Science.gov

Sample records for chemin minerological instrument

  1. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  2. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  3. CheMin Instrument Performance and Calibration on Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Blake, D. F.; Morookian, J. M.; Yen, A. S.; Ming, D. W.; Morris, R. V.; Achilles, C. N.; Bish, D. L.; Chipera, S. J.; Morrison, S. M.; hide

    2013-01-01

    The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode X-ray tube source to acquire both mineralogy (from the pattern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A key component of the CheMin instrument is the ability to move grains within sample cells during analysis, providing multiple, random grain orientations that disperse diffracted X-ray photons along Debye rings rather than producing discrete Laue spots. This movement is accomplished by piezoelectric vibration of the sample cells. A cryocooler is used to maintain the CCD at a temperature at about -50 C in order to obtain energy resolution better than 250 eV, allowing discrimination of diffracted Co K X-rays from Fe K and other fluorescent X-rays. A detailed description of CheMin is provided in [1]. The CheMin flight model (FM) is mounted within the body of Curiosity and has been operating on Mars since August 6, 2012. An essentially identical sister instrument, the CheMin demonstration model (DM), is operated in a Mars environment chamber at JPL.

  4. Animation and Video Footage of CheMin Instrument for MSL

    NASA Image and Video Library

    Animation of the surface operation of Mars Science Laboratory Curiosity's CheMin instrument, and video footage of CheMin's principal investigator David Blake in the lab and in the field with relate...

  5. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  6. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  7. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; Achilles, C. N.; Downs, R. T.; Farmer, J. D.; Crisp, J. A.; Morookian, J. M.; Des Marais, D. J.; Grotzinger, J. P.; Sarrazin, P.; Yen, A. S.

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  8. CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Feldman, S.; Collins, S.

    2005-01-01

    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract.

  9. Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Blake, David; Vaniman, David; Achilles, Cherie; Anderson, Robert; Bish, David; Bristow, Tom; Chen, Curtis; Chipera, Steve; Crisp, Joy; Des Marais, David; Downs, Robert T.; Farmer, Jack; Feldman, Sabrina; Fonda, Mark; Gailhanou, Marc; Ma, Hongwei; Ming, Doug W.; Morris, Richard V.; Sarrazin, Philippe; Stolper, Ed; Treiman, Allan; Yen, Albert

    2012-09-01

    A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity's 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin's angular range of 5∘ to 50∘ 2 θ with <0.35∘ 2 θ resolution is sufficient to identify and quantify virtually all minerals. CheMin's XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co K α from Co K β and Fe K α photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar® or Kapton® windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.

  10. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; Ming, D.; Morris, R.; Stolper, E.; Yen, A.

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  11. X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Blake, D. F.; Ming, D. W.; Bristow, T. F.

    2017-01-01

    The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars.

  12. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  13. First results from the CheMin, DAN and SAM instruments on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Mahaffy, P. R.; Mitrofanov, I.

    2012-12-01

    One of the principal goals of the Mars Science Laboratory rover Curiosity is to identify and characterize the early habitable environments of Mars, as recorded in the stratified rocks and soil of Gale crater. The suite of instruments aboard Curiosity will make measurements useful for determining the presence and lateral/vertical distribution of hydrated phases, the mineralogy and "preservation potential" of sediments and rocks, and the identity and isotopic composition of organic and other carbon containing molecules, should such be present. Three of Curiosity's instruments, DAN ("Dynamic Albedo of Neutrons," a soil hydrogen detector), CheMin ("Chemistry and Mineralogy," a mineralogy instrument) and SAM ("Surface Analysis at Mars," an organic molecule and isotopic analysis instrument) are uniquely suited to this purpose. DAN consists of a pulsed neutron generator and neutron detector that will measure the hydrogen content (i.e., hydrated phases, water ice) in the upper meter of the soil. Both passive and active measurements will be obtained, resulting in a meter-scale resolution transect map of near-surface hydrogen along the path of the rover. These measurements will provide context for the mineralogical and organic measurements of drilled and scooped samples analyzed by CheMin and SAM. CheMin, a powder X-ray Diffraction (pXRD) instrument, will determine the mineralogy of scooped soils and powders obtained from drilled rocks. Hydrated minerals will be identified, along with whole-rock mineralogy for characterizing the environment of formation and preservation potential for organic molecules. SAM consists of a sample handling system, a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. SAM will accept the same powdered rock and soil samples as CheMin, and will measure and identify organic carbon in these samples as well as evolved inorganic gases such as CO2, CH4, and H2O. Isotopic composition of noble gases and several light elements are

  14. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  15. CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory (MSL '09)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chiprera, S. J.; Vaniman, D. T.

    2005-01-01

    An important goal of the Mars Science Laboratory (MSL 09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown.

  16. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  17. Data from the Mars Science Laboratory CheMin XRD/XRF instrument

    NASA Astrophysics Data System (ADS)

    Vaniman, David; Bristow, , David Blake, Tom; Des Marais, David; Achilles, Cherie; Spanovich, Ashwin Vasavada, , Robert Anderson, Joy Crisp, John Michael Morookian, Nicole; Yen, Albert; Bish, David; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Farmer, Jack; Grotzinger, John; Stolper, Edward; Morris, , Douglas Ming, Richard; Rampe, Elizabeth; Treiman, Allan; Sarrazin, Philippe; MSL Science Team

    2013-04-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (~An50), forsteritic olivine (~Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at ~27° 2θ (Co Kα) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2θ may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 µm, and delivered to

  18. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; Yen, Albert; Bish, David; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Farmer, Jack; Grotzinger, John; Stolper, Edward; Ming, Douglas; Morris, Richard; Rampe, Elizabeth; Treiman, Allan; Sarrazin, Philippe

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  19. Curiosity Rover's CheMin Instrument Investigates Mineralogy of Gale Crater and Implications for Diagenesis

    NASA Astrophysics Data System (ADS)

    Fendrich, Kim; Rampe, Elizabeth; Vaniman, David; Bish, David; Blake, David; Treiman, Allan; Ming, Doug; Morris, Richard; Bristow, Tom; Cavanagh, Patrick; Downs, Robert; Morrison, Shaunna; Chipera, Steve; Achilles, Cherie; Farmer, Jack; Sarrazin, Philippe; Crisp, Joy; Morookian, John Michael; Yen, Albert; Gellert, Ralf

    2015-04-01

    The Mars Science Laboratory rover Curiosity employs a suite of instruments to investigate past or present habitability of Mars, as observed at Gale crater and particularly in the lower strata of the crater's central mound, informally named Mount Sharp. The X-ray diffractometer on board, CheMin, is used to assess the quantitative mineralogy of scooped soil samples and drilled rock powders. Methods of modeling diffraction peak positions and intensities to evaluate the abundances of minerals include Rietveld refinement and FULLPAT (full-pattern fitting). Each of the samples analyzed by CheMin contains X-ray amorphous material. The amorphous component chemistry is resolved by subtracting the chemistry of the crystalline composition, as determined by X-ray diffraction data, from the bulk sample chemistry, as determined by the Alpha Particle X-ray Spectrometer (APXS). Diffraction results have been obtained on five samples thus far to include Rocknest, John Klein, Cumberland, Windjana and Confidence Hills. Soil samples collected at Rocknest, an aeolian bedform in Gale crater, were the first to be analyzed in situ by CheMin. The Rocknest mineral assemblage is basaltic (plagioclase, Fe-forsterite, augite, pigeonite) and contains amorphous material that is compositionally similar to palagonitic volcanic soils found on Earth, with the addition of sulfur and chlorine. The four drill analyses are characteristic of deposition in a variety of fluvio-lacustrine environments and exhibit evidence of low-temperature diagenesis. Both John Klein and Cumberland are part of the Sheepbed mudstone at Yellowknife Bay, where the first drilled samples were acquired as well as the first evidence of a habitable environment on Mars. Drilled three meters apart from each other, the two samples reveal basaltic minerals similar to those at Rocknest, as well as phyllosilicates, Fe-oxides/hydroxides, Ca-sulfates, Fe-sulfides, and amorphous materials. The nature and hydration of interlayer cations

  20. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  1. Phyllosilicate analysis capabilities of the CheMin mineralogical instrument on the Mars Science Laboratory (MSL '11) Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Bish, D. L.; Vaniman, D. T.; Chipera, S.; Bristow, T. F.; Sarrazin, P.

    2011-12-01

    The CheMin mineralogical instrument on the MSL '11 Curiosity rover will return quantitative X-ray diffraction data (XRD) from scooped soil samples and drilled rock powders collected from the Mars surface. Samples of 45-65 mm3 from material sieved to <150 μm will be delivered through a funnel to one of 27 reuseable sample cells (five additional cells on the sample wheel contain diffraction or fluorescence standards). Sample cells are 8-mm diameter discs with 7-μm thick Mylar or Kapton windows spaced 170 μm apart. Within this volume, the sample is shaken by piezoelectric vibration at sonic frequencies, causing the powder to flow past a narrow, collimated X-ray beam in random orientations over the course of an analysis. In this way, diffraction patterns exhibiting little to no preferred orientation can be obtained even from minerals normally exhibiting strong preferred orientation such as phyllosilicates. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin has a Minimum Detection Limit (MDL) of <3% by mass, an accuracy of better than 15% and a precision of better than 10% for phases present in concentrations >4X MDL (12%). The resolution of the diffraction patterns is 0.30 degrees 2θ, and the angular measurement range is 4-55 degrees 2θ. With this performance, CheMin can identify and distinguish a number of clay minerals. For example, discrimination between 1:1 phyllosilicates (such as the kaolin minerals), with repeat distances of ~7Å, and smectites (e.g., montmorillonite, nontronite, saponite), with repeat distances from 10-15Å, is straightforward. However, it is important to note that the variety of treatments used in terrestrial laboratories to aid in discrimination of clay minerals will not be accessible on Mars (e.g., saturation with ethylene glycol vapor, heat treatments). Although these treatments will not be available on Mars, dehydration within the CheMin instrument could be used to

  2. The CheMin Mineralogy Instrument on Mars Science Laboratory: Analysis of Clays and Sulfates at Gale Crater

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; CheMin Science Team

    2011-12-01

    A principal goal of the Mars Science Laboratory (MSL) Curiosity rover is to identify and characterize present or past habitable environments on Mars. Mineralogy is important in this regard because minerals are thermodynamic phases, stable under specific (and known) conditions of temperature, pressure and composition. By determining the mineralogical composition of a rock or soil, one can often deduce the conditions under which it formed or its subsequent diagenetic or metamorphic history. The CheMin instrument on MSL will return accurate mineral determinations and quantitative mineralogical information from scooped soil samples and drilled rock powders collected at Gale crater during Curiosity's 1-Mars-year nominal mission. Individual analyses will require several hours over one or more Mars sols. For typical well-ordered minerals, CheMin will have a Minimum Detection Limit (MDL) of <3% by mass, an accuracy of better than 15% and a precision of better than 10% of the amount present for phases present in concentrations >4X MDL (12%). The resolution of the diffraction patterns is 0.3° 2θ. This performance is sufficient to allow for the detection and quantification of virtually all minerals. Orbital imagery and analysis of reflectance spectra from Gale Crater reveal a wealth of mineralogical and morphological features suggestive of ancient habitable environments and water. CheMin is quite capable of discriminating and quantifying the clay and sulfate mineralogies expected within the landing ellipse and in the strata of the central mound, the primary target at Gale. Both polyhydrated and monohydrated (kieserite) sulfate minerals are distributed in mappable strata at Gale. Virtually all hydrated and nonhydrated sulfates are uniquely identifiable and quantifiable with CheMin. Breadboard and commercial equivalents of the CheMin instrument have already been used extensively in evaporite field localities ranging from Death Valley to Antarctica and Spitsbergen; at all

  3. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  4. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  5. Evaluation of rock powdering methods to obtain fine-grained samples for CHEMIN, a combined XRD/XRF instrument

    SciTech Connect

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D.; Bearman, G. H.; Bar-Cohen, Yoseph

    2004-01-01

    A miniature XRD/XRD (X-ray diffraction/X-ray fluorescence) instrument, CHEMIN, is currently being developed for definite mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument produces good results even with poorly prepared powder, the quality of the data improves and the time required for data collection is reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD reuslts from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, they compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRD instrument such as CHEMIN.

  6. Detector for CheMin

    NASA Image and Video Library

    2012-10-30

    This charged couple device CCD is part of the CheMin instrument on NASA Curiosity rover. When CheMin directs X-rays at a sample of soil, this imager, which is the size of a postage stamp, detects both the position and energy of each X-ray photon.

  7. Use of an ultrasonic/sonic driller/corer to obtain sample powder for chemin, a combined XRD/XRF instrument.

    SciTech Connect

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Yoseph; Blake, D.

    2003-01-01

    One of the technical issues that must be addressed before landing an XRD,iXRF spectrometer on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a powder that is extremely fine grained to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the Xray beam. Although a 2 dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve with the quality of the sample powder.

  8. Analysis of "Meridiani Planum"-like evaporites using CheMin, an XRD/XRF instrument proposed for the Mars Science Laboratory (MSL)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Feldman, S.; Vaniman, D.; Chipera, S.; Bish, D.

    2004-12-01

    The discovery of up to 30-40 wt% sulfate salts in sediments at Meridiani Planum [1-2] indicates that evaporite sediments have played an important role in the hydrogeologic history of Mars. Data available to date support the presence of the mineral jarosite (a hydrous Fe-sulfate), Mg-sulfate, and lesser amounts of salts containing Cl and Br. One of the most exciting features of the Meridiani sediments is the possibility that the salts may be hydrated. Water storage in minerals may be a significant source of the elevated hydrogen abundances seen in some equatorial regions by the Odyssey spacecraft, with abundances up to 8-9 wt% water-equivalent present in areas where water ice should not be stable [3]. Is it possible that salt hydrates in evaporite sediments can account for some of this equatorial water? The ability to quantify mixed-salt mineralogies will be important for determining brine history on Mars. Definitive mineralogy, a key requirement of MSL, can be accomplished by the CheMin X-ray Diffraction / X-ray Fluorescence (XRD/XRF) instrument [4]. The MSL approach to investigating this kind of deposit can be based on the capabilities demonstrated by MER-B (visual petrography, Mossbauer, APXS, and Mini-TES). The enhanced drilling capability of MSL can be used to collect and transfer cores to the rock crusher for pulverizing and ultimate delivery of crushed material to CheMin. If MSL is able to traverse kilometers or tens of kilometers, CheMin characterization of changes in evaporite mineralogy, zonation in evaporite facies or the mineralogical identity of detrital grains could be used to conduct an analysis of the evaporative basin - lateral extent, water depth, salinity, facies changes, etc. The ability to quantify hydrated mineral assemblages will be important for reconstructing brine evolution and for determining the nature of interactions between brine minerals and detrital mineralogy. The important contribution of CheMin to a site like Meridiani will be to

  9. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL

  10. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL

  11. Destination Innovation: Episode 4 CheMin

    NASA Image and Video Library

    2012-08-02

    Destination Innovation is a new series that explores the research, science and other projects underway at the NASA Ames Research Center. Episode 4 focuses on the CheMin instrument aboard the Mars Science Laboratory, NASA' s latest robotic explorer to visit Mars. CheMin, short for 'Chemistry and Mineralogy,' was developed at NASA Ames Research Center and is one of 10 instruments aboard the rover Curiosity. The instrument is an x-ray diffractometer, which will be able to identify minerals in the Martial rock and soil.

  12. Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-06-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface-operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 μm could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at ˜1.37-1.41, 1.92, and 2.19 μm in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using

  13. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.; Dyar, M. Darby

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic

  14. My Martian Moment - Episode 1 - David Blake and CheMin

    NASA Image and Video Library

    2015-09-25

    Ames' David Blake developed the Chemistry and Mineralogy instrument, or CheMin for short, which is currently operating on NASA's Curiosity Mars rover. It identifies and measures the abundance of various minerals on the Martian surface. The instrument is built around a highly compact X-ray diffraction unit, the first of its kind to operate on a planet besides Earth. CheMin can quickly analyze soil samples, helping scientists understand the composition and history of the Martian surface.

  15. CHEMIN: A Mineralogical Dust Analyzer for the Odyssey Mission to Comet Kopff

    NASA Technical Reports Server (NTRS)

    Blake, David; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Odyssey spacecraft will be launched in June 2006 and will rendezvous with periodic Comet Kopff in September 2009. Odyssey will initially perform slow flybys of the active Kopff nucleus at distances between 500 and 100 km, and will then be placed in orbit around the nucleus at altitudes between 200 and 50 km. Odyssey's scientific payload of seven instruments includes CHEMIN, a mineralogical dust analyzer, which will make the first direct measurements of the crystal structure and elemental composition of cometary dust. CHEMIN will simultaneously perform X-ray Diffraction and X-ray Fluorescence (XRD/XRF) of individual 1-100 micron dust particles collected passively as the spacecraft is immersed in the comet's coma. The instrument has the geometry of a microfocus X-ray camera, with a postage stamp-sized energy-discriminating CCD in place of the film, and a miniature Cu target X-ray tube as the X-ray source. The CHEMIN flight instrument will weigh less than 2 kg., will have a total volume of about 1 liter, and will operate on 3 watts of power. Individual analyses will require 1-2 hours. XRD maxima from 5 to 65 degrees two-theta will be collected, encompassing definitive peaks for all known minerals. XRF data will be simultaneously collected for elements C through U. The instrument has sufficient resolution to allow Rietveld refinement of the diffraction data. Rock types as complex as basalt have been quantitatively analyzed using a CHEMIN laboratory prototype. Selected examples of diffraction experiments performed on more than 30 minerals and rock types by the CHEMIN laboratory prototype will be discussed.

  16. Ames Scientists Develop MSL Instrument

    NASA Image and Video Library

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  17. Mudstone Mineralogy from Curiosity CheMin, 2013 to 2016

    NASA Image and Video Library

    2016-12-13

    This series of pie charts shows similarities and differences in the mineral compositions of mudstones at 10 sites where NASA's Curiosity Mars rover collected rock-powder samples and analyzed them with the rover's Chemistry and Mineralogy (CheMin) instrument. The charts are arrayed in chronological order, with an indication of relative elevation as the rover first sampled two sites on the floor of Gale Crater in 2013 and later began climbing the crater's central mound, Mount Sharp. The pie chart farthest to the right and uphill shows composition at the "Sebina" target, sampled in October 2016. Five non-mudstone rock targets that the rover drilled and analyzed within this time frame are not included. The mineralogical variations in these mudstones may be due to differences in any or all of these factors: the source materials deposited by water that entered lakes, the processes of sedimentation and rock forming, and how the rocks were later altered. One trend that stands out is that the mineral jarosite -- shown in purple -- was more prominent in the "Pahrump Hills" area of lower Mount Sharp than at sites examined either earlier or later. Jarosite is an indicator of acidic water. Mudstone layers uphill from Pahrump Hills have barely detectable amounts of jarosite, indicating a shift away from acidic conditions in these overlying -- thus younger -- layers. Clay minerals, shown as green, declined in abundance at sites midway through this series, then came back as the rover climbed higher. Each drilled-and-analyzed target is identified with a two-letter abbreviation: JK for "John Klein," CB for "Cumberland." CH for "Confidence Hills," MJ for "Mojave," TP for "Telegraph Peak," BK for "Buckskin," OD for "Oudam," MB for "Marimba," QL for "Quela," and SB for Sebina. http://photojournal.jpl.nasa.gov/catalog/PIA21146

  18. Definitive Mineralogy from the Mars Science Laboratory Chemin Instrument

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Treiman, A. H.; Ming, D. W.; Morris, Richard V.; Farmer, J. D.; Downs, R. T.; Chipera, S. J.; hide

    2012-01-01

    The Mars Science Laboratory (MSL) rover will land in Gale Crater on Mars in August 2012. The planned landing site is an alluvial fan near the base of the crater's central mound. Orbital remote sensing of this 5 km high mound indicates the presence of hydrated sulfates, interstratified with smectite and hematite-bearing layers. Minerals formed in an aqueous environment are of particular interest given that water is a fundamental ingredient of living systems and that MSL's prime science objective is to investigate martian habitability.

