Sample records for chemistry

  1. Towards "Bildung"-Oriented Chemistry Education

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  2. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  3. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  4. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  5. Assessment of Chemistry Anxiety in a Two-Year College

    ERIC Educational Resources Information Center

    McCarthy, Wanda C.; Widanski, Bozena Barbara

    2009-01-01

    Chemistry anxiety encompasses apprehension regarding learning chemistry, evaluation in chemistry courses, and fears about handling chemicals. Our goal was to ascertain the prevalence of these three types of anxiety in college students enrolled in a two-year college. In our sample, chemistry-evaluation provoked the most chemistry anxiety followed…

  6. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  7. Students' Perceptions of Teaching in Context-based and Traditional Chemistry Classrooms: Comparing content, learning activities, and interpersonal perspectives

    NASA Astrophysics Data System (ADS)

    Overman, Michelle; Vermunt, Jan D.; Meijer, Paulien C.; Bulte, Astrid M. W.; Brekelmans, Mieke

    2014-07-01

    Context-based curriculum reforms in chemistry education are thought to bring greater diversity to the ways in which chemistry teachers organize their teaching. First and foremost, students are expected to perceive this diversity. However, empirical research on how students perceive their teacher's teaching in context-based chemistry classrooms, and whether this teaching differs from traditional chemistry lessons, is scarce. This study aims to develop our understanding of what teaching looks like, according to students, in context-based chemistry classrooms compared with traditional chemistry classrooms. As such, it might also provide a better understanding of whether teachers implement and attain the intentions of curriculum developers. To study teacher behaviour we used three theoretical perspectives deemed to be important for student learning: a content perspective, a learning activities perspective, and an interpersonal perspective. Data were collected from 480 students in 24 secondary chemistry classes in the Netherlands. Our findings suggest that, according to the students, the changes in teaching in context-based chemistry classrooms imply a lessening of the emphasis on fundamental chemistry and the use of a teacher-centred approach, compared with traditional chemistry classrooms. However, teachers in context-based chemistry classrooms seem not to display more 'context-based' teaching behaviour, such as emphasizing the relation between chemistry, technology, and society and using a student-centred approach. Furthermore, students in context-based chemistry classrooms perceive their teachers as having less interpersonal control and showing less affiliation than teachers in traditional chemistry classrooms. Our findings should be interpreted in the context of former and daily experiences of both teachers and students. As only chemistry is reformed in the schools in which context-based chemistry is implemented, it is challenging for both students and teachers to deal with these reforms.

  8. Exploring the Sources of Turkish Pre-Service Chemistry Teachers' Chemistry Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Uzuntiryaki, Esen

    2008-01-01

    This study aimed to examine the underlying sources in developing chemistry self-efficacy beliefs of Turkish pre-service chemistry teachers. For this purpose, the College Chemistry Selfefficacy Scale (CCSS) was administered to 20 pre-service chemistry teachers. Then, phenomenological approach was employed and semi-structured interviews were…

  9. Conditions for Self-Confidence among Boys and Girls Achieving Highly in Chemistry.

    ERIC Educational Resources Information Center

    Ziegler, Albert; Heller, Kurt A.

    2000-01-01

    Students (N=379) in the 8th grade of German college preparatory schools, prior to formal chemistry instruction, were evaluated for prior knowledge of chemistry, their self-concept regarding chemistry, their gender-bound attitudes toward chemistry, and their fear of chemistry. Findings indicated that girls already expressed significantly lower…

  10. DanceChemistry: Helping Students Visualize Chemistry Concepts through Dance Videos

    ERIC Educational Resources Information Center

    Tay, Gidget C.; Edwards, Kimberly D.

    2015-01-01

    A visual aid teaching tool, the DanceChemistry video series, has been developed to teach fundamental chemistry concepts through dance. These educational videos portray chemical interactions at the molecular level using dancers to represent chemical species. Students reported that the DanceChemistry videos helped them visualize chemistry ideas in a…

  11. Chemistry Division: Annual progress report for period ending March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  12. Two-Year College Chemistry Conference Proceedings: Southern Regional Conference, (2nd, Little Rock, December 9, 1967); Eastern Regional Conference (1st, Philadelphia, February 2-3, 1968); and Annual Conference (8th, San Francisco, March 29-30, 1968).

    ERIC Educational Resources Information Center

    Chapman, Kenneth, Ed.

    This report on three junior college chemistry conferences includes: (1) new and developing programs in 2-year college chemistry; (2) beginning chemistry offerings--repair of poor backgrounds in chemistry and math; (3) non-science major--chemistry program for non-science students; (4) first-year chemistry course: (a) programmed audio-tutorial…

  13. The Significance of the Origin of Physical Chemistry for Physical Chemistry Education: The Case of Electrolyte Solution Chemistry

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    2014-01-01

    Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…

  14. Perceptions of Chemistry: Why Is the Common Perception of Chemistry, the Most Visual of Sciences, So Distorted?

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.

    1996-01-01

    Highlights the need to reinvigorate chemistry education by means of the visual-spatial approach, an approach wholly in conformance with the way modern chemistry is thought about and practiced. Discusses the changing world, multiple intelligences, imagery, chemistry's pictorial language, and perceptions in chemistry. Presents suggestions on how to…

  15. New Perspectives on Context-Based Chemistry Education: Using a Dialectical Sociocultural Approach to View Teaching and Learning

    ERIC Educational Resources Information Center

    King, Donna

    2012-01-01

    Context-based chemistry education aims to improve student interest and motivation in chemistry by connecting canonical chemistry concepts with real-world contexts. Implementation of context-based chemistry programmes began 20 years ago in an attempt to make the learning of chemistry meaningful for students. This paper reviews such programmes…

  16. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    ERIC Educational Resources Information Center

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  17. The Journal of Kitchen Chemistry: A Tool for Instructing the Preparation of a Chemistry Journal Article

    ERIC Educational Resources Information Center

    Meyers, Jonathan K.; LeBaron, Tyler W.; Collins, David C.

    2014-01-01

    Writing assignments are typically incorporated into chemistry courses in an attempt to enhance the learning of chemistry or to teach technical writing to chemistry majors. This work addresses the development of chemistry-major writing skills by focusing on the rigorous guidelines and conventions associated with the preparation of a journal…

  18. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  19. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    ERIC Educational Resources Information Center

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…

  20. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    PubMed

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  2. Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery

    NASA Astrophysics Data System (ADS)

    Preininger, Anita M.

    2017-02-01

    There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before and after the 18-week chemistry class; results from the chemistry class were compared to survey results from students in an elective science class that did not emphasize mathematics. At the end of the 18-week period, only the chemistry students exhibited more positive views toward their abilities in mathematics and careers that involve mathematics, as compared to their views at the outset of the course. To ensure that chemistry mastery was not hindered by the additional emphasis on math, and that mastery on state end-of-course examinations reflected knowledge acquired during the math-intensive chemistry class, a chemistry progress test was administered at the start and end of the term. This exploratory study suggests that emphasizing mathematical approaches in chemistry may positively influence attitudes toward math in general, as well as foster mastery of chemistry content.

  3. Active Learning Applications in the History of Chemistry: Pre-Service Chemistry Teachers' Level of Knowledge and Views

    ERIC Educational Resources Information Center

    Sendur, Gülten; Polat, Merve; Toku, Abdullah; Kazanci, Coskun

    2014-01-01

    This study aims to investigate the effects of a History and Philosophy of Chemistry-I course based on active learning applications on the level of knowledge of pre-service chemistry teachers about the history of chemistry. The views of pre-service chemistry teachers about these activities were also investigated. The study was carried out with 38…

  4. What We Don't Test: What an Analysis of Unreleased ACS Exam Items Reveals about Content Coverage in General Chemistry Assessments

    ERIC Educational Resources Information Center

    Reed, Jessica J.; Villafan~e, Sachel M.; Raker, Jeffrey R.; Holme, Thomas A.; Murphy, Kristen L.

    2017-01-01

    General chemistry courses are often the foundation for the study of other science disciplines and upper-level chemistry concepts. Students who take introductory chemistry courses are more often from health and science-related fields than chemistry. As such, the content taught and assessed in general chemistry courses is envisioned as building…

  5. Does a Course on the History and Philosophy of Chemistry Have Any Effect on Prospective Chemistry Teachers' Perceptions? The Case of Chemistry and the Chemist

    ERIC Educational Resources Information Center

    Sendur, G.; Polat, M.; Kazanci, C.

    2017-01-01

    The creative comparisons prospective chemistry teachers make about "chemistry" and the "chemist" may reflect how they perceive these concepts. In this sense, it seems important to determine which creative comparisons prospective teachers make with respect to these and how these can change after the history of chemistry is…

  6. On Study of New Progress and Application of Coordination Chemistry in Chemistry and Chemical Industry in Recent Years

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-12-01

    Coordination chemistry refers to a branch of chemistry, and its research results are widely used in industry and people's daily life. Many edge disciplines emerge during the development, which propels the process of disciplines and technology. This paper briefly discusses new progress of coordination chemistry and its application in chemistry and chemical industry in recent years.

  7. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    NASA Astrophysics Data System (ADS)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty. Furthermore, improving attitudes and beliefs could be a potential for bringing about successful interventions to general chemistry learning. Importantly, the role of collaboration between chemistry educators is essential to forming instructional strategies. Additionally, shifting paradigms should be given utmost attention, including differences among student engagement in general chemistry, ways in which faculty can modify practices to meet student expectations, and the role of administrators in providing the necessary tools that stimulate chemistry education and research.

  8. Logic, History, and the Chemistry Textbook: I. Does Chemistry Have a Logical Structure?

    ERIC Educational Resources Information Center

    Jensen, William B.

    1998-01-01

    Presents the first of three invited keynote lectures from the 1995 conference of the New England Association of Chemistry Teachers. Discusses the relevance of the history of chemistry to the teaching of chemistry. Contains 27 references. (DDR)

  9. 42 CFR 493.839 - Condition: Chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  10. 42 CFR 493.839 - Condition: Chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  11. 42 CFR 493.839 - Condition: Chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  12. 42 CFR 493.839 - Condition: Chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  13. 42 CFR 493.839 - Condition: Chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  14. Organic Chemistry in Action! What Is the Reaction?

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2015-01-01

    The "Organic Chemistry in Action!" ("OCIA!") program is a set of teaching resources designed to facilitate the teaching and learning of introductory level organic chemistry. The "OCIA!" program was developed in collaboration with practicing and experienced chemistry teachers, using findings from Chemistry Education…

  15. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    NASA Astrophysics Data System (ADS)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  16. College Chemistry: how a textbook can reveal the values embedded in chemistry.

    PubMed

    Bensaude-Vincent, Bernadette

    2007-12-01

    This paper explores the norms, values and ethical attitudes that Linus Pauling wanted to convey to his students in his famous textbook College Chemistry. In this classic textbook, Pauling aimed to introduce beginners into the world of chemistry by presenting chemistry as a systematic science based on a collection of empirical data and a recent theoretical framework. In doing so, he expressed his epistemic and didactic choices clearly. College Chemistry therefore offers an ideal opportunity to examine some of the norms at the core of chemistry's 'moral economy'.

  17. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery.

    PubMed

    Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira

    2007-02-01

    Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.

  18. Through the looking glass of a chemistry video game: Evaluating the effects of different MLEs presenting identical content material

    NASA Astrophysics Data System (ADS)

    Hillman, Dustin S.

    The primary goal of this study is to evaluate the effects of different media-based learning environments (MLEs) that present identical chemistry content material. This is done with four different MLEs that utilize some or all components of a chemistry-based media-based prototype video game. Examination of general chemistry student volunteers purposefully randomized to one of four different MLEs did not provide evidence that the higher the level of interactivity resulted in a more effective MLE for the chemistry content. Data suggested that the cognitive load to play the chemistry-based video game may impaired the chemistry content being presented and recalled by the students while the students watching the movie of the chemistry-based video game were able to recall the chemistry content more efficiently. Further studies in this area need to address the overall cognitive load of the different MLEs to potentially better determine what the most effective MLE may be for this chemistry content.

  19. Chemistry in the Two-Year College. Proceedings from Two-Year College Chemistry Conference and Papers of Special Interest to the Two-Year College Chemistry Teacher. 1971 No. 1.

    ERIC Educational Resources Information Center

    Chapman, Kenneth, Ed.

    In this publication, issued twice per year, four major topics are discussed: (1) chemistry course content, including chemistry for nonscience students and nurses; (2) using media in chemistry, such as behavioral objectives and audio-tutorial aids; (3) chemical technology, with emphasis on the Chemical Technology Curriculum Project (Chem TeC); and…

  20. What Teaching Teaches: Mentoring and the Performance Gains of Mentors

    NASA Astrophysics Data System (ADS)

    Amaral, Katie E.; Vala, Martin

    2009-05-01

    A peer mentoring program was added to an introductory chemistry course at a large university. The introductory chemistry course prepares students with little or no previous chemistry background to enter the mainstream general chemistry sequence and is part lecture and part small-group problem-solving. Faculty instructors are responsible for the lecture while peer mentors handle the group problem-solving portion. Peer mentors, recruited from previous introductory chemistry course, are chosen for their knowledge of the material and their helpfulness in group activities. While a number of studies on peer mentoring have reported the benefits to the mentored students, the present study looks at the benefits to the mentors. Grade enhancement in the main-stream general chemistry sequence, withdrawal rates, and number of additional chemistry courses taken by the mentors have been compared to under-prepared students who took the introductory chemistry course but did not serve as mentors and well-prepared students who did not need the introductory chemistry course. Our results show that mentors earned higher grades, withdrew from chemistry courses at a lower rate, and took more courses in chemistry than their counterparts. The enhanced achievement and retention of the mentors in chemistry suggests that programs that encourage under-prepared students to mentor are worthwhile endeavors.

  1. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  2. 76 FR 24922 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: Proposal Review Panel for Chemistry 1191. Date and Time: May 17, 2011...: Katharine Covert, Acting Deputy Division Director, Chemistry Centers Program, Division of Chemistry, Room...

  3. Effective Chemistry Communication in Informal Environments

    ERIC Educational Resources Information Center

    National Academies Press, 2016

    2016-01-01

    Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community…

  4. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  5. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  6. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  7. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  8. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  9. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  10. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  11. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  12. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  13. CHEMISTRY, A GUIDE FOR TEACHERS.

    ERIC Educational Resources Information Center

    WHEELER, HUBERT

    THE VOLUME INCLUDES AN INTRODUCTION, THE COURSE CONTENT IN CHEMISTRY, AND FIVE APPENDIXES OF USEFUL INFORMATION. THE CHEMISTRY COURSE CONTENT IS FURTHER SUBDIVIDED INTO FIVE SECTIONS--(1) THE OVERVIEW, (2) CHEMICAL REACTIONS, (3) CHEMICAL BONDING AND MOLECULAR ARCHITECTURE, (4) DESCRIPTIVE CHEMISTRY, AND (5) ADVANCED CHEMISTRY. EACH OF THE FIVE…

  14. Science Project Ideas about Kitchen Chemistry. Revised Edition.

    ERIC Educational Resources Information Center

    Gardner, Robert

    This book presents science experiments that can be conducted in the kitchen. Contents include: (1) "Safety First"; (2) "Chemistry in and Near the Kitchen Sink"; (3) "Chemistry in the Refrigerator"; (4) "Chemistry on the Stove"; (5) "Chemistry on the Kitchen Counter"; and (6) "Further Reading and Internet Addresses." (YDS)

  15. Chemistry, College Level. Annotated Bibliography of Tests.

    ERIC Educational Resources Information Center

    Educational Testing Service, Princeton, NJ. Test Collection.

    Most of the 30 tests cited in this bibliography are those of the American Chemical Society. Subjects covered include physical chemistry, organic chemistry, inorganic chemistry, analytical chemistry, and other specialized areas. The tests are designed only for advanced high school, and both bachelor/graduate degree levels of college students. This…

  16. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    ERIC Educational Resources Information Center

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  17. Prominent Chemists Team Up to Review Frontiers in Chemistry.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1989-01-01

    Discusses a symposium which focused on the influence of inorganic chemistry on organic synthesis, the impact of organic chemistry on biochemistry and vice versa, chemical reaction dynamics, and advances in inorganic chemistry. Explains the purpose of the symposium was to illustrate the intellectual dynamism of modern chemistry. (MVL)

  18. Chemistry in the Two-Year College, Vol. 11, 1973.

    ERIC Educational Resources Information Center

    Bardole, Jay, Ed.; Bardole, Ellen, Ed.

    This publication, issued twice per year, includes proceedings from Two-Year College Chemistry Conferences and papers of special interest to the two-year college chemistry teacher. Relevant applications of chemistry are discussed, including the chemistry of flame retardance and photographic processes. Also discussed are topics related to the…

  19. 21 CFR 862.2170 - Micro chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Micro chemistry analyzer for clinical use. 862... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2170 Micro chemistry analyzer for clinical use. (a) Identification. A micro chemistry...

  20. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  1. 40 CFR 158.270 - Experimental use permit data requirements for residue chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for residue chemistry. 158.270 Section 158.270 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for residue chemistry. All residue chemistry data, as described in... section 408(r) is sought. Residue chemistry data are not required for an experimental use permit issued on...

  2. 76 FR 12996 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (CHE), 1191. Dates and Times: March 31, 2011; 8 a.m.-5:30 p.m. April... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  3. 76 FR 6499 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (1191). Dates and Times: February 17, 2011; 8 a.m.-6 p.m. February 18... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  4. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    ERIC Educational Resources Information Center

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-01-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one…

  5. 40 CFR 158.270 - Experimental use permit data requirements for residue chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for residue chemistry. 158.270 Section 158.270 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for residue chemistry. All residue chemistry data, as described in... section 408(r) is sought. Residue chemistry data are not required for an experimental use permit issued on...

  6. 21 CFR 862.2170 - Micro chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Micro chemistry analyzer for clinical use. 862... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2170 Micro chemistry analyzer for clinical use. (a) Identification. A micro chemistry...

  7. 40 CFR 158.270 - Experimental use permit data requirements for residue chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for residue chemistry. 158.270 Section 158.270 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for residue chemistry. All residue chemistry data, as described in... section 408(r) is sought. Residue chemistry data are not required for an experimental use permit issued on...

  8. 21 CFR 862.2170 - Micro chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Micro chemistry analyzer for clinical use. 862... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2170 Micro chemistry analyzer for clinical use. (a) Identification. A micro chemistry...

  9. 40 CFR 158.270 - Experimental use permit data requirements for residue chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for residue chemistry. 158.270 Section 158.270 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for residue chemistry. All residue chemistry data, as described in... section 408(r) is sought. Residue chemistry data are not required for an experimental use permit issued on...

  10. 21 CFR 862.2170 - Micro chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Micro chemistry analyzer for clinical use. 862... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2170 Micro chemistry analyzer for clinical use. (a) Identification. A micro chemistry...

  11. 40 CFR 158.270 - Experimental use permit data requirements for residue chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for residue chemistry. 158.270 Section 158.270 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for residue chemistry. All residue chemistry data, as described in... section 408(r) is sought. Residue chemistry data are not required for an experimental use permit issued on...

  12. 21 CFR 862.2170 - Micro chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Micro chemistry analyzer for clinical use. 862... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2170 Micro chemistry analyzer for clinical use. (a) Identification. A micro chemistry...

  13. Use of combinatorial chemistry to speed drug discovery.

    PubMed

    Rádl, S

    1998-10-01

    IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.

  14. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    PubMed

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  15. Research in bioanalysis and separations at the University of Nebraska - Lincoln.

    PubMed

    Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert

    2011-05-01

    The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.

  16. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  17. Student Perceptions of Chemistry Laboratory Learning Environments, Student-Teacher Interactions and Attitudes in Secondary School Gifted Education Classes in Singapore

    NASA Astrophysics Data System (ADS)

    Lang, Quek Choon; Wong, Angela F. L.; Fraser, Barry J.

    2005-09-01

    This study investigated the chemistry laboratory classroom environment, teacher-student interactions and student attitudes towards chemistry among 497 gifted and non-gifted secondary-school students in Singapore. The data were collected using the 35-item Chemistry Laboratory Environment Inventory (CLEI), the 48-item Questionnaire on Teacher Interaction (QTI) and the 30-item Questionnaire on Chemistry-Related Attitudes (QOCRA). Results supported the validity and reliability of the CLEI and QTI for this sample. Stream (gifted versus non-gifted) and gender differences were found in actual and preferred chemistry laboratory classroom environments and teacher-student interactions. Some statistically significant associations of modest magnitude were found between students' attitudes towards chemistry and both the laboratory classroom environment and the interpersonal behaviour of chemistry teachers. Suggestions for improving chemistry laboratory classroom environments and the teacher-student interactions for gifted students are provided.

