation, National Starch and Chemical Co, UK Medical Research Council, Newcastle Hospitals Trustees, Cancer Council of Victoria Australia, THRIPP South Africa, The Finnish Cancer Foundation, SIAK Switzerland, and Bayer Pharma. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat
2016-11-01
In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.
Ferreira, Sila Mary Rodrigues; de Mello, Ana Paula; de Caldas Rosa dos Anjos, Mônica; Krüger, Cláudia Carneiro Hecke; Azoubel, Patrícia Moreira; de Oliveira Alves, Márcia Aurelina
2016-01-15
The aim of this study was to evaluate the use of mixture of sorghum-rice-corn flour and potato starch in the development of gluten-free pasta for celiac disease patients. The experiment was designed according to simplex-lattice method and different types of gluten-free flours were used, such as sorghum, rice, corn, and potato starch. The fifteen formulations were subjected to sensory analysis (Mixed Structured Scale - MSS) and seven formulations were selected in respect to taste and grittiness. These formulations were subjected to Quantitative Descriptive Analysis (QDA), which evaluated the attributes: appearance, color, odor, hardness, elasticity, stickiness, grittiness, taste, residual bitterness and overall quality. Results showed significant difference in appearance, color and hardness. The formulations that showed the best sensory results were submitted to chemical analysis and cooking quality of pasta. It was observed that the best results for mixing is sorghum flour, rice flour and potato starch. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh
2016-12-01
The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.
Internal structure of normal maize starch granules revealed by chemical surface gelatinization.
Pan, D D; Jane, J I
2000-01-01
Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.
Effect of sodium chloride on the glass transition of condensed starch systems.
Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan
2015-10-01
The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix. Copyright © 2015. Published by Elsevier Ltd.
Characterization of rice starch and protein obtained by a fast alkaline extraction method.
Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina
2016-01-15
This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis.
Tongsakul, Duangta; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong
2012-08-01
In this work, the efficiency of soluble starch as a reducing and a stabilizing agent in the synthesis of platinum nanoparticles under acidic-alkaline treatment is systematically studied. The degraded intermediates with reducing potential (i.e., small molecules containing aldehyde and α-hydroxy ketone moieties) are concomitantly generated when the alkaline concentration is greater than 0.025 M. The in situ generated species could completely reduce platinum ions (20 mM) and sufficiently stabilize the obtained platinum nanoparticles (5 mM) of uniform particle size (2-4 nm). The reduction is efficient and rapid as a complete conversion is achieved within 5 min. In a stronger alkaline condition, the platinum nanoparticles tend to aggregate and form a bigger domain because extensive degradation generates small starch fragments with less stabilization efficiency. This observation suggests that starch is a promising green material which could be chemically treated and transformed to a powerful reducing agent and stabilizer for the synthesis of metal nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sakhare, Suresh D; Inamdar, Aashitosh A; Soumya, C; Indrani, D; Rao, G Venkateswara
2014-12-01
Wheat flour fractioned by sieving into four different particle size fractions namely finer fractions (<75 and 75-118 μm), coarser fractions (118-150 and >150 μm) were analyzed for their chemical, rheological, bread & parotta making characteristics. The finer fractions had lower ash, higher dry gluten, damaged starch and sodium dodecysulphate (SDS)-sedimentation value than the coarser fractions. The flour from finer fractions gave bread with best sensory and textural attributes. The parottas from finer fractions showed significantly higher sensory scores for colour, texture, layers, mouthfeel and overall quality score than the coarser fractions. In the micrograph of finer flour fractions, higher number of loosened single starch granules than the aggregates of starch and protein matrix were seen as compared to coarser fractions. These studies indicate that the flour from the finer fractions produce higher quality bread, parotta owing to the presence of higher damaged starch content, quantity and quality of protein in these fractions than coarser fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina
Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 gmore » g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)« less
Pelissari, Franciele Maria; Andrade-Mahecha, Margarita María; Sobral, Paulo José do Amaral; Menegalli, Florencia Cecilia
2017-11-01
Cellulose nanofibers were isolated from banana peel using a combination of chemical and mechanical treatments with different number of passages through the high-pressure homogenizer (0, 3, 5, and 7 passages). New nanocomposites were then prepared from a mixed suspension of banana starch and cellulose nanofibers using the casting method and the effect of the addition of these nanofibers on the properties of the resulting nanocomposites was investigated. The cellulose nanofibers homogeneously dispersed in the starch matrix increased the glass transition temperature, due to the strong intermolecular interactions occurring between the starch and cellulose. The nanocomposites exhibited significantly increased the tensile strength, Young's modulus, water-resistance, opacity, and crystallinity as the number of passages through the homogenizer augmented. However, a more drastic mechanical treatment (seven passages) caused defects in nanofibers, deteriorating the nanocomposite properties. The most suitable mechanical treatment condition for the preparation of cellulose nanofibers and the corresponding nanocomposite was five passages through the high-pressure homogenizer. In general, the cellulose nanofibers improved the features of the starch-based material and are potentially applicable as reinforcing elements in a variety of polymer composites. Copyright © 2017 Elsevier Inc. All rights reserved.
Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo
2007-09-01
The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.
Swelling Kinetics of Waxy Maize Starch
NASA Astrophysics Data System (ADS)
Desam, Gnana Prasuna Reddy
Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.
El-Hoshoudy, A N; Desouky, S M
2018-05-16
Starch is a natural biopolymer that subjected to various chemical modifications through different industrial applications. Molecular structure of starch allow its grafting with different vinyl monomers in the presence of crosslinking agents to synthesize cross-linked hydrogels, which used in enhanced oil recovery (EOR) applications, water shutoff and drag reduction. Application of native starch in the field of petroleum reservoirs as a flooding agent suffer from some limitations concerned with microbial degradation, thermal and salinity resistance under harsh petroleum reservoir conditions. In the current research, we stated the synthesis of acryloylated starch then it's grafting with poly (Acrylamide/Vinylmethacrylate/1-Vinyl-2-pyrrolidone) terpolymer in presence of dimethylphenylvinylsilane through emulsification polymerization. Characterization and structure determination occur by different spectroscopic techniques as stated throughout the manuscript. Rheological and solution properties carried out as a function of shear rate, salinity and temperature at simulated reservoir conditions. Flooding tests carried out through linear-dimensional sandstone model at simulated reservoir conditions, and recovered oil amount calculated on volumetric basis. The obtained results indicate that the prepared starch-g-terpolymer can tolerate to severe flooding conditions of high temperature and salinity, moreover it can increase recovery factor up to 49% of residual oil saturation so considered as a promised EOR candidate. Copyright © 2017 Elsevier B.V. All rights reserved.
Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.
Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert
2002-11-20
Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.
Jiménez, María Eugenia; Sammán, Norma
2014-06-01
There is great interest in consuming foods that can provide the nutrients for a good nutrition and other health beneficial compounds. The aim of this work was to determine the chemical composition of native foods of the Andean region and to quantify some functional com-ponents. Proximal composition, vitamin C, total phenolic compounds, antiradical activity (DPPH) in peel and pulp, dietary fiber soluble and insoluble, fructooligosaccharides (FOS), total and resistant starch (in tubers and raw roots, boiled and boiled and stored) of 6 varieties of Oca (Oxalis tuberosa), 4 clones of manioc (Manihot esculenta Crantz) and yacon (Smallanthus sonchifolius were determined. The results showed greater amount of bioactive compounds and antiradical activity in the skin of these products. The highest content was found in the oca peel. In all cases, the content of insoluble fiber was greater than the soluble. The manioc had higher total starch than Andean roots and tubers. The boiling process decreased the resistant starch content of ocas and maniocs, but when these are stored for 48 h at 5 ° C, the resistant starch content increased. The FOS content of the ocas was similar for all varieties (7%). The main component of yacon carbohydrates were FOS (8.89%). The maniocs did not contain FOS. It can be concluded that the roots and tubers studied, in addition to provide nutrients, contain functional compounds that confer additional helpful value for preventing no communicable diseases.
Lee, Byung-Hoo; Yan, Like; Phillips, Robert J.; Reuhs, Bradley L.; Jones, Kyra; Rose, David R.; Nichols, Buford L.; Quezada-Calvillo, Roberto; Yoo, Sang-Ho; Hamaker, Bruce R.
2013-01-01
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release. PMID:23565164
Baur, Daniel A.; Vargas, Fernanda de C. S.; Bach, Christopher W.; Garvey, Jordan A.; Ormsbee, Michael J.