  19. Performing mineral hydration experiments in the CheMin diffractometer on Mars

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Yen, A. S.; Rampe, E. B.; Blake, D. F.; Chipera, S.; Morookian, J.; Ming, D. W.; Bristow, T.; Morris, R. V.; Gellert, R.; Morrison, S. M.; Grotzinger, J. P.; Achilles, C.; Downs, R. T.; Rapin, W.; Meslin, P. Y.; Rice, M. S.; Treiman, A. H.; Sarrazin, P.; Farmer, J. D.

    2016-12-01

    Laboratory work is the cornerstone of experimental planetary geochemistry, mineralogy, and petrology, but much is gained by "experiments" while on a planet surface. Earth-bound experiments are often limited in ability to control multiple conditions relevant to planetary bodies (e.g. cycles in temperature and H2O vapor pressure), but observations on-planet provide an opportunity where conditions are native to the planet and those affected by sampling and analysis can be constrained. The CheMin XRD instrument on Mars Science Laboratory has tested mineral hydration in samples held for up to 300 Mars days (sols). Clay minerals sampled at Yellowknife Bay early in the mission had both collapsed (10 Å) and expanded (13.2 Å) basal spacing. Collapsed interlayers were expected, but larger spacing was not; it was uncertain whether larger basal spacing would collapse on prolonged exposure to warmer conditions inside CheMin. Observation over several hundred sols showed no collapse, with the conclusion that expanded interlayer spacing was due to partial intercalation by metal-hydroxyl groups that resist dehydration. More recently, a sample of the Murray Formation, Oudam, provided XRD detection of abundant gypsum and a chance to observe gypsum stability. Laboratory work suggests gypsum is stable at Mars surface conditions, and indeed gypsum has been observed from orbit at higher latitudes and in thick veins at Yellowknife Bay by Mastcam reflectance spectra, although LIBS by ChemCam indicates that bassanite predominates in Ca-sulfate veins. Laboratory experiments show that on dehydration gypsum does not become X-ray amorphous but rather transforms to water-deficient bassanite. Over a period of 37 sols, it was observed that the Oudam sample in CheMin transformed from an assemblage of gypsum+anhydrite, to gypsum+bassanite+anhydrite, and finally to bassanite+anhydrite. Mg-sulfates were also anticipated but have not been observed in CheMin despite chemical evidence for their

  20. Performing Mineral Hydration Experiments in the CheMin Diffractometer on Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Yen, A. S.; Rampe, E. B.; Blake, D. F.; Chipera, S. J.; Morookian, J. M.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Geller, R.; Morrison, S. M.; Grotzinger, J. P.; Archilles, C. N.; Downs, R. T.; Rapin, W.; Rice, M.; Bell, J. F., III; Sarrazin, P.; Farmer, J. D.

    2016-01-01

    Laboratory work is the cornerstone of experimental planetary geochemistry, mineralogy, and petrology, but much is to be gained by "experiments" while on a planet surface. Earth-bound experiments are often limited in ability to control multiple conditions relevant to planetary bodies (e.g. cycles in temperature and vapor pressure of water), but observations on-planet provide a unique opportunity where conditions are native to the planet and those affected by sampling and analysis can be constrained. The CheMin XRD instrument on Mars Science Laboratory has been able to test mineral hydration in samples held for up to 300 Mars days (sols). Clay minerals sampled at Yellowknife Bay early in the mission had both collapsed (10 Å) and expanded (13.2 Å) basal spacing. Collapsed interlayers were expected, but larger spacing was not; it was uncertain whether larger basal spacing would collapse on prolonged exposure to warmer conditions inside CheMin. Observation over several hundred sols showed no collapse, with the conclusion that expanded interlayer spacing was due to partial intercalation by metal-hydroxyl groups that resist dehydration. More recently, a sample of the Murray Formation, Oudam, provided the first XRD detection of gypsum and a chance to observe gypsum stability. Laboratory work suggests gypsum should be stable at Mars surface conditions, and indeed gypsum has been observed from orbit at higher latitudes and in thick veins at Yellowknife Bay by Mastcam reflectance spectra. Laboratory experiments have shown that on dehydration the gypsum would not become X-ray amorphous but would rather transform to a water-deficient bassanite structure. Over a period of 37 sols, it was observed that the Oudam sample in CheMin transformed from an assemblage of gypsum+anhydrite, to gypsum+bassanite+anhydrite, and finally to bassanite+anhydrite. Mg-sulfates were also anticipated but have not been observed in CheMin despite chemical evidence for their presence. Unlike gypsum

  1. Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272

  2. Buckskin Drill Hole and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271

  3. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  4. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  5. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  6. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; DesMarais, D. J.; Downs, R. T.; Farmer, J. D.; Morookian, J. M.; Morrison, S. M.; Sarrazin, P.; Spanovich, N.; Stolper, E. M.; Treiman, A. H.; Vaniman, D. T.; Yen, A. S.

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in

  7. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  8. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  9. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    SciTech Connect

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  10. Mineralogical In-Situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernández-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-03-01

    The CheMin 4 XRD/XRF prototype was deployed in Rio Tinto, Spain, for a field campaign to study river bed sediments and test the potential of an instrument suite in an astrobiological investigation context for future Mars surface robotic missions.

  11. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  12. Global well-posedness for the Fokker-Planck-Boltzmann equation in Besov-Chemin-Lerner type spaces

    NASA Astrophysics Data System (ADS)

    Liu, Zhengrong; Tang, Hao

    2016-06-01

    In this paper, motivated by [16], we use the Littlewood-Paley theory to establish some estimates on the nonlinear collision term, which enable us to investigate the Cauchy problem of the Fokker-Planck-Boltzmann equation. When the initial data is a small perturbation of the Maxwellian equilibrium state, under the Grad's angular cutoff assumption, the unique global solution for the hard potential case is obtained in the Besov-Chemin-Lerner type spaces C ([ 0 , ∞) ; L˜ξ 2 (B2,rs)) with 1 ≤ r ≤ 2 and s > 3 / 2 or s = 3 / 2 and r = 1. Besides, we also obtain the uniform stability of the dependence on the initial data.

  13. Definitive Mineralogical Analysis of Martian Rocks and Soil Using the CheMin XRD/XRF Instrument and the USDC Sampler

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Bar-Cohen, Y.; Sherrit, S.; Collins, S.; Boyer, B.; Bryson, C.

    2003-01-01

    The search for evidence of extant or extinct life on Mars will initially be a search for evidence of present or past conditions supportive of life (e.g., evidence of water), not for life itself. Definitive evidence of past or present water activity lies in the discovery of: * Hydrated minerals: The "rock type" hosting the hydrated minerals could be igneous, metamorphic, or sedimentary, with only a minor hydrated mineral phase. Therefore, the identification of minor phases is important. * Clastic sediments: Clastic sediments are commonly identified by the fact that they contain minerals of disparate origin that could only have come together as a mechanical mixture. Therefore, the identification of all minerals present in a mixture to ascertain mineralogical source regions is important. * Hydrothermal precipitates and chemical sediments: Some chemical precipitates are uniquely identified only by their structure. For example, Opal A, Opal CT, tridymite, crystobalite, high and low Quartz all have the same composition (SiO2) but different crystal structures indicative of different environments - from hydrothermal hydrothermal formation to low temperature precipitation. Other silica types such as stishovite can provide evidence of shock metamorphism. Therefore, identification of crystal structures and structural polymorphs is important. The elucidation of the nature of the Mars soil will require the identification of mineral components that can unravel its history and the history of the Mars atmosphere.

  14. Field Study of Mars Analog Materials in Spitsbergen (Norway) Using a Portable X-ray Diffraction Instrument

    NASA Astrophysics Data System (ADS)

    Sarrazin, P. C.; Brunner, W.; Blake, D. F.; Steele, A.; Midtkandal, I.; Amundsen, H.

    2007-12-01

    NASA's Mars Science Laboratory (MSL) is the next major landed Mars mission scheduled for Launch in 2009. MSL is primarily a geological mission intended to assess if past environments on Mars could have supported life. An X-ray diffraction instrument called CheMin is part of the MSL rover science payload. CheMin was developed and is managed by NASA Ames Research Center and the flight system is currently being built at JPL. A miniature portable instrument was developed for NASA ARC by inXitu, Inc. (California) to support the CheMin Science Team with a tool that can easily be deployed on terrestrial Mars analog terrains. The instrument will be used to practice with field mineralogical analysis in preparation for the operational phase of the mission. The instrument is called mini-CheMin for its reduced size (45x32x12cm) and weight (14.5kg) compared to previous CheMin prototypes. Mini-CheMin was deployed in Spitsbergen in August 2007 as part of the science payload of the Arctic Mars Analog Svalbard Expedition (AMASE). The instrument was used for a variety of field tests, including two rover operation simulations. XRD data of sufficient quality for mineral identification and semi-quantitative analysis could be obtained in as little as a few minutes. XRF data, through limited in energy range to 3 - 8 keV, was very useful in restricting the search space for mineral identification with complex samples. In one of the deployment sites, a carbonate rich hot spring, a sample collected and analyzed in situ was found to be composed of mainly calcite with a minor amount of monohydrocalcite. Samples collected from this site and later analyzed with mini-CheMin onboard the expedition ship did not show any monohydrocalcite, the phase having been dehydrated to calcite by conventional laboratory sample preparation methods. This illustrates the benefit of in situ field mineralogical analysis for which samples can be analyzed in their pristine mineralogical makeup.

  15. Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C. N.

    2012-01-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C

  16. Investigations using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C.

    2012-12-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Mössbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fe-phyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 °C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 °C) and

  17. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  18. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  19. A Miniature Mineralogical Instrument for In-Situ Characterization of Ices and Hydrous Minerals at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Bish, D.; Chipera, S.; Collins, S. A.

    2002-01-01

    Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and

  20. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    PubMed Central

    Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; Rampe, Elizabeth B.; Downs, Robert T.; Filiberto, Justin; Glazner, Allen F.; Gellert, Ralf; Thompson, Lucy M.; Schmidt, Mariek E.; Le Deit, Laetitia; Wiens, Roger C.; McAdam, Amy C.; Achilles, Cherie N.; Edgett, Kenneth S.; Farmer, Jack D.; Fendrich, Kim V.; Grotzinger, John P.; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E.; Rice, Melissa S.; Spray, John G.; Stolper, Edward M.; Sumner, Dawn Y.; Vasavada, Ashwin R.; Yen, Albert S.

    2016-01-01

    Abstract The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X‐ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X‐ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser‐Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K‐rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K‐rich sediment component is consistent with APXS and ChemCam observations of K‐rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar‐age terranes on Earth. PMID:27134806

  1. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater).

    PubMed

    Treiman, Allan H; Bish, David L; Vaniman, David T; Chipera, Steve J; Blake, David F; Ming, Doug W; Morris, Richard V; Bristow, Thomas F; Morrison, Shaunna M; Baker, Michael B; Rampe, Elizabeth B; Downs, Robert T; Filiberto, Justin; Glazner, Allen F; Gellert, Ralf; Thompson, Lucy M; Schmidt, Mariek E; Le Deit, Laetitia; Wiens, Roger C; McAdam, Amy C; Achilles, Cherie N; Edgett, Kenneth S; Farmer, Jack D; Fendrich, Kim V; Grotzinger, John P; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E; Rice, Melissa S; Spray, John G; Stolper, Edward M; Sumner, Dawn Y; Vasavada, Ashwin R; Yen, Albert S

    2016-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  2. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; Rampe, Elizabeth B.; Downs, Robert T.; Filiberto, Justin; Glazner, Allen F.; Gellert, Ralf; Thompson, Lucy M.; Schmidt, Mariek E.; Le Deit, Laetitia; Wiens, Roger C.; McAdam, Amy C.; Achilles, Cherie N.; Edgett, Kenneth S.; Farmer, Jack D.; Fendrich, Kim V.; Grotzinger, John P.; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E.; Rice, Melissa S.; Spray, John G.; Stolper, Edward M.; Sumner, Dawn Y.; Vasavada, Ashwin R.; Yen, Albert S.

    2016-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  3. Measurement Instruments

    NASA Astrophysics Data System (ADS)

    1984-01-01

    International Technology Corporation (INTEC) manufactures a line of instruments used for determining the optical properties of materials used in solar energy applications. Some of INTEC's instruments are based on NASA technology, including the Willey Alpha Meter and McDonald Emissometer. The emissometer is a commercial version of a system developed by Lewis Research Center to test efficiency- increasing coatings on solar panels. These instruments are used by manufacturers of solar equipment, government, university and private laboratories.

  4. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  5. Cordless Instruments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  6. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  7. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  8. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  9. Crystallographic Instrumentation

    NASA Astrophysics Data System (ADS)

    Aslanov, L. A.; Fetisov, G. V.; Howard, J. A. K.

    1998-07-01

    Innovations in crystallographic instrumentation and the rapid development of methods of diffraction measurement have led to a vast improvement in our ability to determine crystal and molecular structure. This up-to-date resource will allow the reader to harness the potential of X-ray diffraction instruments. Different sources of X-radiation used in crystallography are introduced, including synchrotron radiation, as well as a systematic review of detectors for X-rays and basic instruments for single crystal and powder diffractometry. The principles of the diffraction experiment are discussed and related to their practical application with a comparative description of different scan procedures. Diffraction data collection and processing are also reviewed and methods for error correction are described. This book will provide a useful guide for researchers and students starting in this area of science, as well as skilled crystallographers.

  10. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  11. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  12. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  13. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  14. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  15. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  16. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  17. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  18. Minerologic and Petrologic Studies of Meteorites and Lunar Samples

    NASA Technical Reports Server (NTRS)

    Wood, John

    2000-01-01

    In the past year this group continued essentially full time research on extraterrestrial materials, and the question of the origin of the solar system. The continuing scientific staff consists of the P.I. and Visiting Scientist Michael Petaev. Vitae for Wood and Petaev appear in Sec. 6. We benefit from the part time services of a Project Administrator (Judith Terry) and a Secretary (Muazzez Lohmiller). In January 1999 the P.I. assumed the Chairmanship of COMPLEX, the Committee on Planetary and Lunar Exploration of the Space Studies Board, National Research Council. Wood and Petaev were authors or coauthors of 21 publications, new manuscripts, and abstracts in the last year. These are listed above, and referenced by number [n] in the discussion below. Other references to the literature made in this Section are listed in Sec. 3.

  19. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  20. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  1. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; hide

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  2. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  3. Low activated incore instrument

    DOEpatents

    Ekeroth, Douglas E.

    1994-01-01

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  4. Moon Mapper Looks Homeward

    NASA Image and Video Library

    2009-08-03

    NASA Moon Minerology Mapper, a guest instrument onboard the Indian Space Research Organization Chandrayaan-1 mission to the moon, looks homeward. Australia is visible in the lower center of the image.

  5. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  6. IOT Overview: IR Instruments

    NASA Astrophysics Data System (ADS)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  7. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  8. Portable direct reading instruments

    NASA Astrophysics Data System (ADS)

    Hermon-Cruz, Ivette Z.

    1991-09-01

    Direct reading instruments are those instruments in which the analysis of the contaminant is carried out within the instrument itself. When selecting equipment, the industrial hygienist must consider the physical characteristics of the instruments as well as their performance characteristics and price. Some of the methods of detection that are used in instruments with multi-gas detection capabilities are: photoionization, Flame ionization, infrared, gas chromatography, infrared photoacoustic, and electrochemical.

  9. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  10. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  11. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  12. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  13. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  14. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  15. Animation of MARDI Instrument

    NASA Image and Video Library

    2008-09-30

    This frame from an animation shows a zoom into the Mars Descent Imager MARDI instrument onboard NASA Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

  16. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  17. Instrumentation in arthroscopy.

    PubMed

    Gurvis, D E

    1987-10-01

    Successful operations result from the interplay of several factors. The artfulness and technical skill of the surgeon are paramount. The instruments are also important. Whereas in traditional surgery one instrument can often be substituted for another with equally good results, arthroscopic surgery offers no such luxury. The specialized instruments are the sine qua non of the procedure. An intimate knowledge of the instruments and their uses and abuses comes together in an arthroscopic procedure to produce the end result: a successfully completed arthroscopy.

  18. Aeronautic Instruments. Section VI : Oxygen Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, F L

    1923-01-01

    This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.

  19. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  20. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  1. Laparoscopic dissecting instruments.

    PubMed

    Park, A E; Mastrangelo, M J; Gandsas, A; Chu, U; Quick, N E

    2001-03-01

    The authors provide an overview of laparoscopic dissecting instruments and discuss early development, surgical options, and special features. End effectors of different shapes and functions are described. A comparison of available energy sources for laparoscopic instruments includes discussion of thermal dissection, ultrasonic dissection, and water-jet dissection. The ergonomic risks and challenges inherent in the use of current laparoscopic instruments are outlined, as well as ergonomic issues for the design of future instruments. New directions that laparoscopic instrumentation may take are considered in connection with developing technology in robotics, haptic feedback, and MicroElectroMechanical Systems.

  2. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  3. Seismic instrumentation of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet

    2000-01-01

    The purpose of this report is to provide information on how and why we deploy seismic instruments in and around building structures. The recorded response data from buildings and other instrumented structures can be and are being primarily used to facilitate necessary studies to improve building codes and therefore reduce losses of life and property during damaging earthquakes. Other uses of such data can be in emergency response situations in large urban environments. The report discusses typical instrumentation schemes, existing instrumentation programs, the steps generally followed in instrumenting a structure, selection and type of instruments, installation and maintenance requirements and data retrieval and processing issues. In addition, a summary section on how recorded response data have been utilized is included. The benefits from instrumentation of structural systems are discussed.

  4. Measurements on High-Silica Features using the Dynamic Albedo of Neutrons Instrument on the Mars Science Laboratory Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Gabriel, T. S. J.

    2016-12-01

    The Mars Science Laboratory (MSL) Curiosity rover has traversed over several plateaus of the Stimson formation, composed of mafic aeolian sandstones which overlie the Murray formation. These dark sedimentary rocks exhibit lighter colored fluid-alteration halo-forming features. Throughout the Naukluft Plateau region, these halo features are exposed at the surface, extend laterally for tens of meters and are about 1 meter wide. The halos were investigated extensively by Curiosity's geochemical instruments (APXS, Chemin, Chemcam and SAM). With respect to the host Stimson rocks, these fracture halos were found to be significantly enriched in silica and low in iron, among other geochemical variations. Hydrogen, chlorine, and iron have significant neutron microscopic scattering and absorption cross sections. Significant changes in the local abundances of these elements will change the timing and magnitude of the thermal and epithermal neutron count rates observed by the Dynamic Albedo of Neutrons (DAN) instrument. On Sols 1316 to 1329 we performed dedicated measurements on these features with Curiosity by orienting the rover such that DAN was directly over the fracture halos. These fracture halos were also investigated by Curiosity's other geochemical instruments, and co-located DAN measurements were acquired to help constrain abundances of these elements at decimeter-scale depths. Using the bulk geochemistry for both the altered and unaltered Stimson formation, we model a variety of hydrogen contents and burial depths for the altered and unaltered Stimson formation within the approximately 3 meter diameter DAN instrument field of view. Measurements of chemical abundances from both the Alpha Particle X-ray Spectrometer and the Sample Analysis at Mars instrument suite on targets "Lubango" and "Okoruso" provide necessary constraints on these models. Using simulations of neutron scattering we then outline the abundances of hydrogen, chlorine, and iron at depth at the

  5. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  6. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  7. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed. PMID:27413609

  8. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  9. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  10. Instrumentation in Earthquake Seismology

    NASA Astrophysics Data System (ADS)

    Havskov, Jens; Alguacil, Gerardo

    Here is unique and comprehensive coverage of modern seismic instrumentation, based on the authors' practical experience of a quarter-century in seismology and geophysics. Their goal is to provide not only detailed information on the basics of seismic instruments but also to survey equipment on the market, blending this with only the amount of theory needed to understand the basic principles. Seismologists and technicians working with seismological instruments will find here the answers to their practical problems.

