Sample records for chemokine vmip-ii inhibits

  1. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro , the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo , adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. © FASEB.

  2. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II.

    PubMed

    Chen, S; Bacon, K B; Li, L; Garcia, G E; Xia, Y; Lo, D; Thompson, D A; Siani, M A; Yamamoto, T; Harrison, J K; Feng, L

    1998-07-06

    Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds.

  3. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Silibinin, a novel chemokine receptor type 4 antagonist, inhibits chemokine ligand 12-induced migration in breast cancer cells.

    PubMed

    Wang, Yan; Liang, Wei-Cheng; Pan, Wen-Liang; Law, Wai-Kit; Hu, Jian-Shu; Ip, Denis Tsz-Ming; Waye, Mary Miu-Yee; Ng, Tzi-Bun; Wan, David Chi-Cheong

    2014-09-25

    C-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products. According to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4. Our work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Broad-Spectrum Inhibition of the CC-Chemokine Class Improves Wound Healing and Wound Angiogenesis.

    PubMed

    Ridiandries, Anisyah; Bursill, Christina; Tan, Joanne

    2017-01-13

    Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often resulting in unfavourable outcomes such as amputation. CC-chemokines play key roles in the promotion of inflammation and inflammatory-driven angiogenesis. Therefore, inhibition of the CC-chemokine class may improve wound healing. We aimed to determine if the broad-spectrum CC-chemokine inhibitor "35K" could accelerate wound healing in vivo in mice. In a murine wound healing model, 35K protein or phosphate buffered saline (PBS, control) were added topically daily to wounds. Cohorts of mice were assessed in the early stages (four days post-wounding) and in the later stages of wound repair (10 and 21 days post-wounding). Topical application of the 35K protein inhibited CC-chemokine expression (CCL5, CCL2) in wounds and caused enhanced blood flow recovery and wound closure in early-mid stage wounds. In addition, 35K promoted neovascularisation in the early stages of wound repair. Furthermore, 35K treated wounds had significantly lower expression of the p65 subunit of NF-κB, a key inflammatory transcription factor, and augmented wound expression of the pro-angiogenic and pro-repair cytokine TGF-β. These findings show that broad-spectrum CC-chemokine inhibition may be beneficial for the promotion of wound healing.

  6. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less

  7. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    PubMed

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  8. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    PubMed Central

    2010-01-01

    Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600

  9. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor

    PubMed Central

    DeGeorge, Katharine C; DeGeorge, Brent R; Testa, James S; Rothstein, Jay L

    2008-01-01

    Background Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo, making it an ideal target for studies using FTI. Methods For the studies described here, an in vitro assay was developed to measure FTI inhibition of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess cell death in RET/PTC3-expressing cells co-cultured with FTI. Results These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were affected at any dose of FTI investigated. Conclusion These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-oncogene induced pro-inflammatory mediators. PMID:18304343

  10. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    PubMed

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C.

    PubMed

    Broxmeyer, Hal E; Pelus, Louis M; Kim, Chang H; Hangoc, Giao; Cooper, Scott; Hromas, Robert

    2006-08-01

    Selected chemokines suppress proliferation of hematopoietic progenitor cells (HPCs) in vitro; some of these have demonstrated inhibition of myelopoiesis in vivo. Because myelosuppressive chemokines synergize in vitro with other myelosuppressive chemokines, we sought to determine whether additional chemokines active in vitro were myelosuppressive in vivo and whether combinations of myelosuppressive chemokines synergized in vivo to dampen myelopoiesis. We also evaluated three chemokines in vivo for myeloprotection against Ara-C-induced decreases in HPCs. C3H/HeJ mice were used for analysis of in vivo influence of chemokines, with the end points being effects on absolute numbers and cycling status of HPCs. When used alone, CCL2, CCL3, CCL19, CCL20, CXCL4, CXCL5, CXCL8, CXCL9, and XCL1 caused dose-dependent significant decreases in absolute numbers and cycling status of HPCs in vivo. The following combinations of two chemokines resulted in in vivo myelosuppression at concentrations much lower than that induced by each chemokine alone: CCL3 plus either CXCL8 or CXCL4, CXCL8 plus CXCL4, CCL2 plus either CCL20 or CXCL9, CCL20 plus CXCL9, CXCL5 plus either XCL1 or CCL19, XCL1 plus CCL19, and CCL3 plus CCL19. Also, mice injected with CXCL8, CXCL4, or the chimeric CXCL8/CXCL4 protein CXCL8M1 manifested accelerated recovery of absolute numbers of HPCs in response to the toxic effects of Ara-C administration. A number of chemokines shown previously to manifest inhibitory effects in vitro for proliferation of HPCs are now demonstrated to also induce myelosuppression in vivo. Moreover, combinations of low dosages of two myelosuppressive chemokines when administered together demonstrate synergistic suppression in vivo. Additionally, chemokines, including a CXCL8M1 chimeric protein previously shown to manifest enhanced suppression of HPC proliferation in vitro and in vivo, accelerate HPC recovery after treatment of mice with Ara-C. These results may be of use for future clinical

  12. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    PubMed Central

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  13. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  14. Inhibition by rebamipide of cytokine-induced or lipopolysaccharide-induced chemokine synthesis in human corneal fibroblasts.

    PubMed

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Fukushima, Atsuki

    2014-12-01

    The dry-eye drug rebamipide has mucin secretagogue activity in and anti-inflammatory effects on corneal epithelial cells. Corneal stromal fibroblasts (transdifferentiated keratocytes) function as immune modulators in the pathogenesis of chronic ocular allergic inflammation and in innate immune responses at the ocular surface. The possible anti-inflammatory effects of rebamipide on human corneal stromal fibroblasts were examined. Serum-deprived cells were incubated for 1 h with rebamipide and then for various times in the additional absence or presence of cytokines or bacterial lipopolysaccharide (LPS). The release of chemokines into culture supernatants was determined with ELISAs. The intracellular abundance of chemokine mRNAs was quantitated by reverse transcription and real-time PCR analysis. Degradation of the nuclear factor κB (NFκB) inhibitor IκBα was detected by immunoblot analysis. Rebamipide suppressed the release of interleukin (IL)-8 and the upregulation of IL-8 mRNA induced by tumour necrosis factor α (TNF-α) or LPS in corneal fibroblasts. It also inhibited eotaxin-1 (CCL-11) expression at the protein and mRNA levels induced by the combination of TNF-α and IL-4. In addition, rebamipide attenuated the degradation of IκBα induced by TNF-α or LPS. Rebamipide inhibited the synthesis of chemokines by corneal fibroblasts in association with suppression of NFκB signalling. Rebamipide may therefore prove effective for the treatment of corneal stromal inflammation associated with allergy or bacterial infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Atypical chemokine receptors in cancer: friends or foes?

    PubMed

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  16. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokinemore » interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.« less

  17. Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    PubMed Central

    Wang, Dongli; Chen, Dongwei; He, Guangjun; Huang, Li; Wang, Hanzhong; Wang, Xinquan

    2011-01-01

    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions. PMID:21829356

  18. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10.

    PubMed

    Tager, Andrew M; Kradin, Richard L; LaCamera, Peter; Bercury, Scott D; Campanella, Gabriele S V; Leary, Carol P; Polosukhin, Vasiliy; Zhao, Long-Hai; Sakamoto, Hideo; Blackwell, Timothy S; Luster, Andrew D

    2004-10-01

    Pulmonary fibrosis is an enigmatic and devastating disease with few treatment options, now thought to result from abnormal wound healing in the lung in response to injury. We have previously noted a role for the chemokine interferon gamma-inducible protein of 10 kD (IP-10)/CXC chemokine ligand 10 in the regulation of cutaneous wound healing, and consequently investigated whether IP-10 regulates pulmonary fibrosis. We found that IP-10 is highly expressed in a mouse model of pulmonary fibrosis induced by bleomycin. IP-10-deficient mice exhibited increased pulmonary fibrosis after administration of bleomycin, suggesting that IP-10 limits the development of fibrosis in this model. Substantial fibroblast chemoattractant and proliferative activities were generated in the lung after bleomycin exposure. IP-10 significantly inhibited fibroblast responses to the chemotactic, but not the proliferative activity generated, suggesting that IP-10 may attenuate fibroblast accumulation in bleomycin-induced pulmonary fibrosis by limiting fibroblast migration. Consistent with this inhibitory activity of IP-10 on fibroblast migration, fibroblast accumulation in the lung after bleomycin exposure was dramatically increased in IP-10-deficient mice compared with wild-type mice. Conversely, transgenic mice overexpressing IP-10 were protected from mortality after bleomycin exposure, and demonstrated decreased fibroblast accumulation in the lung after challenge compared with wild-type mice. Our findings suggest that interruption of fibroblast recruitment may represent a novel therapeutic strategy for pulmonary fibrosis, which could have applicability to a wide range of fibrotic illnesses.

  19. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    PubMed

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  20. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.