  18. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  19. Evaluating the efficacy of a chemistry video game

    NASA Astrophysics Data System (ADS)

    Shapiro, Marina

    A quasi-experimental design pre-test/post-test intervention study utilizing a within group analysis was conducted with 45 undergraduate college chemistry students that investigated the effect of implementing a game-based learning environment into an undergraduate college chemistry course in order to learn if serious educational games (SEGs) can be used to achieve knowledge gains of complex chemistry concepts and to achieve increase in students' positive attitude toward chemistry. To evaluate if students learn chemistry concepts by participating in a chemistry game-based learning environment, a one-way repeated measures analysis of variance (ANOVA) was conducted across three time points (pre-test, post-test, delayed post-test which were chemistry content exams). Results showed that there was an increase in exam scores over time. The results of the ANOVA indicated a statistically significant time effect. To evaluate if students' attitude towards chemistry increased as a result of participating in a chemistry game-based learning environment a paired samples t-test was conducted using a chemistry attitudinal survey by Mahdi (2014) as the pre- and post-test. Results of the paired-samples t-test indicated that there was no significant difference in pre-attitudinal scores and post-attitudinal scores.

  20. 75 FR 48698 - Medicare, Medicaid and CLIA Programs; COLA (Formerly the Commission on Office Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ..., including Syphilis Serology, General Immunology. Chemistry, including Routine Chemistry, Urinalysis.... Chemistry, including Routine Chemistry, Urinalysis, Endocrinology, Toxicology. Hematology. Immunohematology...

  1. Two-Year College Chemistry Conference Proceedings: Eastern Regional Conference (2nd, Boston, October 11-12, 1968); Annual Conference (9th, Minneapolis, April 11-12, 1969); and Western Regional Conference (3rd, Salt Lake City, June 13-14, 1969).

    ERIC Educational Resources Information Center

    Chapman, Kenneth, Ed.

    This document includes contributed short papers and summaries of recorded remarks from four meetings of the 1968-1969 Two-Year College Chemistry Conferences. Topics include the two-year college chemistry teacher, chemistry laboratories, teaching first-year college chemistry, a sophomore level chemistry course for both majors and nonmajors, organic…

  2. Coaxial Measurement of the Translational Distribution of CS Produced in the Laser Photolysis of CS2 at 193nm.

    DTIC Science & Technology

    1983-11-04

    Division AREA & WORK UNIT NUMBERS . Department of Chemistry Howard University Washington, D. C. 20059 NR-051-733 1t. CONTROLLING OFFICE NAME AND...Journal of Physical Chemistry Laser Chemistry Division Department of Chemistry Howard University Washington, D. C. 20059 November 4, 1983 *Reproduction in...Victor McCrary, David Zakheim, and William M. Jackson Laser Chemistry Division Chemistry Departmient Howard University Washington, D.C.. 20059 ABSTRACT The

  3. Reconsidering Learning Difficulties and Misconceptions in Chemistry: Emergence in Chemistry and Its Implications for Chemical Education

    ERIC Educational Resources Information Center

    Tümay, Halil

    2016-01-01

    Identifying students' misconceptions and learning difficulties and finding effective ways of addressing them has been one of the major concerns in chemistry education. However, the chemistry education community has paid little attention to determining discipline-specific aspects of chemistry that can lead to learning difficulties and…

  4. The Effects of "Green Chemistry" on Secondary School Students' Understanding and Motivation

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Ismail, Zurida

    2015-01-01

    As an initial effort to reorient the current Malaysian chemistry curriculum, "green chemistry" was developed. In this study for the purpose of investigating the effectiveness of the green chemistry curriculum on secondary school students' understanding of chemistry concepts a quasi-experimental design was used. One-group pretest posttest…

  5. Using an Authentic Radioisotope to Teach Half-Life

    ERIC Educational Resources Information Center

    Liddicoat, Scott; Sebranek, John

    2005-01-01

    Traditionally nuclear chemistry appears in the last few chapters of chemistry textbooks and is not normally considered a mainstream topic. In addition, some science teachers lack the training or equipment to teach nuclear chemistry. Yet nuclear chemistry is a very important topic that should be taught in all chemistry classrooms. Learning about…

  6. The Evolution of Library Instruction Delivery in the Chemistry Curriculum Informed by Mixed Assessment Methods

    ERIC Educational Resources Information Center

    Mandernach, Meris A.; Shorish, Yasmeen; Reisner, Barbara A.

    2014-01-01

    As information continues to evolve over time, the information literacy expectations for chemistry students also change. This article examines transformations to an undergraduate chemistry course that focuses on chemical literature and information literacy and is co-taught by a chemistry professor and a chemistry librarian. This article also…

  7. Protein Engineering: Development of a Metal Ion Dependent Switch

    DTIC Science & Technology

    2017-05-22

    Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry

  8. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  9. Turkish Pre-Service Teachers' Beliefs about the Importance of Teaching Chemistry

    ERIC Educational Resources Information Center

    Uzuntiryaki, Esen; Boz, Yezdan

    2007-01-01

    The purpose of this study was to describe Turkish preservice chemistry teachers' beliefs about the importance of teaching chemistry in high schools. For this purpose, 45 pre-service chemistry teachers were administered a questionnaire involving open-ended questions which asked what the importance of teaching chemistry is, and why we teach…

  10. The Importance of Undergraduate General and Organic Chemistry to the Study of Biochemistry in Medical School.

    ERIC Educational Resources Information Center

    Scimone, Anthony; Scimone, Angelina A.

    1996-01-01

    Investigates chemistry topics necessary to facilitate the study of biochemistry in U.S. medical schools. Lists topics considered especially important and topics considered especially unimportant in general chemistry and organic chemistry. Suggests that in teaching undergraduate general or organic chemistry, the topics categorized as exceptionally…

  11. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  12. Recent Advances in Cyanamide Chemistry: Synthesis and Applications.

    PubMed

    Prabhath, M R Ranga; Williams, Luke; Bhat, Shreesha V; Sharma, Pallavi

    2017-04-12

    The application of alkyl and aryl substituted cyanamides in synthetic chemistry has diversified multi-fold in recent years. In this review, we discuss recent advances (since 2012) in the chemistry of cyanamides and detail their application in cycloaddition chemistry, aminocyanation reactions, as well as electrophilic cyanide-transfer agents and their unique radical and coordination chemistry.

  13. Design and Development of a Chemistry Subject Portal at Panjab University Library, India

    ERIC Educational Resources Information Center

    Singh, Neeraj Kumar; Mahajan, Preeti

    2010-01-01

    Purpose: This paper aims to give a brief description of some chemistry portals available worldwide, followed by a description of the chemistry portal developed for Panjab University Library, Chandigarh (India). Design/methodology/approach: A well-structured chemistry portal was designed for chemistry and its allied departments at Panjab University…

  14. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    DTIC Science & Technology

    2013-10-01

    local plasma chemistry effects over heat transport in achieving “volumetric” ignition using pulse nanosecond discharges. •detailed parametric studies...electrical breakdown • cathode sheath formation • electron impact dynamics PLASMA DISCHARGE DYNAMICS Plasma Chemistry Ionization, Excitation...quenching of excited species nonequilibrium plasma chemistry low temperature radical chemistry high temperature combustion chemistry School of

  15. A Thematic Review of Studies into the Effectiveness of Context-Based Chemistry Curricula

    ERIC Educational Resources Information Center

    Ultay, Neslihan; Calik, Muammer

    2012-01-01

    Context-based chemistry education aims at making connections between real life and the scientific content of chemistry courses. The purpose of this study was to evaluate context-based chemistry studies. In looking for the context-based chemistry studies, the authors entered the keywords "context-based", "contextual learning" and "chemistry…

  16. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    NASA Astrophysics Data System (ADS)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  17. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    NASA Astrophysics Data System (ADS)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  18. A study of the factors affecting the attitudes of young female students toward chemistry at the high school level

    NASA Astrophysics Data System (ADS)

    Banya, Santonino K.

    Chemistry is a human endeavor that relies on basic human qualities like creativity, insights, reasoning, and skills. It depends on habits of the mind: skepticism, tolerance of ambiguity, openness to new ideas, intellectual honesty, curiosity, and communication. Young female students begin studying chemistry curiosity; however, when unconvinced, they become skeptical. Researches focused on gender studies have indicated that attitudes toward science education differ between males and females. A declining interest in chemistry and the under representation of females in the chemical science was found (Jacobs, 2000). This study investigated whether self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry were affecting the attitudes toward chemistry, of 183 high school young females across the United States. The young female students surveyed, had studied chemistry for at least one year prior to participating in the study during the fall semester of 2003. The schools were randomly selected represented diverse economic backgrounds and geographical locations. Data were obtained using Chemistry Attitude Influencing Factors (CAIF) instrument and from interviews with a focus group of three young female students about the effect of self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry on their decision to study chemistry. The CAIF instrument consisted of a 12-items self-confidence questionnaire (ConfiS), 12-items each of the influence of role models (RoMoS) and knowledge about usefulness of chemistry (US) questionnaire. ConfiS was adopted (with permission) from CAEQ (Coll & Dalgety, 2001), and both RoMoS and US were modified from TOSRA (Fraser, 1978), public domain document. The three young female students interviewed, gave detailed responses about their opinions regarding self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry on their attitudes toward the study of chemistry. Both quantitative (a Likert-type Scale questionnaire) and qualitative (open-ended questions) items were used to investigate the views of young female students. Results of the survey were analysed using a correlation test. Significant differences were found in the Likert-type scale scores, providing evidences supporting literature that suggests, self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry affect the decision of young female students about the study of chemistry. Interview responses corroborated the results from the survey. Strategies for addressing the problems and recommendations for further studies have been suggested.

  19. A Thematic Review of Studies into the Effectiveness of Context-Based Chemistry Curricula

    NASA Astrophysics Data System (ADS)

    Ültay, Neslihan; Çalık, Muammer

    2012-12-01

    Context-based chemistry education aims at making connections between real life and the scientific content of chemistry courses. The purpose of this study was to evaluate context-based chemistry studies. In looking for the context-based chemistry studies, the authors entered the keywords `context-based', `contextual learning' and `chemistry education' in well-known databases (i.e. Academic Search Complete, Education Research Complete, ERIC, Springer LINK Contemporary). Further, in case the computer search by key words may have missed a rather substantial part of the important literature in the area, the authors also conducted a hand search of the related journals. To present a detailed thematic review of context-based chemistry studies, a matrix was used to summarize the findings by focusing on insights derived from the related studies. The matrix incorporates the following themes: needs, aims, methodologies, general knowledge claims, and implications for teaching and learning, implications for curriculum development and suggestions for future research. The general knowledge claims investigated in this paper were: (a) positive effects of the context-based chemistry studies; (b) caveats, both are examined in terms of students' attitudes and students' understanding/cognition. Implications were investigated for practice in context- based chemistry studies, for future research in context- based chemistry studies, and for curriculum developers in context- based chemistry studies. Teachers of context-based courses claimed that the application of the context-based learning approach in chemistry education improved students' motivation and interest in the subject. This seems to have generated an increase in the number of the students who wish to continue chemistry education at higher levels. However, despite the fact that the majority of the studies have reported advantages of context-based chemistry studies, some of them have also referred to pitfalls, i.e. dominant structure of out-of-school learning, tough nature of some chemistry topics, and teacher anxiety of lower-ability students.

  20. What History Tells Us about the Distinct Nature of Chemistry.

    PubMed

    Chang, Hasok

    2017-11-01

    Attention to the history of chemistry can help us recognise the characteristics of chemistry that have helped to maintain it as a separate scientific discipline with a unique identity. Three such features are highlighted in this paper. First, chemistry has maintained a distinct type of theoretical thinking, independent from that of physics even in the era of quantum chemistry. Second, chemical research has always been shaped by its ineliminable practical relevance and usefulness. Third, the lived experience of chemistry, spanning the laboratory, the classroom and everyday life, is distinctive in its multidimensional sensuousness. Furthermore, I argue that the combination of these three features makes chemistry an exemplary science.

  1. Ambarish Nag | NREL

    Science.gov Websites

    |Mathematical biology Education Ph.D., Computational Chemistry, University of Chicago M.S., Chemistry , University of Chicago M.S., (2-Year) Chemistry, Indian Institute of Technology, Kanpur, India B.S., Chemistry

  2. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    NASA Astrophysics Data System (ADS)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general chemistry grade was the best indicator of performance in organic chemistry. The importance of other independent variables in explaining organic chemistry achievement varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between independent variables and organic chemistry achievement than females. The report contains 19 tables detailing the statistical analyses. Suggestions for improved practice and further research are also included

  3. Teaching Green and Sustainable Chemistry: A Revised One-Semester Course Based on Inspirations and Challenges

    ERIC Educational Resources Information Center

    Marteel-Parrish, Anne E.

    2014-01-01

    An elective course, "Toward the Greening of Our Minds": Green and Sustainable Chemistry, has been offered at Washington College since 2005. This new course without laboratory is designed for chemistry and biology majors and minors who have previously taken two semesters of general chemistry and organic chemistry. Due to the popularity of…

  4. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.

    2012-01-01

    Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…

  5. Donald J. Cram, Host-Guest Chemistry, Cram's Rule of Asymmetric Induction

    Science.gov Websites

    across organic chemistry, with applications in both basic research as well as specific fields, such as for life and science have forever changed "teaching in organic chemistry, and altered the shape organic chemistry; his research affects the many ways organic chemistry now appears in our daily lives

  6. Seeing the Chemistry around Me--Helping Students Identify the Relevance of Chemistry to Everyday Life

    ERIC Educational Resources Information Center

    Moore, Tracy Lynn

    2012-01-01

    The study attempted to determine whether the use of a series of reading and response assignments decreased students' perceptions of chemistry difficulty and enhanced students' perceptions of the relevance of chemistry in their everyday lives. Informed consent volunteer students enrolled in General Chemistry II at a community college in the…

  7. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  8. General Chemistry Courses That Can Affect Achievement: An Action Research Study in Developing a Plan to Improve Undergraduate Chemistry Courses

    ERIC Educational Resources Information Center

    Shweikeh, Eman

    2014-01-01

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on…

  9. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  10. Cocrystal Controlled Solid-State Synthesis: A Green Chemistry Experiment for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.

    2008-01-01

    Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…

  11. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    ERIC Educational Resources Information Center

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  12. Representation and Analysis of Chemistry Core Ideas in Science Education Standards between China and the United States

    ERIC Educational Resources Information Center

    Wan, Yanlan; Bi, Hualin

    2016-01-01

    Chemistry core ideas play an important role in students' chemistry learning. On the basis of the representations of chemistry core ideas about "substances" and "processes" in the Chinese Chemistry Curriculum Standards (CCCS) and the U.S. Next Generation Science Standards (NGSS), we conduct a critical comparison of chemistry…

  13. What Do Conceptual Holes in Assessment Say about the Topics We Teach in General Chemistry?

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Holme, Thomas A.

    2015-01-01

    Introductory chemistry has long been considered a service course by various departments that entrust chemistry departments with teaching their students. As a result, most introductory courses include a majority of students who are not chemistry majors, and many are health and science related majors who are required to take chemistry. To identify…

  14. A Chemistry Course for High Ability 8th, 9th, and 10th Graders.

    ERIC Educational Resources Information Center

    Kilker, Richard, Jr.

    1985-01-01

    Describes a chemistry course designed, in cooperation with local public school districts, to intellectually challenge a group of 8th, 9th, and 10th grade students. Organic chemistry and biochemistry are integrated into the course (titled Chemistry and Everyday Life) to emphasize practical applications of chemistry. The course syllabus is included.…

  15. Chemistry inside an Epistemological Community Box! Discursive Exclusions and Inclusions in Swedish National Tests in Chemistry

    ERIC Educational Resources Information Center

    Ståhl, Marie; Hussénius, Anita

    2017-01-01

    This study examined the Swedish national tests in chemistry for implicit and explicit values. The chemistry subject is understudied compared to biology and physics and students view chemistry as their least interesting science subject. The Swedish national science assessments aim to support equitable and fair evaluation of students, to concretize…

  16. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    ERIC Educational Resources Information Center

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  17. Turkish Chemistry Teachers' Views about Secondary School Chemistry Curriculum: A Perspective from Environmental Education

    ERIC Educational Resources Information Center

    Icoz, Omer Faruk

    2015-01-01

    Teachers' views about environmental education (EE) have been regarded as one of the most important concerns in education for sustainability. In secondary school chemistry curriculum, there are several subjects about EE embedded in the chemistry subjects in Turkey. This study explores three chemistry teachers' views about to what extent the…

  18. Pre-Service Chemistry Teachers' Competencies in the Laboratory: A Cross-Grade Study in Solution Preparation

    ERIC Educational Resources Information Center

    Karatas, F. O.

    2016-01-01

    One of the prerequisites for chemistry teacher candidates is to demonstrate certain laboratory skills. This article aims to determine and discuss the competencies of pre-service chemistry teachers in a chemistry laboratory context working with solution chemistry content. The participants in this study consisted of a group of pre-service chemistry…

  19. An approach to teaching general chemistry II that highlights the interdisciplinary nature of science.

    PubMed

    Sumter, Takita Felder; Owens, Patrick M

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. Copyright © 2010 Wiley Periodicals, Inc.

  20. Chemistry for whom? Gender awareness in teaching and learning chemistry

    NASA Astrophysics Data System (ADS)

    Andersson, Kristina

    2017-06-01

    Marie Ståhl and Anita Hussénius have defined what discourses dominate national tests in chemistry for Grade 9 in Sweden by using feminist, critical didactic perspectives. This response seeks to expand the results in Ståhl and Hussénius's article Chemistry inside an epistemological community box!— Discursive exclusions and inclusions in the Swedish national tests in chemistry, by using different facets of gender awareness. The first facet—Gender awareness in relations to the test designers' own conceptions—highlighted how the gender order where women are subordinated men becomes visible in the national tests as a consequence of the test designers internalized conceptions. The second facet—Gender awareness in relation to chemistry—discussed the hierarchy between discourses within chemistry. The third facet—Gender awareness in relation to students—problematized chemistry in relation to the students' identity formation. In summary, I suggest that the different discourses can open up new ways to interpret chemistry and perhaps dismantle the hegemonic chemistry discourse.

  1. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science*,†

    PubMed Central

    Sumter, Takita Felder; Owens, Patrick M.

    2012-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. PMID:21445902

  2. Profile of laboratory instruction in secondary school level chemistry and indication for reform

    NASA Astrophysics Data System (ADS)

    Wang, Mei

    This study is a profile of the laboratory component of instruction in secondary school level chemistry. As one of several companion studies, the purpose of the study is to investigate present practices related to instruction as a means of producing reform that improve cognitive and non-cognitive learning outcomes. Five hundred-forty students, from 18 chemistry classes taught by 12 teachers in ten high schools were involved in this study. Three schools included public and private schools, urban school, suburban schools, and rural schools. Three levels or types of chemistry courses were offered in these schools: school regular chemistry for college bound students, Chemistry in the Community or "ChemCom" for non-college bound students, and a second year of chemistry or advanced placement chemistry. Laboratory sessions in each of these three levels of courses were observed, videotaped, and later analyzed using the Modified Revised Science Teachers Behaviors Inventory (MR-STBI). The 12 chemistry teachers, eight science supervisors, and selected students were interviewed to determine their professional backgrounds and other factors that might influence how they teach, how they think, and how they learn. The following conclusions developed from the research are: (1) The three levels of chemistry courses are offered across high schools of varying sizes and locations. (2) Teachers perceive that students come to chemistry classes poorly prepared to effectively carry out laboratory experiences and/or investigations. (3) While students indicated that they are able to effectively use math skills in analyzing the results of chemistry laboratory experiments, teachers, in general, are not satisfied with the level at which students are prepared to use these skills, or to use writing skills. (4) Students working in pairs, is the typical approach. Group cooperation is sometimes used in carrying out the laboratory component of chemistry instruction in the ChemCom and AP chemistry courses. (5) Computers and other technology were not observed in use commonly in laboratory component of instruction in any levels of chemistry courses. (6) The results of MR-STBI (Modified Revised Science Teachers Behavior Inventory) indicates that the rank order of use of the teaching behaviors in laboratory based instruction among the three types of chemistry courses are similar. (7) A summary of recommended practices for use in teaching each of the three levels of high school chemistry courses is presented in Chapter 5.

  3. Inquiry Teaching in High School Chemistry Classrooms: The Role of Knowledge and Beliefs

    NASA Astrophysics Data System (ADS)

    Roehrig, Gillian H.; Luft, Julie A.

    2004-10-01

    "Science as inquiry" is a key content standard in the National Science Education Standards, yet implementation of inquiry-based teaching is rare in secondary chemistry classrooms. This paper is the result of a study conducted to understand factors that effect the inquiry-based instruction of ten novice secondary chemistry teachers. The study focused on the influence of teaching beliefs and content knowledge on the instructional practices of these ten teachers. Case and cross-case comparisons revealed that chemistry teachers' intentions to implement inquiry teaching were strongly influenced by their teaching beliefs rather than their knowledge of chemistry. The quality of inquiry lessons, however, was found to depend on the teachers' knowledge of chemistry content. This study reinforces the need for chemistry-focused inservice training for beginning chemistry teachers that focuses on both inquiry teaching strategies and teaching beliefs.