  11. Aircrew Screening Instruments Review

    DTIC Science & Technology

    2007-09-01

    available tools . Several vendors indicated that they will have new selection instruments available within a few months. These are not listed. As noted...AFCAPS-FR-2011-0012 AIRCREW SCREENING INSTRUMENTS REVIEW Diane L. Damos Damos Aviation Services, Inc...June 2007 – August 2007 4. TITLE AND SUBTITLE Aircrew Screening Instruments Review 5a. CONTRACT NUMBER FA3089-06-F-0385 5b. GRANT NUMBER 5c

  12. Sterilization of Medical Instruments

    DTIC Science & Technology

    2007-05-06

    possible use with medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is developing an...Project: DARPA - Sterilization of Medical Instruments Contract: # FA9550-06-C-0054 Principal Investigator: Joseph Birmingham Report: FINAL Report 1...as medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is proposing a compact, low maintenance

  13. Alternative Policy Instruments

    DTIC Science & Technology

    1987-11-01

    CpRE CENTER FOR POLICY RESEARCH IN EDUCATION Alternative Policy o Instruments I Lorraine M. McDonnell Richard F. Elmore November 1987 DTICELECTE...03 Alternative Policy Instruments Lorraine M. McDonnell The RAND Corporation Richard F. Elmore Michigan State University November 1987 THRAND...range of policy instruments available or on the political and organizational conditions needed for each to work as intended. Policy decisions would

  14. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  15. Satellite oceanography - The instruments

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  16. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  17. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  18. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  19. JBI instrumentation services

    NASA Astrophysics Data System (ADS)

    Muccio, M.; Lopez, E.; McKeel, R.

    2005-05-01

    The Joint Battlespace Infosphere (JBI) is an information management infrastructure that provides a basic set of flexible core services: publish, subscribe, and query. Managed Information Objects (MIOs) are published by JBI clients and are subsequently managed and disseminated to other subscribing JBI Clients by the JBI Core Services. MIOs can also be archived into a repository managed by the JBI Core Services upon publication and can later be queried for by JBI Clients. A reference implementation (RI) of the JBI Core Services using Java 2 Enterprise Edition (J2EE) technology is currently being developed at the Air Force Research Laboratory Information Directorate (AFRL/IF) in Rome, NY. JBI Instrumentation Services will allow users to gain insight into what activity is occurring inside the JBI Core Services. The phase 1 Instrumentation Services implementation has been developed as a standalone system that interacts with the JBI Core Services through a set of interfaces that provide a low impact, multi-implementation compatible connection. The Instrumentation Services Architecture makes use of the Instrumentation Entity Model to create entities that describe the real elements of the JBI Core Services: platforms, connections, users, nodes, and sequences. These entities populate the Instrumentation Space and are accessed by clients through the Instrumentation Client API (ICAPI). A web-based client that makes use of this ICAPI has been developed to visualize instrumentation information and demonstrate the capabilities of the Instrumentation Services. This client utilizes numerical rate graphs and dynamic graph trees to visualize JBI activity. This paper describes the phase 1 Instrumentation Services Architecture and development efforts involved in creating the JBI Instrumentation Services and prototype instrumentation client.

  20. Topics in Chemical Instrumentation

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1975-01-01

    Identifies a trend in analytical chemistry toward greater use of instruments and a need for an understanding of the basic principles involved in instrumentation. This need can be fulfilled using homebuilt equipment; examples are provided in the areas of electrolytic conductance and electronic coulometry. (GS)

  1. Instrument for Curriculum Evaluation.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge; Benson, RoseAnn

    A comprehensive Instrument for Curriculum Evaluation (ICE) was developed to qualitatively and quantitatively evaluate curriculum materials. The instrument contains 115 statements for assessing 11 aspects of curriculum: philosophy, needs assessment, theme, goals, learning objectives and standards, scope and sequence, field testing, instructor…

  2. Instrumentation in endourology

    PubMed Central

    Khanna, Rakesh; Monga, Manoj

    2011-01-01

    Success with endourological procedures requires expertise and instrumentation. This review focuses on the instrumentation required for ureteroscopy and percutaneous nephrolithotomy, and provides a critical assessment of in vitro and clinical studies that have evaluated the comparative effectiveness of these medical devices. PMID:21904568

  3. Sterilization of endoscopic instruments.

    PubMed

    Sabnis, Ravindra B; Bhattu, Amit; Vijaykumar, Mohankumar

    2014-03-01

    Sterilization of endoscopic instruments is an important but often ignored topic. The purpose of this article is to review the current literature on the sterilization of endoscopic instruments and elaborate on the appropriate sterilization practices. Autoclaving is an economic and excellent method of sterilizing the instruments that are not heat sensitive. Heat sensitive instruments may get damaged with hot sterilization methods. Several new endoscopic instruments such as flexible ureteroscopes, chip on tip endoscopes, are added in urologists armamentarium. Many of these instruments are heat sensitive and hence alternative efficacious methods of sterilization are necessary. Although ethylene oxide and hydrogen peroxide are excellent methods of sterilization, they have some drawbacks. Gamma irradiation is mainly for disposable items. Various chemical agents are widely used even though they achieve high-level disinfection rather than sterilization. This article reviews various methods of endoscopic instrument sterilization with their advantages and drawbacks. If appropriate sterilization methods are adopted, then it not only will protect patients from procedure-related infections but prevent hypersensitive allergic reactions. It will also protect instruments from damage and increase its longevity.

  4. Contaminated dental instruments.

    PubMed

    Smith, A; Dickson, M; Aitken, J; Bagg, J

    2002-07-01

    There is current concern in the UK over the possible transmission of prions via contaminated surgical instruments. Some dental instruments (endodontic files) raise particular concerns by virtue of their intimate contact with terminal branches of the trigeminal nerve. A visual assessment using a dissecting light microscope and scanning electron microscopy of endodontic files after clinical use and subsequent decontamination was performed. The instruments examined were collected from general dental practices and from a dental hospital. Seventy-six per cent (22/29) of the files retrieved from general dental practices remained visibly contaminated, compared with 14% (5/37) from the dental hospital. Current methods for decontaminating endodontic instruments used in dentistry may be of an insufficient standard to completely remove biological material. Improved cleaning methods and the feasibility of single use endodontic instruments require further investigation.

  5. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  6. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  7. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  8. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  9. Wind instruments and headaches.

    PubMed

    Martínez-Lage, Juan F; Galarza, Marcelo; Pérez-Espejo, Miguel-Angel; López-Guerrero, Antonio L; Felipe-Murcia, Matías

    2013-03-01

    The authors illustrate the cases of two children with headaches, one diagnosed with Chiari type 1 malformation and the other with hydrocephalus, who played wind instruments. Both patients manifested that their headaches worsened with the efforts made during playing their musical instruments. We briefly comment on the probable role played by this activity on the patients' intracranial pressure and hypothesize that the headaches might be influenced by increases in their intracranial pressure related to Valsalva maneuvers. We had serious doubts on if we should advise our young patients about giving up playing their music instruments.

  10. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  11. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  12. Writing Instrument Profiles for Mastery of Instrumental Analysis

    ERIC Educational Resources Information Center

    King, Daniel; Fernandez, Jorge; Nalliah, Ruth

    2012-01-01

    Because of the rapidly changing nature of chemical instrumentation, students must be trained in how to learn and understand new instruments. Toward this end, students are asked to create small instrument manuals, or instrument profiles, for the major pieces of equipment studied during an instrumental analysis course. This writing-intensive process…

  13. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  14. Carbon Footprint Reduction Instruments

    EPA Pesticide Factsheets

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  15. Hetdex: Virus Instrument

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, G. J.; DePoy, D. L.; Tuttle, S.; Marshall, J. L.; Vattiat, B. L.; Prochaska, T.; Chonis, T. S.; Allen, R.; HETDEX Collaboration

    2012-01-01

    The Visible Integral-field-unit Replicable Unit Spectrograph (VIRUS) instrument is made up of 150+ individually compact and identical spectrographs, each fed by a fiber integral-field unit. The instrument provides integral field spectroscopy at wavelengths between 350nm and 550nm of over 33,600 spatial elements per observation, each 1.8 sq. arcsec on the sky, at R 700. The instrument will be fed by a new wide-field corrector (WFC) of the Hobby-Eberly Telescope (HET) with increased science field of view as large as 22arcmin diameter and telescope aperture of 10m. This will enable the HETDEX, a large area blind survey of Lyman-alpha emitting galaxies at redshift z < 3.5. The status of VIRUS instrument construction is summarized.

  16. NPP: The Five Instruments

    NASA Image and Video Library

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  17. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  18. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  19. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  20. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  1. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  2. IXO: The Instrument Complement

    NASA Astrophysics Data System (ADS)

    Nousek, John A.; IWG, IXO

    2009-01-01

    The International X-ray Observatory (IXO) has recently been created as a mission concept by a joint team of NASA, ESA and JAXA scientists, based on the previous Constellation-X and XEUS concepts. Definition of the IXO instruments is still under evolution, but the core instrument complement will include a Wide Field X-ray Imager, an X-ray Calorimeter / Narrow Field X-ray Imager, and an X-ray Grating Spectrometer. Other, modest additional instruments (such as a hard X-ray capability, a polarimeter, and a high time resolution detector) will also be considered. We present the current status of the IXO instrument complement and offer the opportunity for discussion of ideas relevant to the IXO mission concept process.

  3. Mars Observer instrument complement

    NASA Astrophysics Data System (ADS)

    Komro, Fred G.; Hujber, Frank N.

    1991-10-01

    The mechanical and electrical characteristics and the functional designs of the eight scientific instruments of the Mars Observer's instrument complex are described, and their respective principal investigators and sponsoring institutions are listed. These instruments include a gamma-ray spectrometer, a magnetometer/electron reflectometer, the Mars balloon relay, the Mars Observer camera, the Mars Observer laser altimeter, a pressure modulator infrared radiometer, a thermal emission spectrometer, and an ultrastable oscillator. With these instruments, the Mars Observer will be able to determine the elemental and mineralogical character of Martial surface material; to define globally the topography and the gravitational field; to establish the nature of the magnetic field; to determine the spatial and temporal distribution abundances, sources, and sinks of volatile material and dust over a seasonal cycle; and to explore the structure and circulation of Martian atmosphere.

  4. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  5. TES Instrument Operational Status

    Atmospheric Science Data Center

    2017-02-26

    ... UPDATE: (1/24/2017)  The TES instrument metrology laser end of life testing that resumed on January 11, 2017 provided a gradual increase in the laser diode current. This increase has resulted in the restoration of the ...

  6. Aeronautic Instruments. Section III : Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, Franklin L; Stearns, H O

    1923-01-01

    Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.

  7. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  8. Distributed System Instrumentation

    DTIC Science & Technology

    1989-10-01

    PARADISE is a distributed instrumentation system working on DISE under CRONUS and uses a variety of tools and an Integration Platform. 20. DISTRIBUTION...distributed instrumentation system working on DISE under CRONUS and uses a variety of tools and an Integration Platform. In choosing the design approach...careful feasibility study, and have been proven to be suitable (in te: ins of performance, intrusiveness and functionality) for CRONUS and the DISE

  9. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  10. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  11. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  12. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  13. The Nebraska Instrument Sharing Consortium.

    ERIC Educational Resources Information Center

    Smith, David H.

    1986-01-01

    The Nebraska Instrument Sharing Consortium (NISC) is a group of small colleges that have banded together to provide modern instrumentation to their students at an affordable price. Consortium activities are described, including how the instruments are moved between campuses. (JN)

  14. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  15. The AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart; Levine, Marie; Foote, Marc; Rodgers, Michael; Underhill, Michael; Marchen, Luis; Klein, Dan

    2013-09-01

    The Astrophysics Focused Telescope Assets (AFTA) study in 2012-2013 included a high-contrast stellar coronagraph to complement the wide-field infrared survey (WFIRST) instrument. The idea of flying a coronagraph on this telescope was met with some skepticism because the AFTA pupil has a large central obscuration with six secondary mirror struts that impact the coronagraph sensitivity. However, several promising coronagraph concepts have emerged, and a corresponding initial instrument design has been completed. Requirements on the design include observations centered 0.6 deg off-axis, on-orbit robotic serviceability, operation in a geosynchronous orbit, and room-temperature operation (driven by the coronagraph's deformable mirrors). We describe the instrument performance requirements, the optical design, an observational scenario, and integration times for typical detection and characterization observations.

  16. Aethalometer™ Instrument Handbook

    SciTech Connect

    Sedlacek, Arthur J

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  17. SPI instrumental background characteristics

    NASA Astrophysics Data System (ADS)

    Jean, P.; Vedrenne, G.; Roques, J. P.; Schönfelder, V.; Teegarden, B. J.; von Kienlin, A.; Knödlseder, J.; Wunderer, C.; Skinner, G. K.; Weidenspointner, G.; Attié, D.; Boggs, S.; Caraveo, P.; Cordier, B.; Diehl, R.; Gros, M.; Leleux, P.; Lichti, G. G.; Kalemci, E.; Kiener, J.; Lonjou, V.; Mandrou, P.; Paul, Ph.; Schanne, S.; von Ballmoos, P.

    2003-11-01

    In its space environment the INTEGRAL observatory is subject to an intense irradiation by energetic cosmic-ray particles that leads, via nuclear interactions with the telescope and spacecraft materials, to an important background of false events. In this paper we present the characteristics of the instrumental background that is observed in the spectrometer SPI (SPectrometer of INTEGRAL). We explain the tuning that has been performed on the parameters of the anticoincidence system in order to optimise the telescope sensitivity over the full energy range. Temporal variations of the instrumental background are discussed and methods are proposed that allow for their modelling in first order. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  18. Micro mushroom instrumentation system

    NASA Astrophysics Data System (ADS)

    Davidson, W. F.

    1986-01-01

    An electronics circuit which provides for the recording of instrumentation data on an optical disk is disclosed. The optical disk is formatted in a spiral format instead of concentric tracks. The spiral format allows data to be recorded without the gaps that would be associated with concentric tracks. The instrumentation system provides each channel with a program instrumentation amplifier, a six pole lowpass switched capacitor filter, a sample and hold amplifier, and a digital to analog converter to provide automatic offset capability. Since each channel has its own components, simultaneous samples of every channel can be captured. All of the input signal's channel variables can be captured. All of the input signal's channel variables can be changed under software control without hardware changes. A single board computer is used for a system controller.

  19. Instrumentation at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Kleinman, S. J.; Boccas, Maxime; Goodsell, Stephen J.; Gomez, Percy; Murowinski, Rick; Chené, André-Nicolas; Henderson, David

    2014-07-01

    Gemini South's instrument suite has been completely transformed since our last biennial update. We commissioned the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and its associated Gemini South Adaptive Optics Imager (GSAOI) as well as Flamingos-2, our long-slit and multi-object infrared imager and spectrograph, and the Gemini Planet Imager (GPI). We upgraded the CCDs in GMOS-S, our multi-object optical imager and spectrograph, with the GMOS-N CCD upgrade scheduled for 2015. Our next instrument, the Gemini High-resolution Optical SpecTrograph (GHOST) is in its preliminary design stage and we are making plans for the instrument to follow:Gen4#3.

  20. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  1. Lightning Instrumentation at KSC

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.; Eng, D.

    2003-01-01

    This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.

  2. Instrumentation Cables Test Plan

    SciTech Connect

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  3. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  4. Animation of MARDI Instrument

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    This animation shows a zoom into the Mars Descent Imager (MARDI) instrument onboard NASA's Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  6. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  7. Standard NIM Instrumentation System

    SciTech Connect

    Costrell, Louis; Lenkszus, Frank R.; Rudnick, Stanley J.; Davey, Eric; Gould, John; Rankowitz, Seymour; Sims, William P.; Whitney, R. Roy; Dobinson, Robert W.; Verweij, Henk; Latner, Norman; Negro, Vincent C.; Barsotti, Edward J.; Droege, Thomas E.; Kerns, Cordon; Turner, Kathleen J.; Downing, Robert W.; Kirsten, Frederick A.; Larsh, A. E.; Loken, Stewart C.; Mack, Dick A.; Wagner, Lee J.; Lucena, Robert C.; O'Brien, Dennis W.; Gjovig, Allan; Naivar, Frank; Nelson, Ronald O.; White, D. Hywell; Akerlof, Carl; Stilwell, Donald E.; Trainor, James H.; Gobbi, Bruno; Biggerstaff, John A.; Hill, Nat W.; Schulze, Gerald K.; Gustavson, David B.; Horelick, Dale; Kunz, Paul F.; Paffrath, Leo; Walz, Helmut V.; Dawson, W. Kenneth; Cresswell, John; Dhawan, Satish; Gingell, Charles E. L.

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  8. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  9. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  10. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  11. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  12. Instrumentation Control Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 22 units to consider for use in a tech prep competency profile for the occupation of instrumentation control technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  13. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  14. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  15. Instrument Measures Ocular Counterrolling

    NASA Technical Reports Server (NTRS)

    Levitan, Barry M.; Reschke, Millard F.; Spector, Lawrence N.

    1991-01-01

    Compact, battery-powered, noninvasive unit replaces several pieces of equipment and operator. Instrument that looks like pair of goggles with small extension box measures ocular counterrotation. Called "otolith tilt-translation reinterpretation" (OTTR) goggles, used in studies of space motion sickness. Also adapted to use on Earth and determine extent of impairment in patients who have impaired otolith functions.

  16. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  17. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  18. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  19. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  20. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  1. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  2. Integrating Nephelometer Instrument Handbook

    SciTech Connect

    Uin, J.

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  3. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  4. Experimenting with Woodwind Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

  5. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  6. The GLO Instrument

    NASA Astrophysics Data System (ADS)

    Gordley, L.; Marshall, B. T.; McHugh, M. J.; Hervig, M. E.; Paxton, G. J.; Fish, C. S.; Bailey, S. M.; Marchant, A.

    2011-12-01

    Advanced solar occultation sensors, miniature in size and complexity, are now possible with modern space-qualified components and measurement techniques. This poster describes the GLO (Gfcr Limb Occultation) instrument, a static sensor with cubesat dimensions that performs solar occultation measurements using a combination of broadband and gas filter correlation channels. GLO can be applied to measure temperature, pressure, aerosol, and trace gases from cloud-top to the lower thermosphere. Though GLO has a broad range of applicability, for this poster we present a version of GLO designed for the UTLS. A feasibility study for such an instrument demonstrates unprecedented fidelity in retrieved profiles, with sub kilometer vertical resolution, of temperature, pressure, aerosol extinction from 0.4 to 4 microns and trace gases that are key to understanding UTLS exchange. Using a single 2D detector array to image the sun for all channels simultaneously, a 10 x 10 x 20 cm instrument is shown to provide UTLS profile measurements of geophysical parameters that are predicted to match or surpass the quality of such profiles from previous limb sensors. A suite of GLO instruments in different orbits can be used to provide global coverage that rivals limb emission sensors, but with occultation measurement capabilities in calibration, precision and accuracy.