    PubMed

    Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V; Zernecke, Alma; Liehn, Elisa A; Sarabi, Alisina; Kramp, Birgit K; Piccinini, Anna M; Paludan, Søren R; Kowalska, M Anna; Kungl, Andreas J; Hackeng, Tilman M; Mayo, Kevin H; Weber, Christian

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXCL4) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities and by enhanced monocyte arrest resulting from CCL5-CXCL4 interactions. The CCL5 antagonist Met-RANTES reduces diet-induced atherosclerosis; however, CCL5 antagonism may not be therapeutically feasible, as suggested by studies using Ccl5-deficient mice which imply that direct CCL5 blockade would severely compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects.

  1. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh

    2005-09-30

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1,more » respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4.« less

  2. CXCL1 inhibits airway smooth muscle cell migration through the decoy receptor Duffy antigen receptor for chemokines.

    PubMed

    Al-Alwan, Laila A; Chang, Ying; Rousseau, Simon; Martin, James G; Eidelman, David H; Hamid, Qutayba

    2014-08-01

    Airway smooth muscle cell (ASMC) migration is an important mechanism postulated to play a role in airway remodeling in asthma. CXCL1 chemokine has been linked to tissue growth and metastasis. In this study, we present a detailed examination of the inhibitory effect of CXCL1 on human primary ASMC migration and the role of the decoy receptor, Duffy AgR for chemokines (DARC), in this inhibition. Western blots and pathway inhibitors showed that this phenomenon was mediated by activation of the ERK-1/2 MAPK pathway, but not p38 MAPK or PI3K, suggesting a biased selection in the signaling mechanism. Despite being known as a nonsignaling receptor, small interference RNA knockdown of DARC showed that ERK-1/2 MAPK activation was significantly dependent on DARC functionality, which, in turn, was dependent on the presence of heat shock protein 90 subunit α. Interestingly, DARC- or heat shock protein 90 subunit α-deficient ASMCs responded to CXCL1 stimulation by enhancing p38 MAPK activation and ASMC migration through the CXCR2 receptor. In conclusion, we demonstrated DARC's ability to facilitate CXCL1 inhibition of ASMC migration through modulation of the ERK-1/2 MAPK-signaling pathway. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation.

    PubMed

    von Hundelshausen, Philipp; Agten, Stijn M; Eckardt, Veit; Blanchet, Xavier; Schmitt, Martin M; Ippel, Hans; Neideck, Carlos; Bidzhekov, Kiril; Leberzammer, Julian; Wichapong, Kanin; Faussner, Alexander; Drechsler, Maik; Grommes, Jochen; van Geffen, Johanna P; Li, He; Ortega-Gomez, Almudena; Megens, Remco T A; Naumann, Ronald; Dijkgraaf, Ingrid; Nicolaes, Gerry A F; Döring, Yvonne; Soehnlein, Oliver; Lutgens, Esther; Heemskerk, Johan W M; Koenen, Rory R; Mayo, Kevin H; Hackeng, Tilman M; Weber, Christian

    2017-04-05

    Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting. Copyright © 2017, American Association for the Advancement of Science.

  4. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation.

    PubMed

    Meijer, Joost; Ogink, Janneke; Kreike, Bas; Nuyten, Dimitry; de Visser, Karin E; Roos, Ed

    2008-06-15

    The chemokine receptor CXCR6 and its ligand CXCL16 are involved in inflammation. Thus far, they were known to be expressed mainly by T cells and macrophages, respectively. However, we detected both in all of 170 human primary mammary carcinomas and at similar levels in all 8 human mammary carcinoma cell lines tested by microarray analysis. Expression was confirmed by reverse transcription-PCR and for the cell lines also by fluorescence-activated cell sorting analysis. CXCR6 and CXCL16 were also detected in several mouse and human mammary, colon, and pancreatic carcinoma cell lines. CXCL16 is a transmembrane protein from which the soluble chemokine can be cleaved off. The transmembrane form is present on the surface of the carcinoma cells. Surprisingly, suppression of either CXCR6 or CXCL16 led to greatly enhanced proliferation in vitro as well as in vivo, indicating that their interaction inhibits proliferation. This notion was verified using inhibitory antibodies and by introduction of CXCL16 into a rare CXCL16-negative cell line. The effect was mediated by the G protein-coupled receptor CXCR6 because it was blocked by the G(i) protein inhibitor pertussis toxin. In contrast, the soluble CXCL16 chemokine enhanced proliferation, and this was also mediated by CXCR6 but not via G(i) protein. It is remarkable that both CXCR6 and CXCL16 are expressed by all mammary carcinomas because cells that lose either acquire a growth advantage and should be selected during tumor progression. This suggests an unknown important role in tumor formation. Proteases, possibly macrophage derived, might convert inhibitory transmembrane CXCL16 into the stimulatory chemokine.

  5. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model.

    PubMed

    Gan, Lixing; Li, Chengye; Wang, Jian; Guo, Xuejun

    2016-01-01

    Studies have suggested that histone modification has a positive impact on various aspects associated with the progression of COPD. Histone deacetylase 2 (HDAC2) suppresses proinflammatory gene expression through deacetylation of core histones. To investigate the effect of histone modification on the expression of chemokines in type II alveolar epithelial cells (AEC II) in a rat COPD model and regulation of HDAC2 expression by curcumin in comparison with corticosteroid. The rat COPD model was established by cigarette smoke exposure and confirmed by histology and pathophysioloy. AEC II were isolated and cultured in vitro from the COPD models and control animals. The cells were treated with curcumin, corticosteroid, or trichostatin A, and messenger RNA (mRNA) expression of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2α (MIP-2α) was assessed by quantitative real-time polymerase chain reaction (RT-PCR). The expression of HDAC2 was measured by Western blot. Chromatin immunoprecipitation was used to detect H3/H4 acetylation and H3K9 methylation in the promoter region of three kinds of chemokine genes (IL-8, MCP-1, and MIP-2α). Compared to the control group, the mRNAs of MCP-1, IL-8, and MIP-2α were upregulated 4.48-fold, 3.14-fold, and 2.83-fold, respectively, in the AEC II from COPD model. The protein expression of HDAC2 in the AEC II from COPD model was significantly lower than from the control group ( P <0.05). The decreased expression of HDAC2 was negatively correlated with the increased expression of IL-8, MCP-1, and MIP-2α mRNAs (all P <0.05). The level of H3/H4 acetylation was higher but H3K9 methylation in the promoter region of chemokine genes was lower in the cells from COPD model than from the control group (all P <0.05). Curcumin downregulated the expression of MCP-1, IL-8, and MIP-2α, and the expression was further enhanced in the presence of corticosteroid. Moreover, curcumin restored HDAC2

  6. AZD-4818, a chemokine CCR1 antagonist: WO2008103126 and WO2009011653.

    PubMed

    Norman, Peter

    2009-11-01

    The applications WO2008103126 and WO2009011653, respectively, claim: i) Combinations of a spirocyclic piperidine chemokine CCR1 antagonist with a corticosteroid, and their use for the treatment of asthma and chronic obstructive pulmonary disease. ii) Processes for the preparation of a spirocyclic piperidine derivative, a chemokine CCR1 antagonist. These applications point to the preferred compound being a development compound. The evidence for this compound being AZD-4818, a chemokine CCR1 antagonist that was in Phase II development for the treatment of chronic obstructive pulmonary disease, is reviewed in the light of these and earlier patents relating to it.

  7. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?

    PubMed Central

    Freitag, Caroline M.; Miller, Richard J.

    2014-01-01

    Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

  8. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regionsmore » that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.« less

  9. Chemokines and chemokine receptors: new insights into cancer-related inflammation

    PubMed Central

    Lazennec, Gwendal; Richmond, Ann

    2010-01-01

    Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells and also by cells of the tumor microenvironment including cancer-associated fibroblasts, mesenchymal stem cells, endothelial cells, tumor-associated macrophages and more recently tumor-associated neutrophils. In addition to having effects on tumor cell proliferation, angiogenesis and metastasis, chemokines also appear to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and we discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. PMID:20163989

  10. Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice.

    PubMed

    Braunersreuther, Vincent; Montecucco, Fabrizio; Pelli, Graziano; Galan, Katia; Proudfoot, Amanda E; Belin, Alexandre; Vuilleumier, Nicolas; Burger, Fabienne; Lenglet, Sébastien; Caffa, Irene; Soncini, Debora; Nencioni, Alessio; Vallée, Jean-Paul; Mach, François

    2013-10-01

    Chemokines trigger leukocyte trafficking and are implicated in cardiovascular disease pathophysiology. Chemokine-binding proteins, called "Evasins" have been shown to inhibit both CC and CXC chemokine-mediated bioactivities. Here, we investigated whether treatment with Evasin-3 (CXC chemokine inhibitor) and Evasin-4 (CC chemokine inhibitor) could influence post-infarction myocardial injury and remodelling. C57Bl/6 mice were submitted in vivo to left coronary artery permanent ligature and followed up for different times (up to 21 days). After coronary occlusion, three intraperitoneal injections of 10 μg Evasin-3, 1 μg Evasin-4 or equal volume of vehicle (PBS) were performed at 5 minutes, 24 hours (h) and 48 h after ischaemia onset. Both anti-chemokine treatments were associated with the beneficial reduction in infarct size as compared to controls. This effect was accompanied by a decrease in post-infarction myocardial leukocyte infiltration, reactive oxygen species release, and circulating levels of CXCL1 and CCL2. Treatment with Evasin-4 induced a more potent effect, abrogating the inflammation already at one day after ischaemia onset. At days 1 and 21 after ischaemia onset, both anti-chemokine treatments failed to significantly improve cardiac function, remodelling and scar formation. At 21-day follow-up, mouse survival was exclusively improved by Evasin-4 treatment when compared to control vehicle. In conclusion, we showed that the selective inhibition of CC chemokines (i.e. CCL5) with Evasin-4 reduced cardiac injury/inflammation and improved survival. Despite the inhibition of CXC chemokine bioactivities, Evasin-3 did not affect mouse survival. Therefore, early inhibition of CC chemokines might represent a promising therapeutic approach to reduce the development of post-infarction heart failure in mice.