2016-01-01
While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS) before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1) a commercially available sucrose/glucose supplement (G) 30 min before (60 g carbohydrate) and every 15 min during exercise (60 g∙h−1); (2) HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS); and (3) HMS 30 min before (60 g carbohydrate) and every 60 min during exercise (30 g·h−1; Low HMS). The exercise protocol (~3 h) consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively) relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso); 20.9%; ±16.1%; likely (Low), and reduced carbohydrate oxidation (−19.2%; ±7.6%; most likely; −22.1%; ±12.9%; very likely) during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely) and Low HMS (18; ±14; likely) vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely), but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS-associated increases in gastrointestinal distress, which is not attenuated by reducing the intake rate of HMS during exercise. PMID:27347999
Baur, Daniel A; Vargas, Fernanda de C S; Bach, Christopher W; Garvey, Jordan A; Ormsbee, Michael J
2016-06-25
While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS) before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1) a commercially available sucrose/glucose supplement (G) 30 min before (60 g carbohydrate) and every 15 min during exercise (60 g∙h(-1)); (2) HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS); and (3) HMS 30 min before (60 g carbohydrate) and every 60 min during exercise (30 g·h(-1); Low HMS). The exercise protocol (~3 h) consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively) relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso); 20.9%; ±16.1%; likely (Low), and reduced carbohydrate oxidation (-19.2%; ±7.6%; most likely; -22.1%; ±12.9%; very likely) during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely) and Low HMS (18; ±14; likely) vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely), but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS-associated increases in gastrointestinal distress, which is not attenuated by reducing the intake rate of HMS during exercise.
Lee, Byung-Hoo; Yan, Like; Phillips, Robert J; Reuhs, Bradley L; Jones, Kyra; Rose, David R; Nichols, Buford L; Quezada-Calvillo, Roberto; Yoo, Sang-Ho; Hamaker, Bruce R
2013-01-01
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×10(8) Da, BE-WCS: 2.76×10(5) Da, and BEBA-WCS 1.62×10(5) Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.
Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence
Gourineni, Vishnupriya; Stewart, Maria L.; Skorge, Rob; Sekula, Bernard C.
2017-01-01
There is growing interest among consumers in foods for sustained energy management, and an increasing number of ingredients are emerging to address this demand. The SUSTRA™ 2434 slowly digestible carbohydrate is a blend of tapioca flour and corn starch, with the potential to provide balanced energy after a meal. The aim of the study was to characterize this starch’s digestion profile in vitro (modified Englyst assay) and in vivo (intact and cecectomized rooster study), and to determine its effects on available energy, by measuring post-prandial glycemia in healthy adults (n = 14), in a randomized, double-blind, placebo-controlled, cross-over study, with two food forms: cold-pressed bar and pudding. The in vitro starch digestion yielded a high slowly digestible fraction (51%) compared to maltodextrin (9%). In the rooster digestibility model, the starch was highly digestible (94%). Consumption of slowly digestible starch (SDS), in an instant pudding or bar, yielded a significantly lower glycemic index compared to a control. At individual time points, the SDS bar and pudding yielded blood glucose levels with significantly lower values at 30–60 min and significantly higher values at 120–240 min, demonstrating a balanced energy release. This is the first study to comprehensively characterize the physiological responses to slowly digestible starch (tapioca and corn blend) in in vitro and in vivo studies. PMID:29125542
Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix
NASA Astrophysics Data System (ADS)
Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd
2017-01-01
The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
Prochaska, Krystyna; Konował, Emilia; Sulej-Chojnacka, Joanna; Lewandowicz, Grazyna
2009-11-01
The aim of the present work was to study the physicochemical properties of doubly modified, by cross-linking and acetylating, starches as well as the products of their enzymatic hydrolysis. A two step procedure of hydrolysis, including the batch and membrane reactors, were investigated. The second step of enzymatic processes were carried out in a continuous recycle membrane reactor (CRMR). Three kinds of commercial starches--two preparations of acetylated distarch adipate E1422 of different degrees of cross-linking, as well as one preparation of acetylated distarch phosphate E1414 were examined. It was found that the degree of substitution of acetyl groups in the macromolecules of starch did not influence the effectiveness of hydrolysis. However, the degree of cross-linking with adipate groups slightly decreased the efficiency of processing in the CRMR. Additionally, the relationship between the type of hydrocolloid and its adsorption activity in the air/water and oil/water systems was considered. All obtained derivatives revealed adsorption properties and reduced the surface/interface tension in the air/water and oil/water systems. The efficiency and effectiveness of adsorption of the investigated hydrocolloids were affected by the type of modification as well as the degree of substitution of acetyl groups in the macromolecules of starch. Particle size distributions formed in aqueous solutions for all investigated hydrolyses were determined and compared with results obtained for commercial products.