  7. Instrumentation Control Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 22 units to consider for use in a tech prep competency profile for the occupation of instrumentation control technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  8. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  9. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  10. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  11. Designing Intelligent Instruments

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.; Erner, Philip M.; Frasso, Scott

    2007-11-01

    Remote science operations require automated systems that can both act and react with minimal human intervention. One such vision is that of an intelligent instrument that collects data in an automated fashion, and based on what it learns, decides which new measurements to take. This innovation implements experimental design and unites it with data analysis in such a way that it completes the cycle of learning. This cycle is the basis of the Scientific Method. The three basic steps of this cycle are hypothesis generation, inquiry, and inference. Hypothesis generation is implemented by artificially supplying the instrument with a parameterized set of possible hypotheses that might be used to describe the physical system. The act of inquiry is handled by an inquiry engine that relies on Bayesian adaptive exploration where the optimal experiment is chosen as the one which maximizes the expected information gain. The inference engine is implemented using the nested sampling algorithm, which provides the inquiry engine with a set of posterior samples from which the expected information gain can be estimated. With these computational structures in place, the instrument will refine its hypotheses, and repeat the learning cycle by taking measurements until the system under study is described within a pre-specified tolerance. We will demonstrate our first attempts toward achieving this goal with an intelligent instrument constructed using the LEGO MINDSTORMS NXT robotics platform.

  12. Ozone monitoring instrument (OMI)

    NASA Astrophysics Data System (ADS)

    de Vries, Johan; van den Oord, Gijsbertus H. J.; Hilsenrath, Ernest; te Plate, Maurice B.; Levelt, Pieternel F.; Dirksen, Ruud

    2002-01-01

    The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASA's EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.

  13. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  14. UC Merced NMR Instrumentation Acquisition

    DTIC Science & Technology

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR ...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500...MHz NMR have been delivered, installed, and incorporated into research and two lab courses. While no results from these instruments have been

  15. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  16. Developments in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  17. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  18. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  19. Instrument techniques for rheometry

    NASA Astrophysics Data System (ADS)

    Hou, Ying Y.; Kassim, Hamida O.

    2005-10-01

    This article presents a review of some latest advances in rheology measuring techniques. Consideration is given to the modification and approaches in conventional measuring techniques and also to the development of specialty instruments. A number of sensing technologies such as nuclear-magnetic-resonance imaging and ultrasonic pulse Doppler mapping have recently been adopted to produce viscoelastic measurements for both Newtonian and non-Newtonian materials. The working principles of these technologies and their applications are described. Other recent developments in modifications of conventional rheometers for performance enhancement and for complex material characterizations have been thoroughly discussed. Some instrument designs and their special applications, such as interfacial rheometers, extensional rheometers, and high-pressure rheometers, have also been evaluated in detail.

  20. THE ARCADE 2 INSTRUMENT

    SciTech Connect

    Singal, J.; Fixsen, D. J.; Kogut, A.; Mirel, P.; Wollack, E.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Villela, T.; Wuensche, C. A.

    2011-04-01

    The second generation Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) instrument is a balloon-borne experiment to measure the radiometric temperature of the cosmic microwave background and Galactic and extragalactic emission at six frequencies from 3 to 90 GHz. ARCADE 2 utilizes a double-nulled design where emission from the sky is compared to that from an external cryogenic full-aperture blackbody calibrator by cryogenic switching radiometers containing internal blackbody reference loads. In order to further minimize sources of systematic error, ARCADE 2 features a cold fully open aperture with all radiometrically active components maintained at near 2.7 K without windows or other warm objects, achieved through a novel thermal design. We discuss the design and performance of the ARCADE 2 instrument in its 2005 and 2006 flights.

  1. Landsat's TIRS Instrument

    NASA Image and Video Library

    2017-09-26

    The Thermal Infrared Sensor (TIRS) will fly on the next Landsat satellite, the Landsat Data Continuity Mission (LDCM). The right side of the instrument is what's called the 'nadir side,' that's the side that points toward Earth when the instrument is in space. The black circle visible on the right side is where the optics for the instrument are located. In that area are the lens and the detectors. The white area is a radiator that radiates heat to keep the telescope and the detector cool. The black hole on the white area on the left is what the satellite operators point to deep space when they calibrate the instrument to the cold temperatures of space. TIRS was built on an accelerated schedule at NASA's Goddard Space Flight Center, Greenbelt, Md. and will now be integrated into the LDCM spacecraft at Orbital Science Corp. in Gilbert, Ariz. The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all. For more information on Landsat, visit: 
www.nasa.gov/landsat Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  3. Instrumentation: endoscopes and equipment.

    PubMed

    Gaab, Michael R

    2013-02-01

    The technology and instrumentation for neuroendoscopy are described: endoscopes (principles, designs, applications), light sources, instruments, accessories, holders, and navigation. Procedures for cleaning, sterilizing, and storing are included. The description is based on the author's own technical development and neuroendoscopic experience, published technology and devices, and publications on endoscopic surgery. The main work horses in neuroendoscopy are rigid glass rod endoscopes (Hopkins optics) due to the optical quality, which allows full high-definition video imaging, different angles of view, and autoclavability, which is especially important in neuroendoscopy due to the risk of Creutzfeldt-Jakob disease infection. Applications are endoscopy assistance to microsurgery, stand-alone endoscopy controlled approaches such as transnasal skull base, ventriculoscopy, and cystoscopy in the cranium. Rigid glass rod optics are also applicable in spinal endoscopy and peripheral nerve decompression using special tubes and cannulas. Rigid minifiberoptics with less resolution may be used in less complex procedures (ventriculoscopy, cystoscopy, endoscopy assistance with pen-designs) and have the advantages of smaller diameters and disposable designs. Flexible fiberoptics are usually used in combination with rigid scopes and can be steered, e.g. through the ventricles, in spinal procedures for indications including syringomyelia and multicystic hydrocephalus. Upcoming flexible chip endoscopes ("chip-in-the-tip") may replace flexible fiberoptics in the future, offering higher resolution and cold LED-illumination, and may provide for stereoscopic neuroendoscopy. Various instruments (mechanical, coagulation, laser guides, ultrasonic aspirators) and holders are available. Certified methods for cleaning and sterilization, with special requirements in neuroapplications, are important. Neuroendoscopic instrumentation is now an established technique in neurosurgical practice and

  4. Instrumented Architectural Simulation

    DTIC Science & Technology

    1987-11-01

    architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs...attribute of the underlying Lisp base of the simulation system that changes in these definitions have immediate effect even during a simulation run...methods for a component, the concerns surrounding component design are effectively partitioned from component instrumentation. Panels are put together

  5. Computers in Scientific Instrumentation.

    DTIC Science & Technology

    1982-01-13

    The CPU bus Attachment. In the first applications or d 4ata are connected to the central ues parallel digital lines for data an computers to...simple function se- Mg on ae results of its previous opera- designing instruments that can provide hotios by being directly labeled for the ties. In...that the signal from the sensor is with an operating system is powerful , that might be found in appropriately pro- interpretable to give the sought- for

  6. Instrument Talk : HARPS

    NASA Astrophysics Data System (ADS)

    Lo Curto, Gaspare

    2017-09-01

    " The HARPS spectrograph will be briefly described and its quest for high precision radial velocity measurements (RV) will be outlined. In particular various RV systematics and our experience from the operational point of view will be discussed. Various upgrades were performed to address these systematics and to improve the instrument precision, and their main results will be shown. A "forward look" of HARPS in the 2020s will be attempted."

  7. Control Structure Interaction Instrumentation

    DTIC Science & Technology

    1990-03-01

    Univesity of New York AFOSR/NA 8c. ADDRESS (City. State and ZIP Codej 7b. ADORESS.(City. State and ZIP Code) ’ . P.O. Box 9 AFOSR/NA, Bldg. 410 .’ . Albany...Center for Control Sciences at Brown Univesity through the AFOSR University Research Initiative Program. 20. OISTRISUTION/AVAILABILITY OF ABSTRA . T...time implementation by parallel processing. Several other associated instrumentation devices were also purchased including a digital oscilloscope, a 386

  8. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  9. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  10. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  11. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  12. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  13. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  14. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  15. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  16. SOFIE instrument ground calibration

    NASA Astrophysics Data System (ADS)

    Hansen, Scott; Fish, Chad; Romrell, Devin; Gordley, Larry; Hervig, Mark

    2006-08-01

    Space Dynamics Laboratory (SDL), in partnership with GATS, Inc., designed and built an instrument to conduct the Solar Occultation for Ice Experiment (SOFIE). SOFIE is the primary infrared sensor in the NASA Aeronomy of Ice in the Mesosphere (AIM) instrument suite. AIM's mission is to study polar mesospheric clouds (PMCs). SOFIE will make measurements in 16 separate spectral bands, arranged in eight pairs between 0.29 and 5.3 μm. Each band pair will provide differential absorption limb-path transmission profiles for an atmospheric component of interest, by observing the sun through the limb of the atmosphere during solar occultation as AIM orbits Earth. A pointing mirror and imaging sun sensor coaligned with the detectors are used to track the sun during occultation events and maintain stable alignment of the sun on the detectors. Ground calibration experiments were performed to measure SOFIE end-to-end relative spectral response, nonlinearity, and spatial characteristics. SDL's multifunction infrared calibrator #1 (MIC1) was used to present sources to the instrument for calibration. Relative spectral response (RSR) measurements were performed using a step-scan Fourier transform spectrometer (FTS). Out-of-band RSR was measured to approximately 0.01% of in-band peak response using the cascaded filter Fourier transform spectrometer (CFFTS) method. Linearity calibration was performed using a calcium fluoride attenuator in combination with a 3000K blackbody. Spatial characterization was accomplished using a point source and the MIC1 pointing mirror. SOFIE sun sensor tracking algorithms were verified using a heliostat and relay mirrors to observe the sun from the ground. These techniques are described in detail, and resulting SOFIE performance parameters are presented.

  17. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  18. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  19. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  20. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  1. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs.

  2. Beam Instrument Development System

    SciTech Connect

    DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG; SERRANO, CARLOS

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  3. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail.

  4. Introduction to PET instrumentation.

    PubMed

    Turkington, T G

    2001-03-01

    The purpose of this paper is to introduce technologists to the basic principles of PET imaging and to the instrumentation used to acquire PET data. PET imaging is currently being done on a variety of imaging system types, and the technologist will be introduced to these systems and learn about the basic physical image-degrading factors in PET. After reading this article, the technologist should be able to describe the basics of coincidence imaging, identify at least 3 physical degrading factors in PET, and describe 2 different types of PET scanning systems.

  5. Ultrasonic Vitrectomy Instrument

    NASA Astrophysics Data System (ADS)

    Wuchinich, D.

    Contemporary vitrectomy devices utilize an air driven stylus reciprocating within a sheath at a sonic frequency, guillotining and then aspirating the vitreous gel admitted through a distal port in the side of the sheath. A small handheld ultrasonic instrument (Banko 1971) operating at 50 kHz, utilizing a solid titanium stylus, within a 20 needle gauge sheath, vibrating at an excursion between 150 and 200 microns, has been developed to precisely and rapidly liquefy and aspirate, at 360 mmHg vacuum, vitreous humor from bovine eyes.

  6. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  7. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  8. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  9. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  10. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  11. Electronic Instruments -- Played or Used?

    ERIC Educational Resources Information Center

    Ulveland, Randall Dana

    1998-01-01

    Compares the experience of playing an acoustic instrument to an electronic instrument by analyzing the constant structures and relationships between the experiences. Concludes that students' understanding of the physical experience of making music increases when experiences with acoustic instruments precede their exposure to electronic…

  12. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  13. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  14. Mallet Instruments Challenge Beginning Percussionists.

    ERIC Educational Resources Information Center

    Grumley, Fred

    1983-01-01

    Orff mallet instruments should be used in beginning band classes. Adding mallet instruments would expand a beginner's concept of percussion instruments. Just as important, the percussion section would provide a solid melodic and harmonic foundation to assist beginning wind instrumentalists with their insecurities about pitch. (RM)

  15. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  16. Space science instrumentation

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    1989-03-01

    This grant was intended to be used for the purchase of high quality laboratory and data analysis instrumentation for the pursuit of space plasma physics research. Two of the first purchases were a 6250 BPI magnetic tape drive and a large, fast disk drive. These improved the satellite data analysis capability greatly and reduced the system backup time. With the big disk drive it became possible to dump entire magnetic tapes to disk for faster, more efficient processing. Several microcomputers improve both personnel computing as well as general connectivity within the group and on campus in general. Other microcomputers function in the laboratory setting by acting as hosts for several instrument interfaces for communication with satellite and balloon payloads as well as laboratory VLF signal processing equipment. Perhaps the single most expensive item purchased was an analog tape drive for reading and writing 16 in. analog magnetic tapes. This analog tape drive is used for the direct processing of FM and directly recorded telemetry data from the balloon and rocket payloads.

  17. Instrumentation for Submillimeter Polarimetry

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Novak, G.

    1984-01-01

    During the last two years three instruments were built and operated for detection of polarization in the submillimeter to millimeter wavelength bands. In principle, simply rotating a polarizing grid in front of the detector would be sufficient to determine the state of linear polarization. In practice severe systematic problems are found with this approach. Everything in the light path has potential for inducing polarization. The telescope, apertures in the lightpath, and the Winston light collectors all introduce systematic errors. (The polarization/depolarization induced by these devices is due to diffraction and the finite conductivity of the metals used). Two of the polarimeters are for use on the KAO; the third is for the IRTF on Mauna Kea. The airplane polarimeters, M1 and M2, were specifically designed to minimize the systematic errors. The ground based polarimeter uses our f/35 photometer with an external polarizing grid as the analyzer. With all three instruments the key to success is the data collector and analysis scheme.

  18. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  19. Optomechanical medical devices (instruments)

    NASA Astrophysics Data System (ADS)

    Reiss, Roger S.

    2004-03-01

    Optomechanical Medical Devices (Instruments) use lightwaves (UV, Visible, IR) for one or more of the following functions; to observe, to measure, to record, to test (align) and or to cut/repair. The evolution of Optomechanical Medical Devices probably started when the first torch or candle or petrochemical lamp used a polished reflector (possibly with a concave configuration) to examine a part of a patient's body (possibly a wound).Once the glass lens was invented, light sources of any type could be forcussed to increase illuminating power on a selected area. Medical Devices have come a great distance since these early items. Skipping across time to three rather significant inventions and advancements, we are well into the era of Laser and Fiber Optics and Advanced Photodetectors, all being integrated into Medical Devices. The most notable fields have been Ophthalmology, Dermatology, and Surgery. All three fields have been able to incorporate both the use of the Laser and the use of Fiber Optics (and at times the use of Photodetectors), into a single device (instrument). Historical: Philipp Bozzini (a Doctor, maybe) in the early 1800's used a hollow tube (tube material not identified) to project the light of a candle through the tube to view a patient's 'what ever'. Only Philipp, the patient and G-d knows what was being viewed. This ws the first recorded information on what could be considered the very first 'Endoscope examination'

  20. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  1. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  2. Far ultraviolet instrument technology

    NASA Astrophysics Data System (ADS)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  3. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  4. Micro-topography, rock surface modelling and minerology of notches in Mount Carmel

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit

    2016-04-01

    Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface normals. The computation of the indicator function is reduced to (2) finding a scalar function whose gradients best match the vector field. Point cloud input gives enough information for the approximation of the surface integral with discrete summation. A set of points used for the portioning of the whole scene into distinct patches and also for the surface integral scaled by the patch's area. (3) Extracting the appropriate iso-surface. The roughness spatial variation was calculated according to: 1) removal of the regional slope effect is a pre-step for the surface roughness indices calculation (regression surface is reduced from the original iso-surface model to produce residuals features, surface roughness, from which it possible to calculate the variogram of the residuals), 2) Semivariogram is used to determine the optimal window size for image texture analysis. Mineral composition and structure of the different patches and components define its solubility implying thus upon the micro-morphological differences. Spectral measurements taken in the field and in the lab will be constructed to spectral libraries representing the notch's visor, cavity and floor. The VIS-NIR, SWIR and MIR reflectance data measured by the different types of spectrometers will not be mixed for future evaluation of mineral identification. The constructed spectral libraries was analyzed and processed for the characterization of spectral features of samples. The spectral features were compared with various well characterized resampled mineral spectral libraries for identification of the forming minerals. The mineral composition is defined by spectroscopy and used to capture the areas corresponding to different patterns of micro roughness along the notch's surface. The suggested roughness and 3D surface reconstruction employ real data acquired by the Terrestrial Light and Range Detection (t-LiDAR) scanner. The project stresses an interdisciplinary approach to map the mineral variations along the notch's different components corresponding to the roughness surface changes.

  5. Changes in Soil Minerology Reduce Phosphorus Mobility During Anoxic Soil Conditions

    NASA Astrophysics Data System (ADS)

    Giri, S. K.; Geohring, L. D.; Richards, B. K.; Walter, M.; Steenhuis, T. S.

    2008-05-01

    Phosphorus (P) transfer from the landscape to receiving waters is an important environmental concern because these diffuse losses may cause widespread water quality impairments which can accelerate freshwater eutrophication. Phosphorus (P) mobilization from soil to surface and subsurface flow paths is controlled by numerous factors, and thus it can vary greatly with time and landscape scale. To determine whether P mobilization during soil saturation in the landscape was caused or controlled by complexation, iron reduction or ligand exchange, experiments were carried out to better characterize the interrelationships of varying P sources with dissolved organic carbon (DOC) and soil anoxic conditions. The soil incubation experiments consisted of treatments with distilled water, 5 mM acetic acid (HAc), 0.05% humic acid (HA) and glucose (40 mM) at 26 o C under anaerobic conditions to isolate effects of the various P exchange processes. The experimental results suggest that during soil saturation, the loosely bound P, which is primarily associated with iron oxyhydroxides, was mobilized by both reduction and complexation processes. Good correlations were observed between ferrous iron (Fe+2) and DOC, and between total dissolved phosphorus (TDP) and DOC, facilitating P desorption to the soil water. The anaerobic soil conditions with different P sources also indicated that mineralization facilitated P mobility, mainly due to chelation (humics and metabolites) and as a result of the bio-reduction of iron when fresh litter and grass were present. The organic P sources which are rich in carbohydrate and cellulose and that undergo fermentation due to the action of lactate forming organisms also caused a release of P. The easily metabolizable DOC sources lead to intensive bio-reduction of soil with the release of Fe, however this did not necessarily appear to cause more TDP in the soil solution. The varying P additions in soils with water, HAc and glucose (40mm) before and after soil incubation showed higher P sorption than aerobic soil due to reduced iron (Fe+2) - P mineral formation. Some of the readily available P in the soil solution tended to co-precipitate quickly with Fe, Al, Ca, and Mn, but it also resulted in the formation of earthy masses of vivianite [Fe2+3(PO4)2 . 8 H20], thus almost completely immobilizing P. These findings suggest that where conditions in the landscape are saturated, but remain stagnant for extended time periods, P additions may not necessarily enhance leaching once hydrological transport resumes. The temporal nature of P mobilization processes combined with rapid (i.e., preferential flow) hydrological transport appears to have a more important role in controlling P transport through the landscape.

  6. Minerology and Crystallography of Some Itokawa Particles Returned by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Komatsu, M.; Hagiya, K.; Ohsumi, K.; Zolensky, M.; Hoffmann, V.; Martinez, J.; Hochleitner, R.; Kaliwoda, M.; Terada, Y.; hide

    2014-01-01

    JAXA Hayabusa mission success-fully returned particles of the asteroid Itokawa to the earth in 2010. The recovered particles were carefully studied by the preliminary examination (PE) team and the obtained results are providing significant and unique information about the formation and evolution of meteorite parent bodies [1-6]. These particles further revealed that their mineral compositions and oxygen isotopes are close to those of equilibrated LL chon-drites [1,2], which matches with the observation at the orbit [7]. After the PE, JAXA distributed the samples as international AO study and we received 4 new and 3 PE particles. The new samples may contain some exot-ic components that have not been found by the PE study, and are of special interest. We have performed a detailed mineralogical and crystallographic study on these particles and here report the results.

  7. Back to Basics: Instrument Cleaning.

    PubMed

    Spruce, Lisa

    2017-03-01

    Adequately cleaning and processing surgical instruments may be challenging for perioperative team members; however, the cleaning and processing of instruments are critical steps in making instruments safe to use on patients and achieving an appropriately safe OR environment. Instruments that are cleaned properly have had organic debris and soil removed, rendering them ready for sterilization or disinfection. This Back to Basics article covers the basic steps and considerations for cleaning and processing instruments before sterilization. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  8. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  9. The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite

    NASA Astrophysics Data System (ADS)

    Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; Mahaffy, P. R.