  11. Chemokines and chemokine receptors: new insights into cancer-related inflammation.

    PubMed

    Lazennec, Gwendal; Richmond, Ann

    2010-03-01

    Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells as well as by cells of the tumor microenvironment including cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, tumor-associated macrophages (TAMs) and more recently tumor-associated neutrophils (TANs). In addition to affecting tumor cell proliferation, angiogenesis and metastasis, chemokines also seem to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    PubMed

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. © 2013 Elsevier Inc. All rights reserved.

  13. Platelet-derived chemokines in atherogenesis: what's new?

    PubMed

    Gleissner, Christian A

    2012-09-01

    Over the past decade, platelets have been demonstrated to have various functions beyond their role in hemostasis. Platelets possess a rich repertoire of chemokines that are stored in their alpha granules and can be released upon activation. The pro-atherogenic effects of activated platelets are most likely mediated by release of these pro-inflammatory mediators that promote recruitment, activation or differentiation of other cell types including endothelial cells and leukocytes. These effects have been excellently reviewed in the past by various authors. The current review will therefore focus on novel findings. A specific focus will be put on CXCL4, on which a lot of new data have been published since 2008. Thus, the effects of CXCL4 on macrophage differentiation have been studied in detail revealing that CXCL4 induces a specific macrophage phenotype. Furthermore, novel data on CXCL4L1, a protein similar to CXCL4 that is probably transcribed from a duplication of the PF4 gene coding for CXCL4, will be discussed. A very interesting study has recently demonstrated that the inhibition of heterophilic chemokine interactions using a specifically designed small molecule can inhibit atherogenesis in Apoe-/- mice, thereby demonstrating the clinical potential of tackling platelet chemokines as therapeutic targets in atherosclerosis. Finally, novel data on CXCL1 and CCL5 will be discussed. Overall, while our understanding of the role of platelet chemokines in atherogenesis has significantly improved over the past years, it seems that there may still be many buried treasures in this field that could improve disease prevention or lead to novel clinical therapies.

  14. Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation

    PubMed Central

    Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna

    2012-01-01

    Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3

  15. n-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels.

    PubMed

    Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus

    2017-03-13

    Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n -hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).

  16. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration.

    PubMed

    Wang, Lei; Zhang, Yun-Long; Lin, Qiu-Yue; Liu, Yu; Guan, Xu-Min; Ma, Xiao-Lei; Cao, Hua-Jun; Liu, Ying; Bai, Jie; Xia, Yun-Long; Du, Jie; Li, Hui-Hua

    2018-05-21

    Chemokine-mediated monocyte infiltration into the damaged heart represents an initial step in inflammation during cardiac remodelling. Our recent study demonstrates a central role for chemokine receptor CXCR2 in monocyte recruitment and hypertension; however, the role of chemokine CXCL1 and its receptor CXCR2 in angiotensin II (Ang II)-induced cardiac remodelling remain unknown. Angiotensin II (1000 ng kg-1 min-1) was administrated to wild-type (WT) mice treated with CXCL1 neutralizing antibody or CXCR2 inhibitor SB265610, knockout (CXCR2 KO) or bone marrow (BM) reconstituted chimeric mice for 14 days. Microarray revealed that CXCL1 was the most highly upregulated chemokine in the WT heart at Day 1 after Ang II infusion. The CXCR2 expression and the CXCR2+ immune cells were time-dependently increased in Ang II-infused hearts. Moreover, administration of CXCL1 neutralizing antibody markedly prevented Ang II-induced hypertension, cardiac dysfunction, hypertrophy, fibrosis, and macrophage accumulation compared with Immunoglobulin G (IgG) control. Furthermore, Ang II-induced cardiac remodelling and inflammatory response were also significantly attenuated in CXCR2 KO mice and in WT mice treated with SB265610 or transplanted with CXCR2-deficienct BM cells. Co-culture experiments in vitro further confirmed that CXCR2 deficiency inhibited macrophage migration and activation, and attenuated Ang II-induced cardiomyocyte hypertrophy and fibroblast differentiation through multiple signalling pathways. Notably, circulating CXCL1 level and CXCR2+ monocytes were higher in patients with heart failure compared with normotensive individuals. Angiotensin II-induced infiltration of monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 may represent new therapeutic targets for treating hypertensive heart diseases.

  17. Murine lung eosinophil activation and chemokine production in allergic airway inflammation

    PubMed Central

    Rose, C Edward; Lannigan, Joanne A; Kim, Paul; Lee, James J; Fu, Shu Man; Sung, Sun-sang J

    2010-01-01

    Eosinophils play important roles in asthma and lung infections. Murine models are widely used for assessing the functional significance and mechanistic basis for eosinophil involvements in these diseases. However, little is known about tissue eosinophils in homeostasis. In addition, little data on eosinophil chemokine production during allergic airway inflammation are available. In this study, the properties and functions of homeostatic and activated eosinophils were compared. Eosinophils from normal tissues expressed costimulation and adhesion molecules B7-1, B7-2 and ICAM-1 for Ag presentation but little major histocompatibility complex (MHC) class II, and were found to be poor stimulators of T-cell proliferation. However, these eosinophils expressed high levels of chemokine mRNA including C10, macrophage inflammatory protein (MIP)-1α, MIP-1γ, MIP-2, eotaxin and monocyte chemoattractant protein-5 (MCP-5), and produced chemokine proteins. Eosinophil intracellular chemokines decreased rapidly with concomitant surface marker downregulation upon in vitro culturing consistent with piecemeal degranulation. Lung eosinophils from mice with induced allergic airway inflammation exhibited increased chemokines mRNA expression and chemokines protein production and upregulated MHC class II and CD11c expression. They were also found to be the predominant producers of the CCR1 ligands CCL6/C10 and CCL9/MIP-1γ in inflamed lungs. Eosinophil production of C10 and MIP-1γ correlated with the marked influx of CD11bhigh lung dendritic cells during allergic airway inflammation and the high expression of CCR1 on these dendritic cells (DCs). The study provided baseline information on tissue eosinophils, documented the upregulation of activation markers and chemokine production in activated eosinophils, and indicated that eosinophils were a key chemokine-producing cell type in allergic lung inflammation. PMID:20622891

  18. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zirong; Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610; Jin, Guorong

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiationmore » of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.« less

  19. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure.

    PubMed

    Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E

    2001-05-01

    Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.

  20. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumormore » growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.« less

  1. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*

    PubMed Central

    Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris

    2015-01-01

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952

  2. Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists

    PubMed Central

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.

    2016-01-01

    Summary CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human Class A G protein-coupled receptors (GPCRs). CCR2 is expressed on monocytes, immature dendritic cells and T cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL21. CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see ClinicalTrials.gov) in search of therapies that target the CCR2:chemokine axis. To aid drug discovery efforts5, we solved a structure of CCR2 in a ternary complex with an orthosteric (BMS-6816) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in Class A GPCRs to date; this site spatially overlaps the G protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive GPCR structures solved to date. Like other protein:protein interactions, receptor:chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome drug design obstacles. PMID:27926736

  3. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  4. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, heremore » we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.« less

  5. Chemokines and chemokine receptors: new actors in neuroendocrine regulations.

    PubMed

    Rostène, William; Guyon, Alice; Kular, Lara; Godefroy, David; Barbieri, Federica; Bajetto, Adriana; Banisadr, Ghazal; Callewaere, Céline; Conductier, Gregory; Rovère, Carole; Mélik-Parsadaniantz, Stéphane; Florio, Tullio

    2011-01-01

    Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Pirfenidone Inhibits T Cell Activation, Proliferation, Cytokine and Chemokine Production, and Host Alloresponses

    PubMed Central

    Visner, Gary A.; Liu, Fengzhi; Bizargity, Peyman; Liu, Hanzhong; Liu, Kaifeng; Yang, Jun; Wang, Liqing; Hancock, Wayne W.