  4. International year of Chemistry 2011. A guide to the history of clinical chemistry.

    PubMed

    Kricka, Larry J; Savory, John

    2011-08-01

    This review was written as part of the celebration of the International Year of Chemistry 2011. In this review we provide a chronicle of the history of clinical chemistry, with a focus on North America. We outline major methodological advances and trace the development of professional societies and journals dedicated to clinical chemistry. This review also serves as a guide to reference materials for those interested in the history of clinical chemistry. The various resources available, in sound recordings, videos, moving images, image and document archives, museums, and websites dedicated to diagnostic company timelines, are surveyed. These resources provide a map of how the medical subspecialty of clinical chemistry arrived at its present state. This information will undoubtedly help visionaries to determine in which direction clinical chemistry will move in the future.

  5. The Effect of Teacher Performance in Implementation of The 2013 Curriculum Toward Chemistry Learning Achievement

    NASA Astrophysics Data System (ADS)

    Dewi, L. P.; Djohar, A.

    2018-04-01

    This research is a study about implementation of the 2013 Curriculum on Chemistry subject. This study aims to determine the effect of teacher performance toward chemistry learning achievement. The research design involves the independent variable, namely the performance of Chemistry teacher, and the dependent variable that is Chemistry learning achievement which includes the achievement in knowledge and skill domain. The subject of this research are Chemistry teachers and High School students in Bandung City. The research data is obtained from questionnaire about teacher performance assessed by student and Chemistry learning achievement from the students’ report. Data were analyzed by using MANOVA test. The result of multivariate significance test shows that there is a significant effect of teacher performance toward Chemistry learning achievement in knowledge and skill domain with medium effect size.

  6. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    NASA Astrophysics Data System (ADS)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  7. Pierre-Joseph Macquer: Chemistry in the French Enlightenment.

    PubMed

    Lehman, Christine

    2014-01-01

    Despite recent studies of chemistry courses and of academic research at the beginning of the eighteenth century, the perception of chemistry in the French Enlightenment has often been overshadowed by Lavoisier's works. This article proposes three specific case studies selected from Pierre Joseph Macquer's (1718-84) rich career to show the continuous evolution of chemistry throughout the century: medicinal chemistry through the application of the Comte de La Garaye's metallic salt solutions, the emergence of industrial chemistry through a few of Macquer's evaluations at the Bureau du Commerce, and finally communal academic research through the experiments on diamonds using Tschirnhaus's lens. These examples attempt to illustrate the innovative, creative, dynamic, multicultural, and multifaceted chemistry of the Enlightenment.

  8. Exploring Diverse Students' Trends in Chemistry Self-Efficacy throughout a Semester of College-Level Preparatory Chemistry

    ERIC Educational Resources Information Center

    Villafañe, Sachel M.; Garcia, C. Alicia; Lewis, Jennifer E.

    2014-01-01

    Chemistry self-efficacy has been defined as a student's beliefs about his or her own capability to perform a given chemistry task. These chemistry self-efficacy beliefs can be influenced by students' experiences in a course, and eventually, these beliefs could affect students' decisions to continue into STEM related-careers. In this study, we…

  9. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    ERIC Educational Resources Information Center

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  10. The Status of Chemistry in Two-Year Colleges: Results from a Survey of Chemistry Departments.

    ERIC Educational Resources Information Center

    Ryan, Mary Ann; Wesemann, Jodi L.; Boese, Janet M.; Neuschatz, Michael

    In the fall of 2001, the American Chemical Society (ACS) conducted a survey of two-year college chemistry departments to obtain basic data on chemistry faculty and chemistry courses taught at college. A questionnaire sent to appropriate representatives (department chairs, program heads, or deans) from 1195 campuses generated a 77% response rate.…

  11. Graduate Education in Chemistry. The ACS Committee on Professional Training: Surveys of Programs and Participants.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This document reports on graduate education in chemistry concerning the nature of graduate programs. Contents include: (1) "Graduate Education in Chemistry in the United States: A Snapshot from the Late Twentieth Century"; (2) "A Survey of Ph.D. Programs in Chemistry"; (4) "The Master's Degree in Chemistry"; (5) "A Survey of Ph.D. Recipients in…

  12. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    ERIC Educational Resources Information Center

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  13. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  14. Development and Implementation of a Two-Semester Introductory Organic-Bioorganic Chemistry Sequence: Conclusions from the First Six Years

    ERIC Educational Resources Information Center

    Goess, Brian C.

    2014-01-01

    A two-semester second-year introductory organic chemistry sequence featuring one semester of accelerated organic chemistry followed by one semester of bioorganic chemistry is described. Assessment data collected over a six-year period reveal that such a course sequence can facilitate student mastery of fundamental organic chemistry in the first…

  15. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    ERIC Educational Resources Information Center

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  16. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    ERIC Educational Resources Information Center

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  17. Using Chemistry Teaching Aids Based Local Wisdom as an Alternative Media for Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Priyambodo, Erfan; Wulaningrum, Safira

    2017-01-01

    Students have difficulties in relating the chemistry phenomena they learned and the life around them. It is necessary to have teaching aids which can help them to relate between chemistry with the phenomena occurred in everyday life, which is chemistry's teaching aids based on local wisdom. There are 3 teaching aids which used in chemistry…

  18. Zambian Pre-Service Chemistry Teachers' Views on Chemistry Education Goals and Challenges for Achieving Them in Schools

    ERIC Educational Resources Information Center

    Banda, Asiana; Mumba, Frackson; Chabalengula, Vivien M.

    2014-01-01

    This study examined Zambian preservice chemistry teachers' views on the goals of chemistry education, the importance of the goals, and challenges for achieving them in schools. The study sample was comprised of 59 pre-service chemistry teachers at the University of Zambia. Data were collected using a modified Likert-scale questionnaire that was…

  19. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning

    ERIC Educational Resources Information Center

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy

    2017-01-01

    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  20. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    ERIC Educational Resources Information Center

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  1. Integrating Chemical Information Instruction into the Chemistry Curriculum on Borrowed Time: A Multiyear Case Study of a Capstone Research Report for Organic Chemistry

    ERIC Educational Resources Information Center

    Jacobs, Danielle L.; Dalal, Heather A.; Dawson, Patricia H.

    2016-01-01

    To develop information literacy skills in chemistry and biochemistry majors at a primarily undergraduate institution, a multiyear collaboration between chemistry faculty and librarians has resulted in the establishment of a semester-long capstone project for Organic Chemistry II. Information literacy skills were instilled via a progressive…

  2. The Effect of an Individualized Laboratory Approach through Microscale Chemistry Experimentation on Students' Understanding of Chemistry Concepts, Motivation and Attitudes

    ERIC Educational Resources Information Center

    Abdullah, Mashita; Mohamed, Norita; Ismail, Zurida Hj

    2009-01-01

    The main goal of this study was to investigate whether the use of an individualized approach through microscale chemistry experiments in secondary schools can increase students' understanding of chemistry concepts, improve attitude towards chemistry practical work and motivation. Two comparable groups of Form Four students (16 years old)…

  3. Cryogenic Frequency Domain Optical Mass Memory.

    DTIC Science & Technology

    1982-12-10

    Schuster Dr. William M. Jackson Chemistry Department Department of Chemistry University of Illinois Howard University Urbana, Illinois 61801 Washington...DC 20059 Dr. A. Adamson Dr. George E. Walraffen Department of Chemistry Department of Chemistry University of Southern Howard University California...University of Illinois Howard University Urbana, Illinois 61801 1 Washixgton, DC 20059 Dr. A. Adamson Dr. George E. Walraffen Department of Chemistry

  4. Investigating the impact of adding an environmental focus to a developmental chemistry class

    NASA Astrophysics Data System (ADS)

    Robelia, Beth A.

    Making chemistry more relevant to students has been a goal of many curriculum projects. None of these projects have investigated how specific applications of chemistry impact student learning or environmental mindset. The goal of this study was to examine how focusing attention on environmental issues as applications of chemistry concepts would affect students' understanding of general chemistry or environmental chemistry as well environmental attitudes, behaviors and knowledge. Special attention was paid to how women responded to the addition of an environmental focus because prior research indicated women hold more pro-environmental attitudes but are less knowledgeable about environmental topics. The quasi-experimental design used two treatment groups and a comparison group. Both treatment groups received instruction with a Science-Technology-Society orientation, one group focused on environmental applications of chemistry while the other drew applications of chemistry from a number of different fields students might be familiar with such as health care, food science and forensics. The comparison groups used mainly traditional examples from chemistry laboratories. In order to avoid testing the effect of the instructor, two people co-taught both treatment sections. Students in all three groups took a general chemistry assessment at the beginning and end of the course. The treatment groups took a pre and post environmental chemistry assessment and a survey of their environmental attitudes, behaviors and knowledge. Results indicate that students in the environmentally focused section may have made slight gains in general chemistry knowledge. Gains in environmental chemistry knowledge were not significantly different. Students also made modest gains in environmental attitude. Results for women mirrored results for the classes as a whole.

  5. Normal Science Education and its Dangers: The Case of School Chemistry

    NASA Astrophysics Data System (ADS)

    Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert

    We started the Conceptual Structure of School Chemistry research project, a part of which is reported on here, with an attempt to solve the problem of the hidden structure in school chemistry. In order to solve that problem, and informed by previous research, we performed a content analysis of school chemistry textbooks and syllabi. This led us to the hypothesis that school chemistry curricula are based on an underlying, coherent structure of chemical concepts that students are supposed to learn for the purpose of explaining and predicting chemical phenomena. The elicited comments and criticisms of an International Forum of twenty-eight researchers of chemical education, though, refuted the central claims of this hypothesis. This led to a descriptive theory of the currently dominant school chemistry curriculum in terms of a rigid combination of a specific substantive structure, based on corpuscular theory, a specific philosophical structure, educational positivism, and a specific pedagogical structure, involving initiatory and preparatory training of future chemists. Secondly, it led to an explanatory theory of the structure of school chemistry - based on Kuhn's theory of normal science and scientific training - in which dominant school chemistry is interpreted as a form of normal science education. Since the former has almost all characteristics in common with the latter, dominant school chemistry must be regarded as normal chemistry education. Forum members also formulated a number of normative criticisms on dominant school chemistry, which we interpret as specific dangers of normal chemistry education, complementing Popper's discussion of the general dangers of normal science and its teaching. On the basis of these criticisms, it is argued that normal chemistry education is isolated from common sense, everyday life and society, history and philosophy of science, technology, school physics, and from chemical research.

  6. Summer Course Promotes Polymer Chemistry for Small Colleges.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1989-01-01

    Describes a three-week summer program teaching selected chemistry faculty how to incorporate polymer chemistry into chemistry courses. In addition to lectures, the program conducted many experiments and provided a trip to industry laboratories. (YP)

  7. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  9. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  10. Robin Ganellin gives his views on medicinal chemistry and drug discovery. Interview by Stephen L. Carney.

    PubMed

    Ganellin, C Robin

    2004-02-15

    Robin Ganellin was born in East London and studied chemistry at Queen Mary College, London, receiving a PhD in 1958 under Professor Michael Dewar for his research on tropylium chemistry. He joined Smith Kline & French Laboratories (SK&F) in the UK in 1958 and was one of the co-inventors of the revolutionary drug cimetidine (Tagamet(R)) He subsequently became Vice-President for Research at the company's Welwyn facility. In 1986 he was awarded a DSc from London University for his work on the medicinal chemistry of drugs acting at histamine receptors and was also made a Fellow of the Royal Society and appointed to the SK&F Chair of Medicinal Chemistry at University College London, where he is now Emeritus Professor of Medicinal Chemistry. Professor Ganellin has been honoured extensively, including such awards as the Royal Society of Chemistry Award for Medicinal Chemistry, their Tilden Medal and Lectureship and their Adrien Albert Medal and Lectureship, Le Prix Charles Mentzer de France, the ACS Division of Medicinal Chemistry Award, the Society of Chemical Industry Messel Medal and the Society for Drug Research Award for Drug Discovery. He is a past Chairman of the Society for Drug Research, was President of the Medicinal Chemistry Section of IUPAC, and is currently Chairman of the IUPAC Subcommittee on Medicinal Chemistry and Drug Development.

  11. Evaluation of the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus

    2016-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.

  12. Chemophobia in the College Classroom: Extent, Sources, and Student Characteristics

    NASA Astrophysics Data System (ADS)

    Eddy, Roberta M.

    2000-04-01

    The purpose of this research was to provide an understanding of chemophobia (chemistry anxiety) at the college level by determining (i) the extent of chemophobia in the college classroom; (ii) the factors that contribute to college students' anxiety about learning chemistry and handling chemicals; and (iii) the characteristics of college students who have anxiety about learning chemistry and handling chemicals. A questionnaire containing the Derived Chemistry Anxiety Rating Scale (mean = 81.47, SD = 21.31, a = 0.94), the Revised Mathematics Anxiety Rating Scale (mean = 56.68, SD = 20.55, a = 0.98), and the Trait-Anxiety Scale (mean = 39, SD = 10, a = 0.90) was administered to 480 college students (435 nonmajors and 45 chemistry majors) taking an introductory chemistry course. Eight interviews were conducted. Quantitative data were analyzed by SPSS (p ?.05). Chemophobia was found to exist at an average level between a little bit and moderate. Highest anxiety was associated with chemistry evaluation; lowest anxiety with learning chemistry. Sources that contributed most to chemistry anxiety were, for learning, chemical equations; for evaluation, taking the final exam; and for handling chemicals, getting chemicals on hands. Women had significantly higher anxiety than men. Students with low chemistry experience had significantly higher anxiety than students with high chemistry experience. There were no significant main effects for type of major or math experience.

  13. The quadruple bottom line: the advantages of incorporating Green Chemistry into the undergraduate chemistry major

    NASA Astrophysics Data System (ADS)

    Bodner, George M.

    2017-08-01

    When the author first became involved with the Green Chemistry movement, he noted that his colleagues in industry who were involved in one of the ACS Green Chemistry Institute® industrial roundtables emphasized the take-home message they described as the "triple bottom line." They noted that introducing Green Chemistry in industrial settings had economic, social, and environmental benefits. As someone who first went to school at age 5, and has been "going to school" most days for 65 years, it was easy for the author to see why introducing Green Chemistry into academics had similar beneficial effects within the context of economic, social and environmental domains at the college/university level. He was prepared to understand why faculty who had taught traditional courses often saw the advantage of incorporating Green Chemistry into the courses they teach. What was not as obvious is why students who were encountering chemistry for the first time were often equally passionate about the Green Chemistry movement. Recent attention has been paid, however, to a model that brings clarity to the hitherto vague term of "relevance" that might explain why integrating Green Chemistry into the undergraduate chemistry classroom can achieve a "quadruple bottom-line" for students because of potentially positive effects of adding a domain of "relevance" to the existing economic, social, and environmental domains.

  14. Techniques in Chemistry: The Centerpiece of a Research-Oriented Curriculum.

    ERIC Educational Resources Information Center

    Hanks, T. W.; Wright, Laura L.

    2002-01-01

    Introduces the Techniques in Chemistry I course taught in the Furman University Department of Chemistry which focuses on organic and inorganic chemistry. Uses a problem solving approach and active learning. (Contains 17 references.) (YDS)

  15. Relationships between acid deposition, watershed characteristics, and stream chemistry in Maryland's coastal plain. Final report. Volume 5. Appendix B. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, S.; Bartoshesky, J.; Heimbuch, D.

    1987-06-01

    Contents include: data quality assurance and stream, precipitation, and meteorological data; Granny Finley Branch stream chemistry (routine sampling, storm-event chemistry, longitudinal sampling, groundwater chemistry).

  16. Reaction-Map of Organic Chemistry

    ERIC Educational Resources Information Center

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  17. Perceived Gender Differences in Interest and Competence in High School Chemistry

    NASA Astrophysics Data System (ADS)

    Rancier, Kelly

    Male and female representation in the field of chemistry continues to be unequal. In order to better understand why this imbalance exists, male and female high school chemistry students participated in a survey to assess their own self-perceived competence, confidence, enjoyment, and interest in chemistry. The survey results yielded from this study suggest that the sexes actually assess themselves quite similarly when asked to respond to questions about different aspects of science and chemistry, however the lab component of chemistry class did offer differing results. Female students tend to be less interested in the lab aspect of this field, and may therefore be less interested in pursuing a career in science or chemistry later on in life. Educators may need to look to new strategies in order to keep our females interested in chemistry so that the gender gap can begin to narrow.

  18. Substituent Effects In a Series of 1,7-C60(RF)2 Compounds (RF = CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, s-C4F9, n-C8F17): Electron Affinities, Reduction Potentials, and E(LUMO) Values Are Not Always Correlated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.

    Substituent effects are of paramount importance in virtually all fields of fundamental and applied chemistry. Classical and modern examples can be found in organic chemistry (Hammett parameters and Charton steric parameters), inorganic chemistry (trans effect and trans influence), organometallic chemistry (phosphine cone angles), physical chemistry (linear free energy relationships and DFT), biochemistry (protein tertiary structure), medicinal chemistry (SAR maps and BioMAP analysis), polymer chemistry (nonlinear optical and permeation properties and glass transition temperatures), and materials chemistry (stability and luminescent properties of electroluminescent devices and light-to-power conversion efficiencies of fullerene-derivative-based OPV devices).

  19. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis.

    PubMed

    Fanelli, Flavio; Parisi, Giovanna; Degennaro, Leonardo; Luisi, Renzo

    2017-01-01

    Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development.

  20. Making Sense of the Arrow-Pushing Formalism among Chemistry Majors Enrolled in Organic Chemistry

    ERIC Educational Resources Information Center

    Ferguson, Robert; Bodner, George M.

    2008-01-01

    This paper reports results of a qualitative study of sixteen students enrolled in a second year organic chemistry course for chemistry and chemical engineering majors. The focus of the study was student use of the arrow-pushing formalism that plays a central role in both the teaching and practice of organic chemistry. The goal of the study was to…

  1. The predictors of chemistry achievement of 12th grade students in secondary schools in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Khalaf, Ali Khalfan

    2000-10-01

    The purpose of this study is to explore variables related to chemistry achievement of 12th grade science students in the United Arab Emirates (UAE). The focus is to identify student, teacher, and school variables that predict chemistry achievement. The analysis sample included 204 males and 252 females in 66 classes in 60 schools from 10 districts or bureaus of education in the UAE. Thirty-two male and 33 female chemistry teachers and 60 school principals were included. The Khalaf Chemistry Achievement Test, GALT, the Student Questionnaire, Teacher Questionnaire, and School Information Questionnaire were administered. Descriptive statistics, correlations, analyses of variance, factor analysis, and stepwise multiple linear regression analyses were done. The results indicate that demographic, home environment, prior knowledge, scholastic ability, attitudes and perceptions related to chemistry and science, and student perception of instructional practices variables correlated with student chemistry achievement. The amount of help teachers received from the supervisor, class size, and courses in geology were teacher variables that correlated with class chemistry achievement. Nine school variables involving school, division, and class sizes correlated with school chemistry achievement. Analyses of variance revealed significant interaction effects: district by school size and district by student gender. In two districts, students in small schools achieved better than those in large schools. Generally female students achieved equal to or better than males. Three factors from the factor analysis: School Size, Prior Student Achievement, and Student Perception of Teacher Effectiveness, correlated with school chemistry achievement. The results of the multiple linear regression indicated that the factors of Prior Student Achievement, Student Perception of Teacher Effectiveness, and Teacher Experience and Expertise accounted for 45% of the variance in school chemistry achievement. Results indicate that the strongest predictors of chemistry achievement are prior achievement in science, Arabic language, and mathematics; student perception of teacher effectiveness; and teacher experience and expertise. Females tend to achieve better in chemistry than males. No nationality differences were found and the relationship of school size to chemistry achievement was inconclusive. Recommendations related to chemistry and science are presented. These include curriculum, school practice, teacher professional development, and future research.

  2. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  3. Dynamic combinatorial libraries: new opportunities in systems chemistry.

    PubMed

    Hunt, Rosemary A R; Otto, Sijbren

    2011-01-21

    Combinatorial chemistry is a tool for selecting molecules with special properties. Dynamic combinatorial chemistry started off aiming to be just that. However, unlike ordinary combinatorial chemistry, the interconnectedness of dynamic libraries gives them an extra dimension. An understanding of these molecular networks at systems level is essential for their use as a selection tool and creates exciting new opportunities in systems chemistry. In this feature article we discuss selected examples and considerations related to the advanced exploitation of dynamic combinatorial libraries for their originally conceived purpose of identifying strong binding interactions. Also reviewed are examples illustrating a trend towards increasing complexity in terms of network behaviour and reversible chemistry. Finally, new applications of dynamic combinatorial chemistry in self-assembly, transport and self-replication are discussed.