2009-01-01
Background Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium. Results Fumonisin B2 production by A. niger was significantly increased when lactate and starch were combined in the medium. Production of a few other A. niger secondary metabolites was affected similarly by lactate and starch (fumonisin B4, orlandin, desmethylkotanin and pyranonigrin A), while production of others was not (ochratoxin A, ochratoxin alpha, malformin A, malformin C, kotanin, aurasperone B and tensidol B). The proteome of A. niger was clearly different during growth on media containing 3% starch, 3% starch + 3% lactate or 3% lactate. The identity of 59 spots was obtained, mainly those showing higher or lower expression levels on medium with starch and lactate. Many of them were enzymes in primary metabolism and other processes that affect the intracellular level of acetyl-CoA or NADPH. This included enzymes in the pentose phosphate pathway, pyruvate metabolism, the tricarboxylic acid cycle, ammonium assimilation, fatty acid biosynthesis and oxidative stress protection. Conclusions Lactate added in a medium containing nitrate and starch can increase fumonisin B2 production by A. niger as well as production of some other secondary metabolites. Changes in the balance of intracellular metabolites towards a higher level of carbon passing through acetyl-CoA and a high capacity to regenerate NADPH during growth on medium with starch and lactate were found to be the likely cause of this effect. The results lead to the hypothesis that fumonisin production by A. niger is regulated by acetyl-CoA. PMID:20003296
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Chemical composition and nutritional value of unripe banana flour (Musa acuminata, var. Nanicão).
Menezes, Elizabete Wenzel; Tadini, Carmen Cecília; Tribess, Tatiana Beatris; Zuleta, Angela; Binaghi, Julieta; Pak, Nelly; Vera, Gloria; Dan, Milana Cara Tanasov; Bertolini, Andréa C; Cordenunsi, Beatriz Rosana; Lajolo, Franco M
2011-09-01
Banana flour obtained from unripe banana (Musa acuminata, var. Nanicão) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and β-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 μmol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
The decrease of cylindrical pempek quality during boiling
NASA Astrophysics Data System (ADS)
Karneta, R.; Gultom, N. F.
2017-09-01
The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn
Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less
Gautam, Vineeta; Singh, Karan P; Yadav, Vijay L
2018-03-01
Nanocomposite materials are potentially revolutionizing many technologies, including sensors. In this paper, we described the application of "PANI/MWCNTs/Starch" modified carbon paste electrode (PCS-CPE) as a simple and highly sensitive cholesterol sensor. This novel nano-composite material has integrated nano-morphology, where polyaniline could interact effectively with the additives; pi-pi stacking "MWCNTs," and covalently bonded with starch. Specific binding sites (sugar chains), better electro-catalytic properties and fast electron transfer facilitated the oxidation of cholesterol. Fourier transform infrared spectra confirmed the interaction of cholesterol with the composite material. The sensing response of PCS was measured by cyclic voltammetry and chronoamperometry (0.1 M PBS-5 used as supporting electrolyte). As the amount of cholesterol increased in the test solution, cyclic voltammograms showed a rise of peak current (cathodic and anodic). Under the normal experimental conditions, the developed sensor exhibited wide linear dynamic range (0.032 to 5 mM) (upper limit is due to lack of solubility of cholesterol), high sensitivity (800 μAmM -1 cm -2 ), low detection limit (0.01 mM) and shorter response time (within 4-6 s). Analytical specificity, selectivity, and sensitivity during cholesterol estimation were compared with the response of some other analytes (ascorbic acid, glucose, l-dopa, urea and lactic acid). This novel sensor was successfully applied to estimate cholesterol in cow milk (used as a model real sample). The sensing platform is highly sensitive and shows a linear response towards cholesterol without using any additional redox mediator or enzyme, thus this material is extremely promising for the realization of a low-cost integrated cholesterol sensor device. Graphical abstract Cyclic voltammetric response of cholesterol of composite modified carbon paste capillary electrode.