    2009-01-01

    Background We previously showed that pirfenidone, an anti-fibrotic agent, reduces lung allograft injury/rejection. In this study, we tested the hypothesis that pirfenidone has immune modulating activities and evaluated its effects on the function of T cell subsets, which play important roles in allograft rejection. Method We first evaluated whether pirfenidone alters T cell proliferation and cytokine release in response to T cell receptor (TCR) activation, and whether pirfenidone alters regulatory T cells (CD4+CD25+) suppressive effects using an in vitro assay. Additionally, pirfenidone effects on alloantigen-induced T cell proliferation in vivo were assessed by adoptive transfer of CFSE-labeled T cells across a parent->F1 MHC mismatch, as well as using a murine heterotopic cardiac allograft model (BALB/c->C57BL/6). Results Pirfenidone was found to inhibit the responder frequency of TCR-stimulated CD4+ cell total proliferation in vitro and in vivo, whereas both CD4 and CD8 proliferation index were reduced by pirfenidone. Additionally, pirfenidone inhibited TCR-induced production of multiple pro-inflammatory cytokines and chemokines. Interestingly, there was no change on TGF-β production by purified T cells, and pirfenidone had no effect on the suppressive properties of naturally occurring regulatory T cells. Pirfenidone alone showed a small but significant (p < 0.05) effect on the in vivo allogeneic response while the combination of pirfenidone and low dose rapamycin had more remarkable effect in reducing the alloantigen response with prolonged graft survival. Conclusion Pirfenidone may be an important new agent in transplantation, with particular relevance to combating chronic rejection by inhibiting both fibroproliferative and alloimmune responses. PMID:19667934

  7. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    PubMed

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  8. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation

    PubMed Central

    Joseph, Prem Raj B.; Sawant, Kirti V.; Isley, Angela; Pedroza, Mesias; Garofalo, Roberto P.; Richardson, Ricardo M.; Rajarathnam, Krishna

    2014-01-01

    Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. Mutations in the GP motif caused various differences from native-like function to complete loss of activity that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity. PMID:24032673

  9. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.

    PubMed

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A; Dijkman, Remco; van der Schors, Roel C; van der Raaij-Helmer, Elizabeth M H; van der Plas, Mariena J A; Leurs, Rob; Deelder, André M; Smit, Martine J; Tensen, Cornelis P

    2004-04-02

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTPgammaS binding, Ca(2+) mobilization, and chemotaxis assays, we demonstrate that the C-terminally truncated CXCL10 variant is a potent ligand for CXCR3. Moreover, the inverse agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its (inverse) agonistic properties.

  10. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    PubMed

    Sepuru, Krishna Mohan; Poluri, Krishna Mohan; Rajarathnam, Krishna

    2014-01-01

    The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC) that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG), and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  11. Angiodrastic Chemokines in Colorectal Cancer: Clinicopathological Correlations.

    PubMed

    Emmanouil, George; Ayiomamitis, George; Zizi-Sermpetzoglou, Adamantia; Tzardi, Maria; Moursellas, Andrew; Voumvouraki, Argyro; Kouroumalis, Elias

    2018-01-01

    To study the expression of angiodrastic chemokines in colorectal tumors and correlate findings with clinicopathological parameters and survival. The proangiogenic factor VEGF, the angiogenic chemokines CXCL8 and CXCL6, and the angiostatic chemokine CXCL4 were measured by ELISA in tumor and normal tissue of 35 stage II and III patients and correlated with the histopathology markers Ki67, p53, p21, bcl2, EGFR, and MLH1 and 5-year survival. The Wilcoxon and chi-square tests were used for statistical comparisons. There was a significant increase of CXCL6 ( p = 0.005) and VEGF ( p = 0.003) in cancerous tissue compared to normal. Patients with lower levels of CXCL8 and CXCL4 lived significantly longer. Patients with loss of EGFR expression had higher levels of CXCL8 while p21 loss was associated with higher levels of CXCL6. Chemokine levels were not correlated with TNM or Dukes classification. Strong expression of p53 was accompanied by decreased survival. (1) The angiogenic factors CXCL6 and VEGF are increased in colorectal cancer tissue with no association with the clinical stage of the disease or survival. (2) However, increased levels of tissue CXCL8 and CXCL4 are associated with poor survival. (3) Strong expression of p53 is found in patients with poor survival.

  12. Consequences of ChemR23 Heteromerization with the Chemokine Receptors CXCR4 and CCR7

    PubMed Central

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed. PMID:23469143

  13. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    PubMed

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  14. Chemokine and Chemokine Receptor Profiles in Metastatic Salivary Adenoid Cystic Carcinoma.

    PubMed

    Mays, Ashley C; Feng, Xin; Browne, James D; Sullivan, Christopher A

    2016-08-01

    To characterize the chemokine pattern in metastatic salivary adenoid cystic carcinoma (SACC). Real-time polymerase chain reaction (RT-PCR) was used to compare chemokine and chemokine receptor gene expression in two SACC cell lines: SACC-83 and SACC-LM (lung metastasis). Chemokines and receptor genes were then screened and their expression pattern characterized in human tissue samples of non-recurrent SACC and recurrent SACC with perineural invasion. Expression of chemokine receptors C5AR1, CCR1, CCR3, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR6, CXCR7, CCRL1 and CCRL2 were higher in SACC-83 compared to SACC-LM. CCRL1, CCBP2, CMKLR1, XCR1 and CXCR2 and 6 chemokine genes (CCL13, CCL27, CXCL14, CMTM1, CMTM2, CKLF) were more highly expressed in tissues of patients without tumor recurrence/perineural invasion compared to those with tumor recurrence. CCRL1 (receptor), CCL27, CMTM1, CMTM2, and CKLF (chemokine) genes were more highly expressed in SACC-83 and human tissues of patients without tumor recurrence/perineural invasion. CCRL1, CCL27, CMTM1, CMTM2 and CKLF may play important roles in the development of tumor metastases in SACC. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1.

    PubMed

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S; Isern, Nancy; Dupureur, Cynthia M; Liwang, Patricia J

    2014-03-07

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.

  16. Structural Insights into the Interaction between a Potent Anti-inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1*

    PubMed Central

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S.; Isern, Nancy; Dupureur, Cynthia M.; LiWang, Patricia J.

    2014-01-01

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines. PMID:24482230

  17. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways

    PubMed Central

    Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940

  18. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways.

    PubMed

    Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.

  19. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines

    PubMed Central

    Miura, Tanya A.; Wang, Jieru; Holmes, Kathryn V.; Mason, Robert J.

    2007-01-01

    We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker’s RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation. PMID:17804032

  20. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  1. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors

    PubMed Central

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-01-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884

  2. Defining the chemokine basis for leukocyte recruitment during viral encephalitis.

    PubMed

    Michlmayr, Daniela; McKimmie, Clive S; Pingen, Marieke; Haxton, Ben; Mansfield, Karen; Johnson, Nicholas; Fooks, Anthony R; Graham, Gerard J

    2014-09-01

    The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain. Brain inflammation (encephalitis) in response to viral infection can lead to severe illness and even death. This therefore represents an important clinical problem and one that requires the development of new therapeutic approaches. Central to the pathogenesis of

  3. CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.

    PubMed

    Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst

    2012-02-01

    During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.

  4. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less

  5. Chemokines: novel targets for breast cancer metastasis

    PubMed Central

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  6. Active Shaping of Chemokine Gradients by Atypical Chemokine Receptors: A 4D Live-Cell Imaging Migration Assay.

    PubMed

    Werth, Kathrin; Förster, Reinhold

    2016-01-01

    Diffusion of chemokines away from their site of production results in the passive formation of chemokine gradients. We have recently shown that chemokine gradients can also be formed in an active manner, namely by atypical chemokine receptors (ACKRs) that scavenge chemokines locally. Here, we describe an advanced method that allows the visualization of leukocyte migration in a three-dimensional environment along a chemokine gradient that is actively established by cells expressing an ACKR. Initially developed to visualize the migration of dendritic cells along gradients of CCL19 or CCL21 that were actively shaped by an ACKR4-expressing cell line, we expect that this chamber system can be exploited to study many other combinations of atypical and conventional chemokine receptor-expressing cells. © 2016 Elsevier Inc. All rights reserved.

  7. Structural Analysis of Chemokine Receptor–Ligand Interactions

    PubMed Central

    2017-01-01

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure–activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor–ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors. PMID:28165741

  8. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less

  9. Chemokines in tumor progression and metastasis

    PubMed Central

    Sarvaiya, Purvaba J.; Guo, Donna; Ulasov, Ilya; Gabikian, Patrik; Lesniak, Maciej S.

    2013-01-01

    Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer and non-hodgkin's lymphoma among many others. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis. PMID:24259307

  10. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting.