  4. The rise of environmental analytical chemistry as an interdisciplinary activity.

    PubMed

    Brown, Richard

    2009-07-01

    Modern scientific endeavour is increasingly delivered within an interdisciplinary framework. Analytical environmental chemistry is a long-standing example of an interdisciplinary approach to scientific research where value is added by the close cooperation of different disciplines. This editorial piece discusses the rise of environmental analytical chemistry as an interdisciplinary activity and outlines the scope of the Analytical Chemistry and the Environmental Chemistry domains of TheScientificWorldJOURNAL (TSWJ), and the appropriateness of TSWJ's domain format in covering interdisciplinary research. All contributions of new data, methods, case studies, and instrumentation, or new interpretations and developments of existing data, case studies, methods, and instrumentation, relating to analytical and/or environmental chemistry, to the Analytical and Environmental Chemistry domains, are welcome and will be considered equally.

  5. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  6. Ultrafast studies of shock induced chemistry-scaling down the size by turning up the heat

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn

    2015-06-01

    We will discuss recent progress in measuring time dependent shock induced chemistry on picosecond time scales. Data on the shock induced chemistry of liquids observed through picosecond interferometric and spectroscopic measurements will be reconciled with shock induced chemistry observed on orders of magnitude larger time and length scales from plate impact experiments reported in the literature. While some materials exhibit chemistry consistent with simple thermal models, other materials, like nitromethane, seem to have more complex behavior. More detailed measurements of chemistry and temperature across a broad range of shock conditions, and therefore time and length scales, will be needed to achieve a real understanding of shock induced chemistry, and we will discuss efforts and opportunities in this direction.

  7. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  8. Chemistry of Art and Color Sudoku Puzzles

    ERIC Educational Resources Information Center

    Welsh, Michael J.

    2007-01-01

    Sudoku puzzle format was used to teach light science and chemistry terms to students of Chemistry of Art and Color. The puzzles were used to motivate and encourage students to learn chemistry in an easier and in friendly fashion.

  9. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  10. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  11. Dimethylsulfide Chemistry: Annual, Seasonal, and Spatial Impacts on Sulfate

    EPA Science Inventory

    We incorporated oceanic emissions and atmospheric chemistry of dimethylsulfide (DMS) into the hemispheric Community Multiscale Air Quality model and performed annual model simulations without and with DMS chemistry. The model without DMS chemistry predicts higher concentrations o...

  12. Forensic Chemistry--A Symposium Collection.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)

  13. A Comparison of Secondary Chemistry Courses and Chemistry Teacher Preparation Programs in Iowa and Saint Petersburg, Russia

    NASA Astrophysics Data System (ADS)

    Sanger, Michael J.; Brincks, Erik L.; Phelps, Amy J.; Pak, Maria S.; Lyovkin, Antony N.

    2001-09-01

    This paper, which is a result of the collaboration between the University of Northern Iowa (UNI) in Cedar Falls, Iowa, and Herzen State Pedagogical University of Russia in Saint Petersburg, compares the 7-12 chemistry courses in Iowa and Saint Petersburg and the chemistry teacher preparation programs at UNI and Herzen. Differences in the 7-12 chemistry courses include curriculum design (spiral versus layer cake), students' extracurricular activities, and access to technology in the classroom. Differences in the chemistry teacher preparation programs include the number of methods and chemistry content courses required, the number of chemistry teaching majors, the proportion of teaching majors enrolled in the different natural science programs, and the typical minors and endorsements received by these majors. Although we noted many differences in chemistry instruction between Iowa and Saint Petersburg, the secondary and college instructors still face many similar issues, which include overcoming student chemophobia, improving students' algorithmic and problem-solving skills, improving students' conceptual understanding at the particulate level, and dealing with shortages in qualified secondary science teachers.

  14. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  15. Chemistry in the Comics: Part 2. Classic Chemistry.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1989-01-01

    Describes topics in chemistry as related in the Classics Illustrated publications. Provides a list from "The Pioneers of Science" series with issue date, number, and biograhical topic. Lists references to topics in chemistry. Presents many pages from these comics. (MVL)

  16. Dimethylsulfide chemistry: annual, seasonal, and spatial impacts on SO_4^(2-)

    EPA Science Inventory

    We incorporated oceanic emissions and atmospheric chemistry of dimethylsulfide (DMS) into the hemispheric Community Multiscale Air Quality model and performed annual model simulations without and with DMS chemistry. The model without DMS chemistry predicts higher concentrations o...

  17. Crossing the Bridge from GCSE To A-Level Chemistry: What Do the Students Think?

    ERIC Educational Resources Information Center

    Winn, Pauline

    1998-01-01

    Reports on a study that explores student perspectives on the transfer to A-level chemistry from GCSE chemistry. Explores the attitudes of groups of new A-level chemistry students at a sixth-form college. (DDR)

  18. ENVIRONMENTAL CHEMISTRY CAREERS IN GOVERNMENT AGENCIES

    EPA Science Inventory

    Careers in chemistry and chemistry related fields can be very rewarding and enriching. Being an environmental chemist for a government agency requires a broad background in the field of chemistry. A knowledge of the operation of several analytical and preparatory instruments is...

  19. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

    PubMed Central

    Fanelli, Flavio; Parisi, Giovanna

    2017-01-01

    Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development. PMID:28405232

  20. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    ERIC Educational Resources Information Center

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  1. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Treesearch

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  2. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  3. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change

    NASA Astrophysics Data System (ADS)

    Jury, C. P.; Thomas, F. I.; Atkinson, M. J.; Jokiel, P. L.; Onuma, M. A.; Kaku, N.; Toonen, R. J.

    2013-12-01

    Ocean acidification (OA) results in reduced seawater pH and aragonite saturation state (Ωarag), but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 μatm and +3°C) can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems. Further, we will discuss our recent work examining the effects of diel seawater chemistry variation on coral calcification rates.

  4. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    NASA Astrophysics Data System (ADS)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  5. Evolution of computational chemistry, the "launch pad" to scientific computational models: The early days from a personal account, the present status from the TACC-2012 congress, and eventual future applications from the global simulation approach

    NASA Astrophysics Data System (ADS)

    Clementi, Enrico

    2012-06-01

    This is the introductory chapter to the AIP Proceedings volume "Theory and Applications of Computational Chemistry: The First Decade of the Second Millennium" where we discuss the evolution of "computational chemistry". Very early variational computational chemistry developments are reported in Sections 1 to 7, and 11, 12 by recalling some of the computational chemistry contributions by the author and his collaborators (from late 1950 to mid 1990); perturbation techniques are not considered in this already extended work. Present day's computational chemistry is partly considered in Sections 8 to 10 where more recent studies by the author and his collaborators are discussed, including the Hartree-Fock-Heitler-London method; a more general discussion on present day computational chemistry is presented in Section 14. The following chapters of this AIP volume provide a view of modern computational chemistry. Future computational chemistry developments can be extrapolated from the chapters of this AIP volume; further, in Sections 13 and 15 present an overall analysis on computational chemistry, obtained from the Global Simulation approach, by considering the evolution of scientific knowledge confronted with the opportunities offered by modern computers.

  6. The Combined Effects of Classroom Teaching and Learning Strategy Use on Students' Chemistry Self-Efficacy

    NASA Astrophysics Data System (ADS)

    Cheung, Derek

    2015-02-01

    For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura (Psychol. Rev. 84:191-215, 1977), students acquire information about their level of self-efficacy from four sources: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. No published studies have investigated how instructional strategies in chemistry lessons can provide students with positive experiences with these four sources of self-efficacy information and how the instructional strategies promote students' chemistry self-efficacy. In this study, questionnaire items were constructed to measure student perceptions about instructional strategies, termed efficacy-enhancing teaching, which can provide positive experiences with the four sources of self-efficacy information. Structural equation modeling was then applied to test a hypothesized mediation model, positing that efficacy-enhancing teaching positively affects students' chemistry self-efficacy through their use of deep learning strategies such as metacognitive control strategies. A total of 590 chemistry students at nine secondary schools in Hong Kong participated in the survey. The mediation model provided a good fit to the student data. Efficacy-enhancing teaching had a direct effect on students' chemistry self-efficacy. Efficacy-enhancing teaching also directly affected students' use of deep learning strategies, which in turn affected students' chemistry self-efficacy. The implications of these findings for developing secondary school students' chemistry self-efficacy are discussed.

  7. The Client Centered Curriculum

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Describes an elective course dealing with chemistry for the consumer. Students investigate consumer products, the chemistry behind these products, and possible ways in which a better understanding of chemistry could help them become more selective consumers. The chemistry of aerosols is a topic given particular attention. (JR)

  8. 1985 Employment Outlook: Undergraduate Studies.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Provides data (obtained from an American Chemical Society survey) on undergraduate studies in chemistry. Lists and discusses chemistry, elective chemistry, and supporting courses (such as writing and physics) considered to be important by professional chemists. Also recommends that undergraduates pursue studies in biochemistry, polymer chemistry,…

  9. Physical and Biological Modes of Thought in the Chemistry of Linus Pauling

    NASA Astrophysics Data System (ADS)

    Nye, Mary Jo

    No figure in modern chemistry better exemplifies than Linus Pauling (1901-1994) the intersections of the scientific disciplines of chemistry, physics, and biology nor the roles of physical and biological modes of thought in the 'central science' of chemistry.

  10. 75 FR 63188 - Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance provides... Products: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance...

  11. 77 FR 9947 - Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...] Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... ``Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing, and...

  12. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  13. 40 CFR 158.2290 - Residue chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Residue chemistry. 158.2290 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2290 Residue chemistry. (a) General... determine the residue chemistry data requirements for antimicrobial pesticide products. Notes that apply to...

  14. 40 CFR 158.2290 - Residue chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Residue chemistry. 158.2290 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2290 Residue chemistry. (a) General... determine the residue chemistry data requirements for antimicrobial pesticide products. Notes that apply to...

  15. SEDIMENT AND POREWATER CHEMISTRY

    EPA Science Inventory

    This chapter reviews sediment chemistry, its effect on porewater chemistry and how this chemistry changes from place to place. We focus on the overall chemical environment of the sediments, for which a great deal is known from studies on sediment diagenesis and from which some pr...

  16. Chemistry Education Research Trends: 2004-2013

    ERIC Educational Resources Information Center

    Teo, Tang Wee; Goh, Mei Ting; Yeo, Leck Wee

    2014-01-01

    This paper presents findings from a content analysis of 650 empirical chemistry education research papers published in two top-tiered chemistry education journals "Chemistry Education Research and Practice" and "Journal of Chemical Education," and four top-tiered science education journals "International Journal of Science…

  17. Two Photon Spectroscopy of UF6 in the Near Ultraviolet

    DTIC Science & Technology

    1981-03-10

    Chemistry Department Department of Chemistry University of Illinois Howard University Urbana, Illinois 61801 Washington, DC 20059 Dr. A. Adamson Dr. George...E. Walraffer Department of Chemistry Department of Chemistry University of Southern Howard University California Washington, DC 20059 Los Angeles

  18. Clinical chemistry through Clinical Chemistry: a journal timeline.

    PubMed

    Rej, Robert

    2004-12-01

    The establishment of the modern discipline of clinical chemistry was concurrent with the foundation of the journal Clinical Chemistry and that of the American Association for Clinical Chemistry in the late 1940s and early 1950s. To mark the 50th volume of this Journal, I chronicle and highlight scientific milestones, and those within the discipline, as documented in the pages of Clinical Chemistry. Amazing progress has been made in the field of laboratory diagnostics over these five decades, in many cases paralleling-as well as being bolstered by-the rapid pace in the development of computer technologies. Specific areas of laboratory medicine particularly well represented in Clinical Chemistry include lipids, endocrinology, protein markers, quality of laboratory measurements, molecular diagnostics, and general advances in methodology and instrumentation.

  19. National Chemistry Teacher Safety Survey

    NASA Astrophysics Data System (ADS)

    Plohocki, Barbra A.

    This study evaluated the status of secondary school instructional chemistry laboratory safety using a survey instrument which focused on Teacher background Information, Laboratory Safety Equipment, Facility Safety, General Safety, and a Safety Content Knowledge Survey. A fifty question survey instrument based on recent research and questions developed by the researcher was mailed to 500 secondary school chemistry teachers who participated in the 1993 one-week Woodrow Wilson National Fellowship Foundation Chemistry Institute conducted at Princeton University, New Jersey. The data received from 303 respondents was analyzed by t tests and Analysis of Variance (ANOVA). The level of significance for the study was set at ~\\ <.05. There was no significant mean difference in test performance on the Safety Content Knowledge Survey and secondary school chemistry teachers who have had undergraduate and/or graduate safety training and those who have not had undergraduate and/or graduate safety training. Secondary school chemistry teachers who attended school district sponsored safety inservices did not score higher on the Safety Content Knowledge Survey than teachers who did not attend school district sponsored safety inservice sessions. The type of school district (urban, suburban, or rural) had no significant correlation to the type of laboratory safety equipment found in the instructional chemistry laboratory. The certification area (chemistry or other type of certificate which may or may not include chemistry) of the secondary school teacher had no significant correlation to the type of laboratory equipment found in the instructional chemistry laboratory. Overall, this study indicated a majority of secondary school chemistry teachers were interested in attending safety workshops applicable to chemistry safety. Throughout this research project, many teachers indicated they were not adequately instructed on the collegiate level in science safety and had to rely on common sense and self-study in their future teaching careers.

  20. Should we learn culture in chemistry classroom? Integration ethnochemistry in culturally responsive teaching

    NASA Astrophysics Data System (ADS)

    Rahmawati, Yuli; Ridwan, Achmad; Nurbaity

    2017-08-01

    The papers report the first year of two-year longitudinal study of ethnochemistry integration in culturally responsive teaching in chemistry classrooms. The teaching approach is focusing on exploring the culture and indigenous knowledge in Indonesia from chemistry perspectives. Ethnochemistry looks at the culture from chemistry perspectives integrated into culturally responsive teaching has developed students' cultural identity and students' engagement in chemistry learning. There are limited research and data in exploring Indonesia culture, which has around 300 ethics, from chemistry perspectives. Students come to the chemistry classrooms from a different background; however, their chemistry learning disconnected with their background which leads to students' disengagement in chemistry learning. Therefore this approach focused on students' engagement within their differences. This research was conducted with year 10 and 11 from four classrooms in two secondary schools through qualitative methodology with observation, interviews, and reflective journals as data collection. The results showed that the integration of ethnochemistry in culturally responsive teaching approach can be implemented by involving 5 principles which are content integration, facilitating knowledge construction, prejudice reduction, social justice, and academic development. The culturally responsive teaching has engaged students in their chemistry learning and developed their cultural identity and soft skills. Students found that the learning experiences has helped to develop their chemistry knowledge and understand the culture from chemistry perspectives. The students developed the ability to work together, responsibility, curiosity, social awareness, creativity, empathy communication, and self-confidence which categorized into collaboration skills, student engagement, social and cultural awareness, and high order thinking skills. The ethnochemistry has helped them to develop the critical self-reflection on their own cultural background.

  1. A Study of National Science Foundation Institute Participation and Chemistry Content Preparation of Chemistry Teachers Related to the Academic Achievement of Secondary School Chemistry Students in the Memphis City School System.

    ERIC Educational Resources Information Center

    Marking, William Michael

    The purpose of this study was to investigate several variables related to teacher preparation and cognitive achievement of high school chemistry students. The teacher population consisted of 35 teachers. Twenty-three hundred student scores on the Cooperative Science Test in Chemistry were collected and categorized for relevant data. Two hundred…

  2. The Nobel Legacy: A Journey through Chemistry Inspired by the Achievements of Nobel Laureates.

    PubMed

    Novara, Francesca Rita; Ross, Haymo

    2018-03-15

    The Prize is right! Chemistry-A European Journal will start an exciting journey exploring the significance of Nobel Prize awards in Chemistry in the corresponding contemporary chemistry fields. In this new journal feature called "The Nobel Legacy", a recurring series of invited Review-type articles each one connected to a particular Nobel Prize in Chemistry will be published. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Upon Further Review: A Commodity Chemist on Green Chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, William F.

    2016-09-01

    Green chemistry is most often thought of in the context of specialty or pharmaceutical chemicals where many synthetic chemistry approaches are in play. However, principles similar to those of green chemistry and engineering were employed over the years in reducing cost and increasing volume of chemicals that became commodities. This paper considers some of those principles, their impact, and some perspectives on the potential and limits associated with green chemistry for commodity chemicals.

  4. Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Sarwar, G.

    2017-12-01

    In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen chemistry in CMAQ and its impacts on air quality.

  5. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    NASA Astrophysics Data System (ADS)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic liquids follow the inductive process. Experimental observations lead to scientific concepts which later can facilitate to elaborate explanatory theories.

  6. A New Chemistry Course for Non-Chemistry Majors.

    ERIC Educational Resources Information Center

    Ariel, Magda; And Others

    1982-01-01

    A two-semester basic chemistry course for nonchemistry engineering majors is described. First semester provides introductory chemistry for freshmen while second semester is "customer-oriented," based on a departmental choice of three out of six independent modules. For example, aeronautical engineering "customers" would select…

  7. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    ERIC Educational Resources Information Center

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  8. 75 FR 47604 - Guidance for Industry on Drug Substance Chemistry, Manufacturing, and Controls Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ...] (formerly 2003D-0571) Guidance for Industry on Drug Substance Chemistry, Manufacturing, and Controls... Substance Chemistry, Manufacturing, and Controls Information.'' This guidance provides recommendations on the chemistry, manufacturing, and controls (CMC) information for drug substances that should be...

  9. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    ERIC Educational Resources Information Center

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  10. 40 CFR 158.2210 - Product chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Product chemistry. 158.2210 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2210 Product chemistry. The product chemistry data requirements of subpart D of this part apply to antimicrobial products covered by this...

  11. 40 CFR 158.2210 - Product chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Product chemistry. 158.2210 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2210 Product chemistry. The product chemistry data requirements of subpart D of this part apply to antimicrobial products covered by this...

  12. Research in Chemical Kinetics: Progress Report, January 1, 1978 to September 30, 1978

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1978-01-01

    Research was conducted on the following topics: stratospheric chemistry of chlorinated molecules, atmospheric chemistry of methane, atmospheric chemistry of cosmogenic tritium, reactions of energetic and thermal radioactive atoms, methylene chemistry, and laboratory simulation of chemical reactions in Jupiter atmosphere. (DLC)

  13. Humanizing Chemistry Education: From Simple Contextualization to Multifaceted Problematization

    ERIC Educational Resources Information Center

    Sjöström, Jesper; Talanquer, Vicente

    2014-01-01

    Chemistry teaching has traditionally been weakly connected to everyday life, technology, society, and history and philosophy of science. This article highlights knowledge areas and perspectives needed by the humanistic (and critical-reflexive) chemistry teacher. Different humanistic approaches in chemistry teaching, from simple contextualization…

  14. Visualizing the Chemistry of Climate Change (VC3Chem): Online resources for teaching and learning chemistry through the rich context of climate science

    NASA Astrophysics Data System (ADS)

    McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.

    2013-12-01

    Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.

  15. Support for chemistry symposia at the 2011 American Association for the Advancement of Science meeting, February 17-21 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles Casey

    2011-08-20

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technicalmore » Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the achievements of chemistry and its contributions to the well-being of humankind. The 2011 AAAS Annual Meeting provided an important opportunity to play a prominent role in the global celebration of the 2011 International Year of Chemistry.« less

  16. Impact of STS (Context-Based Type of Teaching) in Comparison With a Textbook Approach on Attitudes and Achievement in Community College Chemistry Classrooms

    NASA Astrophysics Data System (ADS)

    Perkins, Gita

    The purpose of this study was to analyze the impact of a context-based teaching approach (STS) versus a more traditional textbook approach on the attitudes and achievement of community college chemistry students. In studying attitudes toward chemistry within this study, I used a 30-item Likert scale in order to study the importance of chemistry in students' lives, the importance of chemistry, the difficulty of chemistry, interest in chemistry, and the usefulness of chemistry for their future career. Though the STS approach students had higher attitude post scores, there was no significant difference between the STS and textbook students' attitude post scores. It was noted that females had higher postattitude scores in the STS group, while males had higher postattitude scores in the textbook group. With regard to postachievement, I noted that males had higher scores in both groups. A correlation existed between postattitude and postachievement in the STS classroom. In summary, while an association between attitude and achievement was found in the STS classroom, teaching approach or sex was not found to influence attitudes, while sex was also not found to influence achievement. These results, overall, suggest that attitudes are not expected to change on the basis of either teaching approach or gender, and that techniques other than changing the teaching approach would need to be used in order to improve the attitudes of students. Qualitative analysis of an online discussion activity on Energy revealed that STS students were able to apply aspects of chemistry in decision making related to socioscientific issues. Additional analysis of interview and written responses provided insight regarding attitudes toward chemistry, with respect to topics of applicability of chemistry to life, difficulties with chemistry, teaching approach for chemistry, and the intent for enrolling in additional chemistry courses. In addition, the surveys of female students brought out subcategories with regard to emotional and professional characteristics of a good teacher, under the category of characteristics of teaching approach. With respect to the category of course experience, subcategories of useful knowledge to solve real-life problems and knowledge for future career were revealed. The differences between the control group females and STS group females with respect to these characteristics was striking and threw insight into how teacher behavior and teaching approach shape student attitudes to chemistry in case of female students.