    2012-07-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a "one-pot" extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 °C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  10. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  11. Instrument specificity in experienced musicians.

    PubMed

    Drost, Ulrich C; Rieger, Martina; Prinz, Wolfgang

    2007-04-01

    Previous studies have shown that experienced pianists have acquired integrated action-effect (A-E) associations. In the present study, we were interested in how specific these associations are for the own instrument by investigating pianists and guitarists. A-E associations were examined by testing whether the perception of a "potential" action-effect has an influence on actions. Participants played chords on their instrument in response to visual stimuli, while they were presented task-irrelevant auditory distractors (congruent or incongruent) in varying instrument timbre. In Experiment 1, pianists exhibited an interference effect with timbres of their own instrument category (keyboard instruments: piano and organ). In Experiment 2 guitarists showed an interference effect only with guitar timbre. Thus, integrated A-E associations primarily seem to consist of a specific component on a sensory-motor level involving the own instrument. Additionally, categorical knowledge about how an instrument is played seems to be involved.

  12. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  13. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  14. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  15. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  16. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  17. Instruments speak global language

    SciTech Connect

    Nudo, L.

    1993-07-01

    If all goes as planned, companies that use instruments for measurement and control will get more complete, reliable and repeatable information about their processes with advanced digital devices that speak a global language. That language, in technical terms, is known as international fieldbus. But it's not much different from English's role as the international language of business. Companies that use a remote measurement device for environmental applications, such as pH control and fugitive emissions control, are candidates for fieldbus devices, which are much faster and measure more process variables than their counterpart analog devices. With the advent of a global fieldbus, users will see digital valves, solenoids and multivariable transmitters. Fieldbus technology redefines the roles of the control system and field devices. The control system still serves as a central clearinghouse, but field devices will handle more control and reporting functions and generate data that can be used for trending and preventive maintenance.

  18. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  19. LANDSAT instruments characterization

    NASA Technical Reports Server (NTRS)

    Lee, Y. (Principal Investigator)

    1984-01-01

    Work performed for the LANDSAT instrument characterization task in the areas of absolute radiometry, coherent noise analysis, and between-date smoothing is reported. Absolute radiometric calibration for LANDSAT-5 TM under ambient conditions was performed. The TM Radiometric Algorithms and Performance Program (TRAPP) was modified to create optional midscan data files and to match the TM Image Processing System (TIPS) algorithm for pulse determination. Several data reduction programs were developed, including a linear regression and its plotted result. A fast Fourier transformation study was conducted on the resequenced TM data. Subscenes of homogeneous water within scenes over Pensacola, Florida were used for testing the FFT on the resequenced data. Finally, a gain and pulse height stability study of LANDSAT 5 TM spectral bands was performed.

  20. Geophysical instrumentation near Parkfield

    USGS Publications Warehouse

    Bakun, W.H.

    1988-01-01

    Because scientists expect the anticipated earthquake to resemble the historic Parkfield earthquakes, and in particular that in 1966, the data from the 1966 shock were used to site instruments for optimun benefit before, during, and after the next shock. the primary feature used for siting was the "1966 rupture zone," which is shown as the orange fault traces on the maps in this section. This zone defines the extent of surface tectonic cracks in 1966 and includes the source areas for fore shocks to the 1934 and 1966 earthquakes (north end of the zone) as well as for apparent precursory fault creep in 1966 (near center of the zone). Scientists believe that if precursors to the next shock are observed, they most likely will be near the 1966 rupture zone. 

  1. TRU VU rig instrumentation

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  2. Ideology as instrument.

    PubMed

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. (Copyright) 2007 APA.

  3. Laboratory Evolved Gas Analyses of Si-rich Amorphous Materials: Implications for Analyses of Si-rich Amorphous Material in Gale Crater by the Mars Science Laboratory Sample Analysis at Mars Instrument

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Knudson, C. A.; Sutter, B.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Franz, H. B.; Eigenbrode, J. L.; Morris, R. V.; Ming, D. W.; Sun, V. Z.; Milliken, R.; Wilhelm, M. B.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2016-12-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Science Laboratory (MSL) rover detected Si-rich amorphous or poorly ordered materials in several samples from Murray Formation mudstones and Stimson Formation sandstones. High-SiO2 amorphous materials such as opal-A or rhyolitic glass are candidate phases, but CheMin data cannot be used to distinguish between these possibilities. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, evolved gas analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500°C, which had not been observed from previous samples. BS also had a significant broad evolution <450-500°C. We have undertaken a laboratory study targeted at understanding if the data from SAM analyses can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500°C H2O evolutions, with lesser H2O evolved above 500°C. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300°C and >500°C, or a broad peak centered around 400°C. For samples that produced two evolutions, the lower temperature peak was more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500°C. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.

  4. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  5. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  6. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  7. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  8. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  9. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  10. Woelter Instrument-Optical Design

    SciTech Connect

    Nederbragt, W W

    2002-10-11

    Hundreds of target assemblies will be constructed annually for use on NIF or OMEGA in the near future. Currently, we do not have the capability to tomographically characterize the target assemblies at the desired resolution. Hence, we cannot verify if an assembly has been assembled correctly. The Engineering Directorate, through the LDRD program, is currently funding an x-ray instruments that could solve this problem. This instrument is based on a Woelter [1] Type-I design. We will refer to this design as the Woelter instrument in the remainder of the report. Ideally, the Woelter instrument will create images with sub-micrometer resolution. Moreover, the instrument will have a field-of-view large enough to cover an entire target assembly (up to a 2 mm square), which would eliminate the need to take multiple radiographs to get one complete target image. This report describes the optical design of the Woelter instrument.

  11. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  12. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  13. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  14. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  15. Load sensing surgical instruments.

    PubMed

    Jacq, C; Maeder, T; Ryser, P

    2009-12-01

    Force and pressure sensing technology applied to smart surgical instruments as well as implants allow to give a direct feedback of loads to the surgeon lead to better reliability and success of surgical operations. A common technology used for sensors is low-cost piezoresistive thick-film technology. However, the standard thick-film firing conditions degrade the properties of medical alloys. In order to avoid this problem, the solution is to decrease the firing temperature of thick films. This work presents the development and characterisation of low-firing thick-film systems (dielectrics, resistors and conductors), formulated to achieve chemical and thermal expansion compatibility with an austenitic stainless steel medical alloy. Adherence tests and results on electrical properties of these systems: resistance, temperature coefficient of resistance (TCR) are presented. It was found that the main issue in these systems lies in mastering the materials interactions during firing, especially at the silver-based resistor terminations. The interaction of silver, resistor and dielectric tends to give rise to highly resistive zones at the terminations, affecting reliability. This can be circumvented by post-firing the resistor terminations at a moderate temperature.

  16. Impact Disdrometers Instrument Handbook

    SciTech Connect

    Bartholomew, Mary Jane

    2016-03-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility has been collecting observations of the drop size spectra of rain events since early in 2006. Impact disdrometers were the initial choice due to their reliability, ease of maintenance, and relatively low cost. Each of the two units deployed was accompanied by a nearby tipping bucket. In 2010, the tipping buckets were replaced by weighing buckets rain gauges. Five video disdrometers were subsequently purchased and are described in ARM’s VDIS Handbook.1 As of April 2011, three of the weighing bucket instruments were deployed, one was to travel with the second ARM Mobile Facility, and the fifth was a spare. Two of the video disdrometers were deployed, a third was to be deployed later in the spring of 2011, one was to travel with the second ARM Mobile Facility, and the last was a spare. Detailed descriptions of impact disdrometers and their datastreams are provided in this document.

  17. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  18. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  19. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  20. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  1. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  2. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  3. Airborne Meteorological and Turbulence Instrumentation

    DTIC Science & Technology

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Airborne Meteorological and Turbulence Instrumentation...by ANSI Std Z39-18 Airborne Meteorological and Turbulence Instrumentation Carl A. Friehe Departments of Mechanical Engineering and Earth System... meteorological and turbulence instrumentation for the Navy CIRPAS Twin Otter research aircraft to be used in the ONR Sea of Japan/East Sea experiment in Winter

  4. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  5. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  6. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.

  7. Ratio imaging instrumentation.

    PubMed

    Dunn, Kenneth; Maxfield, Frederick R

    2003-01-01

    Using ratio imaging to obtain quantitative information from microscope images is a powerful tool that has been used successfully in numerous studies. Although ratio imaging reduces the effects of many parameters that can interfere with accurate measurements, it is not a panacea. In designing a ratio imaging experiment, all of the potential problems discussed in this chapter must be considered. Undoubtedly, other problems that were not discussed can also interfere with accurate and meaningful measurements. Many of the problems discussed here were observed in the authors' laboratories. In our experience there are no standard routines or methods that can foresee every problem before it has been encountered. Good experimental design can minimize problems, but the investigator must continue to be alert. Progress in instrumentation continues to overcome some of the difficulties encountered in ratio imaging. CCD cameras with 12- to 14-bit pixel depth are being used more frequently, and several confocal microscope manufacturers are now also using 12-bit digitization. The dramatic increase in the use of confocal microscopes over the past decade is now causing microscope manufacturers to more critically evaluate the effect of axial chromatic aberration in objectives, and recent designs to minimize this problem are being implemented. Other developments such as the use of AOTFs to attenuate laser lines extend the applicability of ratio imaging. Ratio imaging is clearly applicable to a wide range of cell biological problems beyond its widespread use for measuring ion concentrations. Imaginative but careful use of this technique should continue to provide novel insights into the properties of cells.

  8. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  9. Performance Characterization of an Instrument.

    ERIC Educational Resources Information Center

    Salin, Eric D.

    1984-01-01

    Describes an experiment designed to teach students to apply the same statistical awareness to instrumentation they commonly apply to classical techniques. Uses propagation of error techniques to pinpoint instrumental limitations and breakdowns and to demonstrate capabilities and limitations of volumetric and gravimetric methods. Provides lists of…

  10. A Database Management Assessment Instrument

    ERIC Educational Resources Information Center

    Landry, Jeffrey P.; Pardue, J. Harold; Daigle, Roy; Longenecker, Herbert E., Jr.

    2013-01-01

    This paper describes an instrument designed for assessing learning outcomes in data management. In addition to assessment of student learning and ABET outcomes, we have also found the instrument to be effective for determining database placement of incoming information systems (IS) graduate students. Each of these three uses is discussed in this…

  11. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  12. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  13. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  14. Cryogenic Caging for Science Instrumentation

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso C.

    2011-01-01

    A method has been developed for caging science instrumentation to protect from pyro-shock and EDL (entry, descent, and landing) acceleration damage. Caging can be achieved by immersing the instrument (or its critical parts) in a liquid and solidifying the liquid by cooling. After the launch shock and/or after the payload has landed, the solid is heated up and evaporated.

  15. Instruments That Measure Self Concept.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    Materials are presented that resulted from a search for a measure of self-concept to be used in the evaluation of Project R.E.A.D., a program to improve the quality of education in urban schools. Most of the instruments listed are appropriate for the elementary level. In addition to a list of the instruments, this document also contains a listing…

  16. Instrumentation issues in implementation science.

    PubMed

    Martinez, Ruben G; Lewis, Cara C; Weiner, Bryan J

    2014-09-04

    Like many new fields, implementation science has become vulnerable to instrumentation issues that potentially threaten the strength of the developing knowledge base. For instance, many implementation studies report findings based on instruments that do not have established psychometric properties. This article aims to review six pressing instrumentation issues, discuss the impact of these issues on the field, and provide practical recommendations. This debate centers on the impact of the following instrumentation issues: use of frameworks, theories, and models; role of psychometric properties; use of 'home-grown' and adapted instruments; choosing the most appropriate evaluation method and approach; practicality; and need for decision-making tools. Practical recommendations include: use of consensus definitions for key implementation constructs; reporting standards (e.g., regarding psychometrics, instrument adaptation); when to use multiple forms of observation and mixed methods; and accessing instrument repositories and decision aid tools. This debate provides an overview of six key instrumentation issues and offers several courses of action to limit the impact of these issues on the field. With careful attention to these issues, the field of implementation science can potentially move forward at the rapid pace that is respectfully demanded by community stakeholders.

  17. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  18. Zach's instruments and their characteristics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  19. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  20. Autonomous Bio-Optical Instruments

    DTIC Science & Technology

    2000-09-30

    Autonomous Bio -Optical Instruments Russ E. Davis Scripps Institution of Oceanography La Jolla CA 92093-0230 phone: (858) 534-4415 fax: (858) 534... Bio -Optical Instruments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK

  1. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  2. Kodaly Strategies for Instrumental Teachers.

    ERIC Educational Resources Information Center

    Howard, Priscella M.

    1996-01-01

    Advocates using the singing voice and the study of folk music in instrumental instruction. Recommends instrumental teachers confer with voice teachers to coordinate ideas and terminology. Includes several excerpts of scores and musical exercises, as well as a list of selected resources. (MJP)

  3. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  4. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  5. Developing a workplace resilience instrument.

    PubMed

    Mallak, Larry A; Yildiz, Mustafa

    2016-05-27

    Resilience benefits from the use of protective factors, as opposed to risk factors, which are associated with vulnerability. Considerable research and instrument development has been conducted in clinical settings for patients. The need existed for an instrument to be developed in a workplace setting to measure resilience of employees. This study developed and tested a resilience instrument for employees in the workplace. The research instrument was distributed to executives and nurses working in the United States in hospital settings. Five-hundred-forty completed and usable responses were obtained. The instrument contained an inventory of workplace resilience, a job stress questionnaire, and relevant demographics. The resilience items were written based on previous work by the lead author and inspired by Weick's [1] sense-making theory. A four-factor model yielded an instrument having psychometric properties showing good model fit. Twenty items were retained for the resulting Workplace Resilience Instrument (WRI). Parallel analysis was conducted with successive iterations of exploratory and confirmatory factor analyses. Respondents were classified based on their employment with either a rural or an urban hospital. Executives had significantly higher WRI scores than nurses, controlling for gender. WRI scores were positively and significantly correlated with years of experience and the Brief Job Stress Questionnaire. An instrument to measure individual resilience in the workplace (WRI) was developed. The WRI's four factors identify dimensions of workplace resilience for use in subsequent investigations: Active Problem-Solving, Team Efficacy, Confident Sense-Making, and Bricolage.

  6. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  7. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  8. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  9. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  10. Insulation failure in laparoscopic instruments.

    PubMed

    Montero, Paul N; Robinson, Thomas N; Weaver, John S; Stiegmann, Greg V

    2010-02-01

    Electrosurgery is used in virtually every laparoscopic operation. In the early days of laparoscopic surgery, capacitive coupling, associated with hybrid trocars, was thought to be the major cause of laparoscopic electrosurgery injuries. Modern laparoscopy has reduced capacitive coupling, and now insulation failure is thought to be the main cause of electrosurgical complications. The aim of this study was (1) to determine the incidence of insulation failures, (2) to compare the incidence of insulation failure in reusable and disposable instruments, and (3) to determine the location of insulation failures. At four major urban hospitals, reusable laparoscopic instruments were checked for insulation failure using a high-voltage porosity detector. Disposable L-hooks were collected following laparoscopic cholecystectomy and similarly evaluated for insulation failure. Instruments were determined to have insulation failure if 2.5 kV crossed the instrument's insulation to create a closed loop circuit. Statistical analysis was performed using Fisher's exact or chi(2) analysis (*denotes significance set at p < 0.05). Two hundred twenty-six laparoscopic instruments were tested (165 reusable). Insulation failure occurred more often in reusable (19%; 31/165) than in disposable instruments (3%; 2/61; *p < 0.01). When reusable sets were evaluated, 71% (12/17) were found to have at least one instrument with insulation failure. Insulation failure incidence in reusable instruments was similar between hospitals that routinely checked for insulation failure (19%; 25/130) and hospitals that do not routinely check for insulation failures (33%; 7/21; p = 0.16). Insulation failure was most common in the distal third of the instruments (54%; 25/46) compared to the middle or proximal third of the instruments (*p < 0.05). One in five reusable laparoscopic instruments has insulation failure; a finding that is not altered by whether the hospital routinely checks for insulation defects

  11. Miniature Piezoelectric Shaker for Distribution of Unconsolidated Samples to Instrument Cells

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Tucker, Curtis E. Jr.; Frankovich, John; Bao, Xiaoqi

    2010-01-01

    The planned Mars Science Laboratory mission requires inlet funnels for channeling unconsolidated powdered samples from the sampling and sieving mechanisms into instrument test cells, which are required to reduce cross-contamination of the samples and to minimize residue left in the funnels after each sample transport. To these ends, a solid-state shaking mechanism has been created that requires low power and is lightweight, but is sturdy enough to survive launch vibration. The funnel mechanism is driven by asymmetrically mounted, piezoelectric flexure actuators that are out of the load path so that they do not support the funnel mass. Each actuator is a titanium, flextensional piezoelectric device driven by a piezoelectric stack. The stack has Invar endcaps with a half-spherical recess. The Invar is used to counteract the change in stress as the actuators are cooled to Mars ambient temperatures. A ball screw is threaded through the actuator frame into the recess to apply pre-stress, and to trap the piezoelectric stack and endcaps in flexure. During the vibration cycle of the flextensional actuator frame, the compression in the piezoelectric stack may decrease to the point that it is unstressed; however, because the ball joint cannot pull, tension in the piezoelectric stack cannot be produced. The actuators are offset at 120 . In this flight design, redundancy is required, so three actuators are used though only one is needed to assist in the movement. The funnel is supported at three contact points offset to the hexapod support contacts. The actuator surface that does not contact the ring is free to expand. Two other configurations can be used to mechanically tune the vibration. The free end can be designed to drive a fixed mass, or can be used to drive a free mass to excite impacts (see figure). Tests on this funnel mechanism show a high density of resonance modes between 1 and 20 kHz. A subset of these between 9 and 12 kHz was used to drive the CheMin actuators

  12. Torsional resistance of retreatment instruments.

    PubMed

    Lopes, Hélio P; Elias, Carlos N; Vedovello, Gislaine A F; Bueno, Carlos E S; Mangelli, Marcelo; Siqueira, José F

    2011-10-01

    This study compared the torsional resistance of two brands of rotary nickel-titanium (NiTi) instruments indicated for endodontic retreatment. Mtwo retreatment instruments #15 and #25 (VDW, Munich, Germany) and ProTaper Universal retreatment instruments D2 and D3 (Maillefer/Dentsply, Ballaigues, Switzerland) were subjected to a torsional assay in clockwise rotation. The two parameters evaluated were maximum torque and angular deflection at failure. Fractured instruments had their fractured surfaces and helical shafts examined by scanning electron microscopy. The results indicated that the angular deflection at fracture decreased in the following order: Mtwo retreatment file #15 > Mtwo retreatment file #25 > ProTaper Universal retreatment file D2 > ProTaper Universal retreatment file D3. As for the maximum torque values, the results revealed the following descending order: ProTaper Universal file D2 > Mtwo retreatment file #25 > ProTaper Universal file D3 > Mtwo retreatment file #15. Scanning electron microscopic analysis revealed that plastic deformation occurred along the helical shaft of the fractured instruments. Fractured surfaces were of the ductile type. The instruments tested showed different torsional behavior depending on the parameter evaluated. If one considers that high angular deflection values may serve as a safety factor, then the Mtwo retreatment instruments showed significantly better results. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  14. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  15. Adjustable extender for instrument module

    DOEpatents

    Sevec, J.B.; Stein, A.D.

    1975-11-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.

  16. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  17. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  18. Burried broken extraction instrument fragment

    PubMed Central

    Balaji, S. M.