    PubMed

    Burger, Jan A

    2010-12-01

    Chemokines and their receptors organize the recruitment and positioning of cells at each stage of the immune response, a system critically dependent upon coordination to get the right cells to the right place at the right time. Chemokine receptors expressed on CLL B cells are thought to function in a similar fashion, regulating the trafficking of the leukemia cells between blood, lymphoid organs, and the bone marrow, and within sub compartments within these tissues, in concert with adhesion molecules and other guidance cues. CLL cells not only respond to chemokines secreted in the microenvironment, the leukemia cells also secrete chemokines in response to external signals, such as B cell receptor engagement. These CLL cell-derived chemokines facilitate interactions between CLL cells, T cells, and other immune cells that shape the CLL microenvironment. CXCR4, the most prominent chemokine receptor in CLL, is now targeted in a first clinical trial, emphasizing that chemokines and their receptors have become a highly dynamic translational research field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. CC chemokine ligand 2 and CXC chemokine ligand 8 as neutrophil chemoattractant factors in canine idiopathic polyarthritis.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-12-01

    Canine idiopathic polyarthritis (IPA) is characterized by increased numbers of polymorphonuclear leukocytes (PMNs) in the synovial fluid (SF). In humans, CC chemokine ligand 2 (CCL2) and CXC chemokine ligand 8 (CXCL8) recruit monocytes and neutrophils, respectively, and are involved in various inflammatory disorders. The aim of this study was to assess the roles of these chemokines in driving PMNs infiltration into the joints of dogs with IPA. SF samples were collected from dogs with IPA (n=19) and healthy controls (n=8), and the concentrations of SF CCL2 and CXCL8 were determined by ELISA. Dogs with IPA had significantly higher concentrations of CCL2 (3316±2452pg/ml, mean±SD) and CXCL8 (3668±3879pg/ml) compared with the healthy controls (235±45pg/ml and <15.6pg/ml, respectively). Then, an in vitro chemotaxis assay was performed using a modified Boyden chamber (pore size: 3μm). SF from IPA dogs had a chemoattractant activity for PMNs that purified from the peripheral blood of a healthy dog. We subsequently found that combination treatment with MK-0812 (an antagonist of CCL2 receptor) and repertaxin (an antagonist of CXCL8 receptors) significantly inhibited the migration of PMNs to SF from IPA dogs. Thus, expression of the CCL2 receptor (chemokine (CC motif) receptor 2 (CCR2)) was examined using polymerase chain reaction and immunocytochemistry. Canine peripheral blood PMNs exhibited significantly higher CCR2 mRNA expression levels than those in monocytes. In addition, we observed strong CCR2 expression on PMNs obtained from healthy controls and IPA dogs, although mononuclear cells did not express CCR2. Taken together, the data suggest that CCL2 acts as a canine PMNs chemotactic factor as well as CXCL8 and both CCL2 and CXCL8 facilitate the infiltration of PMNs into the joints of dogs with IPA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration.

    PubMed

    Schenk, Birgit I; Petersen, Frank; Flad, Hans-Dieter; Brandt, Ernst

    2002-09-01

    In this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils. This was evident from experiments in which inhibition of the CTAP-III-processing protease and simultaneous blockade of the CXCL7 high affinity receptor CXCR-2 led to complete abrogation of CTAP-III-mediated neutrophil adhesion. CXCL4 at substimulatory dosages modulated CTAP-III- as well as CXCL7-induced adhesion. Although cell adhesion following exposure to CTAP-III was drastically reduced, CXCL7-mediated adhesion underwent significant enhancement. Transendothelial migration of neutrophils in response to CXCL7 or IL-8 (CXCL8) was subject to modulation by CTAP-III, but not CXCL4, as seen by drastic desensitization of the migratory response of neutrophils pre-exposed to CTAP-III, which was paralleled by selective down-modulation of CXCR-2. Altogether our results demonstrate that there exist multiple interactions between platelet-derived chemokines in the regulation of neutrophil adhesion and transendothelial migration.

  13. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it; Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it; Frascerra, Silvia, E-mail: lafrasce@gmail.com

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} hadmore » a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.« less

  14. Chemokines and skin diseases.

    PubMed

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.

  15. Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis.

    PubMed

    Wang, Yan; Kumar, Sushil; Rachagani, Satyanarayana; Sajja, Balasrinivasa R; Xie, Ying; Hang, Yu; Jain, Maneesh; Li, Jing; Boska, Michael D; Batra, Surinder K; Oupický, David

    2016-09-01

    Pancreatic cancer (PC) is one of the most aggressive malignancies due to intense desmoplasia, extreme hypoxia and inherent chemoresistance. Studies have implicated the expression of chemokine receptor CXCR4 and nuclear receptor co-activator-3 (NCOA3) in the development of desmoplasia and metastatic spread of PC. Using a series of polymeric CXCR4 antagonists (PCX), we optimized formulation of PCX/siNCOA3 polyplexes to simultaneously target CXCR4 and NCOA3 in PC. Cholesterol-modified PCX showed maximum CXCR4 antagonism, NCOA3 silencing and inhibition of PC cell migration in vitro. The optimized PCX/siNCOA3 polyplexes were used in evaluating antitumor and antimetastatic activity in orthotopic mouse model of metastatic PC. The polyplexes displayed significant inhibition of primary tumor growth, which was accompanied by a decrease in tumor necrosis and increased tumor perfusion. The polyplexes also showed significant antimetastatic effect and effective suppression of metastasis to distant organs. Overall, dual-function PCX/siNCOA3 polyplexes can effectively regulate tumor microenvironment to decrease progression and dissemination of PC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chemokines in teleost fish species.

    PubMed

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells

    PubMed Central

    Verani, Alessia; Scarlatti, Gabriella; Comar, Manola; Tresoldi, Eleonora; Polo, Simona; Giacca, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Vercelli, Donata

    1997-01-01

    Human immunodeficiency virus-1 (HIV-1) expression in monocyte-derived macrophages (MDM) infected in vitro is known to be inhibited by lipopolysaccharide (LPS). However, the mechanisms are incompletely understood. We show here that HIV-1 suppression is mediated by soluble factors released by MDM stimulated with physiologically significant concentrations of LPS. LPS-conditioned supernatants from MDM inhibited HIV-1 replication in both MDM and T cells. Depletion of C–C chemokines (RANTES, MIP-1α, and MIP-1β) neutralized the ability of LPS-conditioned supernatants to inhibit HIV-1 replication in MDM. A combination of recombinant C–C chemokines blocked HIV-1 infection as effectively as LPS. Here, we report an inhibitory effect of C–C chemokines on HIV replication in primary macrophages. Our results raise the possibility that monocytes may play a dual role in HIV infection: while representing a reservoir for the virus, they may contribute to the containment of the infection by releasing factors that suppress HIV replication not only in monocytes but also in T lymphocytes. PMID:9120386

  18. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2016-12-01

    immunosorbent assay ( ELISA ) in RA and normal (NL) sera and in RA, osteoarthritis (OA), and other inflammatory rheumatic disease (OD) synovial fluids (SFs... ELISA ) Epithelial Neutrophil Chemoattractant Peptide-78 (ENA-78/CXCL5) Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Macrophage Inflammatory...Citrullinated chemokines are highly expressed in RA sera and SFs. Citrullinated chemokines were measured using an ELISA in which chemokines were captured on

  19. Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model.

    PubMed

    Sharma, Meena; Blackman, Marc R; Sharma, Mahesh C

    2012-02-01

    Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer. Published by Elsevier Inc.

  20. The heterodimerization of platelet-derived chemokines.

    PubMed

    Carlson, James; Baxter, Sarah A; Dréau, Didier; Nesmelova, Irina V

    2013-01-01

    Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Agonist-induced Endocytosis of CC Chemokine Receptor 5 Is Clathrin Dependent

    PubMed Central

    Signoret, Nathalie; Hewlett, Lindsay; Wavre, Silène; Pelchen-Matthews, Annegret; Oppermann, Martin; Marsh, Mark

    2005-01-01

    The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization. PMID:15591129

  2. Lidocaine reduces neutrophil recruitment by abolishing chemokine-induced arrest and transendothelial migration in septic patients.

    PubMed

    Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander

    2014-01-01

    The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.

  3. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  4. Differential chemokine, chemokine receptor and cytokine expression in Epstein-Barr virus-associated lymphoproliferative diseases.

    PubMed

    Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro

    2003-08-01

    T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.

  5. Inter-Rater and Test-Retest Reliability of the Beery VMI in Schoolchildren

    PubMed Central

    Harvey, Erin M.; Leonard-Green, Tina K.; Mohan, Kathleen M.; Kulp, Marjean Taylor; Davis, Amy L.; Miller, Joseph M.; Twelker, J. Daniel; Campus, Irene; Dennis, Leslie K.

    2017-01-01

    Purpose To assess inter-rater and test-retest reliability of the 6th Edition Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) and test-retest reliability of the VMI Visual Perception Supplemental Test (VMIp) in school-age children. Methods Subjects were 163 Native American 3rd – 8th grade students with no significant refractive error (astigmatism < 1.00 D, myopia: < 0.75 D, hyperopia: < 2.50 D, anisometropia < 1.50 D) or ocular abnormalities. The VMI and VMIp were administered twice, on separate days. All VMI tests were scored by two trained scorers and a subset of 50 tests were also scored by an experienced scorer. Scorers strictly applied objective scoring criteria. Analyses included inter-rater and test-retest assessments of bias, 95% limits of agreement, and intraclass correlation analysis. Results Trained scorers had no significant scoring bias compared to the experienced scorer. One of the two trained scorers tended to provide higher scores than the other (mean difference in standardized scores = 1.54). Inter-rater correlations were strong (0.75 to 0.88). VMI and VMIp test-retest comparisons indicated no significant bias (subjects did not tend to score better on retest). Test-retest correlations were moderate (0.54 to 0.58). The 95% LOAs for the VMI were −24.14 to 24.67 (scorer 1) and −26.06 to 26.58 (scorer 2) and the 95% LOAs for the VMIp were −27.11 to 27.34. Conclusions The 95% LOA for test-retest differences will be useful for determining if the VMI and VMIp have sufficient sensitivity for detecting change with treatment in both clinical and research settings. Further research on test-retest reliability reporting 95% LOAs for children across different age ranges are recommended, particularly if the test is to be used to detect changes due to intervention or treatment. PMID:28422801

  6. Chemokine programming dendritic cell antigen response: part II - programming antigen presentation to T lymphocytes by partially maintaining immature dendritic cell phenotype.