  17. Modern Analytical Chemistry in the Contemporary World

    ERIC Educational Resources Information Center

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  18. Campus as a Living Laboratory for Sustainability: The Chemistry Connection

    ERIC Educational Resources Information Center

    Lindstrom, Timothy; Middlecamp, Catherine

    2017-01-01

    In the undergraduate curriculum, chemistry and sustainability connect easily and well. Topics in chemistry provide instructors with opportunities to engage students in learning about sustainability; similarly, topics in sustainability provide instructors with opportunities to engage students in learning chemistry. One's own college or university…

  19. Chemistry for Student Nurses: Applications-Based Learning

    ERIC Educational Resources Information Center

    El-Farargy, Nancy

    2009-01-01

    New chemistry materials were devised for pre university National Certificate (NC) nursing students studying chemistry at a further education college. Previously, preliminary work showed that students felt that the chemistry taught to them was irrelevant, boring and difficult. It was hoped that through an applications-led style curriculum…

  20. Organic Chemistry Self Instructional Package 2: Methane.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  1. Have a Chemistry Field Day in Your Area.

    ERIC Educational Resources Information Center

    Mattson, Bruce M.; And Others

    1989-01-01

    Describes a full day of chemistry fun and competition for high school chemistry students. Notes teams have five students from each high school. Lists five competitive events for each team: titration, qualitative analysis, balancing equations, general chemistry quiz, and quantitative analysis with atomic absorption spectroscopy. (MVL)

  2. History of Chemistry.

    ERIC Educational Resources Information Center

    Servos, John W.

    1985-01-01

    Discusses the development of chemistry in the United States by considering: (1) chemistry as an evolving body of ideas/techniques, and as a set of conceptual resources affecting and affected by the development of other sciences; and (2) chemistry related to the history of American social and economic institutions and practices. (JN)

  3. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry data...

  4. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  5. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  6. 77 FR 42341 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: ChemMatCARS Site Visit, 2011 Awardees by NSF Division of Chemistry.... Carlos Murillo, Program Director, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  7. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  8. Supplemental Instruction in Physical Chemistry I

    ERIC Educational Resources Information Center

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  9. Design of a Dynamic Undergraduate Green Chemistry Course

    ERIC Educational Resources Information Center

    Kennedy, Sarah A.

    2016-01-01

    The green chemistry course taught at Westminster College (PA) incorporates nontraditional teaching techniques and texts to educate future chemists about the importance of using green chemistry principles. The course is designed to introduce green chemistry concepts and demonstrate their inherent necessity by discussing historical missteps by the…

  10. 75 FR 5353 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Georgia Institute of Technology and The University of Massachusetts, Proposal Review Panel for Chemistry... a.m.-8 p.m. Places: Department of Chemistry, Georgia Institute of Technology, Atlanta, GA 30332...

  11. A Physical Chemist Looks at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1988-01-01

    Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)

  12. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  13. Investigating Students' Similarity Judgments in Organic Chemistry

    ERIC Educational Resources Information Center

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…

  14. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  15. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  16. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry data...

  17. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry data...

  18. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Discrete photometric chemistry analyzer for... AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a...

  19. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  20. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  1. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  2. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  3. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  4. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry data...

  5. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  6. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Discrete photometric chemistry analyzer for... AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a...

  7. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  8. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry data...

  9. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  10. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...

  11. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Discrete photometric chemistry analyzer for... AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a...

  12. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Discrete photometric chemistry analyzer for... AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a...

  13. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  14. Greener Approaches to Undergraduate Chemistry Experiments.

    ERIC Educational Resources Information Center

    Kirchhoff, Mary, Ed.; Ryan, Mary Ann, Ed.

    This laboratory manual introduces the idea of Green Chemistry, which is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Instructional samples are included to help teachers integrate green chemistry into the college chemistry curriculum. Each laboratory includes: (1) a…

  15. Department of Chemistry and Biochemistry - University of Maryland,

    Science.gov Websites

    Access Analytical Facilities? New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Collaborative Research New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Molecule Shows Author's profile esj-lab New Labs Catalyze Chemistry Learning The Edward St. John Learning and Teaching

  16. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M.…

  17. Eleventh international symposium on radiopharmaceutical chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  18. 11(th) National Meeting of Organic Chemistry and 4(th) Meeting of Therapeutic Chemistry.

    PubMed

    Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho E Melo, Teresa M V D; Freitas, Victor

    2016-03-17

    For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report.

  19. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry

    PubMed Central

    Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B.; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho e Melo, Teresa M.V.D.; Freitas, Victor

    2016-01-01

    For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report. PMID:27102166

  20. Research-Based Development of a Lesson Plan on Shower Gels and Musk Fragrances Following a Socio-Critical and Problem-Oriented Approach to Chemistry Teaching

    ERIC Educational Resources Information Center

    Marks, Ralf; Eilks, Ingo

    2010-01-01

    A case is described of the development of a lesson plan for 10th grade (age range 15-16) chemistry classes on the chemistry of shower gels. The lesson plan follows a socio-critical and problem-oriented approach to chemistry teaching. This means that, aside from learning about the basic chemistry of the components making up modern shower gels in…

  1. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  2. Green Chemistry: Progress and Barriers

    NASA Astrophysics Data System (ADS)

    Green, Sarah A.

    2016-10-01

    Green chemistry can advance both the health of the environment and the primary objectives of the chemical enterprise: to understand the behavior of chemical substances and to use that knowledge to make useful substances. We expect chemical research and manufacturing to be done in a manner that preserves the health and safety of workers; green chemistry extends that expectation to encompass the health and safety of the planet. While green chemistry may currently be treated as an independent branch of research, it should, like safety, eventually become integral to all chemistry activities. While enormous progress has been made in shifting from "brown" to green chemistry, much more effort is needed to effect a sustainable economy. Implementation of new, greener paradigms in chemistry is slow because of lack of knowledge, ends-justify-the-means thinking, systems inertia, and lack of financial or policy incentives.

  3. Computing protein infrared spectroscopy with quantum chemistry.

    PubMed

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  4. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    PubMed

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  5. Introducing Proper Chemical Hygiene and Safety in the General Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Gordon J.; Heideman, Stephen A.; Greenbowe, Thomas J.

    2000-09-01

    Chemical safety is an important component of science education for everyone, not just for chemistry majors. Developing a responsible and knowledgeable attitude towards chemical safety best starts at the early stages of a student's career. In many colleges and universities, safety education in undergraduate chemistry has been relegated primarily to a few regulatory documents at the beginning of a laboratory course, or an occasional warning in the description of a specific experiment in a prelaboratory lecture. Safety issues are seldom raised in general chemistry or organic chemistry lecture-based chemistry courses. At Iowa State University we have begun to implement a program, Chemical Hygiene and Safety in the Laboratory, into the undergraduate chemistry curriculum. This program is designed to increase the awareness and knowledge of proper chemical hygiene and laboratory safety issues among all students taking general chemistry and organic chemistry courses. Laboratory protocol, use of safety equipment, familiarity with MSD sheets, basics of first aid, some specific terminology surrounding chemical hygiene, EPA and OSHA requirements, and the use of the World Wide Web to search and locate chemical safety information are topics that are applied throughout the chemistry curriculum. The novelty of this approach is to incorporate MSD sheets and safety information that can be located on the World Wide Web in a series of safety problems and assignments, all related to the chemistry experiments students are about to perform. The fundamental idea of our approach is not only to teach students what is required for appropriate safety measures, but also to involve them in the enforcement of basic prudent practices.

  6. Attitudes and Beliefs of Pathology Residents Regarding the Subspecialty of Clinical Chemistry: Results of a Survey.

    PubMed

    Haidari, Mehran; Yared, Marwan; Olano, Juan P; Alexander, C Bruce; Powell, Suzanne Z

    2017-02-01

    -Previous studies suggest that training in pathology residency programs does not adequately prepare pathology residents to become competent in clinical chemistry. -To define the beliefs of pathology residents in the United States regarding their preparation for practicing clinical chemistry in their career, their attitude toward the discipline, and the attractiveness of clinical chemistry as a career. -The residents of all pathology residency programs in the United States were given the opportunity to participate in an online survey. -Three hundred thirty-six pathology residents responded to the survey. Analysis of the survey results indicates that pathology residents are more likely to believe that their income may be lower if they select a career that has a clinical chemistry focus and that their faculty do not value clinical chemistry as much as the anatomic pathology part of the residency. Residents also report that clinical chemistry is not as enjoyable as anatomic pathology rotations during residency or preferable as a sole career path. A large proportion of residents also believe that they will be slightly prepared or not prepared to practice clinical chemistry by the end of their residency and that they do not have enough background and/or time to learn clinical chemistry during their residency programs to be able to practice this specialty effectively post graduation. -Our survey results suggest that many pathology residents do not have a positive attitude toward clinical chemistry and do not experience a supportive learning environment with an expectation that they will become competent in clinical chemistry with a residency alone.

  7. An Approach towards Teaching Green Chemistry Fundamentals

    ERIC Educational Resources Information Center

    van Arnum, Susan D.

    2005-01-01

    A useful metrics system for the assessment of the environmental impact of chemical processes is utilized to illustrate several of the principles of green chemistry. The use of this metrics system in conjunction with laboratory experiments in green chemistry would provide for reinforcement in both the theory and practice of green chemistry.

  8. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    ERIC Educational Resources Information Center

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  9. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  10. European TV Brings Chemistry into the Home

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1975-01-01

    Describes television programs broadcast in the Netherlands and West Germany which explain what chemistry is all about. Both programs, planned under the direction of trained chemists, comprise 13 half-hour presentations and include segments on energy, polymers, chemical processes, the chemistry of life, atomic and molecular chemistry, and chemistry…

  11. A Discovery Chemistry Experiment on Buffers

    ERIC Educational Resources Information Center

    Kulevich, Suzanne E.; Herrick, Richard S.; Mills, Kenneth V.

    2014-01-01

    The Holy Cross Chemistry Department has designed and implemented an experiment on buffers as part of our Discovery Chemistry curriculum. The pedagogical philosophy of Discovery Chemistry is to make the laboratory the focal point of learning for students in their first two years of undergraduate instruction. We first pose questions in prelaboratory…

  12. Writing in Chemistry: An Effective Learning Tool.

    ERIC Educational Resources Information Center

    Sherwood, Donna W.; Kovac, Jeffrey

    1999-01-01

    Presents some general strategies for using writing in chemistry courses based on experiences in developing a systematic approach to using writing as an effective learning tool in chemistry courses, and testing this approach in high-enrollment general chemistry courses at the University of Tennessee-Knoxville. Contains 18 references. (WRM)

  13. Assessment of Expert-Novice Chemistry Problem Solving Using HyperCard: Early Findings.

    ERIC Educational Resources Information Center

    Kumar, David D.

    1993-01-01

    Results of a HyperCard method for assessing the performance of expert and novice high school chemistry students solving stoichiometric chemistry problems (balancing chemical equations) is reported. MANOVA results indicate significant difference between expert and novice students solving the five stoichiometric chemistry problems using…

  14. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  15. A Test of Strategies for Enhanced Learning of AP Descriptive Chemistry

    ERIC Educational Resources Information Center

    Kotcherlakota, Suhasini; Brooks, David W.

    2008-01-01

    The Advanced Placement (AP) Descriptive Chemistry Website allows users to practice chemistry problems. This study involved the redesign of the Website using worked examples to enhance learner performance. The population sample for the study includes users (students and teachers) interested in learning descriptive chemistry materials. The users…

  16. The Perfect Text.

    ERIC Educational Resources Information Center

    Russo, Ruth

    1998-01-01

    A chemistry teacher describes the elements of the ideal chemistry textbook. The perfect text is focused and helps students draw a coherent whole out of the myriad fragments of information and interpretation. The text would show chemistry as the central science necessary for understanding other sciences and would also root chemistry firmly in the…

  17. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  18. Undergraduate Chemistry Education: A Workshop Summary

    ERIC Educational Resources Information Center

    Sawyer, Keegan; Alper, Joe

    2014-01-01

    "Undergraduate Chemistry Education" is the summary of a workshop convened in May 2013 by the Chemical Science Roundtable of the National Research Council to explore the current state of undergraduate chemistry education. Research and innovation in undergraduate chemistry education has been done for many years, and one goal of this…

  19. Investigating the Impact of Adding an Environmental Focus to a Developmental Chemistry Course

    ERIC Educational Resources Information Center

    Robelia, Beth; McNeill, Kristopher; Wammer, Kristine; Lawrenz, Frances

    2010-01-01

    This study explores how adding environmental perspectives to a developmental chemistry course affected student learning of both general chemistry and environmental chemistry concepts. In addition to measuring learning changes, changes in students' environmental attitudes and behaviors were also measured. A pretest-posttest design measured…

  20. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  1. Development of the Connected Chemistry as Formative Assessment Pedagogy for High School Chemistry Teaching

    ERIC Educational Resources Information Center

    Park, Mihwa; Liu, Xiufeng; Waight, Noemi

    2017-01-01

    This paper describes the development of Connected Chemistry as Formative Assessment (CCFA) pedagogy, which integrates three promising teaching and learning approaches, computer models, formative assessments, and learning progressions, to promote student understanding in chemistry. CCFA supports student learning in making connections among the…

  2. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    ERIC Educational Resources Information Center

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry…

  3. 40 CFR 158.210 - Experimental use permit data requirements for product chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Experimental use permit data requirements for product chemistry. 158.210 Section 158.210 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for product chemistry. All product chemistry data, as described in...

  4. 40 CFR 161.240 - Residue chemistry data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Residue chemistry data requirements... § 161.240 Residue chemistry data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the residue chemistry data requirements and the substances to be...

  5. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    ERIC Educational Resources Information Center

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  6. 77 FR 43131 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to Executive Order 13382... (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to E.O. 13382. SUMMARY... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh, have engaged, or attempted to...

  7. 42 CFR 493.1210 - Condition: Routine chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, § 493.1267...

  8. 78 FR 13142 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to Executive Order 13382... (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to E.O. 13382. SUMMARY... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh, have engaged, or attempted to...

  9. 75 FR 3942 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance..., Proposal Review Panel for Chemistry, 1191. Dates & Times: February 23, 2010; 8:30 a.m.-4:30 p.m. February... Brittain, Program Director, Chemistry Centers Program, Division of Materials Research, Room 1055, National...

  10. Characterizing High School Chemistry Teachers' Use of Assessment Data via Latent Class Analysis

    ERIC Educational Resources Information Center

    Harshman, Jordan; Yezierski, Ellen

    2016-01-01

    In this study, which builds on a previous qualitative study and literature review, high school chemistry teachers' characteristics regarding the design of chemistry formative assessments and interpretation of results for instructional improvement are identified. The Adaptive Chemistry Assessment Survey for Teachers (ACAST) was designed to elicit…

  11. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  12. A Technological Acceptance of Remote Laboratory in Chemistry Education

    ERIC Educational Resources Information Center

    Ling, Wendy Sing Yii; Lee, Tien Tien; Tho, Siew Wei

    2017-01-01

    The purpose of this study is to evaluate the technological acceptance of Chemistry students, and the opinions of Chemistry lecturers and laboratory assistants towards the use of remote laboratory in Chemistry education. The convergent parallel design mixed method was carried out in this study. The instruments involved were questionnaire and…

  13. Chemistry 200, 300 Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…

  14. Introducing Chemistry Students to the "Real World" of Chemistry

    ERIC Educational Resources Information Center

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  15. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Discrete photometric chemistry analyzer for... Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a) Identification. A discrete photometric chemistry analyzer for clinical use is a device intended to duplicate...

  16. One-world chemistry and systems thinking

    NASA Astrophysics Data System (ADS)

    Matlin, Stephen A.; Mehta, Goverdhan; Hopf, Henning; Krief, Alain

    2016-05-01

    The practice and overarching mission of chemistry need a major overhaul in order to be fit for purpose in the twenty-first century and beyond. The concept of 'one-world' chemistry takes a systems approach that brings together many factors, including ethics and sustainability, that are critical to the future role of chemistry.

  17. Spanish-Speaking English Language Learners' Experiences in High School Chemistry Education

    ERIC Educational Resources Information Center

    Flores, Annette; Smith, K. Christopher

    2013-01-01

    This article reports on the experiences of Spanish-speaking English language learners in high school chemistry courses, focusing largely on experiences in learning the English language, experiences learning chemistry, and experiences learning chemistry in the English language. The findings illustrate the cognitive processes the students undertake…

  18. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    ERIC Educational Resources Information Center

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  19. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  20. 40 CFR 161.240 - Residue chemistry data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Residue chemistry data requirements... § 161.240 Residue chemistry data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the residue chemistry data requirements and the substances to be...

  1. 40 CFR 158.210 - Experimental use permit data requirements for product chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Experimental use permit data requirements for product chemistry. 158.210 Section 158.210 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for product chemistry. All product chemistry data, as described in...

  2. 42 CFR 493.1210 - Condition: Routine chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, § 493.1267...

  3. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  4. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  5. 42 CFR 493.1210 - Condition: Routine chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, § 493.1267...

  6. 40 CFR 158.210 - Experimental use permit data requirements for product chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Experimental use permit data requirements for product chemistry. 158.210 Section 158.210 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for product chemistry. All product chemistry data, as described in...

  7. 40 CFR 158.210 - Experimental use permit data requirements for product chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Experimental use permit data requirements for product chemistry. 158.210 Section 158.210 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for product chemistry. All product chemistry data, as described in...

  8. 40 CFR 161.240 - Residue chemistry data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Residue chemistry data requirements... § 161.240 Residue chemistry data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the residue chemistry data requirements and the substances to be...

  9. 42 CFR 493.1210 - Condition: Routine chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, § 493.1267...

  10. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  11. 40 CFR 158.210 - Experimental use permit data requirements for product chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Experimental use permit data requirements for product chemistry. 158.210 Section 158.210 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for product chemistry. All product chemistry data, as described in...

  12. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  13. 40 CFR 161.240 - Residue chemistry data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Residue chemistry data requirements... § 161.240 Residue chemistry data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the residue chemistry data requirements and the substances to be...

  14. 42 CFR 493.1210 - Condition: Routine chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Routine chemistry. 493.1210 Section 493....1210 Condition: Routine chemistry. If the laboratory provides services in the subspecialty of Routine chemistry, the laboratory must meet the requirements specified in §§ 493.1230 through 493.1256, § 493.1267...

  15. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  16. Organic Chemistry Self Instructional Package 10: Alkenes-Reactions 2.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  17. Nuffield A-Level Chemistry: A Personal View

    ERIC Educational Resources Information Center

    Bailey, Roy

    1972-01-01

    Maintains that there are topics of thermodynamics and organic chemistry in Nuffield A-level chemistry program which should be reviewed critically for their content organization. The Nuffield course is considered better than the traditional courses in its educational value, yet highly biased for preparing students for college chemistry courses. (PS)

  18. Organic Chemistry Self Instructional Package 15: Benzene, Aromaticity.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  19. Going Beyond, Going Further: Preparative Exercises in General Chemistry.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1987-01-01

    Proposes that preparative chemistry is an important and integral part of chemistry as a whole, and an excellent way to introduce students to descriptive chemistry. Provides an outline for students to follow for converting and transforming salts. Suggests a set of general guidelines for studying anion and cation transformations. (TW)

  20. Partners for Progress and Prosperity in the Global Chemistry Enterprise

    USDA-ARS?s Scientific Manuscript database

    In the past several years, there have been many changes facing the global chemistry enterprise. Whereas the overall chemistry enterprise appears to be strong and the chemical industry is still a major contributor to GDP, many chemistry-based products have been commoditized, and chemical employment h...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress in the fields of nuclear chemistry, isolation and chemical properties of synthetic elements, chemical separation of isotopes, radiation chemistry, organic chemistry, chemistry of aquecus systems, electrochemistry of corrosion, nonaqueous systems at high temperature, and chemical physics for the year ending June 20, 1961, is reported. Separate abstracts were prepared for each topic. (M.C.G.)