    2013-01-01

    Despite adequate effort to perform tooth removal carefully, some accidents may happen when defective instruments are unknowingly used. This article reports of a non-symptomatic case of a retained fractured dental elevator tip during an uneventful extraction a decade earlier. Patient was not aware till routine radiographic examination revealed its presence. Use of three dimensional imaging techniques in this case is highlighted. Rarely, instruments breakage may occur during surgical procedures. It is duty of the dentists to check the surgical instrument for signs of breakage and be prepared to solve a possible emergency. Retained fragments should be carefully studied prior to attempt of removal. PMID:23662269

  19. Novel fiber optic immunosensor instrument

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyu; Huang, Wenling; Tang, Lei; Zhou, Bo; Li, Yugi; He, Jun

    1996-09-01

    It has developed and performed a novel fiberoptic immunosensor instrument with operating wavelength 400 - 760 nm and repeatability cv equals 0.27%. The instrument has many excellent features such as simplified operation, faster testing time, higher sensitivity and economic cost. It has completely eliminated recovery period which traditional immunosensor owned due to use separative sensor structure. It can widely apply to test for bacteria, virus, hormone, parasite and cancer protein in clinical examination. The instrument has operated in laboratory and relevant medicine units and successfully tested monoclonal rat-anti-human of 413 cases in clinic and prepared with existing ELISA method, the coincidence probability reached 94 to 100%.

  20. The JCMT future instrumentation project

    NASA Astrophysics Data System (ADS)

    Dempsey, Jessica T.; Ho, Paul T. P.; Walther, Craig; Friberg, Per; Bintley, Dan; Chen, Ming-Tang

    2016-08-01

    Under the new operational purview of the East Asian Observatory, the JCMT continues to produce premier wide-field submillimetre science. Now the Observatory looks to embark on an ambitious series of instrumentation upgrades and opportunities to keep the telescope at the bleeding edge of its performance capabilities, whilst harnessing the collaborative expertise of the participating EAO regions and its JCMT partners. New heterodyne instruments include a new receiver at 230 GHz, a super array (90 pixels) at 345 GHz and the upgrade possibilities for the continuum camera SCUBA-2. In addition, the opportunities for PI and visiting instruments, including TimePilot and Gismo-2 will be described.

  1. The DESI instrument control system

    NASA Astrophysics Data System (ADS)

    Honscheid, K.; Elliott, A. E.; Beaufore, L.; Buckley-Geer, E.; Castander, F.; daCosta, L.; Fausti, A.; Kent, S.; Kirkby, D.; Neilsen, E.; Reil, K.; Serrano, S.; Slozar, A.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) , a new instrument currently under construction for the Mayall 4m telescope at Kitt Peak National Observatory, will consist of a wide-field optical corrector with a 3.2 degree diameter field of view, a focal plane with 5,000 robotically controlled fiber positioners and 10 fiber fed broadband spectrographs. This article describes the design of the DESI instrument control system (ICS). The ICS coordinates fiber positioner operations, interfaces to the Mayall telescope control system, monitors operating conditions, reads out the 30 spectrograph CCDs and provides observer support and data quality monitoring.

  2. Validating GOES Instrument Thermal Deformations

    NASA Technical Reports Server (NTRS)

    Harter, Peter; Ghaffarian, Benny; Ng, Ray; Pugh, Brett; Wilkin, Paul; Sayal, Chetan; Chu, Don

    2001-01-01

    Comparison of the Geostationary Operational Environmental Satellite (GOES) instrument thermal model predictions with on-orbit data shows that the models capture the observed temperature and misalignment trends. Lack of precise knowledge as to spacecraft pointing precludes such comparison with instrument pointing predictions. Based on the models, thermally induced instrument attitude variation will dominate GOES N-Q Image Motion Compensation (IMC). Errors due to day-to-day changes in the attitude profiles are predicted to be under 10 microradians except for rapid scans where disturbances may reach 30 microradians.

  3. Genetic markers as instrumental variables

    PubMed Central

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. PMID:26614692

  4. Interfacing Microcomputers with Laboratory Instruments.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    1983-01-01

    Describes development of microcomputer-controlled gamma scintillation spectrometer and chromatographic data analyzer, including design and construction of interface electronics and production of software. Includes diagrams of electric circuits and project evaluation indicating that both instruments functioned as intended. (JN)

  5. Tailoring Instrumentation to the Operator.

    ERIC Educational Resources Information Center

    Abplanalp, Glen H.; Menzenhauer, Fred C.

    1978-01-01

    This article provides guidelines in selecting appropriate instrumentation for water treatment facilities. Major areas of concern include: technical operating requirements of the process; equipment design and quality; installations; and mechanical aptitude of personnel. (CS)

  6. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  7. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  8. Rotating Juno for Integrating Instruments

    NASA Image and Video Library

    2010-07-12

    Once the radiation vault was installed on top of the propulsion module, NASA Juno spacecraft was lifted onto a large rotation fixture. The fixture allows the spacecraft to be turned for convenient access for integrating and testing instruments.

  9. Portable instruments for emergency response

    NASA Astrophysics Data System (ADS)

    Swinth, K. L.

    1985-05-01

    The selection and use of instruments for emergency response is complicated by lack of specific guidance, the diversity of potential conditions, and the variable performance of available instruments. The user must examine the projected radiological conditions during an accident and the environmental extremes that could exist. This should assist in determining requirements that the instruments must meet during an emergency. Due to the variable performance of available instrumentation, critical parameters (temperature dependence) should be tested prior to use to assure adequate measurements. Although it is tempting to stock emergency kits with inexpensive monitoring equipment, one should carefully consider the possible conditions (environmental, radiological) and equipment performance since inaccurate measurements could be very costly in terms of decisions regarding lifesaving and evacuation during an emergency.

  10. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  11. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  12. Instrument detects bacterial life forms

    NASA Technical Reports Server (NTRS)

    Plakas, C.

    1971-01-01

    Instrument assays enzymatic bioluminescent reaction that occurs when adenosine triphosphate /ATP/ combines with lucifrase and luciferin. Module assembly minimizes need for hardware associated with reaction fluid and waste transfer. System is applicable in marine biology and aerospace and medical fields.

  13. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  14. Instruments and attachments for electronystagmography

    NASA Technical Reports Server (NTRS)

    Mironenko, Y. T.; Vilenskiy, A. A.

    1980-01-01

    A portable set of instruments and devices was developed which makes it possible to record spontaneous nystagmus with open and closed eyes. Rotational, caloric, position, and pressure nystagmus under any conditions may also be recorded.

  15. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  16. Tailoring Instrumentation to the Operator.

    ERIC Educational Resources Information Center

    Abplanalp, Glen H.; Menzenhauer, Fred C.

    1978-01-01

    This article provides guidelines in selecting appropriate instrumentation for water treatment facilities. Major areas of concern include: technical operating requirements of the process; equipment design and quality; installations; and mechanical aptitude of personnel. (CS)

  17. Webb Instrument Inside Test Chamber

    NASA Image and Video Library

    2011-08-18

    The Mid-Infrared Instrument, a component of NASA James Webb Space Telescope, underwent testing inside the thermal space test chamber at the Science and Technology Facilities Council Rutherford Appleton Laboratory Space in Oxfordshire, England.

  18. Webb Instrument Undergoes Alignment Testing

    NASA Image and Video Library

    2011-08-18

    The Mid-Infrared Instrument, a component of NASA James Webb Space Telescope, underwent alignment testing at the Science and Technology Facilities Council Rutherford Appleton Laboratory Space in Oxfordshire, England.

  19. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  20. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  1. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  2. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  3. Head trauma after instrumental births.

    PubMed

    Doumouchtsis, Stergios K; Arulkumaran, Sabaratnam

    2008-03-01

    Instrumental vaginal delivery involves the use of the vacuum extractor or obstetric forceps to facilitate delivery of the fetus. It is associated with substantial risk of head injury, including hemorrhage, fractures, and, rarely, brain damage or fetal death. This review article describes the different types, etiology, pathophysiology, risk factors, and clinical features of head trauma after instrumental birth, along with their management and prevention strategies.

  4. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; Cabane, Michel; Coll, Patrice; Conrad, Pamela; Dworkin, Jason; Grotzinger, John; Ming, Douglas; Navarro-Gonzales, Rafael; Steele, Andrew; Szopa, Cyril

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  5. Eponymous Instruments in Orthopaedic Surgery

    PubMed Central

    Buraimoh, M. Ayodele; Liu, Jane Z.; Sundberg, Stephen B.; Mott, Michael P.

    2017-01-01

    Abstract Every day surgeons call for instruments devised by surgeon trailblazers. This article aims to give an account of commonly used eponymous instruments in orthopaedic surgery, focusing on the original intent of their designers in order to inform how we use them today. We searched PubMed, the archives of longstanding medical journals, Google, the Internet Archive, and the HathiTrust Digital Library for information regarding the inventors and the developments of 7 instruments: the Steinmann pin, Bovie electrocautery, Metzenbaum scissors, Freer elevator, Cobb periosteal elevator, Kocher clamp, and Verbrugge bone holding forceps. A combination of ingenuity, necessity, circumstance and collaboration produced the inventions of the surgical tools numbered in our review. In some cases, surgical instruments were improvements of already existing technologies. The indications and applications of the orthopaedic devices have changed little. Meanwhile, instruments originally developed for other specialties have been adapted for our use. Although some argue for a transition from eponymous to descriptive terms in medicine, there is value in recognizing those who revolutionized surgical techniques and instrumentation. Through history, we have an opportunity to be inspired and to better understand our tools. PMID:28852360

  6. The ESO Paranal instrumentation program

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca

    2016-08-01

    The Paranal Instrumentation Programme is responsible for planning and delivering the instruments and the associated infrastructure needed to keep the VLT and La Silla Observatories at the forefront of ground-based astronomy. The VLT second generation instruments KMOS, MUSE and SPHERE have been delivered and are in operations, GRAVITY is under commissioning at the renewed VLTI facility. The Adapative Optics Facility is moving towards completion, as well as the high resolution spectrograph ESPRESSO and the VLTI second generation instrument MATISSE. The mid-IR imager and spectrograph VISIR has been upgraded, and a major upgrade of the CRIRES spectrograph is under way. Finally, two new Multi Object Spectrographs projects have started, one for the VLT (MOONS), one for the 4M VISTA telescope (4MOST), and two new instruments for La Silla, (SOXS and NIRPS) fully funded by the community, are being agreed. The Programme follows a roadmap that foresees one new instrument/project or one upgrade starting every year. Active management, cost to completion and risk policy are in place.

  7. Sulfur Dioxide Analyzer Instrument Handbook

    SciTech Connect

    Springston, Stephen R

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  8. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  9. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 25.1337 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit...

  10. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  11. [Surgical instruments (II). An introduction to surgical instruments].

    PubMed

    Illana Esteban, Emilio

    2005-09-01

    In clinical practice, there are many diverse ways to name each instrument. Some names consist of local terms related to the shape or the use of an instrument; others have their origin in confusing references; few of these names tend to be related to known nomenclature. This causes a serious inconvenience for someone who wishes to learn about the intra-surgical medium in an organized manner. Undoubtedly this is an inconvenience for the untrained person who discovers he/she is incapable of retaining an enormous volume of names, often presented without any logic whatsoever This also causes an inconvenience for the trained professional; it is difficult to understand terms since, depending on which surgical ward one refers to, the name for the same instrument changes.

  12. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  13. Analytical techniques and instrumentation: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information on developments in instrumentation is arranged into four sections: (1) instrumentation for analysis; (2) analysis of matter; (3) analysis of electrical and mechanical phenomena; and (4) structural analysis. Patent information for two of the instruments described is presented.

  14. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument

    NASA Technical Reports Server (NTRS)

    Meslin, P.-Y.; Cicutto, L.; Forni, O.; Drouet, C.; Rapin, W.; Nachon, M.; Cousin, A.; Blank, J. G.; McCubbin, F. M.; Gasnault, O.; hide

    2016-01-01

    Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated

  15. Facility instruments for the GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, Jose M.; Garcia-Vargas, Maria Luisa; Hammersley, Peter L.

    2004-09-01

    The Gran Telescopio Canarias (GTC1) 10m telescope is now being integrated at the ORM, in La Palma Spain. Likewise, three instruments are being prepared for first light and, as of this writing, are about to start their laboratory integration. These first light instruments are: 1) OSIRIS, a large field of view imager and multi-object spectrograph, optimized for tuneable filter imaging, 2) ELMER a very sensitive imager and spectrograph, also for the visible range, and 3) CANARICAM, a diffraction-limited imager, spectrograph, polarimeter and coronagrapher for the mid-IR. The GTC set of first light instruments will offer some special observational capabilities to the astronomical community, namely Tuneable filter Imaging in OSIRIS, fast spectroscopy and photometry in both, ELMER and OSIRIS, and 10 microns Coronagraphy and Polarimetry with CANARICAM. Yet another instrument, EMIR, a large field, near-IR multi-object spectrograph and imager is in the Detailed Design phase. EMIR will be the first of the GTC second generation set of instruments. At the planning stage are several future instruments that will arrive to the GTC with different calendars after Day One. In particular, FRIDA, a near-IR diffraction-limited imager and spectrograph, that will operate with the GTC Adaptive Optics system. FRIDA's conceptual design is being started by a consortium lead by UNAM (Mexico) and in which the IAC and the University of Florida also participate. FRIDA should be at the telescope by the time that the AO system is having first light. This is expected by late 2007 early 2008. There is interest in the GTC community for installing visiting instruments on the GTC, thus the GTC board is discussing a policy to allow visitor instruments, some of which have already been proposed to be hosted by the GTC. In particular, CIRCE is a near IR camera that is being built by the Department of Astronomy of the University of Florida in Gainesville for the GTC using private funds, under the GTC visitor

  16. VLT Instruments Pipeline System Overview

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Ballester, P.; Banse, K.; Hummel, W.; Izzo, C.; McKay, D. J.; Kiesgen, M.; Lundin, L. K.; Modigliani, A.; Palsa, R. M.; Sabet, C.

    2004-07-01

    Since the beginning of the VLT operations in 1998, substantial effort has been put in the development of automatic data reduction tools for the VLT instruments. A VLT instrument pipeline is a complex system that has to be able to identify and classify each produced FITS file, optionally retrieve calibration files from a database, use an image processing software to reduce the data, compute and log quality control parameters, produce FITS images or tables with the correct headers, optionally display them in the control room and send them to the archive. Each instrument has its own dedicated pipeline, based on a common infrastructure and installed with the VLT Data Flow System (DFS). With the increase in the number and the complexity of supported instruments and in the rate of produced data, these pipelines are becoming vital for both the VLT operations and the users, and request more and more resources for development and maintenance. This paper describes the different pipeline tasks with some real examples. It also explains how the development process has been improved to both decrease its cost and increase the pipelines quality using the lessons learned from the first instruments pipelines development.

  17. The Quito Astronomical Instruments Heritage

    NASA Astrophysics Data System (ADS)

    Lopez, Ericsson

    The Quito Astronomical Observatory was build in the 1873s thanks to the generous sponsoring of the president of the Republic of Ecuador Dr. Gabriel García Moreno who desire was to build a long-lasting monument to Ecuadorian science . Thanks to the collaboration of father J. B. Menten one of the leading german astronomer the President' s dream came true. The Observatory with its splendid buildings was in fact equipped with a series of very important instruments such as the 30-cm Mertz refractor a large Molteni meridian instrument and a Bamber of 10 cm. Other instruments were subsequently added in the course of the 20th century. Recently we have performed a detailed inventory of all the historical instruments still preserved at the Observatory. This paper is dedicated to briefly trace the history of the Quito Observatory and describe its most characteristic instruments. Moreover it is presented the work done for preserving this important scientific heritage and discuss some of the typical problems that the researchers the students amateur astronomers and the public find in a still active scientific institution in a developing country.

  18. Calibration of shaft alignment instruments

    NASA Astrophysics Data System (ADS)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  19. Register of Validated Short Dietary Assessment Instruments

    Cancer.gov

    The register contains descriptive information about the instruments identified (over 135) along with any associated validation studies and publications, and copies of the instruments themselves when available.

  20. Readiness Issues for Emergency Response Instrumentation

    SciTech Connect

    C.A. Riland; D.R. Bowman; R.J. Tighe

    1999-03-01

    Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

  1. Seismic Instrumentation Placement Recommendations Report

    SciTech Connect

    Kennedy, W.N.

    1998-09-30

    DOE Order 420.1, ''Facility Safety'', requires that facilities or sites with hazardous materials be provided with instrumentation or other means to detect and record the occurrences and severity of seismic events. These requirements assure that necessary records are available after an earthquake for evaluation purposes and to supplement other data to justify a facility restart or curtailing plant operations after an earthquake. This report documents the basis for the selection of Savannah River Site areas and existing facilities to be instrumented. The need to install instrumentation in new facilities such as the Actinide Packaging and Storage Facility, Commercial Light Water Reactor Tritium Extraction Facility and the Accelerator Production of Tritium Facility will be assessed separately.

  2. Instrumentation for the CCAT Telescope

    NASA Astrophysics Data System (ADS)

    Stacey, G. J.; Golwala, S. R.; Bradford, C. M.; Dowell, C. D.; Cortes-Medellin, G.; Nikola, T.; Zmuidzinas, J.; Herter, T. L.; Radford, S. J.; Lloyd, J. P.; Blain, A. W.; Brown, R. L.; Campbell, D. B.; Giovanelli, R.; Goldsmith, P.; Harvey, P. M.; Henderson, C.; Langer, W. D.; Phillips, T. G.; Readhead, A. C. S.; Woody, D. P.

    2006-06-01

    We present a first cut instrument design package for the proposed 25 meter Cornell-Caltech Atacama Telescope (CCAT). The primary science for CCAT can be achieved through wide field photometric imaging in the short submillimeter through millimeter (200 μm to 2 mm) telluric windows. We present strawman designs for two cameras: a 32,000 pixel short submillimeter (200 to 650 μm) camera using transition edge sensed bare bolometer arrays that Nyquist samples (@ 350 μm) a 5'×5' field of view (FoV), and a 45,000 pixel long wavelength camera (850 μm to 2 mm) that uses slot dipole antennae coupled bolometer arrays with wavelength dependent sampling that covers up to a 20' square FoV. These are our first light instruments. We also anticipate "borrowed" instruments such as direct detection and heterodyne detection spectrometers will be available at, or nearly at first light.

  3. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  4. Steam sterilization of laparoscopic instruments.

    PubMed

    Voyles, C R; Sanders, D L; Simons, J E; McVey, E A; Wilson, W B

    1995-04-01

    Because of the intricate internal parts of laparoscopic instruments, questions have been raised about the efficacy of cleaning and sterilization techniques. To assess these risks, hamburger meat was inoculated with high concentrations of vegetative pathogens and packed into laparoscopic cannulas. All openings of the cannulas were sealed during steam sterilization cycles ranging from 3 to 10 min in different experiments; cultures were obtained after cooling. Experiments were then performed using heat-resistant spore forms. Our studies showed that both the standard 10-min cycle and the 3-min "flash" were uniformly successful in killing all pathogenic microorganisms. A 7-min steam sterilization was necessary to kill spores within sealed cannulas. We conclude that a standard 10-min cycle within the steam autoclave provides complete sterilization of laparoscopic instruments; the 3-min "flash" sterilization is appropriate and safe for instruments that have been inadvertently contaminated or dropped during a surgical procedure.

  5. Wide Field Instrument Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  6. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  7. FTIR instrumentation for atmospheric observations

    NASA Astrophysics Data System (ADS)

    Knuteson, Robert O.; Revercomb, Henry E.; Best, Fred A.; Smith, William L.