    PubMed

    Park, Jaehyung; Bryers, James D

    2013-05-01

    In a companion article to this study,(1) the successful programming of a JAWSII dendritic cell (DC) line's antigen uptake and processing was demonstrated based on pre-treatment of DCs with a specific 'cocktail' of select chemokines. Chemokine pre-treatment modulated cytokine production before and after DC maturation [by lipopolysaccharide (LPS)]. After DC maturation, it induced an antigen uptake and processing capacity at levels 36% and 82% higher than in immature DCs, respectively. Such programming proffers a potential new approach to enhance vaccine efficiency. Unfortunately, simply enhancing antigen uptake does not guarantee the desired activation and proliferation of lymphocytes, e.g. CD4(+) T cells. In this study, phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs were examined in long-term co-culture with antigen-specific CD4(+) T cells to quantify how chemokine pre-treatment may impact the adaptive immune response. When a model antigen, ovalbumin (OVA), was added after intentional LPS maturation of chemokine-treated DCs, OVA-biased CD4(+) T-cell proliferation was initiated from ~ 100% more undivided naive T cells as compared to DCs treated only with LPS. Secretion of the cytokines interferon-γ, interleukin-1β, interleukin-2 and interleukin-10 in the CD4(+) T cell : DC co-culture (with or without chemokine pre-treatment) were essentially the same. Chemokine programming of DCs with a 7 : 3 ratio of CCL3 : CCL19 followed by LPS treatment maintained partial immature phenotypes of DCs, as indicated by surface marker (CD80 and CD86) expression over time. Results here and in our companion paper suggest that chemokine programming of DCs may provide a novel immunotherapy strategy to obviate the natural endocytosis limit of DC antigen uptake, thus potentially increasing DC-based vaccine efficiency. © 2012 Blackwell Publishing Ltd.

  7. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display.

    PubMed

    Bonvin, Pauline; Dunn, Steven M; Rousseau, François; Dyer, Douglas P; Shaw, Jeffrey; Power, Christine A; Handel, Tracy M; Proudfoot, Amanda E I

    2014-11-14

    To elucidate the ligand-binding surface of the CC chemokine-binding proteins Evasin-1 and Evasin-4, produced by the tick Rhipicephalus sanguineus, we sought to identify the key determinants responsible for their different chemokine selectivities by expressing Evasin mutants using phage display. We first designed alanine mutants based on the Evasin-1·CCL3 complex structure and an in silico model of Evasin-4 bound to CCL3. The mutants were displayed on M13 phage particles, and binding to chemokine was assessed by ELISA. Selected variants were then produced as purified proteins and characterized by surface plasmon resonance analysis and inhibition of chemotaxis. The method was validated by confirming the importance of Phe-14 and Trp-89 to the inhibitory properties of Evasin-1 and led to the identification of a third crucial residue, Asn-88. Two amino acids, Glu-16 and Tyr-19, were identified as key residues for binding and inhibition of Evasin-4. In a parallel approach, we identified one clone (Y28Q/N60D) that showed a clear reduction in binding to CCL3, CCL5, and CCL8. It therefore appears that Evasin-1 and -4 use different pharmacophores to bind CC chemokines, with the principal binding occurring through the C terminus of Evasin-1, but through the N-terminal region of Evasin-4. However, both proteins appear to target chemokine N termini, presumably because these domains are key to receptor signaling. The results also suggest that phage display may offer a useful approach for rapid investigation of the pharmacophores of small inhibitory binding proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Different actions of endothelin-1 on chemokine production in rat cultured astrocytes: reduction of CX3CL1/fractalkine and an increase in CCL2/MCP-1 and CXCL1/CINC-1

    PubMed Central

    2013-01-01

    Background Chemokines are involved in many pathological responses of the brain. Astrocytes produce various chemokines in brain disorders, but little is known about the factors that regulate astrocytic chemokine production. Endothelins (ETs) have been shown to regulate astrocytic functions through ETB receptors. In this study, the effects of ETs on chemokine production were examined in rat cerebral cultured astrocytes. Methods Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats and cultured in serum-containing medium. After serum-starvation for 48 hours, astrocytes were treated with ETs. Total RNA was extracted using an acid-phenol method and expression of chemokine mRNAs was determined by quantitative RT-PCR. The release of chemokines was measured by ELISA. Results Treatment of cultured astrocytes with ET-1 and Ala1,3,11,15-ET-1, an ETB agonist, increased mRNA levels of CCL2/MCP1 and CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in the presence of ET-1 and Ala1,3,11,15-ET-1. The effect of ET-1 on chemokine mRNA expression was inhibited by BQ788, an ETB antagonist. ET-1 increased CCL2 and CXCL1 release from cultured astrocytes, but decreased that of CX3CL1. The increase in CCL2 and CXCL1 expression by ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50, mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by ET-1 was inhibited by cycloheximide, Ca2+ chelation and staurosporine. Conclusion These findings suggest that ETs are one of the factors regulating astrocytic chemokine production. Astrocyte-derived chemokines are involved in pathophysiological responses of neurons and microglia. Therefore, the ET-induced alterations of astrocytic chemokine production are of pathophysiological significance in damaged brains. PMID:23627909

  9. Platelet chemokines in vascular disease

    PubMed Central

    Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus

    2009-01-01

    Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831

  10. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    PubMed

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-07-01

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Prednisolone phosphate-containing TRX-20 liposomes inhibit cytokine and chemokine production in human fibroblast-like synovial cells: a novel approach to rheumatoid arthritis therapy.

    PubMed

    Harigai, Takashi; Hagiwara, Hitomi; Ogawa, Yumi; Ishizuka, Takanobu; Kaneda, Shinichi; Kimura, Junji

    2007-01-01

    To evaluate the potential of using prednisolone phosphate (PSLP)-containing 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20) liposomes to treat rheumatoid arthritis (RA), we examined their ability to bind human fibroblast-like synovial (HFLS) cells and their effects in these cells. To test for binding, Lissamine rhodamine B-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (rhodamine)-labelled PSLP-containing TRX-20 liposomes were added to HFLS cells, and the fluorescence intensity of the rhodamine bound to the cells was evaluated. Rhodamine-labelled PSLP-containing liposomes without TRX-20 were used as a negative control. To evaluate the uptake of liposomes by the HFLS cells, we used TRX-20 liposomes containing 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) and p-xylene-bis-pyridinium bromide (DPX), and observed the cells by fluorescence microscopy. The effects of the PSLP in TRX-20 liposomes on HFLS cells were assessed by the inhibition of the production of two inflammatory cytokines (interleukin 6 and granulocyte macrophage colony-stimulating factor) and one inflammatory chemokine (interleukin 8). The interaction of the PSLP-containing TRX-20 liposomes with HFLS cells was approximately 40 times greater than that of PSLP-containing liposomes without TRX-20. PSLP-containing TRX-20 liposomes bound to HFLS cells primarily via chondroitin sulfate. TRX-20 liposomes taken up by the cell were localized to acidic compartments. Furthermore, the PSLP-containing TRX-20 liposomes inhibited the production of the inflammatory cytokines and the chemokine more effectively than did the PSLP-containing liposomes without TRX-20. These results indicate that PSLP-containing TRX-20 liposomes show promise as a novel drug delivery system that could enhance the clinical use of glucocorticoids for treating RA.

  12. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  13. Curcumin inhibits interferon-γ signaling in colonic epithelial cells

    PubMed Central

    Midura-Kiela, Monica T.; Radhakrishnan, Vijayababu M.; Larmonier, Claire B.; Laubitz, Daniel; Ghishan, Fayez K.

    2012-01-01

    Curcumin (diferulolylmethane) is an anti-inflammatory phenolic compound found effective in preclinical models of inflammatory bowel diseases (IBD) and in ulcerative colitis patients. Pharmacokinetics of curcumin and its poor systemic bioavailability suggest that it targets preferentially intestinal epithelial cells. The intestinal epithelium, an essential component of the gut innate defense mechanisms, is profoundly affected by IFN-γ, which can disrupt the epithelial barrier function, prevent epithelial cell migration and wound healing, and prime epithelial cells to express major histocompatibility complex class II (MHC-II) molecules and to serve as nonprofessional antigen-presenting cells. In this report we demonstrate that curcumin inhibits IFN-γ signaling in human and mouse colonocytes. Curcumin inhibited IFN-γ-induced gene transcription, including CII-TA, MHC-II genes (HLA-DRα, HLA-DPα1, HLA-DRβ1), and T cell chemokines (CXCL9, 10, and 11). Acutely, curcumin inhibited Stat1 binding to the GAS cis-element, prevented Stat1 nuclear translocation, and reduced Jak1 phosphorylation and phosphorylation of Stat1 at Tyr701. Longer exposure to curcumin led to endocytic internalization of IFNγRα followed by lysosomal fusion and degradation. In summary, curcumin acts as an IFN-γ signaling inhibitor in colonocytes with biphasic mechanisms of action, a phenomenon that may partially account for the beneficial effects of curcumin in experimental colitis and in human IBD. PMID:22038826

  14. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes.