  2. Sex Differences in the Mental Rotation of Chemistry Representations

    ERIC Educational Resources Information Center

    Stieff, Mike

    2013-01-01

    Mental-rotation ability modestly predicts chemistry achievement. As such, sex differences in mental-rotation ability have been implicated as a causal factor that can explain sex differences in chemistry achievement and degree attainment. Although there is a correlation between mental-rotation ability and chemistry achievement, laboratory and field…

  3. Green analytical chemistry--theory and practice.

    PubMed

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  4. Green Chemistry Pedagogy

    NASA Astrophysics Data System (ADS)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  5. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    NASA Astrophysics Data System (ADS)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  6. Industrial medicinal chemistry insights: neuroscience hit generation at Janssen.

    PubMed

    Tresadern, Gary; Rombouts, Frederik J R; Oehlrich, Daniel; Macdonald, Gregor; Trabanco, Andres A

    2017-10-01

    The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pharmacy and Chemistry in the Eighteenth Century: What Lessons for the History of Science?

    PubMed

    Simon, Jonathan

    2014-01-01

    This essay questions the continuity of chemistry across the eighteenth century based on an analysis of its relationship to pharmacy in France. Comparing a text by Nicolas Lémery (1675) with one by Antoine Baumé (1773), the article argues for a key transformation in chemistry across this period. The elimination of the practical side of pharmacy (indications and dosages) from chemistry texts is symptomatic of a reorientation of chemistry toward more theoretical or philosophical concerns. The essay considers several possible explanations for this change in orientation, including developments within pharmacy, but in the end privileges an approach in terms of the changing publics for chemistry in eighteenth-century France.

  8. Transuranic Computational Chemistry.

    PubMed

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Save Time and Money through Chemistry (by Ken Carpenter)

    NASA Astrophysics Data System (ADS)

    Hazari, Al

    1998-01-01

    Useful Chemistry Publishing: Dayton, OH, 1997. 261 pp. Figs. and tables. ISBN: 0965566714. $24.95 (soft cover only). Would you like to learn about the 5 W's of everyday chemistry and chemicals? Who(m) should you see to learn to identify and appraise jewelry? What should you eat for breakfast? When should you get up from your sleep? Where is cholesterol in the human body? Why do pool owners add hydrochloric acid? Then read Save Time and Money through Chemistry, by Ken Carpenter. This book is loaded with practical and useful chemistry information that every person who took chemistry in high school or college wishes he or she had been introduced or exposed to. I know I do.

  10. Clinical Chemistry of Patients With Ebola in Monrovia, Liberia

    PubMed Central

    de Wit, Emmie; Kramer, Shelby; Prescott, Joseph; Rosenke, Kyle; Falzarano, Darryl; Marzi, Andrea; Fischer, Robert J.; Safronetz, David; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Bushmaker, Trenton; McNally, Kristin L.; Feldmann, Friederike; Williamson, Brandi N.; Best, Sonja M.; Ebihara, Hideki; Damiani, Igor A. C.; Adamson, Brett; Zoon, Kathryn C.; Nyenswah, Tolbert G.; Bolay, Fatorma K.; Massaquoi, Moses; Sprecher, Armand; Feldmann, Heinz; Munster, Vincent J.

    2016-01-01

    The development of point-of-care clinical chemistry analyzers has enabled the implementation of these ancillary tests in field laboratories in resource-limited outbreak areas. The Eternal Love Winning Africa (ELWA) outbreak diagnostic laboratory, established in Monrovia, Liberia, to provide Ebola virus and Plasmodium spp. diagnostics during the Ebola epidemic, implemented clinical chemistry analyzers in December 2014. Clinical chemistry testing was performed for 68 patients in triage, including 12 patients infected with Ebola virus and 18 infected with Plasmodium spp. The main distinguishing feature in clinical chemistry of Ebola virus–infected patients was the elevation in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyltransferase levels and the decrease in calcium. The implementation of clinical chemistry is probably most helpful when the medical supportive care implemented at the Ebola treatment unit allows for correction of biochemistry derangements and on-site clinical chemistry analyzers can be used to monitor electrolyte balance. PMID:27471319

  11. Magic, science and masculinity: marketing toy chemistry sets.

    PubMed

    Al-Gailani, Salim

    2009-12-01

    At least since the late nineteenth century, toy chemistry sets have featured in standard scripts of the achievement of eminence in science, and they remain important in constructions of scientific identity. Using a selection of these toys manufactured in Britain and the United States, and with particular reference to the two dominant American brands, Gilbert and Chemcraft, this paper suggests that early twentieth-century chemistry sets were rooted in overlapping Victorian traditions of entertainment magic and scientific recreations. As chemistry set marketing copy gradually reoriented towards emphasising scientific modernity, citizenship, discipline and educational value, pre-twentieth-century traditions were subsumed within domestic-and specifically masculine-tropes. These developments in branding strategies point to transformations in both users' engagement with their chemistry sets and the role of scientific toys in domestic play. The chemistry set serves here as a useful tool for measuring cultural change and lay engagement with chemistry.

  12. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…

  13. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  14. Going Green: Lecture Assignments and Lab Experiences for the College Curriculum

    ERIC Educational Resources Information Center

    Haack, Julie A.; Hutchison, James E.; Kirchhoff, Mary M.; Levy, Irvin J.

    2005-01-01

    Green chemistry, the design of chemical products and processes to eliminate hazards to human health and the environment, provides unique opportunities for innovation in the chemistry curriculum for engaging a broad spectrum of students in the study of chemistry. The green chemistry community is expanding efforts to develop educational materials…

  15. How Do Undergraduate Students Conceptualize Acid-Base Chemistry? Measurement of a Concept Progression

    ERIC Educational Resources Information Center

    Romine, William L.; Todd, Amber N.; Clark, Travis B.

    2016-01-01

    We developed and validated a new instrument, called "Measuring Concept progressions in Acid-Base chemistry" (MCAB) and used it to better understand the progression of undergraduate students' understandings about acid-base chemistry. Items were developed based on an existing learning progression for acid-base chemistry. We used the Rasch…

  16. Communities of Molecules: A Physical Chemistry Module.

    ERIC Educational Resources Information Center

    DeVoe, Howard

    This book is one in the series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  17. Gender and Ethnicity Differences Manifested in Chemistry Achievement and Self-Regulated Learning

    ERIC Educational Resources Information Center

    Veloo, Arsaythamby; Hong, Lee Hooi; Lee, Seung Chun

    2015-01-01

    The aim of this study is to examine whether gender and ethnicity differences are manifested in chemistry achievement and self-regulated learning among a matriculation programme students in Malaysia. The result of students' midterm chemistry exam was used as the measure of chemistry achievement. The information of self-regulated learning was…

  18. Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    DeVoe, Howard; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…

  19. Chemistry Teacher Candidates' Acceptance and Opinions about Virtual Reality Technology for Molecular Geometry

    ERIC Educational Resources Information Center

    Saritas, M. T.

    2015-01-01

    The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…

  20. The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Sloan, Caroline

    2014-01-01

    The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…

  1. Developing 21st Century Chemistry Learning through Designing Digital Games

    ERIC Educational Resources Information Center

    Lay, Ah-Nam; Osman, Kamisah

    2018-01-01

    The purpose of this study is to investigate the effect of Malaysian "Kimia" (Chemistry) Digital Games (MyKimDG) module on students' achievement and motivation in chemistry as well as 21st century skills. Chemistry education in Malaysia should put greater emphasis on combination of cognitive, sociocultural and motivational aspects to…

  2. Crossword Puzzles for Chemistry Education: Learning Goals beyond Vocabulary

    ERIC Educational Resources Information Center

    Yuriev, Elizabeth; Capuano, Ben; Short, Jennifer L.

    2016-01-01

    Chemistry is a technical scientific discipline strongly underpinned by its own complex and diverse language. To be successful in the problem-solving aspects of chemistry, students must master the language of chemistry, and in particular, the definition of terms and concepts. To assist students in this challenging task, a variety of instructional…

  3. The Distribution of Macromolecular Principles throughout Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Shulman, Joel I.

    2017-01-01

    Many of the principles of organic polymer chemistry are direct extensions of the information contained in the standard introductory organic chemistry course. Often, however, the discussion of macromolecules is relegated to a chapter at the end of the organic chemistry text and is covered briefly, if at all. Connecting the organic-chemical…

  4. "Triangulation": An Expression for Stimulating Metacognitive Reflection Regarding the Use of "Triplet" Representations for Chemistry Learning

    ERIC Educational Resources Information Center

    Thomas, Gregory P.

    2017-01-01

    Concerns persist regarding high school students' chemistry learning. Learning chemistry is challenging because of chemistry's innate complexity and the need for students to construct associations between different, yet related representations of matter and its changes. Students should be taught to reason about and consider chemical phenomena using…

  5. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  6. Assessing High School Chemistry Students' Modeling Sub-Skills in a Computerized Molecular Modeling Learning Environment

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Kaberman, Zvia

    2012-01-01

    Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…

  7. Demystifying Disciplinary Writing: A Case Study in the Writing of Chemistry

    ERIC Educational Resources Information Center

    Fredrica L. Stoller; Jones, James K.; Costanza-Robinson, Molly S.; Robinson, Marin S.

    2005-01-01

    This article describes steps taken to demystify the writing of chemistry as part of the development of a junior level writing course for chemistry majors at Northern Arizona University (NAU). Although the course is offered by the chemistry department, its conception, development, implementation, and assessment have been the result of an…

  8. What Teaching Teaches: Mentoring and the Performance Gains of Mentors

    ERIC Educational Resources Information Center

    Amaral, Katie E.; Vala, Martin

    2009-01-01

    A peer mentoring program was added to an introductory chemistry course at a large university. The introductory chemistry course prepares students with little or no previous chemistry background to enter the mainstream general chemistry sequence and is part lecture and part small-group problem-solving. Faculty instructors are responsible for the…

  9. Evaluation of Eleventh Grade Turkish Pupils' Comprehension of General Chemistry Concepts

    ERIC Educational Resources Information Center

    Belge Can, Hatice; Boz, Yezdan

    2011-01-01

    The main purpose of this study is to evaluate eleventh grade Turkish pupils' comprehension of various general chemistry concepts which in turn enables to investigate chemistry concepts which are easier and harder for students to comprehend. Examining the effect of gender and last semester chemistry course grades on pupils' comprehension of general…

  10. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  11. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  12. Education: Chemistry Faculties Gain Women Slowly.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Highlights survey results on the status of females in full-time, tenured or tenure track faculty positions in chemistry. Indicates that males still dominate PhD-granting chemistry faculties and that, although the number of women is increasing, the increase is not proportionate to the rate at which they are earning chemistry PhDs. (JM)

  13. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    ERIC Educational Resources Information Center

    Gebru, Misganaw T.

    2012-01-01

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on…

  14. Affordances of Instrumentation in General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  15. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  16. ACER Chemistry Test Item Collection (ACER CHEMTIC Year 12 Supplement).

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    This publication contains 317 multiple-choice chemistry test items related to topics covered in the Victorian (Australia) Year 12 chemistry course. It allows teachers access to a range of items suitable for diagnostic and achievement purposes, supplementing the ACER Chemistry Test Item Collection--Year 12 (CHEMTIC). The topics covered are: organic…

  17. A Closer Look at Phase Diagrams for the General Chemistry Course.

    ERIC Educational Resources Information Center

    Gramsch, Stephen A.

    2000-01-01

    Information concerning structural chemistry and phase equilibria contained in the full phase diagrams of common substances is a great deal richer than the general chemistry students are given to believe. Discusses ways of enriching the traditional presentation of phase diagrams in general chemistry courses. (Contains over 20 references.) (WRM)

  18. The Effect of Microscale Chemistry Experimentation on Students' Attitude and Motivation towards Chemistry Practical Work

    ERIC Educational Resources Information Center

    Abdullah, Mashita; Mohamed, Norita; Ismail, Zurida Hj

    2007-01-01

    Microscale chemistry is an approach to conducting chemistry practicals which can help overcome increased concerns about environmental pollution problems as well as rising laboratory costs. It is accomplished by using miniature labware and significantly reduced amounts of chemicals. This paper reports on students' attitudes and motivation towards…

  19. Hyun Suk Kang | NREL

    Science.gov Websites

    Hyun Suk Kang Albert Kang Postdoctoral Researcher-Chemistry Albert.Kang@nrel.gov | 303-384-6667 Dr , Chemistry, and Mathematics and his Master of Science degree in Chemistry from Northwestern University in 2009. He earned his Ph.D. degree in Physical Chemistry from Washington University in St. Louis in 2016

  20. Advisory Council on College Chemistry Newsletter Number 16.

    ERIC Educational Resources Information Center

    Advisory Council on Coll. Chemistry.

    Discussed are the goals of the Advisory Council on College Chemistry and the effect on College Chemistry of termination of National Science Foundation funding. Reported are conferences on (1) the relevance of thermodynamics to chemists and engineers and its place in a chemistry curriculum, (2) new approaches to teaching thermodynamics in an…

  1. Mixed-Methods Study of Online and Written Organic Chemistry Homework

    ERIC Educational Resources Information Center

    Malik, Kinza; Martinez, Nylvia; Romero, Juan; Schubel, Skyler; Janowicz, Philip A.

    2014-01-01

    Connect for organic chemistry is an online learning tool that gives students the opportunity to learn about all aspects of organic chemistry through the ease of the digital world. This research project consisted of two fundamental questions. The first was to discover whether there was a difference in undergraduate organic chemistry content…

  2. Historical Analysis of the Inorganic Chemistry Curriculum Using ACS Examinations as Artifacts

    ERIC Educational Resources Information Center

    Srinivasan, Shalini; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Johnson, Adam R.; Lin, Shirley; Marek, Keith A.; Nataro, Chip; Murphy, Kristen L.; Raker, Jeffrey R.

    2018-01-01

    ACS Examinations provide a lens through which to examine historical changes in topic coverage via analyses of course-specific examinations. This study is an extension of work completed previously by the ACS Exams Research Staff and collaborators in general chemistry, organic chemistry, and physical chemistry to explore content changes in the…

  3. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    ERIC Educational Resources Information Center

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  4. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  5. Chemistry in Context: Analysis of Thematic Chemistry Videos Available Online

    ERIC Educational Resources Information Center

    Christensson, Camilla; Sjöström, Jesper

    2014-01-01

    United Nations declared 2011 to be the International Year of Chemistry. The Swedish Chemical Society chose twelve themes, one for each month, to highlight the connection of chemistry with everyday life. Examples of themes were fashion, climate change, love, sports, communication, health issues, and food. From the themes various context-based…

  6. Upper Secondary School Students' Choice and Their Ideas on How to Improve Chemistry Education

    ERIC Educational Resources Information Center

    Broman, Karolina; Simon, Shirley

    2015-01-01

    In Sweden, there is concern about fewer students taking chemistry courses in higher education, especially at university level. Using a survey, this study investigates the reasons upper secondary school chemistry students choose to follow the Swedish Natural Science Programme. In addition, students' views about their chemistry education are sought…

  7. Replacing the Traditional Graduate Chemistry Literature Seminar with a Chemical Research Literacy Course

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Frantom, Patrick A.; Woski, Stephen A.

    2016-01-01

    A new graduate chemistry course was introduced in the Department of Chemistry at The University of Alabama. The new course, CH584-Literature and Communication in Graduate Chemistry, replaced a second year graduate student literature seminar requirement. Course topics included chemical information resources, critical analysis, scientific writing,…

  8. The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.

    ERIC Educational Resources Information Center

    Beckwith, E. Kenneth; Nelson, Christopher

    1998-01-01

    Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…

  9. Diversity and Periodicity: An Inorganic Chemistry Module.

    ERIC Educational Resources Information Center

    Huheey, James

    This book is one in a series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  10. Putting a Human Face on Chemistry: A Project for Liberal Arts Chemistry.

    ERIC Educational Resources Information Center

    Kriz, George; Popejoy, Kate

    A collaborative project in liberal arts chemistry, involving faculty in chemistry and science education, is described. The project includes various components: an introductory test (DAST) to examine students' perceptions of scientists, a group library research exercise, oral and written presentation of the results of the library research, a…

  11. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    ERIC Educational Resources Information Center

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  12. A Comparison of How Undergraduates, Graduate Students, and Professors Organize Organic Chemistry Reactions

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Leung, Min Wah; Flynn, Alison B.

    2018-01-01

    To explore the differences between how organic chemistry students and organic chemistry professors think about organic chemistry reactions, we administered a card sort task to participants with a range of knowledge and experience levels. Beginning students created a variety of categories ranging from structural similarities to process oriented…

  13. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  14. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  15. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  16. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...

  17. REACTS 1971, Regional Educators Annual Chemistry Teaching Symposium.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Dept. of Chemistry.

    These proceedings of a second annual symposium hosted by the Chemistry Department of the University of Maryland contain the tests of addresses given to approximately 300 chemistry teachers. A brief description of the University of Maryland Teaching Associate Program is given. Included are papers on the uses of chemistry during the Civil War,…

  18. Benchmarking Problems Used in Second Year Level Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2010-01-01

    Investigations of the problem types used in college-level general chemistry examinations have been reported in this Journal and were first reported in the "Journal of Chemical Education" in 1924. This study extends the findings from general chemistry to the problems of four college-level organic chemistry courses. Three problem…

  19. Understanding of Words and Symbols by Chemistry University Students in Croatia

    ERIC Educational Resources Information Center

    Vladušic, Roko; Bucat, Robert; Ožic, Mia

    2016-01-01

    This article reports on a study conducted in Croatia on students' understanding of scientific words and representations, as well as everyday words used in chemistry teaching. A total of 82 undergraduate chemistry students and 36 pre-service chemistry teachers from the Faculty of Science, University of Split, were involved. Students' understanding…

  20. The Living Textbook of Nuclear Chemistry: A Peer-Reviewed, Web-Based, Education Resource

    ERIC Educational Resources Information Center

    Loveland, W.; Gallant, A.; Joiner, C.

    2004-01-01

    The recent developments in nuclear chemistry education are presented and an attempt is made to collect supplemental materials relating to the study and practice of nuclear chemistry. The Living Textbook of Nuclear Chemistry functions as an authoritative Web site with supplemental material for teaching nuclear and radiochemistry.

  1. Creativity in Teaching Chemistry: How Much Support Does the Curriculum Provide?

    ERIC Educational Resources Information Center

    Tomasevic, Biljana; Trivic, Dragica

    2014-01-01

    In this study, the views of Serbian chemistry teachers (N = 334) on the ways in which contemporary chemistry curricula stimulate the creativity of students were surveyed. The majority of the teachers have a positive attitude towards promoting creativity through teaching chemistry. Most of them also stated that their teaching practice contained…

  2. I Like Facebook: Exploring Israeli High School Chemistry Teachers' TPACK and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Blonder, Ron; Rap, Shelley

    2017-01-01

    The goal of this research was to examine how Israeli chemistry teachers at high school level use Facebook groups to facilitate learning. Two perspectives were used: Teachers' TPACK (Technological Pedagogical Content Knowledge) and the self-efficacy beliefs of chemistry teachers for using CLFG (chemistry learning Facebook groups). Three different…

  3. Energy of Atoms and Molecules, Science (Experimental): 5316.05.

    ERIC Educational Resources Information Center

    Buffaloe, Jacquelin F.

    This third unit in chemistry is considered for any chemistry student and particularly the college-bound student. An understanding of the material included should enable the student to understand better the concepts in the Dynamic Nature of Atoms and Molecules which are essential for Organic Chemistry, the Chemistry of Carbon and Its Compounds and…

  4. Determination of the Rapid Quenching Rates of Excited State F-Centers by OH(-) Defects in KC1.

    DTIC Science & Technology

    1986-08-29

    M. A. E - eDr. George E. Walrafen Departme f Chemistry Department of Chemistry Univ ty of California Howard University . Angeles, California 90024...Wilson Department of Chemistry Chemistry Department Howard University University of California Washington, D.C. 20059 La Jolla, California 92093 Dr. M. S

  5. Hazardous Materials Chemistry for the Non-Chemist. Second Edition.

    ERIC Educational Resources Information Center

    Wray, Thomas K.; Enholm, Eric J.

    This book provides a basic introduction for the student to hazardous materials chemistry. Coverage of chemistry, rather than non-chemical hazards, is particularly stressed on a level which the layman can understand. Basic terminology is emphasized at all levels, as are simple chemistry symbols, in order to provide the student with an introductory…

  6. Form and Function: An Organic Chemistry Module.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul

    This book is one in the series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  7. School Chemistry: The Need for Transgression

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente

    2013-07-01

    Studies of the philosophy of chemistry over the past 15 years suggest that chemistry is a hybrid science which mixes scientific pursuits with technological applications. Dominant universal characterizations of the nature of science thus fail to capture the essence of the discipline. The central goal of this position paper is to encourage reflection about the extent to which dominant views about quality science education based on universal views of scientific practices may constrain school chemistry. In particular, we discuss how these predominant ideas restrict the development of chemistry curricula and instructional approaches that may better support the learning of the ideas and practices that studies of the philosophy of chemistry suggest are at the core of the discipline. Our analysis suggests that philosophical studies about the nature of chemistry invite us to transgress traditional educational boundaries between science and technology, inquiry and design, content and process, and to reconceptualize school chemistry as a paradigmatic techno scientific subject. To support these changes, chemical education researchers should expand the scope of their investigations to better understand how students and teachers reason about and engage in more authentic ways of chemical thinking and doing.