    1993-09-01

    During the last six years, extensive observations of atmospheric emitted radiance in the spectral region from 3.6 - 20 micrometers with resolving powers of 1000 - 4000 have been made, both from the ground and nadir viewing from NASA high altitude aircraft. Two recent field experiments in which both instruments participated are the FIRE II/SPECTRE experiment Nov. - Dec. 1991 in Coffeyville, KS and the STORMFEST experiment Feb. - Mar. 1992 in Seneca, KS. Experience with these instruments has led to instrument designs for advanced sounders on geostationary and polar orbiting satellites. Applications include remote sensing of atmospheric temperature and water vapor for improved weather forecasting, measurement of cloud radiative impact for improvement of global climate modelling, and trace gas retrieval for climate and air pollution monitoring.

  8. [Portable instrument for arteriosclerosis assessment].

    PubMed

    Cao, Shuai; Chen, Xiang

    2014-01-01

    A portable instrument for arteriosclerosis assessment containing sensor module, acquisition board and embedded module was developed for home care in this paper. The sensor module consists of one ECG module and three pulse wave extraction modules, synchronously acquiring human ECG and pulse wave signal of carotid, radial, and dorsal, respectively. The acquisition board converts the sensor module's analog output signals into digital signals and transmits them to the embedded module. The embedded module realizes the functions including signal display, storage and the calculation and output of pulse wave velocity. The structure of the proposed portable instrument is simple, easy to use, and easy to expand. Small size, low cost, and low power consumption are also the advantages of this device. Experimental results demonstrated that the proposed portable instrument for arteriosclerosis assessment has high accuracy, good repeatability and can assess the degree of atherosclerosis appropriately.

  9. Instrument performance enhancement and modification through an extended instrument paradigm

    NASA Astrophysics Data System (ADS)

    Mahan, Stephen Lee

    An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.

  10. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  11. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  12. Management of intracanal separated instruments.

    PubMed

    Madarati, Ahmad A; Hunter, Mark J; Dummer, Paul M H

    2013-05-01

    Intracanal separation of endodontic instruments may hinder cleaning and shaping procedures within the root canal system, with a potential impact on the outcome of treatment. The purposes of this narrative review of separated instruments were to (1) review the literature regarding treatment options, influencing factors, and complications and (2) suggest a decision-making process for their management. An online search was conducted in peer-review journals listed in PubMed to retrieve clinical and experimental studies, case reports, and review articles by using the following key words: instruments, files, obstructions, fractured, separated, broken, removal, retrieval, management, bypassing, and complications with or without root canal and endodontic. There is a lack of high-level evidence on management of separated instruments. Conventional conservative management includes removal of or bypassing the fragment or filling the root canal system to the coronal level of the fragment. A surgical intervention remains an alternative approach. These approaches are influenced by a number of factors and may be associated with complications. On the basis of current clinical evidence, a decision-making process for management is suggested. Guidelines for management of intracanal separated instruments have not been formulated. Decisions on management should consider the following: (1) the constraints of the root canal accommodating the fragment, (2) the stage of root canal preparation at which the instrument separated, (3) the expertise of the clinician, (4) the armamentaria available, (5) the potential complications of the treatment approach adopted, and (6) the strategic importance of the tooth involved and the presence/or absence of periapical pathosis. Clinical experience and understanding of these influencing factors as well as the ability to make a balanced decision are essential. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights

  13. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  14. Thermography instruments for predictive maintenance

    SciTech Connect

    Palko, E.

    1993-08-12

    Thermography (infrared imaging, or IR scanning) is not only the most versatile predictive maintenance technology available today; it is, in general, the most cost-effective. Plant engineering can apply a virtually unlimited variety of predictive maintenance instruments, but all are restricted regarding the types of existing and incipient problems they can detect. Inplant applications of thermography, however, are truly limited only by the extent of the plant engineer's imagination. Here are ways that thermography can be used to fight downtime in plants, and factors to consider when selecting the best instrument for particular circumstances.

  15. Instrumentation for Detecting Hazardous Materials.

    DTIC Science & Technology

    1980-06-01

    Monitoring and Process Control," Applied Physics, 18 (1979) 297-304. 91. "Beckman 5200 Series Spectrophotometers UV / Vis - NIR ," Bulletin 7323 and "DU-8...Alcohol L 3 2 2 2 2 (Isopropanol) ែ Vinyl Acetate L/S 3 2 2 3 1 C Acetic Anhydride L 3 C Ethanol L (Ethyl Alcohol) 3@2 GROUP IB Gasoline L ɠ > 3 2 2 0 2... UV - Vis Computing Spectrophoto- meter," Bulletin 7371, Beckman Instruments, Inc., Scientific Instruments Division, Campus Drive at Jamboree Blvd

  16. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  17. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  18. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  19. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  20. Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled

    NASA Technical Reports Server (NTRS)

    2004-01-01

    ; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.

  1. Literature Review of Multicultural Instrumentation

    ERIC Educational Resources Information Center

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  2. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  3. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  4. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  5. The IUE spacecraft and instrumentation

    NASA Technical Reports Server (NTRS)

    Boggess, A.; Carr, F. A.; Evans, D. C.; Fischel, D.; Freeman, H. R.; Fuechsel, C. F.; Klinglesmith, D. A.; Krueger, V. L.; Longanecker, G. W.; Moore, J. V.

    1978-01-01

    The paper describes the general design, instrumentation, and ground control system of the International Ultraviolet Explorer (IUE) satellite, which will serve as an astronomical observatory providing both high and low resolution UV spectra of sources other than the sun. Basic data are given on the telescope, the UV-visible converter, the spectrograph optics, the camera response, and the communications systems.

  6. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  7. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  8. Experimenting with Brass Musical Instruments.

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  9. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  10. Analysis of Key Education Instrumentation.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; And Others

    The Key Assessment System, consisting of test instruments which measure psychological functioning, work related competencies, and attitudinal and motivational characteristics, is described. The system is a vocational assessment battery designed to differentiate levels of psychophysical capabilities in a nondiscriminatory manner. It provides a…

  11. Experimenting with Brass Musical Instruments.

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  12. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  13. Literature Review of Multicultural Instrumentation

    ERIC Educational Resources Information Center

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  14. Psychology Needs Realism, Not Instrumentalism

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…

  15. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  16. Remote Instrumentation for Teaching Laboratory

    ERIC Educational Resources Information Center

    Baran, Jit; Currie, Ron; Kennepohl, Dietmar

    2004-01-01

    The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…

  17. Instrument independent diffuse reflectance spectroscopy.

    PubMed

    Yu, Bing; Fu, Henry L; Ramanujam, Nirmala

    2011-01-01

    Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

  18. Psychology Needs Realism, Not Instrumentalism

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…

  19. Instrument independent diffuse reflectance spectroscopy

    PubMed Central

    Yu, Bing; Fu, Henry L.; Ramanujam, Nirmala

    2011-01-01

    Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time. PMID:21280897

  20. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  1. Southern Italy, Instrument Pointing Subsystem

    NASA Image and Video Library

    1985-08-06

    51F-32-024 (29 July - 6 August 1985) --- Italy's “boot heel" surrounded by waters of the Ionian Sea/Golfo di Taranto and the Adriatic Sea is very clearly visible in this scene made with a handheld 70mm camera. Spacelab 2's versatile instrument pointing system (IPS) protrudes from the cargo bay.

  2. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  3. [Organising an instrumental elective abortion].

    PubMed

    Brûlé, Annie

    2015-12-01

    Family planning centres are structures designed to receive and care for women requesting elective abortions. Here the specially trained, dedicated teams offer personalised care. The instrumental elective abortion is prepared in the same way as a surgical procedure and is subject to the same monitoring. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  5. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  6. The MUSE instrument detector system

    NASA Astrophysics Data System (ADS)

    Reiss, Roland; Deiries, Sebastian; Lizon, Jean-Louis; Rupprecht, Gero

    2012-09-01

    The MUSE (Multi Unit Spectroscopic Explorer) instrument (see Bacon et al., this conference) for ESO's Very Large Telescope VLT employs 24 integral field units (spectrographs). Each of these is equipped with its own cryogenically cooled CCD head. The heads are individually cooled by continuous flow cryostats. The detectors used are deep depletion e2v CCD231-84 with 4096x4112 active 15 μm pixels. The MUSE Instrument Detector System is now in the final integration and test phase on the instrument. This paper gives an overview of the architecture and performance of the complex detector system including ESO's New General detector Controllers (NGC) for the 24 science detectors, the detector head electronics and the data acquisition system with Linux Local Control Units. NGC is sub-divided into 4 Detector Front End units each operating 6 CCDs. All CCDs are simultaneously read out through 4 ports to achieve short readout times at low noise levels. All science grade CCDs were thoroughly characterized on ESO's optical detectors testbench facility and the test results processed and documented in a semi-automated, reproducible way. We present the test methodology and the results that fully confirm the feasibility of these detectors for their use in this challenging instrument.

  7. Regeneration in brass wind instruments

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.; Bowsher, J. M.

    1982-07-01

    This paper is concerned with the production of musical notes by the interaction between the lips of a player and a brass wind instrument. The mechanism of this non-linear oscillation, together with that in the voice and for woodwind instruments, is discussed and past theories reviewed. Each element in the interaction is then carefully delineated and reasonable approximations to the governing equations for the lip dynamics and flow conditions through the lip opening are deduced: the acoustic parameters of the instrument and pressure source from the lungs can be experimentally determined. In contrast to the case of woodwind instruments, for example, many of the important parameters controlling the interaction can vary over a wide range and are under the complete control of the player. The expressions describing each component of the interaction are then combined to form an overall theory of regeneration, following Helmholtz, which leads to a description of the conditions necessary for a note to be sustained, and to an expression describing the characteristic waveform of the mouthpiece pressure at low frequencies. Experimental measurements of this mouthpiece pressure are presented, together with measurements of the steady and alternating components of the pressure in the mouth, and of the velocity in the mouthpiece for blown notes on a trombone and trumpet. Good agreement was observed between the harmonics of the measured mouthpiece pressure and those deduced from theory. Measurements are presented of the intonation of a trombone, and the range and characteristics of notes "buzzed" on a mouthpiece alone are discussed. Finally the steady pressure in the mouth and the average flow down the instrument are used to calculate the average lip opening, and hence the effective mass of the moving parts of the lips for a variety of notes played on a trombone and trumpet.

  8. 14 CFR 29.1333 - Instrument systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument systems. 29.1333 Section 29.1333... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1333 Instrument systems. For systems that operate the required flight instruments which are located at each pilot's station...

  9. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  10. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  11. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  12. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  13. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  14. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  15. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  16. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  17. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  18. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  19. Concurrent Validity of Four Androgyny Instruments.

    ERIC Educational Resources Information Center

    Wilson, F. Robert; Cook, Ellen Piel

    1984-01-01

    Compares concurrent validity of four sex-role instruments administered to a group of 281 urban university students. Reports that the instruments are sufficiently different in their measurement characteristics to warrant limiting generalizations about behavior based on these instruments to a particular instrument being used. (KH)

  20. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsurgical instrument. 882.4525 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  1. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  2. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  3. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  4. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  5. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  6. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems. For systems that operate the instruments required by § 25.1303(b) which are located at each pilot's...

  7. 14 CFR 29.1333 - Instrument systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument systems. 29.1333 Section 29.1333... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1333 Instrument systems. For systems that operate the required flight instruments which are located at each pilot's station...

  8. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... station— (a) Means must be provided to connect the required instruments at the first pilot's station to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems...

  9. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... station— (a) Means must be provided to connect the required instruments at the first pilot's station to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems...

  10. Concurrent Validity of Four Androgyny Instruments.

    ERIC Educational Resources Information Center

    Wilson, F. Robert; Cook, Ellen Piel

    1984-01-01

    Compares concurrent validity of four sex-role instruments administered to a group of 281 urban university students. Reports that the instruments are sufficiently different in their measurement characteristics to warrant limiting generalizations about behavior based on these instruments to a particular instrument being used. (KH)

  11. 76 FR 1063 - Modifications of Debt Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ...This document contains final regulations relating to the modification of debt instruments. The regulations clarify the extent to which the deterioration in the financial condition of the issuer is taken into account to determine whether a modified debt instrument will be recharacterized as an instrument or property right that is not debt. The regulations provide needed guidance to issuers and holders of debt instruments.

  12. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  13. Concert Band Instrumentation: Realities and Remedies.

    ERIC Educational Resources Information Center

    Rogers, George L.

    1991-01-01

    Suggests ways to solve problems resulting from imbalanced instrumentation in school concert bands. Identifies sources of imbalance. Encourages band directors to plan for correct instrumentation, to match students' characteristics and abilities to instruments, and to recruit students to play needed instruments. Discusses the benefits of balanced…

  14. Sonic instruments in root canal therapy.

    PubMed

    Waplington, M; Lumley, P J; Walmsley, A D

    1995-10-01

    Although hand instrumentation is considered the most acceptable method of preparing root canals, sonic instruments may be useful additions to the endodontic armamentarium. Sonic instrumentation may be incorporated as an adjunct to traditional techniques for shaping the root canal. The use of such instruments may assist the practitioner during root canal treatment in general practice.

  15. 32 CFR 21.665 - Nonprocurement instrument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Nonprocurement instrument. 21.665 Section 21.665... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.665 Nonprocurement instrument. A legal instrument other than a procurement contract. Examples include instruments of financial assistance, such...

  16. 14 CFR 29.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 29.1333 Section 29.1333... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1333 Instrument systems. For systems that operate the required flight instruments which are located at each pilot's...

  17. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsurgical instrument. 882.4525 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  18. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems. For systems that operate the instruments required by § 25.1303(b) which are located at each...

  19. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  20. 40 CFR 1066.120 - Measurement instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Measurement instruments. 1066.120... CONTROLS VEHICLE-TESTING PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.120 Measurement instruments. The measurement instrument requirements in 40 CFR part 1065...

  1. ACRF Instrumentation Status and Information July 2009

    SciTech Connect

    JW Voyles

    2009-08-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ACRF Instrumentation Status and Information May 2009

    SciTech Connect

    JW Voyles

    2009-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ACRF Instrumentation Status and Information - June 2009

    SciTech Connect

    JW Voyles

    2009-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ACRF Instrumentation Status and Information April 2009

    SciTech Connect

    Voyles, JW

    2009-05-07

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ACRF Instrumentation Status and Information August 2009

    SciTech Connect

    JW Voyles

    2009-09-09

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ACRF Instrumentation Status and Information September 2009

    SciTech Connect

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. Critiquing research instruments for postanesthesia studies.

    PubMed

    Summers, S

    1993-06-01

    A recent series of articles instructed PACU nurses on steps in developing pencil-and-paper instruments for research studies. What questions should PACU nurses ask when considering the use of existing pencil-and-paper instruments for use in research studies? The purpose of this article is to present nine steps in critiquing existing instrument before conducting research studies. Included are ethical considerations when using instruments and a checklist to assist PACU nurses in critiquing existing instruments.

  8. Systematic Differences Between Radiosonde Instruments

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Deviations of radiosonde reports' geopotential heights from the zonal mean are examined. In the summer Northern Hemisphere stratosphere, systematic differences are found between radiosonde instrument types. Persistent meridional wind anomalies, approximately constant in magnitude and fixed in location, have previously been reported in the summer stratosphere, and one such anomaly over Europe is found to be co-located with boundaries between regions in which differing types of radiosonde instruments are used. The magnitude and orientation of the radiosonde geopotential height biases are consistent with the wind anomalies. Because the overall winds tend to be light in this region and season, these wind anomalies can represent significant perturbations of the flow and must be considered when interpreting the results of trajectory and diagnostic studies.

  9. Recent developments in hydrologic instrumentation

    USGS Publications Warehouse

    Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.

    1986-01-01

    The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.

  10. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  11. Epithermal neutron instrumentation at ISIS

    NASA Astrophysics Data System (ADS)

    Gorini, G.; Festa, G.; Andreani, C.

    2014-12-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained.

  12. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dybdal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1986-09-01

    The development of an instrumentation radar that uses a chirp waveform to achieve high range resolution is described. Such range resolution capability is required for two reasons: (1) to evaluate the response of targets to the operational waveforms used in high-performance radars; and (2) to obtain a means of separating the individual mechanisms that comprise the target scattering response to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house-fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in. range resolution. A key feature of the radar is its ability to combine amplitude weighting with a high degree of waveform fidelity, with the result being very good range sidelobe performance.

  13. Instrumented fuels test for FFTF

    SciTech Connect

    Feigenbutz, L.V.; Hoth, C.W.

    1980-01-01

    In support of the LMFBR Fuels Development Program, Hanford Engineering Development Laboratory (HEDL) has designed the Fuels Open Test Assembly (FOTA) for fuels testing at the Fast Flux Test Facility (FFTF). The FOTA is a test vehicle designed to contain and support instrumented fuel experiments in the Fast Test Reactor (FTR) at FFTF. The initial two FOTA experiments will characterize the reference Driver Fuel Assembly performance in the FTR and provide experimental data to evaluate thermohydraulic models used to predict assembly performance. The design features and fabrication are described for the first two FOTA instrumented fuel experiments, which have been fabricated and are now in the FTR. A brief description of the FOTA test vehicle is included.

  14. The USNA MIDN Microdosimeter Instrument

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Dolecek, Q.; Heyne, J.; Veade, T.; Rosenfeld, A. B.; Cucinotta, F. A.; Zaider, M.; Dicello, J. F.

    2006-01-01

    This paper describes the MIcroDosimetry iNstrument (MIDN) mission now under development at the United States Naval Academy. The instrument is manifested to fly on the MidSTAR-1 spacecraft, which is the second spacecraft to be developed and launched by the Academy s faculty and midshipmen. Launch is scheduled for 1 September 2006 on an ATLAS-5 launch vehicle. MIDN is a rugged, portable, low power, low mass, solid-state microdosimeter designed to measure in real time the energy distributions of energy deposited by radiation in microscopic volumes. The MIDN microdosimeter sensor is a reverse-biased silicon p-n junction array in a Silicon-On-Insulator (SOI) configuration. Microdosimetric frequency distributions as a function of lineal energies determine the radiation quality factors in support of radiation risk estimation to humans.

  15. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  16. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  17. [Instrumental diagnosis in shoulder instability].

    PubMed

    Lalla, E; Rosa, D; Grillo, G; Belfiore, G

    1989-01-01

    The authors call attention to the pathology caused by glenohumeral instability and, in particular, to painful shoulders in athletes which so often cause problems in diagnosis. An instrumental protocol for diagnosis is suggested, based on several specific radiographic views, Ct scan and arthro-Ct scan, with double contrast medium, the latter having the task of determining lesion which would not otherwise be able to be studied.

  18. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  19. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  20. Nuclear instrumentation cable end seal

    DOEpatents

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  1. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  2. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  4. SOFIE instrument ground calibration update

    NASA Astrophysics Data System (ADS)

    Hansen, Scott; Fish, Chad; Shumway, Andrew; Gordley, Larry; Hervig, Mark

    2007-09-01

    Space Dynamics Laboratory (SDL), in partnership with GATS, Inc., designed and built an instrument to conduct the Solar Occultation for Ice Experiment (SOFIE). SOFIE is an infrared sensor in the NASA Aeronomy of Ice in the Mesosphere (AIM) instrument suite. AIM's mission is to study polar mesospheric clouds (PMCs). SOFIE will make measurements in 16 separate spectral bands, arranged in 8 pairs between 0.29 and 5.3 μm. Each band pair will provide differential absorption limb-path transmission profiles for an atmospheric component of interest, by observing the sun through the limb of the atmsophere during solar occulation as AIM orbits Earth. The AIM mission was launched in April, 2007. SOFIE originally completed calibration and was delivered in March 2006. The design originally included a steering mirror coaligned with the science detectors to track the sun during occultation events. During spacecraft integration, a test anomaly resulted in damage to the steering mirror mechanism, resulting in the removal of this hardware from the instrument. Subsequently, additional ground calibration experiments were performed to validate the sensor performance following the change. Measurements performed in this additional phase of calibration testing included SOFIE end-to-end relative spectral response, nonlinearity, and spatial characterization. SDL's multifunction infrared calibrator #1 (MIC1) was used to present sources to the instrument for calibration. Relative spectral response (RSR) measurements were performed using a step-scan Fourier transform spectrometer (FTS). Out-of-band RSR was measured to approximately 0.01% of in-band peak response using the cascaded filter Fourier transform spectrometer (CFFTS) method. Linearity calibration was performed using a calcium fluoride attenuator in combination with a 3000K blackbody. Spatial characterization was accomplished using a point source and the MIC1 pointing mirror. These techniques are described in detail, and resulting

  5. The Instruments of Dudley Observatory

    NASA Astrophysics Data System (ADS)

    Gino, M. C.