    PubMed

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G; Qin, Ling; Zheng, Yi; Handel, Tracy M

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. © 2016 Elsevier Inc. All rights reserved.

  15. A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.

    PubMed

    Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P

    2018-05-23

    In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.

  16. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor.

    PubMed

    Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Role of TLR and Chemokine in Wear Particle-Induced Aseptic Loosening

    PubMed Central

    Gu, Qiaoli; Shi, Qin; Yang, Huilin

    2012-01-01

    Wear particle-induced periprosthetic osteolysis remains the principal cause of aseptic loosening of orthopaedic implants. Monocytes/macrophages phagocytose wear particles and release cytokines that induce inflammatory response. This response promotes osteoclast differentiation and osteolysis. The precise mechanisms by which wear particles are recognized and induce the accumulation of inflammatory cells in the periprosthetic tissue have not been fully elucidated. Recent studies have shown that toll-like receptors (TLRs) contribute to the cellular interaction with wear particles. Wear particles are recognized by monocytes/macrophages through TLRs coupled with the adaptor protein MyD88. After the initial interaction, wear particles induce both local and systemic migration of monocytes/macrophages to the periprosthetic region. The cellular migration is mediated through chemokines including interleukin-8, macrophage chemotactic protein-1, and macrophage inhibitory protein-1 in the periprosthetic tissues. Interfering with chemokine-receptor axis can inhibit cellular migration and inflammatory response. This paper highlights recent advances in TLR, and chemokine participated in the pathogenesis of aseptic loosening. A comprehensive understanding of the recognition and migration mechanism is critical to the development of measures that prevent wear particle-induced aseptic loosening of orthopaedic implants. PMID:23193363

  18. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor

    PubMed Central

    Auerbach, David J.; Lin, Yin; Miao, Huiyi; Cimbro, Raffaello; DiFiore, Michelle J.; Gianolini, Monica E.; Furci, Lucinda; Biswas, Priscilla; Fauci, Anthony S.; Lusso, Paolo

    2012-01-01

    The natural history of HIV-1 infection is highly variable in different individuals, spanning from a rapidly progressive course to a long-term asymptomatic infection. A major determinant of the pace of disease progression is the in vivo level of HIV-1 replication, which is regulated by a complex network of cytokines and chemokines expressed by immune and inflammatory cells. The chemokine system is critically involved in the control of HIV-1 replication by virtue of the role played by specific chemokine receptors, most notably CCR5 and CXCR4, as cell-surface coreceptors for HIV-1 entry; hence, the chemokines that naturally bind such coreceptors act as endogenous inhibitors of HIV-1. Here, we show that the CXC chemokine CXCL4 (PF-4), the most abundant protein contained within the α-granules of platelets, is a broad-spectrum inhibitor of HIV-1 infection. Unlike other known HIV-suppressive chemokines, CXCL4 inhibits infection by the majority of primary HIV-1 isolates regardless of their coreceptor-usage phenotype or genetic subtype. Consistent with the lack of viral phenotype specificity, blockade of HIV-1 infection occurs at the level of virus attachment and entry via a unique mechanism that involves direct interaction of CXCL4 with the major viral envelope glycoprotein, gp120. The binding site for CXCL4 was mapped to a region of the gp120 outer domain proximal to the CD4-binding site. The identification of a platelet-derived chemokine as an endogenous antiviral factor may have relevance for the pathogenesis and treatment of HIV-1 infection. PMID:22645343

  19. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor.

    PubMed

    Auerbach, David J; Lin, Yin; Miao, Huiyi; Cimbro, Raffaello; Difiore, Michelle J; Gianolini, Monica E; Furci, Lucinda; Biswas, Priscilla; Fauci, Anthony S; Lusso, Paolo

    2012-06-12

    The natural history of HIV-1 infection is highly variable in different individuals, spanning from a rapidly progressive course to a long-term asymptomatic infection. A major determinant of the pace of disease progression is the in vivo level of HIV-1 replication, which is regulated by a complex network of cytokines and chemokines expressed by immune and inflammatory cells. The chemokine system is critically involved in the control of HIV-1 replication by virtue of the role played by specific chemokine receptors, most notably CCR5 and CXCR4, as cell-surface coreceptors for HIV-1 entry; hence, the chemokines that naturally bind such coreceptors act as endogenous inhibitors of HIV-1. Here, we show that the CXC chemokine CXCL4 (PF-4), the most abundant protein contained within the α-granules of platelets, is a broad-spectrum inhibitor of HIV-1 infection. Unlike other known HIV-suppressive chemokines, CXCL4 inhibits infection by the majority of primary HIV-1 isolates regardless of their coreceptor-usage phenotype or genetic subtype. Consistent with the lack of viral phenotype specificity, blockade of HIV-1 infection occurs at the level of virus attachment and entry via a unique mechanism that involves direct interaction of CXCL4 with the major viral envelope glycoprotein, gp120. The binding site for CXCL4 was mapped to a region of the gp120 outer domain proximal to the CD4-binding site. The identification of a platelet-derived chemokine as an endogenous antiviral factor may have relevance for the pathogenesis and treatment of HIV-1 infection.

  20. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    PubMed

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  1. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  2. Virus-encoded chemokine receptors--putative novel antiviral drug targets.

    PubMed

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.

  3. Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum.

    PubMed

    Mohapatra, Subash Chandra; Tiwari, Hemandra Kumar; Singla, Manisha; Rathi, Brijesh; Sharma, Arun; Mahiya, Kuldeep; Kumar, Mukesh; Sinha, Saket; Chauhan, Shyam Singh

    2010-03-01

    A new class of copper(II) nanohybrid solids, LCu(CH(3)COO)(2) and LCuCl(2), have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5-10 and 60-70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV-vis spectroscopy and inhibition kinetics using Lineweaver-Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC(50) values (0.025-0.032 microg/ml) are similar to the IC(50) value of the standard drug chloroquine used in the bioassay. Lineweaver-Burk plots for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH(3)COO)(2) and LCuCl(2) were found to be 10 and 13 microM, respectively. The IC(50) values for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) were found to be 14 and 17 microM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, beta-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of

  4. Thiazolidinediones inhibit airway smooth muscle release of the chemokine CXCL10: in vitro comparison with current asthma therapies

    PubMed Central

    2012-01-01

    Background Activated mast cells are present within airway smooth muscle (ASM) bundles in eosinophilic asthma. ASM production of the chemokine CXCL10 plays a role in their recruitment. Thus the effects of glucocorticoids (fluticasone, budesonide), long-acting β2-agonists (salmeterol, formoterol) and thiazolidinediones (ciglitazone, rosiglitazone) on CXCL10 production by ASM cells (ASMC) from people with and without asthma were investigated in vitro. Methods Confluent serum-deprived cells were treated with the agents before and during cytokine stimulation for 0-24 h. CXCL10 protein/mRNA, IκB-α levels and p65 activity were measured using ELISA, RT PCR, immunoblotting and p65 activity assays respectively. Data were analysed using ANOVA followed by Fisher’s post-hoc test. Results Fluticasone and/or salmeterol at 1 and 100 nM inhibited CXCL10 release induced by IL-1β and TNF-α, but not IFNγ or all three cytokines (cytomix). The latter was also not affected by budesonide and formoterol. In asthmatic ASMC low salmeterol, but not formoterol, concentrations increased cytomix-induced CXCL10 release and at 0.01 nM enhanced NF-κB activity. Salmeterol 0.1nM together with fluticasone 0.1 and 10 nM still increased CXCL10 release. The thiazolidinediones ciglitazone and rosiglitazone (at 25 and 100 μM) inhibited cytomix-induced CXCL10 release but these inhibitory effects were not prevented by the PPAR-g antagonist GW9662. Ciglitazone did not affect early NF-κB activity and CXCL10 mRNA production. Conclusions Thus the thiazolidinediones inhibited asthmatic ASMC CXCL10 release under conditions when common asthma therapies were ineffective or enhanced it. They may provide an alternative strategy to reduce mast cell-ASM interactions and restore normal airway physiology in asthma. PMID:23034049

  5. Thiazolidinediones inhibit airway smooth muscle release of the chemokine CXCL10: in vitro comparison with current asthma therapies.