  8. The Development of Monograph with 3-Dimentional Illustrations Titled “Augmented Chemistry: Hydrocarbon” as Learning Enrichment Materials

    NASA Astrophysics Data System (ADS)

    Ernawati, D.; Ikhsan, J.

    2017-02-01

    The development of 3D technology provides more advantages in education sectors. In chemistry, the 3D technology makes chemistry objects look more tangible. This research developed a monograph titled “Augmented Chemistry: Hydrocarbon” as learning enrichment materials. The development model consisted of 5 steps, which were the adaptation of the ADDIE model. The 3D objects of chemistry were built using the computer applications of Chem Sketch, and Google Sketch Up with AR Plugin. The 3D objects were displayed by relevant markers on the texts of the monograph from which the visualizations of the 3D objects appeared when they were captured by digital camera of laptop or smartphone, and were possibly viewed with free-rotation. Not only were 3D chemistry objects included in the monograph, but also graphics, videos, audios, and animations, which facilitated more fun learning for readers of the monograph. After the reviews by the experts of subject matter, of media, of instruction, and by peers, the monograph was revised, and then rated by chemistry teachers. The analysis of the data showed that the monograph titled “Augmented Chemistry: Hydrocarbon” was in the criteria of very good for the enrichment materials of Chemistry learning.

  9. 'Click chemistry' for diagnosis: a patent review on exploitation of its emerging trends.

    PubMed

    Mandhare, Anita; Banerjee, Paromita; Bhutkar, Smita; Hirwani, Rajkumar

    2014-12-01

    Click chemistry is the novel synthetic approach towards developing reactions with large thermodynamic driving forces to give almost complete conversion of new molecular reagents to a single product. Thus, click chemistry describes the chemistry for making carbon-heteroatom-carbon bonds in benign solvents, especially in water, and having a plethora of chemical and biological applications. This has played an important role in early detection of diseases, real-time monitoring of drug delivery and investigating the biomolecular functions in vivo. This review aims at highlighting the research advancements in click chemistry published in the patent literature and categorizing the patents according to the technological progress. An extensive search was carried out to collect and analyze the patent information claiming the use of click chemistry in biotechnology, especially for diagnosis. The study further concentrates on licensing of the click chemistry patents and defining the recent breakthroughs. Different databases like Espacenet, ISI Web of Science, Patbase and Thomson Innovation are used to compile the relevant literature. In recent years, considerable development in the click concept has encouraged researchers in using click reactions in almost every branch of industry that uses chemistry. Click chemistry for chemical ligation has been immensely explored in the field of biotechnology especially for detection, diagnosis and therapeutics.

  10. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  11. Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus

    2017-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.

  12. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    PubMed Central

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). Conclusion: This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  13. A gist of comprehensive review of hadronic chemistry and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangde, Vijay M.

    20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less

  14. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    NASA Astrophysics Data System (ADS)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of chemistry teachers and researcher, 2) the percentage of students having understandings of chemistry concepts before and after learning at the four stations ranged from 15.92-54.23% and 83.89-97.02%, respectively, and 3)students' opinions of using their 21st century skills in the science camp after finishing the camp activities were at a high level of satisfactions, ranged from 4.09-4.47 of 5 rating scores.

  15. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  16. The Combined Effects of Classroom Teaching and Learning Strategy Use on Students' Chemistry Self-Efficacy

    ERIC Educational Resources Information Center

    Cheung, Derek

    2015-01-01

    For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura ("Psychol. Rev." 84:191-215, 1977), students acquire information about their…

  17. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    ERIC Educational Resources Information Center

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  18. The Heart of Matter: A Nuclear Chemistry Module.

    ERIC Educational Resources Information Center

    Viola, Vic

    This book is one in a series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  19. Effectiveness of Analogy Instructional Strategy on Undergraduate Student's Acquisition of Organic Chemistry Concepts in Mutah University, Jordan

    ERIC Educational Resources Information Center

    Samara, Nawaf Ahmad Hasan

    2016-01-01

    This study aimed at investigating the effectiveness of analogy instructional strategy on undergraduate students' acquisition of organic chemistry concepts in Mutah University, Jordan. A quasi-experimental design was used in the study; Participants were 97 students who enrolled in organic chemistry course at the department of chemistry during the…

  20. Effectiveness of Case-Based Learning Instruction on Pre-Service Teachers' Chemistry Motivation and Attitudes toward Chemistry

    ERIC Educational Resources Information Center

    Çam, Aylin; Geban, Ömer

    2017-01-01

    Background: The development of primary pre-service teachers' chemistry motivation and attitudes toward chemistry were examined in order to develop their science literacy using case-based learning. Students' ideas were emphasized, real-life situations were discussed, and students could share their ideas and knowledge with peers; as a result,…

  1. Australian Chemistry Test Item Bank: Years 11 & 12. Volume 1.

    ERIC Educational Resources Information Center

    Commons, C., Ed.; Martin, P., Ed.

    Volume 1 of the Australian Chemistry Test Item Bank, consisting of two volumes, contains nearly 2000 multiple-choice items related to the chemistry taught in Year 11 and Year 12 courses in Australia. Items which were written during 1979 and 1980 were initially published in the "ACER Chemistry Test Item Collection" and in the "ACER…

  2. Investigating Students' Success in Solving and Attitudes towards Context-Rich Open-Ended Problems in Chemistry

    ERIC Educational Resources Information Center

    Overton, Tina L.; Potter, Nicholas M.

    2011-01-01

    Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…

  3. Development and Score Validation of a Chemistry Laboratory Anxiety Instrument (CLAI) for College Chemistry Students.

    ERIC Educational Resources Information Center

    Bowen, Craig W.

    1999-01-01

    Reports the development and score validation of an instrument for measuring anxieties students experience in college chemistry laboratories. Factor analysis of scores from 361 college students shows that the developed Chemistry Laboratory Anxiety Instrument measures five constructs. Results from a second sample of 598 students show that scores on…

  4. Evaluation of the Influence of Wording Changes and Course Type on Motivation Instrument Functioning in Chemistry

    ERIC Educational Resources Information Center

    Komperda, Regis; Hosbein, Kathryn N.; Barbera, Jack

    2018-01-01

    Increased understanding of the importance of the affective domain in chemistry education research has led to the development and adaptation of instruments to measure chemistry-specific affective traits, including motivation. Many of these instruments are adapted from other fields by using the word "chemistry" in place of other…

  5. Chemistry on the mesoscale: Modeling and measurement issues

    NASA Technical Reports Server (NTRS)

    Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth

    1993-01-01

    The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.

  6. The Development and Evaluation of a Chemistry Curriculum for Nursing Schools in Israel.

    ERIC Educational Resources Information Center

    Dori, Yehudit; And Others

    A very diverse population of students choose nursing as a profession in Israel. Although chemistry is basic for studying nursing, most of these students have not studied chemistry in school for longer than a single year--usually in grade 10. A chemistry curriculum for nursing schools was developed, implemented, and evaluated. This curriculum was…

  7. Blending Problem-Based Learning and Peer-Led Team Learning, in an Open Ended "Home-Grown" Pharmaceutical Chemistry Case Study

    ERIC Educational Resources Information Center

    Veale, Clinton G. L.; Krause, Rui W. M.; Sewry, Joyce D.

    2018-01-01

    Pharmaceutical chemistry, medicinal chemistry and the drug discovery process require experienced practitioners to employ reasoned speculation in generating creative ideas, which can be used to evolve promising molecules into drugs. The ever-evolving world of pharmaceutical chemistry requires university curricula that prepare graduates for their…

  8. Chemistry Teachers' Views on Teaching "Climate Change"--An Interview Case Study from Research-Oriented Learning in Teacher Education

    ERIC Educational Resources Information Center

    Feierabend, Timo; Jokmin, Sebastian; Eilks, Ingo

    2011-01-01

    This paper presents a case study from research-oriented learning in chemistry teacher education. The study evaluates the views of twenty experienced German chemistry teachers about the teaching of climate change in chemistry education. Data was collected using semi-structured interviews about the teachers' experiences and their views about…

  9. A Collaborative, Wiki-Based Organic Chemistry Project Incorporating Free Chemistry Software on the Web

    ERIC Educational Resources Information Center

    Evans, Michael J.; Moore, Jeffrey S.

    2011-01-01

    In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…

  10. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry…

  11. The Role of Chemistry Museums in Chemical Education for Students and the General Public. A Case Study from Italy

    ERIC Educational Resources Information Center

    Domenici, Valentina

    2008-01-01

    This paper investigates the educational role of museums of chemistry in presenting chemistry to the public in Italy, particularly to students. The activities carried out by Italian museums and scientific collections completely dedicated to chemistry have been analyzed, focusing on the relationship between these institutions and students with…

  12. Australian Chemistry Test Item Bank: Years 11 and 12. Volume 2.

    ERIC Educational Resources Information Center

    Commons, C., Ed.; Martin, P., Ed.

    The second volume of the Australian Chemistry Test Item Bank, consisting of two volumes, contains nearly 2000 multiple-choice items related to the chemistry taught in Year 11 and Year 12 courses in Australia. Items which were written during 1979 and 1980 were initially published in the "ACER Chemistry Test Item Collection" and in the…

  13. Reaction Scale and Green Chemistry: Microscale or Macroscale, Which is Greener?

    ERIC Educational Resources Information Center

    Duarte, Rita C. C.; Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2017-01-01

    The different ways microscale and green chemistry allow reducing the deleterious impacts of chemistry on human health and the environment are discussed in terms of their different basic paradigms: green chemistry follows the ecologic paradigm and microscale the risk paradigm. A study of the synthesis of 1-bromobutane at macro- ? microscale (109.3…

  14. Development, Implementation, and Assessment of General Chemistry Lab Experiments Performed in the Virtual World of Second Life

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Keeney-Kennicutt, Wendy; Fowler, Debra; Macik, Maria

    2017-01-01

    Virtual worlds are a potential medium for teaching college-level chemistry laboratory courses. To determine the feasibility of conducting chemistry experiments in such an environment, undergraduate students performed two experiments in the immersive virtual world of Second Life (SL) as part of their regular General Chemistry 2 laboratory course.…

  15. Development and Assessment of a Chemistry-Based Computer Video Game as a Learning Tool

    ERIC Educational Resources Information Center

    Martinez-Hernandez, Kermin Joel

    2010-01-01

    The chemistry-based computer video game is a multidisciplinary collaboration between chemistry and computer graphics and technology fields developed to explore the use of video games as a possible learning tool. This innovative approach aims to integrate elements of commercial video game and authentic chemistry context environments into a learning…

  16. Scientific Society AAAS Honors NREL's Tumas as Fellow | News | NREL

    Science.gov Websites

    materials chemistry, for pioneering work in green chemistry and energy, and for enlightened scientific management." Tumas, who earned his doctorate in organic chemistry from Stanford University and holds a founding board member of the Green Chemistry Institute, which is now part of the American Chemical Society

  17. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  18. High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes

    ERIC Educational Resources Information Center

    Crimmins, Michael T.; Midkiff, Brooke

    2017-01-01

    Organic Chemistry is a required course for programs in chemistry, biology, and many health science careers. It has historically been considered a highly challenging course with significant failure rates. As with many science disciplines, the teaching of Organic Chemistry has traditionally focused on unstructured exposition-centered delivery of…

  19. Using a Web Application to Conduct and Investigate Syntheses of Methyl Orange Remotely

    ERIC Educational Resources Information Center

    van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter

    2013-01-01

    Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…

  20. Chemistry for Whom? Gender Awareness in Teaching and Learning Chemistry

    ERIC Educational Resources Information Center

    Andersson, Kristina

    2017-01-01

    Marie Ståhl and Anita Hussénius have defined what discourses dominate national tests in chemistry for Grade 9 in Sweden by using feminist, critical didactic perspectives. This response seeks to expand the results in Ståhl and Hussénius's article "Chemistry inside an epistemological community box!--Discursive exclusions and inclusions in the…

  1. Learning Quantum Chemistry via a Visual-Conceptual Approach: Students' Bidirectional Textual and Visual Understanding

    ERIC Educational Resources Information Center

    Dangur, Vered; Avargil, Shirly; Peskin, Uri; Dori, Yehudit Judy

    2014-01-01

    Most undergraduate chemistry courses and a few high school honors courses, which focus on physical chemistry and quantum mechanics, are highly mathematically-oriented. At the Technion, Israel Institute of Technology, we developed a new module for high school students, titled "Chemistry--From 'the Hole' to 'the Whole': From the Nanoscale to…

  2. Pupils' Attitudes toward Chemistry in Two Types of Czech Schools

    ERIC Educational Resources Information Center

    Kubiatko, Milan; Balatova, Kristyna; Fancovicova, Jana; Prokop, Pavol

    2017-01-01

    Chemistry is a school subject that is not viewed favorably among pupils. Before we can improve pupils' attitudes toward chemistry, it is important to find out the problem as to why the attitudes are relatively negative. The research was focused on Czech lower secondary and secondary grammar school pupils' attitudes to the subject of chemistry.…

  3. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    ERIC Educational Resources Information Center

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  4. Students' Perceptions of Teaching in Context-Based and Traditional Chemistry Classrooms: Comparing Content, Learning Activities, and Interpersonal Perspectives

    ERIC Educational Resources Information Center

    Overman, Michelle; Vermunt, Jan D.; Meijer, Paulien C.; Bulte, Astrid M. W.; Brekelmans, Mieke

    2014-01-01

    Context-based curriculum reforms in chemistry education are thought to bring greater diversity to the ways in which chemistry teachers organize their teaching. First and foremost, students are expected to perceive this diversity. However, empirical research on how students perceive their teacher's teaching in context-based chemistry classrooms,…

  5. 75 FR 20007 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... California Institute of Technology by NSF Division of Chemistry (1191). Dates & Times: May 9, 2010; 8 p.m.-9 p.m., May 10, 2010; 8 a.m.- 9 p.m., May 11, 2010; 8 a.m.-1 p.m. Place: Department of Chemistry...

  6. "Named Small but Doing Great": An Investigation of Small-Scale Chemistry Experimentation for Effective Undergraduate Practical Work

    ERIC Educational Resources Information Center

    Tesfamariam, Gebrekidan Mebrahtu; Lykknes, Annette; Kvittingen, Lise

    2017-01-01

    In theory, practical work is an established part of university-level chemistry courses. However, mainly due to budget constraints, large class size, time constraints and inadequate teacher preparations, practical activities are frequently left out from chemistry classroom instruction in most developing countries. Small-scale chemistry (SSC)…

  7. 76 FR 24921 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: Proposal Review Panel for Chemistry, 1191. Date and Time: May 12, 2011, 8:30 a.m.-5 p.m.; May 13, 2011, 8:30 a.m.-2 p.m. Place: Center for Chemistry at the Space-Time...

  8. Quantifying Attitude to Chemistry in Students at the University of the South Pacific

    ERIC Educational Resources Information Center

    Brown, S. J.; Sharma, B. N.; Wakeling, L.; Naiker, M.; Chandra, S.; Gopalan, R. D.; Bilimoria, V. B.

    2014-01-01

    The attitude towards the study of chemistry for new entrant chemistry students from a multi-national, regional, tertiary educational institution in the South Pacific was investigated using a purpose-designed diagnostic instrument. The Attitude toward the Study of Chemistry Inventory (ASCI) was used to quantify attitude in a cohort of first year…

  9. A Study of Factors Affecting Student Performance in Community College General Chemistry Courses.

    ERIC Educational Resources Information Center

    Sanchez, Karen; Betkouski, Marianne

    High risk students in college chemistry are often identified by low mathematics SAT scores, low American Chemical Society Toledo scores, and secondary school chemistry grades. This study was designed to identify additional variables that can be used at the community college level as predictors of success in chemistry. The study compared students'…

  10. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  11. Science or Pseudoscience: Does Science Education Demarcate? The Case of Chemistry and Alchemy in Teaching.

    ERIC Educational Resources Information Center

    Erduran, Sibel

    Themes from history and philosophy of chemistry have traditionally been absent in chemistry education. This paper targets the problem of demarcationism within the context of chemistry and alchemy. In so doing, it argues that demarcationism can be an appropriate base for bringing the historical and philosophical aspects of the discipline of…

  12. Symbolic Mathematics Engines in Teaching Chemistry: A Symposium Report

    ERIC Educational Resources Information Center

    Ellison, Mark

    2004-01-01

    The use of Symbolic Mathematics Engines (SMEs) in chemical education as a part of the Division of Computers in Chemistry was discussed by a panel of educators at the Symbolic Calculation in Chemistry symposium in Philadelphia in 2004. The panelists agreed that many more topics in chemistry are amenable to SME's exploration and that symbolic…

  13. Emergence, Learning Difficulties, and Misconceptions in Chemistry Undergraduate Students' Conceptualizations of Acid Strength

    ERIC Educational Resources Information Center

    Tümay, Halil

    2016-01-01

    Philosophical debates about chemistry have clarified that the issue of emergence plays a critical role in the epistemology and ontology of chemistry. In this article, it is argued that the issue of emergence has also significant implications for understanding learning difficulties and finding ways of addressing them in chemistry. Particularly, it…

  14. Chemistry, A Syllabus for Secondary Schools.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This is a 1971 reprint of the chemistry syllabus printed in 1966 for the state of New York. This course of study presents a modern view of chemistry suitable for pupils with a wide range of skills and abilities. The outline of topics provides the unifying principles of chemistry together with related facts. The principles included in the outline…

  15. Design and Evaluation of a One-Semester General Chemistry Course for Undergraduate Life Science Majors

    ERIC Educational Resources Information Center

    Schnoebelen, Carly; Towns, Marcy H.; Chmielewski, Jean; Hrycyna, Christine A.

    2018-01-01

    The chemistry curriculum for undergraduate life science majors at Purdue University has been transformed to better meet the needs of this student population and prepare them for future success. The curriculum, called the 1-2-1 curriculum, includes four consecutive and integrated semesters of instruction in general chemistry, organic chemistry, and…

  16. Safety in the Chemical Laboratory. Epidemiology of Accidents in Academic Chemistry Laboratories, Part 2. Accident Intervention Study, Legal Aspects, and Observations.

    ERIC Educational Resources Information Center

    Hellmann, Margaret A.; And Others

    1986-01-01

    Reports on a chemistry laboratory accident intervention study conducted throughout the state of Colorado. Addresses the results of an initial survey of institutions of higher learning. Discusses some legal aspects concerning academic chemistry accidents. Provides some observations about academic chemistry laboratory accidents on the whole. (TW)

  17. Conflicts in Chemistry: The Case of Plastics, a Role-Playing Game for High School Chemistry Students

    ERIC Educational Resources Information Center

    Cook, Deborah H.

    2014-01-01

    Conflicts in Chemistry: The Case of Plastics, an innovative role-playing activity for high school students, was developed by the Chemical Heritage Foundation to promote increased public understanding of chemistry. The pilot program included three high school teachers and their students at three different schools and documented implementation and…

  18. Modifying and Validating the Colorado Learning Attitudes about Science Survey for Use in Chemistry

    ERIC Educational Resources Information Center

    Barbera, Jack; Adams, Wendy K.; Wieman, Carl E.; Perkins, Katherine K.

    2008-01-01

    The chemistry version of the Colorado Learning Attitudes about Science Survey (CLASS-Chem) is a new instrument designed to measure students' (novices') beliefs about chemistry and learning chemistry compared to those of experts (instructors). This survey is intended to measure the effects of students' beliefs on learning, and to understand how…

  19. Impact of Supplemental Instruction in Entry-Level Chemistry Courses at a Midsized Public University

    ERIC Educational Resources Information Center

    Rath, Kenneth A.; Peterfreund, Alan; Bayliss, Frank; Runquist, Elizabeth; Simonis, Ursula

    2012-01-01

    This paper examines the impact of supplemental instruction (SI)--nonremedial workshops that support regularly scheduled courses--on four different chemistry courses: General Chemistry I and II, and Organic Chemistry I and II. Differences in how SI impacts student performance in these courses are discussed, particularly in terms of whether students…

  20. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  1. Determination of the Formula of a Hydrate: A Greener Alternative

    ERIC Educational Resources Information Center

    Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O.