Lin, Zhaomiao; Zheng, Deyi; Zhang, Xincheng; Wang, Zunxin; Lei, Jinchao; Liu, Zhenghui; Li, Ganghua; Wang, Shaohua; Ding, Yanfeng
2016-08-01
Chalkiness has a deleterious influence on rice appearance and milling quality. We identified a notched-belly mutant with a high percentage of white-belly, and thereby developed a novel comparison system that can minimize the influence of genetic background and growing conditions. Using this mutant, we examined the differences in chemical composition between chalky and translucent endosperm, with the aim of exploring relations between occurrence of chalkiness and accumulation of starch, protein and minerals. Comparisons showed a significant effect of chalkiness on chemical components in the endosperm. In general, occurrence of chalkiness resulted in higher total starch concentration and lower concentrations of the majority of the amino acids measured. Chalkiness also had a positive effect on the concentrations of As, Ba, Cd, Cr, Mn, Na, Sr and V, but was negatively correlated with those of B, Ca, Cu, Fe and Ni. By contrast, no significant chalkiness effect on P, phytic acid-P, K, Mg or Zn was observed. In addition, substantial influence of the embryo on endosperm composition was detected, with the embryo showing a negative effect on total protein, amino acids such as Arg, His, Leu, Lys, Phe and Tyr, and all the 17 minerals measured, excluding Ca, Cu, P and Sr. An inverse relation between starch and protein as well as amino acids was found with respect to chalkiness occurrence. Phytic acid and its colocalized elements K and Mg were not affected by chalkiness. The embryo exerted a marked influence on chemical components of the endosperm, in particular minerals, suggesting the necessity of examining the role of the embryo in chalkiness formation. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Rheological properties of kuzu starch pastes with galactomannans.
Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek
2018-04-01
The paper describes the effects of galactomannans on viscoelastic properties of commercial Japanese white kuzu starch pastes. The study included morphological, thermal and rheological analyses of the biopolymer. The results obtained in the form of storage modulus G '( ω ) and loss modulus G ″( ω ) were described by the modified fractional Kelvin-Voigt model with two springpot-type elements, created on the basis of differential calculus of fractional order and Fourier transform. It allowed to determine 17 material parameters providing a lot of additional information about structure and viscoelastic properties of the biopolymer in comparison to the classical analysis of oscillatory and creep tests. The study led to the conclusion that commercial Japanese white kuzu starch was so-called type II starch with a high pasting temperature of 75 °C and an average granule diameter equal to 10.9 μm. Rheological properties of the pastes depended on the galactose-to-mannose ratio in galactomannan molecule. The larger substitution degree, the higher viscosity, characteristic relaxation times, polydispersity index, gel stiffness, and the lower cross-linking density and average molecular weights. The presence of galactose side groups favored the hydration and immobilization of water molecules.
Silvi, S; Rumney, C J; Cresci, A; Rowland, I R
1999-03-01
The effect of sucrose and resistant starch ('CrystaLean'--a retrograded, amylose starch) on human gut microflora and associated parameters was studied in human flora-associated (HFA) rats, colonized with microfloras from UK or Italian subjects, to determine whether such floras were affected differently by dietary carbohydrates. Consumption of the resistant starch diet resulted in significant changes in four of the seven main groups of bacteria enumerated. In both the UK and Italian flora-associated rats, numbers of lactobacilli and bifidobacteria were increased 10-100-fold, and there was a concomitant decrease in enterobacteria when compared with sucrose-fed rats. The induced changes in caecal microflora of both HFA rat groups were reflected in changes in bacterial enzyme activities and caecal ammonia concentration. Although it had little effect on caecal short-chain fatty acid concentration, CrystaLean markedly increased the proportion of n-butyric acid in both rat groups and was associated with a significant increase in cell proliferation in the proximal colon of the Italian flora-associated rats. CrystaLean appeared to play a protective role in the colon environment, lowering caecal ammonia concentration, caecal pH and beta-glucuronidase activity.
Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel
2017-10-01
Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozell, J. J.; Landucci, R.
This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.
Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles
Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan
2017-01-01
Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g−1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5–10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature. PMID:28098196