    2002-12-01

    Dudley Observatory, founded in 1852, is the nation's oldest independent organization dedicated to astronomical research and education. While Dudley no longer operates a physical observatory, it is home to a number of historically important scientific instruments and telescopes. Dudley's first operating telescope, a Clark Comet-seeker, remains in Dudley's collection today. This 4-inch refractor provided the first discovery of a comet by a Dudley astronomer in 1857 and is one of only four telescopes of this size produced by Alvan Clark. Also in Dudley's collection is the Olcott Meridian Circle which was the primary working telescope at the observatory for over 75 years. This telescope, made by Pistor & Martins and which operated both at the Dudley Observatory in Albany, NY and the San Luis Observatory in Argentina, was used to conduct all of the observations for the Preliminary General Catalog of 6788 Stars (1908) and the General Catalog of 33,343 Stars (1937). The gem of Dudley's collection is the Pruyn Equatorial Telescope, built by the Warner and Swasey Company and equipped with a 12-inch lens made by John Brashear. It was installed in 1893 to conduct both research observations and public observing sessions. After remaining in storage for many decades, this historic telescope will soon resume its role after being refurbished and installed at the Arunah Hill Natural Science Center in Cummington, MA. While Dudley retains its interest in astronomical instruments it has also moved into the areas of space studies and astronomical education. The key projects in the areas of instrumentation and astronomical outreach, which include the instruments above as well as the Rising Star Internship and Space Campership educational programs, will be detailed in the remainder of this paper.

  6. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  7. Instrumentation Research and Support Services.

    DTIC Science & Technology

    1985-09-30

    Diego, California for three days. Leonard J. Skach presented a paper entitled "Minitracker, A Portable S-band Autotracker Antenna". Attendance at the...data to a project scientist (luring instrument cooling arose and this requirement prompted the use of high-resolution (12 to 16 bit) DAC’s for...Output time code suitable for recording on tape or paper records with capability of identifying a particular event by a shift in level of this ti me

  8. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. The Polar Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  10. High-temperature borehole instrumentation

    SciTech Connect

    Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

    1985-10-01

    A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

  11. The COMPTEL instrumental line background

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Varendorff, M.; Oberlack, U.; Morris, D.; Plüschke, S.; Diehl, R.; Kappadath, S. C.; McConnell, M.; Ryan, J.; Schönfelder, V.; Steinle, H.

    2001-03-01

    The instrumental line background of the Compton telescope COMPTEL onboard the Compton Gamma-Ray Observatory is due to the activation and/or decay of many isotopes. The major components of this background can be attributed to eight individual isotopes, namely 2D, 22Na, 24Na, 28Al, 40K, 52Mn, 57Ni, and 208Tl. The identification of instrumental lines with specific isotopes is based on the line energies as well as on the variation of the event rate with time, cosmic-ray intensity, and deposited radiation dose during passages through the South-Atlantic Anomaly. The characteristic variation of the event rate due to a specific isotope depends on its life-time, orbital parameters such as the altitude of the satellite above Earth, and the solar cycle. A detailed understanding of the background contributions from instrumental lines is crucial at MeV energies for measuring the cosmic diffuse gamma-ray background and for observing gamma -ray line emission in the interstellar medium or from supernovae and their remnants. Procedures to determine the event rate from each background isotope are described, and their average activity in spacecraft materials over the first seven years of the mission is estimated.

  12. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  13. Instrumentation in antimicrobial susceptibility testing.

    PubMed

    Felmingham, D; Brown, D F

    2001-07-01

    Studies in the 1960s demonstrated the problems of variability in susceptibility testing methods, especially those affecting the performance of disc diffusion procedures. These studies made apparent the need for standardization and resulted in more clearly defined performance limits for growth medium, incubation conditions, inoculum concentration, disc content for diffusion methods, the setting of interpretative MIC breakpoints and the establishment of quality control parameters. More recently, there has been a growing interest in the use of instrumentation for reading disc diffusion tests and the endpoints of agar or broth dilution MIC determinations. Instrumentation ranges in complexity from the simple optical reading of zones of inhibition or growth endpoints, requiring operator interpretation, to more sophisticated devices for reading, recording and 'expert system' analysis of results with interfacing of instruments to laboratory information management systems. Some of the more developed systems are fully automated and can also identify the organisms tested. The pressure to reduce labour costs and provide results earlier favours the use of more automated systems whilst the requirement for resistance surveillance provides impetus for the use of systems that provide quantitative results and electronic data handling.

  14. Geotechnical instrumentation for repository shafts

    SciTech Connect

    Lentell, R.L.; Byrne, J.

    1993-09-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts.

  15. LESS and NOTES instrumentation: future.

    PubMed

    Morgan, Monica; Olweny, Ephrem O; Cadeddu, Jeffrey A

    2014-01-01

    Laparoendoscopic single-site surgery (LESS) and natural orifice transluminal endoscopic surgery (NOTES) are novel techniques with potential to minimize the morbidity of surgery. Challenging ergonomics, instrument clashing, and the lack of true triangluation still remain great concerns. New technological developments in instrument design have been created to enhance clinical applicability of these techniques. Further technological advancements including the incorporation of novel robotic surgical platforms (R-LESS) exploit the ergonomic benefits in an attempt to further advance LESS surgery. Promising devices include magnetic anchoring and guidance systems that have the potential to allow external manoeuvring of intracorporeal instruments while facilitating triangulation and reducing clashing. As well, the benefit of miniature in-vivo robots that can be placed endoscopically intra-abdominally and controlled wirelessly will allow internal manipulation of tissue from internal repositionable platforms. It remains to be seen whether LESS or NOTES will prove their clinical benefit over standard laparoscopic or robotic procedures. In this chapter, we review the current LESS and NOTES technology, and focus on new innovations and research in the field.

  16. In Situ Instruments: Overview of In Situ Instruments for Deployment in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Cardell, G.

    2000-01-01

    This presentation reviews the design and specifications for several instruments for deployment in extreme environments. The instruments are: (1) In Situ Geochronology Instrument, (2) Laser Ablation Sampling Instrument, (3) Micro Hygrometer (4) Micro Lidar, (5) Atmospheric Electron X-Ray Spectrometer and (6) Nuclear Magnetic Resonance Spectrometer. Included in the descriptions are the contact people and the objective of each instrument.

  17. Sterilization beneath rings on dental instruments.

    PubMed

    Miller, C H; Sheldrake, M A

    1991-12-01

    This study determined the effectiveness of standard methods of instrument sterilization beneath instrument rings. Sets of three types of dental instruments were contaminated with known amounts of bacterial spores (Bacillus stearothermophilus or Bacillus subtilis). Instrument rings were placed over the contamination and the instruments processed through standard cycles in a steam autoclave, an unsaturated chemical vapor sterilizer, a standard dry heat sterilizer, an ethylene oxide gas sterilizer or a 2.0% alkaline glutaraldehyde solution. Controls consisted of spore-contaminated instruments without rings that were not processed through any sterilizing method and that were processed through each sterilizing method. All instruments and their associated rings were cultured for the presence of live spores. The results indicate that the reliability of sterilization beneath the instrument rings used is greatest if the ringed instruments are processed through a steam autoclave or an unsaturated chemical vapor sterilizer.

  18. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  19. The Dark Energy Spectroscopic Instrument (DESI) instrument mechanism control systems

    NASA Astrophysics Data System (ADS)

    Coker, Carl T.; Pappalardo, Daniel; Pogge, Richard; Martini, Paul; Derwent, Mark; O'Brien, Thomas P.; Honscheid, Klaus

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 40 million galaxies over 14,000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5,000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We present the design details of the instrument mechanism control systems for the spectrographs. Each spectrograph has a stand-alone mechanism control box that operates the unit's four remotely-operated mechanisms (two shutters and two Hartmannn doors), and provides a suite of temperature and humidity sensors. Each control box is highly modular, and is operated by a dedicated on-board Linux computer to provide all of the control and monitoring functions. We describe our solution for integrating a number of network-connected devices within each unit spectrograph, and describe the basic software architecture.

  20. Respiratory function in wind instrument players.

    PubMed

    Zuskin, Eugenija; Mustajbegovic, Jadranka; Schachter, E N; Kern, Josipa; Vitale, Ksenija; Pucarin-Cvetkovic, Jasna; Chiarelli, A; Milosevic, M; Jelinic, Jagoda Doko

    2009-01-01

    The playing of wind instruments has been associated with changes in respiratory function. To investigate the effect of playing wind instruments on lung function and respiratory symptoms. The present study included 99 wind instrument players and a group of 41 string instrument players as a control from 3 major orchestras in Zagreb, Croatia. Data on chronic respiratory symptoms were recorded in all studied subjects. Lung function was measured in wind instrument players by recording maximum expiratory flow-volume curves. Wind instrument players demonstrated significantly higher prevalences of sinusitis, nasal catarrh and hoarseness compared to control musicians. One wind instrument player developed asthma associated with his work. Odds ratios for wind instrument players were significant for chronic cough, chronic phlegm and chronic bronchitis by smoking habit (p<0.05 or p<0.01) but not for length of employment. Ventilatory capacity data indicate that wind instrument players had significantly greater FEV1 (smokers and nonsmokers) as well as FEF50 (nonsmokers) (p<0.05) compared to predicted values. Regression analysis of pulmonary function tests in wind instrument players demonstrate a significant link between FEV1 and FEF50 and length of employment. Those wind instrument players with longer employment had the greatest increases in lung function. Our data suggest that musicians playing wind instruments may be susceptible to chronic upper airway symptoms. Interestingly wind instrument playing may be associated with higher than expected lung function parameters.

  1. The SCEC Borehole Instrumentation Program

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Archuleta, R. J.

    2002-12-01

    The Uniform Building Code used in the design of structures by the engineering community places a great deal of emphasis on the average shear wave velocity in the upper 30 meters to classify sites and to assign site response correction factors. The emphasis on characterization of the near-surface properties in California, especially at sites with strong motion instrumentation, provides a wealth of new information for site response studies. Borehole instrumentation coupled with site characterization data allow for direct estimation of the effects of surface geology on seismic ground motions and the ability to calibrate and improve our physical models of soil response for different levels of ground motion. In March of 1997 a workshop was held to discuss the initiation of a borehole instrumentation program within the Southern California Earthquake Center. Shortly after the workshop the program was approved. SCEC provided the resources for three sites in 1998, and two sites per year in 1999 and 2000. Using the SCEC resources as leverage, collaboration and cost sharing with multiple agencies and programs has produced the resources for a dozen borehole installations. Ten of these are currently in place in southern California, and 9 are providing real-time data back to the California Integrated Seismic Network (CISN). The remaining two sensors are to be deployed within the next year. Some highlights of the SCEC borehole program include: the observations of earthquakes with magnitude as small as M1.8 to as large as M7.1 using a single strong motion accelerometer coupled with high resolution digitizers; Correlation between larger ground motions and lower shear-wave velocity; and variability over short distances in both surface and borehole observations emphasizing the importance of not only surface geology, but also shallow crustal structure.

  2. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  3. Instrumentation for Sensitive Gas Measurements

    NASA Technical Reports Server (NTRS)

    OKeefe, Anthony

    2005-01-01

    An improved instrument for optical absorption spectroscopy utilizes off-axis paths in an optical cavity in order to increase detection sensitivity while suppressing resonance effects. The instrument is well suited for use in either cavity ring-down spectroscopy (CRDS) [in which one pulses an incident light beam and measures the rate of decay of light in the cavity] or integrated cavity output spectroscopy (ICOS) [in which one uses a continuous-wave incident light beam and measures the power of light in the cavity as a function of wavelength]. Typically, in optical absorption spectroscopy, one seeks to measure absorption of a beam of light in a substance (usually a gas or liquid) in a sample cell. In CRDS or ICOS, the sample cell is placed in (or consists of) an optical cavity, so that one can utilize multiple reflections of the beam to increase the effective optical path length through the absorbing substance and thereby increase the sensitivity for measuring absorption. If an absorbing substance is not present in the optical cavity, one can utilize the multiple passes of the light beam to increase the sensitivity for measuring absorption and scattering by components of the optical cavity itself. It is desirable to suppress the effects of resonances in the cavity in order to make the spectral response of the cavity itself as nearly constant as possible over the entire wavelength range of interest. In the present instrument, the desired flattening of the spectral response is accomplished by utilizing an off-axis beam geometry to effectively decrease the frequency interval between longitudinal electromagnetic modes of the cavity, such that the resulting transmission spectrum of the cavity is nearly continuous: in other words, the cavity becomes a broad-band optical device.

  4. Instrumentation development for the EUVE

    NASA Astrophysics Data System (ADS)

    Finley, D.

    1980-06-01

    The prototype mirror was successfully replated with a thick layer of nickel and diamond turned again. Optimization of the sensitivity of the instruments was studied with emphasis on the filter material, and on the available telemetry. The JHU Preliminary Project Definition Document was critically analyzed. Further studies of the electron cloud distribution produced by a channel plate were performed, and a wedge and strip anode with 17 quartets per inch was shown to image with better than 0.5% linearity. Half the microchannel plates being used in the lifetest completed initial processing and are in the lifetest vacuum chamber.

  5. Simulations of the WUVS instrument

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, Pablo; Gómez de Castro, Ana I.; Perea Abarca, Belén.; Sachkov, Mikhail

    2016-07-01

    The performance of the WUVS (WSO-UV Spectrographs) can be evaluated through simulations of the expected observations. Here we discuss the implementation details and the noise models applied in the simulation software tool developed to carry on these simulations. The WUVS Simulator has been implemented as a further development of the PLATO Simulator, adapting it to the WUVS specific characteristics. It is designed to generate synthetic time-series of images by including models of all important noise sources. The expected overall noise budget of the output images is evaluated as a function of different sets of input parameters describing the instrument properties.

  6. Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  7. Small satellite radiation budget instrumentation

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A major diagnostic in understanding the response of the Earth's climate to natural or anthropogenic changes is the radiative balance at the top of the atmosphere. Two classes of measurements may be undertaken: (1) a monitoring of the radiation balance over decade-long long time-scales, and (2) measurements designed to provide a sufficiently complete data set to validate or improve models. This paper discusses some of the important ingredients in obtaining such data, and presents a description of some candidate instrumentation for use on a small satellite. 23 refs.

  8. Small satellite radiation budget instrumentation

    SciTech Connect

    Weber, P.G.

    1992-05-01

    A major diagnostic in understanding the response of the Earth`s climate to natural or anthropogenic changes is the radiative balance at the top of the atmosphere. Two classes of measurements may be undertaken: (1) a monitoring of the radiation balance over decade-long long time-scales, and (2) measurements designed to provide a sufficiently complete data set to validate or improve models. This paper discusses some of the important ingredients in obtaining such data, and presents a description of some candidate instrumentation for use on a small satellite. 23 refs.

  9. The AsteroidFinder Instrument

    NASA Astrophysics Data System (ADS)

    Michaelis, Harald; Mottola, Stefano; Kuehrt, Ekkehard; Hoffmann, Harald; Behnke, Thomas; Messina, Gabriele; Tschentscher, Matthias; Scheibe, Karsten; Solbrig, Michael; Mosebach, Herbert; Hartl, Michael; Lenfert, Kay

    The DLR Institute of Planetary Exploration has proposed a novel design for a space instrument accommodated on a small satellite bus (SSB) that is dedicated to the detection of inner earth objects (IEOs) from a low earth orbit (LEO). The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5m (V-Band) and astrometric accuracy of 1 arcsec (1). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak∼90). The instrument design is based on a novel focal plane consisting of four Electron-Multiplying CCDs (EMCCD). These detectors operate at a high frame rate of nominally 5fps and very low effective readout noise (¡2e rms), in order to compensate the spacecraft's pointing jitter. The telescope optics is based on an off-axis anastigmatic design (TMA). A reflective Schmidt-type corrector plate enables a corrected 22 field of view to be achieved by the fast F/3.4 telescope with near diffraction-limited performance. The absence of center obscurations or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. To accommodate the passive thermal stabilization scheme and the necessary structural stability, HB-Cesic R was selected as material for the telescope structure and mirrors. This new composite ceramic material is highly promising for space telescope applications. The electronics design comprises high speed signal and data processing chains for on-board acquisition, filtering, accumulation and compression of the CCD data. One of the most important tasks of the on-board processing software is to implement the image stabilization function. For this purpose the images are oversampled, guide stars are automatically identified and tracked, and the individual short-exposure images are shifted and co-added with sub-pixel accuracy. During this process, spurious events as cosmic ray hits or

  10. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  11. Solwind instrument destroyed in test

    NASA Astrophysics Data System (ADS)

    The U.S. Air Force's destruction of one of its own satellites last month ended what had been the longest continuous stream of data from an instrument observing the sun's corona. Satellite P78-1 served as the target in a test of antisatellite (ASAT) weaponry on September 13, 1985. The satellite carried Solwind, a white light coronagraph that observed the solar corona at distances of 3-10 solar radii, according to Robert M. MacQueen, director of the High Altitude Observatory at the National Center for Atmospheric Research (NCAR) in Boulder, Colo.

  12. Instrument Deployment for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.

  13. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  14. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  15. Regional Instrumentation Facilities Established by NSF.

    ERIC Educational Resources Information Center

    Analytical Chemistry, 1979

    1979-01-01

    This article describes the six regional instrumentation facilities established by the National Science Foundation. These centers make available to scientists state-of-the-art instrumentation such as: gas chromatographs; lasers; NMR spectrometers; X-rays; and others. (CS)

  16. Instrumental Analysis Lecture and Laboratory: A Survey

    NASA Astrophysics Data System (ADS)

    Girard, James E.; Diamant, Constance T.

    2000-05-01

    Which topics should be covered in instrumental analysis lecture and which instrumental techniques should be used in the instrumental laboratory? We surveyed a randomly chosen group of analytical chemistry faculty using a survey that had been used before. We compare our 1998 responses to those obtained in 1981 to observe long-term trends in the teaching of instrumental analysis and instrumental analysis laboratory. Our survey shows that the instrumental laboratory has changed more than the instrumental lecture. Four experiments that were often used in 1981, infrared, NMR, electrochemical methods, and gas chromatography, have declined in usage. Six experiments are increasing in usage: molecular fluorescence, atomic absorption spectroscopy, GC-MS, cyclic voltammetry, HPLC, and elementary electronics. It appears that there is a consensus about which experimental techniques the instrumental course should offer to undergraduates.

  17. Use of Electrical and Electronic Instruments

    ERIC Educational Resources Information Center

    Mosbacher, C. J.; Thomas, E. J.

    1977-01-01

    Presents results of a trend survey of the present and planned use of electrical and electronic instruments. Microprocessors were found to have the highest predicted growth rate of all instruments included in the survey. (SL)

  18. A Robot or a Science Instrument?

    NASA Image and Video Library

    2009-10-20

    Some say the science instrument on NASA Wide-field Infrared Survey Explorer mission resembles the Star Wars robot R2-D2. The instrument is enclosed in a solid-hydrogen cryostat, which cools the WISE telescope and detectors.

  19. Pointing compensation system for spacecraft instruments

    NASA Technical Reports Server (NTRS)

    Plescia, Carl T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.

  20. Low-Energy Charged Particle Instrument Assembly

    NASA Image and Video Library

    2012-12-03

    This image shows the low-energy charged particle instrument before it was installed on one of NASA Voyager spacecraft in 1977. The instrument includes a stepper motor that turns the platform on which the sensors are mounted.