    2008-01-01

    We are currently in the process of incorporating green chemistry throughout the chemistry curriculum. In this article we describe how we applied the principles of green chemistry in one of our first-semester general chemistry courses, specifically in relation to the determination of the formula of a hydrate. We utilize a copper hydrate salt that…

  2. Understanding Photography as Applied Chemistry: Using Talbot's Calotype Process to Introduce Chemistry to Design Students

    ERIC Educational Resources Information Center

    Ro¨sch, Esther S.; Helmerdig, Silke

    2017-01-01

    Early photography processes were predestined to combine chemistry and art. William Henry Fox Talbot is one of the early photography pioneers. In 2-3 day workshops, design students without a major background in chemistry are able to define a reproducible protocol for Talbot's gallic acid containing calotype process. With the experimental concept…

  3. Developing and Implementing a Reorganized Undergraduate Chemistry Curriculum Based on the Foundational Chemistry Topics of Structure, Reactivity, and Quantitation

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Fazal, M. A.; Jones, T. Nicholas; McIntee, Edward J.; Jakubowski, Henry V.

    2014-01-01

    The recent revision of undergraduate curricular guidelines from the American Chemical Society Committee on Professional Training (ACS-CPT) has generated interest in examining new ways of organizing course sequences both for chemistry majors and for nonmajors. A radical reconstruction of the foundation-level chemistry curriculum is presented in…

  4. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  5. First-Year Chemistry in the Context of the Periodic Table.

    ERIC Educational Resources Information Center

    Woodgate, Sheila D.

    1995-01-01

    Describes the methods that have been developed to blend descriptive chemistry and principles in a first-year chemistry course. The key is active teaching of the subject using the periodic table as a template. Inorganic chemistry is taught using a group approach: developing trends that help teaching and learning become obvious if all elements of…

  6. The History of Chemistry. The Case of the Supposed Isomerism of the Hydrocarbon Ethane in the Construction of Knowledge: Implications for Chemical Education.

    ERIC Educational Resources Information Center

    Cross, Roger T.; Price, Ronald F.

    2001-01-01

    Contends that chemical education proposals for changing the conception of chemistry literacy should include making explicit the relationship between chemistry as science and chemistry as technology. Illustrates the importance of distinguishing between scientific and technological activities by explaining the events and processes that are…

  7. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map II: Organic Chemistry

    ERIC Educational Resources Information Center

    Raker, Jeffrey; Holme, Thomas; Murphy, Kristen

    2013-01-01

    As a way to assist chemistry departments with programmatic assessment of undergraduate chemistry curricula, the ACS Examinations Institute is devising a map of the content taught throughout the undergraduate curriculum. The structure of the map is hierarchal, with large grain size at the top and more content detail as one moves "down"…

  8. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    ERIC Educational Resources Information Center

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  9. Explaining Secondary School Students' Attitudes towards Chemistry in Chile

    ERIC Educational Resources Information Center

    Montes, L. H.; Ferreira, R. A.; Rodríguez, C.

    2018-01-01

    Research into attitudes towards chemistry in Latin America and indeed towards science in general is very limited. The present study aimed to adapt and validate a shortened version of Bauer's Attitude toward the Subject of Chemistry Inventory version 2 (ASCIv2) for use in a Latin American context. It also explored attitudes towards chemistry of…

  10. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  11. Tin Oxide Chemistry from the Last Decade of the Nineteenth Century to the First Decade of the Twenty-First Century: Towards the Development of a Big-Picture Approach to the Teaching and Learning of Chemistry while Focussing on a Specific Compound or Class of Compounds

    ERIC Educational Resources Information Center

    de Berg, Kevin C.

    2010-01-01

    The discovery of the electron in 1897 deeply impacted the nature of chemistry in the twentieth century. A revolution in the theoretical structure of chemistry as well as in the instrumental tools used in chemical analysis occurred as a result of this discovery. The impact of this revolution on tin oxide chemistry over approximately a 100 year…

  12. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  13. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  14. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    PubMed Central

    Harris, D. Calvin; Jewett, Michael C.

    2014-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202

  15. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    PubMed

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  16. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem

    PubMed Central

    2012-01-01

    This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956

  17. Selective host molecules obtained by dynamic adaptive chemistry.

    PubMed

    Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D

    2014-02-17

    Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline

    NASA Astrophysics Data System (ADS)

    Perkins, K. K.; Barbera, J.; Adams, W. K.; Wieman, C. E.

    2007-01-01

    A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors — generally required to take both of the courses — view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P ⩽ 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in `Overall' and the `Real World Connection' category, respectively, in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses.

  19. Elementary and brief introduction of hadronic chemistry

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2013-10-01

    The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.

  20. Outlook Bright for Computers in Chemistry.

    ERIC Educational Resources Information Center

    Baum, Rudy M.

    1981-01-01

    Discusses the recent decision to close down the National Resource for Computation in Chemistry (NRCC), implications of that decision, and various alternatives in the field of computational chemistry. (CS)

  1. Evaluation of the Chemistry Collection of a Four-Year College Library by Means of Textbook Citation Analysis.

    ERIC Educational Resources Information Center

    Powell, Diana L.

    The purpose of this study was to evaluate the chemistry collection of the College of Wooster's Chemistry Library. In particular, the extent to which the library supports the curriculum of the chemistry and biochemistry program by providing additional sources to supplement course textbooks was evaluated. Focus was on materials present in the…

  2. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    ERIC Educational Resources Information Center

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  3. In-Service Chemistry Teachers Training: The Impact of Introducing Computer Technology on Teachers' Attitudes.

    ERIC Educational Resources Information Center

    Dori, Y. J.; Barnea, N.

    A computer-assisted instruction (CAI) module on polymers was used to introduce chemistry teachers (n=64) to the variety of possibilities and benefits of using courseware in the current chemistry curriculum in Israel. From an analysis of a pre-and post-attitude questionnaire regarding the use of computers in chemistry teaching, it was concluded…

  4. Designing and Incorporating Green Chemistry Courses at a Liberal Arts College to Increase Students' Awareness and Interdisciplinary Collaborative Work

    ERIC Educational Resources Information Center

    Manchanayakage, Renuka

    2013-01-01

    Two green chemistry courses have been introduced into the liberal arts curriculum at Susquehanna University. Green chemistry was integrated into an existing course, Chemical Concepts, and offered as Green Chemical Concepts for nonscience majors. This course is designed to instill an appreciation for green chemistry in a large and diverse group of…

  5. Investigating the Viability of a Competency-Based, Qualitative Laboratory Assessment Model in First-Year Undergraduate Chemistry

    ERIC Educational Resources Information Center

    Pullen, Reyne; Thickett, Stuart C.; Bissember, Alex C.

    2018-01-01

    In chemistry curricula, both the role of the laboratory program and the method of assessment used are subject to scrutiny and debate. The ability to identify clearly defined competencies for the chemistry laboratory program is crucial, given the numerous other disciplines that rely on foundation-level chemistry knowledge and practical skills. In…

  6. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    ERIC Educational Resources Information Center

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…

  7. Exploring the Structure and Function of the Chemistry Self-Concept Inventory with High School Chemistry Students

    ERIC Educational Resources Information Center

    Nielsen, Sara E.; Yezierski, Ellen

    2015-01-01

    Though the Chemistry Self-Concept Inventory (CSCI) was developed to study one aspect of the affective domain in college chemistry students, the instrument on which it was based, the Self-Description Questionnaire III, was developed for use with late adolescents. As such, we explored data generated from administering the CSCI to high school…

  8. STUDENT SUCCESS IN BEGINNING CHEMISTRY (CHEMISTRY 3) AT EL CAMINO COLLEGE, 1964-65.

    ERIC Educational Resources Information Center

    MOONEY, WILLIAM T.

    THE PURPOSE OF THE STUDY WAS TO DETERMINE THE RELATIONSHIP BETWEEN STUDENTS' ACHIEVEMENT ON BEGINNING CHEMISTRY AND THEIR BACKGROUND PRIOR TO ENROLLMENT IN THE COURSE. OF THE 609 STUDENTS ENROLLED IN BEGINNING CHEMISTRY IN THE 1964-65 ACADEMIC YEAR, 45 PERCENT RECEIVED GRADES OF A, B, OR C. OF THE GROUP STUDIED, 23 PERCENT WERE REPEATING THE…

  9. A Comparative Analysis of the Intended Curriculum and Its Presentation in 10th Grade Chemistry Textbooks from Seven Arabic Countries

    ERIC Educational Resources Information Center

    Khaddoor, Rouba; Al-Amoush, Siham; Eilks, Ingo

    2017-01-01

    This study investigates the nature of intended secondary chemistry curricula, as they are represented by chemistry textbooks, from seven Arabic countries: Algeria, Egypt, Jordan, Kuwait, Palestine, Saudi Arabia and Syria. The curricula are evaluated through analysis of the officially approved 10th grade chemistry textbooks used nationwide in all…

  10. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    ERIC Educational Resources Information Center

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  11. Designing Authentic Learning Environments in Chemistry Lessons: Paving the Way in Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Schumacher, Andrea; Reiners, Christiane S.

    2013-01-01

    Authenticity has recently become a popular term in science education. A study focusing on authenticity in the sense of making chemistry lessons better resemble chemistry practice is carried out at the University of Cologne in the Institute of Chemical Education, where prospective chemistry teachers are trained. In the long run an innovative module…

  12. Scaffolding the Development of Problem-Solving Skills in Chemistry: Guiding Novice Students out of Dead Ends and False Starts

    ERIC Educational Resources Information Center

    Yuriev, Elizabeth; Naidu, Som; Schembri, Luke S.; Short, Jennifer L.

    2017-01-01

    To scaffold the development of problem-solving skills in chemistry, chemistry educators are exploring a variety of instructional techniques. In this study, we have designed, implemented, and evaluated a problem-solving workflow--''Goldilocks Help''. This workflow builds on work done in the field of problem solving in chemistry and provides…

  13. Learning beyond the Classroom: Using Text Messages to Measure General Chemistry Students' Study Habits

    ERIC Educational Resources Information Center

    Ye, Li; Oueini, Razanne; Dickerson, Austin P.; Lewis, Scott E.

    2015-01-01

    This study used a series of text message inquiries sent to General Chemistry students asking: "Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?" This method for collecting data is novel to chemistry education research so the first research goals were to investigate the feasibility of the technique…

  14. Green Goggles: Designing and Teaching a General Chemistry Course to Nonmajors Using a Green Chemistry Approach

    ERIC Educational Resources Information Center

    Prescott, Sarah

    2013-01-01

    A novel course using green chemistry as the context to teach general chemistry fundamentals was designed, implemented and is described here. The course design included an active learning approach, with major course graded components including a weekly blog entry, exams, and a semester project that was disseminated by wiki and a public symposium.…

  15. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    ERIC Educational Resources Information Center

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  16. Building a Database for the Historical Analysis of the General Chemistry Curriculum Using ACS General Chemistry Exams as Artifacts

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Linenberger, Kimberly J.; Raker, Jeffrey R.; Baluyut, John Y.; Reed, Jessica J.; De Silva, Chamila; Holme, Thomas A.

    2015-01-01

    As a discipline, chemistry enjoys a unique position. While many academic areas prepared "cooperative examinations" in the 1930s, only chemistry maintained the activity within what has become the ACS Examinations Institute. As a result, the long-term existence of community-built, norm-referenced, standardized exams provides a historical…

  17. Diagnosing Changes in Attitude in First-Year College Chemistry Students with a Shortened Version of Bauer's Semantic Differential

    ERIC Educational Resources Information Center

    Brandriet, Alexandra R.; Xu, Xiaoying; Bretz, Stacey Lowery; Lewis, Jennifer E.

    2011-01-01

    In this quantitative study, a shortened version of the Attitude toward the Subject of Chemistry Inventory (ASCI) created by Bauer (2008) was used to identify the chemistry attitudes of two populations of general chemistry students at two universities. The ASCIv2 contained just two factors from the original instrument. These factors measured…

  18. Perceived Difficulty of Chemistry Units in Std IX for Students in Kerala Stream Calls for Further Innovations

    ERIC Educational Resources Information Center

    Gafoor, Kunnathodi Abdul; Shilna, V.

    2013-01-01

    Chemistry is widely perceived as difficult. Specialized language, mathematical and abstract conceptual nature, and the amount of content are often cited reasons. Researchers have been trying to explain how students should be helped in learning chemistry better. This paper reports the results of a survey to identify the chemistry units in standard…

  19. Discovery Lab in the Chemistry Lecture Room: Design and Evaluation of Audio-Visual Constructivist Methodology of Teaching Descriptive Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Young, Barbara N.; Hoffman, Lyubov

    Demonstration of chemical reactions is a tool used in the teaching of inorganic descriptive chemistry to enable students to understand the fundamental concepts of chemistry through the use of concrete examples. For maximum benefit, students need to learn through discovery to observe, interpret, hypothesize, and draw conclusions; however, chemical…

  20. Let's Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    ERIC Educational Resources Information Center

    Rap, Shelley; Blonder, Ron

    2016-01-01

    We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse…

  1. Representative Nature of Scientific Literacy Themes in a High School Chemistry Course: The Case of Zambia

    ERIC Educational Resources Information Center

    Mumba, Frackson; Hunter, William J. F.

    2009-01-01

    The purpose of this study was to find out how the scientific literacy themes are represented in the current Zambian high school chemistry syllabus, textbooks and grade twelve chemistry examination papers in an attempt to find out whether or not the chemistry course has adequate potential to contribute to the preparation of scientifically literate…

  2. Department of Energy - Nobel Prize in Chemistry News Release 10/5/2005

    Science.gov Websites

    -Supported Researchers Are Co-Winners of 2005 Nobel Prize in Chemistry Secretary of Energy Samuel W. Bodman . Grubbs of the California Institute of Technology for co-winning the 2005 Nobel Prize in Chemistry. " . Schrock and Yves Chauvin of France for winning the 2005 Nobel Prize in Chemistry for their discoveries

  3. What Does the Acid Ionization Constant Tell You? An Organic Chemistry Student Guide

    ERIC Educational Resources Information Center

    Rossi, Robert D.

    2013-01-01

    Many students find the transition from first-year general chemistry to second-year organic chemistry a daunting task. There are many reasons for this, not the least of which is their lack of a solid understanding and appreciation of the importance of some basic concepts and principles from general chemistry that play an extremely critical role in…

  4. Creating Semantic Waves: Using Legitimation Code Theory as a Tool to Aid the Teaching of Chemistry

    ERIC Educational Resources Information Center

    Blackie, Margaret A. L.

    2014-01-01

    This is a conceptual paper aimed at chemistry educators. The purpose of this paper is to illustrate the use of the semantic code of Legitimation Code Theory in chemistry teaching. Chemistry is an abstract subject which many students struggle to grasp. Legitimation Code Theory provides a way of separating out abstraction from complexity both of…

  5. Using a Deliberation of Energy Policy as an Educational Tool in a Nonmajors Chemistry Course

    ERIC Educational Resources Information Center

    Drury, Sara A. Mehltretter; Stucker, Kyle; Douglas, Anthony; Rush, Ryan A.; Novak, Walter R. P.; Wysocki, Laura M.

    2016-01-01

    A central goal of nonmajors chemistry courses is to instill within students the sense that chemistry does not occur in a vacuum but rather permeates everyday life. To encourage students to consider chemistry within the broader context of society and public policy, a week-long module in a survey course for nonmajors was designed to connect…

  6. What Makes Us Who We Are? Investigating the Chemistry behind Genetics in an Interdisciplinary Course for Undergraduate Students. Part I

    ERIC Educational Resources Information Center

    Johnson, Amy Flanagan; Graves, Chiron W.

    2017-01-01

    This article details the aim, development, and implementation of the Chemistry-Genetics Course Collaborative (CGCC), a cotaught offering of a human genetics course with an honors introductory chemistry course. The CGCC was formed to fully integrate the two courses, along with the associated chemistry lab, to create an interdisciplinary scientific…

  7. Integrating Epistemological Perspectives on Chemistry in Chemical Education: The Cases of Concept Duality, Chemical Language, and Structural Explanations

    ERIC Educational Resources Information Center

    Kaya, Ebru; Erduran, Sibel

    2013-01-01

    In this paper, we trace the work of some philosophers of chemistry to draw some implications for the improvement of chemical education. We examine some key features of chemical knowledge, and how these features are relevant for school chemistry teaching and learning. In particular, we examine Laszlo's ("Foundations of Chemistry"…

  8. Modeling the Relationship between High School Students' Chemistry Self-Efficacy and Metacognitive Awareness

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet

    2014-01-01

    In this study, the relationship between students' chemistry self-efficacy beliefs and metacognitive awareness was investigated utilizing a path model. There were 268 chemistry high school students (59% 10th grade and 41% 11th grade) participated in the study. The students took two-hour chemistry course in the 9th and 10th grade and three-hour…

  9. Prospective Chemistry and Science Teachers' Views and Metaphors about Chemistry and Chemical Studies

    ERIC Educational Resources Information Center

    Onen Ozturk, Fatma; Aglarci, Oya

    2017-01-01

    Purpose: The aim of this study was to examine the metaphors created by prospective chemistry and science teachers and their views about how the studies in the field of chemistry are carried out in relation to the grade level and department. Research Methods: Case study as a qualitative research design was used. Participants in the study included…

  10. Improving the Teaching/Learning Process in General Chemistry: Report on the 1997 Stony Brook General Chemistry Teaching Workshop.

    ERIC Educational Resources Information Center

    Hanson, David; Wolfskill, Troy

    1998-01-01

    The primary focus of this participant-centered workshop was to introduce the student-centered classroom. Describes the model for the conference and issues addressed which include process as the missing element in the curriculum; peer-led learning teams; integrating chemistry, mathematics, and physics; writing as a learning tool in chemistry;…

  11. Evaluating Student Motivation in Organic Chemistry Courses: Moving from a Lecture-Based to a Flipped Approach with Peer-Led Team Learning

    ERIC Educational Resources Information Center

    Liu, Yujuan; Raker, Jeffrey R.; Lewis, Jennifer E.

    2018-01-01

    Academic Motivation Scale-Chemistry (AMS-Chemistry), an instrument based on the self-determination theory, was used to evaluate students' motivation in two organic chemistry courses, where one course was primarily lecture-based and the other implemented flipped classroom and peer-led team learning (Flip-PLTL) pedagogies. Descriptive statistics…

  12. Students' Learning with the Connected Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate World

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Wilensky, Uri

    2009-01-01

    The focus of this study is students' learning with a Connected Chemistry unit, CC1 (denotes Connected Chemistry, chapter 1), a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry (Levy and Wilensky 2009). An investigation was conducted into high-school students' learning with Connected…

  13. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    ERIC Educational Resources Information Center

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  14. A General Chemistry and Precalculus First-Year Interest Group (FIG): Effect on Retention, Skills, and Attitudes

    ERIC Educational Resources Information Center

    Pence, Laura E.; Workman, Harry J.; Haruta, Mako E.

    2005-01-01

    The backdrop of the calculus reform movement created a fertile movement for the creation of overlap between general chemistry and precalculus as many of the goals emphasized key concepts from the chemistry lab. By using the graphing calculator in both precalculus and chemistry laboratory enhanced the students' comfort and competence with the…

  15. Developing an Interactive Non-Formal Chemistry Setting and Investigating Its Effectiveness on High School Students' Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Demircioglu, Gökhan

    2016-01-01

    The main purpose of this study is to design an interactive non-formal chemistry environment and investigate its effectiveness on high school students' attitudes towards chemistry. Besides that, it is tried to determine to what extent students correlate these concepts with daily life. 14 voluntary students (5 female, 9 male) from different levels…

  16. Representing Chemistry: How Instructional Use of Symbolic, Microscopic, and Macroscopic Mode Influences Student Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Wood, Lorelei

    2013-01-01

    Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in…

  17. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    ERIC Educational Resources Information Center

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  18. Research into Practice: Visualising the Molecular World for a Deep Understanding of Chemistry

    ERIC Educational Resources Information Center

    Tasker, Roy

    2014-01-01

    Why is chemistry so difficult? A seminal paper by Johnstone (1982) offered an explanation for why science in general, and chemistry in particular, is so difficult to learn. He proposed that an expert in chemistry thinks at three levels; the macro (referred to as the observational level in this article), the sub-micro (referred to as the molecular…

  19. REACTS 1970, Proceedings of the Regional Educators Annual Chemistry Teaching Symposium (1st, College Park, Maryland, January 14, 1970).

    ERIC Educational Resources Information Center

    Heikkinen, Henry

    These proceedings of a symposium organized by the chemistry department of the University of Maryland contain the texts of addresses given to approximately 200 chemistry teachers and educators from adjacent areas. An outline of the University of Maryland undergraduate chemistry curriculum is given and a summary of discussions between school and…

  20. The Development of Multiple-Choice Items Consistent with the AP Chemistry Curriculum Framework to More Accurately Assess Deeper Understanding

    ERIC Educational Resources Information Center

    Domyancich, John M.

    2014-01-01

    Multiple-choice questions are an important part of large-scale summative assessments, such as the advanced placement (AP) chemistry exam. However, past AP chemistry exam items often lacked the ability to test conceptual understanding and higher-order cognitive skills. The redesigned AP chemistry exam shows a distinctive shift in item types toward…

Top