    PubMed

    Seidel, Petra; Alkhouri, Hatem; Lalor, Daniel J; Burgess, Janette K; Armour, Carol L; Hughes, J Margaret

    2012-10-04

    Activated mast cells are present within airway smooth muscle (ASM) bundles in eosinophilic asthma. ASM production of the chemokine CXCL10 plays a role in their recruitment. Thus the effects of glucocorticoids (fluticasone, budesonide), long-acting β2-agonists (salmeterol, formoterol) and thiazolidinediones (ciglitazone, rosiglitazone) on CXCL10 production by ASM cells (ASMC) from people with and without asthma were investigated in vitro. Confluent serum-deprived cells were treated with the agents before and during cytokine stimulation for 0-24 h. CXCL10 protein/mRNA, IκB-α levels and p65 activity were measured using ELISA, RT PCR, immunoblotting and p65 activity assays respectively. Data were analysed using ANOVA followed by Fisher's post-hoc test. Fluticasone and/or salmeterol at 1 and 100 nM inhibited CXCL10 release induced by IL-1β and TNF-α, but not IFNγ or all three cytokines (cytomix). The latter was also not affected by budesonide and formoterol. In asthmatic ASMC low salmeterol, but not formoterol, concentrations increased cytomix-induced CXCL10 release and at 0.01 nM enhanced NF-κB activity. Salmeterol 0.1 nM together with fluticasone 0.1 and 10 nM still increased CXCL10 release. The thiazolidinediones ciglitazone and rosiglitazone (at 25 and 100 μM) inhibited cytomix-induced CXCL10 release but these inhibitory effects were not prevented by the PPAR-g antagonist GW9662. Ciglitazone did not affect early NF-κB activity and CXCL10 mRNA production. Thus the thiazolidinediones inhibited asthmatic ASMC CXCL10 release under conditions when common asthma therapies were ineffective or enhanced it. They may provide an alternative strategy to reduce mast cell-ASM interactions and restore normal airway physiology in asthma.

  6. Polymorphisms in chemokine and chemokine receptor genes and the development of coal workers' pneumoconiosis

    PubMed Central

    Nadif, Rachel; Mintz, Margaret; Rivas-Fuentes, Selma; Jedlicka, Anne; Lavergne, Elise; Rodero, Mathieu; Kauffmann, Francine; Combadière, Christophe; Kleeberger, Steven R.

    2006-01-01

    Chemokines and their receptors are key regulators of inflammation and may participate in the lung fibrotic process. Associations of polymorphisms in CCL5 (G-403A) and its receptor CCR5 (Δ32), CCL2 (A-2578G) and CCR2 (V64I), and CX3CR1 V249I and T280M with Coal Worker’s Pneumoconiosis (CWP) were investigated in 209 miners examined in 1990, 1994 and 1999. Coal dust exposure was assessed by job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-year change in CT score, and CWP prevalence in 1999. CCR5 Δ32 carriers had significantly higher CT score in 1990 and 1994 (2.15 vs. 1.28, p=0.01; 3.04 vs. 1.80, p=0.04). The CX3CR1 1249 allele was significantly associated with lower 1990 CT score and lower progression in 4-year change in CT score in CCR5 Δ32 carriers only (p for interaction=0.03 and 0.02). CX3CR1 V249I was associated with lower 1999 CWP prevalence (16.7%, 13.2%, 0.0% for VV, VI and II); the effect was most evident in miners with high dust exposure (31.6%, 21.7%, 0.0%). Our findings indicate that chemokine receptors CCR5 and CX3CR1 may be involved in the development of pneumoconiosis. PMID:16524739

  7. Th2-like chemokine levels are increased in allergic children and influenced by maternal immunity during pregnancy.

    PubMed

    Abelius, Martina S; Lempinen, Esma; Lindblad, Karin; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Nilsson, Lennart J; Jenmalm, Maria C

    2014-06-01

    The influence of the intra-uterine environment on the immunity and allergy development in the offspring is unclear. We aimed to investigate (i) whether the pregnancy magnifies the Th2 immunity in allergic and non-allergic women, (ii) whether the maternal chemokine levels during pregnancy influenced the offspring's chemokine levels during childhood and (iii) the relationship between circulating Th1/Th2-associated chemokines and allergy in mothers and children. The Th1-associated chemokines CXCL9, CXCL10, CXCL11, and the Th2-associated chemokines CCL17, CCL18 and CCL22 were quantified by Luminex and ELISA in 20 women with and 36 women without allergic symptoms at gestational week (gw) 10-12, 15-16, 25, 35, 39 and 2 and 12 months post-partum and in their children at birth, 6, 12, 24 months and 6 years of age. Total IgE levels were measured using ImmunoCAP Technology. The levels of the Th2-like chemokines were not magnified by pregnancy. Instead decreased levels were shown during pregnancy (irrespectively of maternal allergy status) as compared to post-partum. In the whole group, the Th1-like chemokine levels were higher at gw 39 than during the first and second trimester and post-partum. Maternal CXCL11, CCL18 and CCL22 levels during and after pregnancy correlated with the corresponding chemokines in the offspring during childhood. Increased CCL22 and decreased CXCL10 levels in the children were associated with sensitisation and increased CCL17 levels with allergic symptoms during childhood. Maternal chemokine levels were not associated with maternal allergic disease. Allergic symptoms and sensitisation were associated with decreased Th1- and increased Th2-associated chemokine levels during childhood, indicating a Th2 shift in the allergic children, possibly influenced by the maternal immunity during pregnancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  9. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2014-10-01

    fluids (SFs) compared to osteoarthritis (OA) and other inflammatory rheumatic diseases (OD) SFs, and its concentration correlates with RA disease ...osteoarthritis (OA), and other inflammatory rheumatic disease (OD) synovial fluids (SFs). The correlation between the citrullinated chemokine levels and...Objectives: Specific Aim 1: To determine how citrullinated chemokines compare in RA, vs. OA, vs. other rheumatic diseases (OD), vs. NLs. Major Task 1

  10. The dependence of chemokine–glycosaminoglycan interactions on chemokine oligomerization

    PubMed Central

    Dyer, Douglas P; Salanga, Catherina L; Volkman, Brian F; Kawamura, Tetsuya; Handel, Tracy M

    2016-01-01

    Both chemokine oligomerization and binding to glycosaminoglycans (GAGs) are required for their function in cell recruitment. Interactions with GAGs facilitate the formation of chemokine gradients, which provide directional cues for migrating cells. In contrast, chemokine oligomerization is thought to contribute to the affinity of GAG interactions by providing a more extensive binding surface than single subunits alone. However, the importance of chemokine oligomerization to GAG binding has not been extensively quantified. Additionally, the ability of chemokines to form different oligomers has been suggested to impart specificity to GAG interactions, but most studies have been limited to heparin. In this study, several differentially oligomerizing chemokines (CCL2, CCL3, CCL5, CCL7, CXCL4, CXCL8, CXCL11 and CXCL12) and select oligomerization-deficient mutants were systematically characterized by surface plasmon resonance to determine their relative affinities for heparin, heparan sulfate (HS) and chondroitin sulfate-A (CS-A). Wild-type chemokines demonstrated a hierarchy of binding affinities for heparin and HS that was markedly dependent on oligomerization. These results were corroborated by their relative propensity to accumulate on cells and the critical role of oligomerization in cell presentation. CS-A was found to exhibit greater chemokine selectivity than heparin or HS, as it only bound a subset of chemokines; moreover, binding to CS-A was ablated with oligomerization-deficient mutants. Overall, this study definitively demonstrates the importance of oligomerization for chemokine–GAG interactions, and demonstrates diversity in the affinity and specificity of different chemokines for GAGs. These data support the idea that GAG interactions provide a mechanism for fine-tuning chemokine function. PMID:26582609

  11. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    PubMed

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  12. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling.

    PubMed

    Moyo, Daniel; Beattie, Lynette; Andrews, Paul S; Moore, John W J; Timmis, Jon; Sawtell, Amy; Hoehme, Stefan; Sampson, Adam T; Kaye, Paul M

    2018-01-01

    Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani -infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.

  14. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.

    PubMed

    Pannetier, Delphine; Reynard, Stéphanie; Russier, Marion; Carnec, Xavier; Baize, Sylvain

    2014-01-01

    The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome.

  15. Chemokine Involvement in Fetal and Adult Wound Healing

    PubMed Central

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  16. Mechanisms Regulating the Secretion of the Promalignancy Chemokine CCL5 by Breast Tumor Cells: CCL5's 40s Loop and Intracellular Glycosaminoglycans12

    PubMed Central

    Soria, Gali; Lebel-Haziv, Yaeli; Ehrlich, Marcelo; Meshel, Tsipi; Suez, Adva; Avezov, Edward; Rozenberg, Perri; Ben-Baruch, Adit

    2012-01-01

    The chemokine CCL5 (RANTES) plays active promalignancy roles in breast malignancy. The secretion of CCL5 by breast tumor cells is an important step in its tumor-promoting activities; therefore, inhibition of CCL5 secretion may have antitumorigenic effects. We demonstrate that, in breast tumor cells, CCL5 secretion necessitated the trafficking of CCL5-containing vesicles on microtubules from the endoplasmic reticulum (ER) to the post-Golgi stage, and CCL5 release was regulated by the rigidity of the actin cytoskeleton. Focusing on the 40s loop of CCL5, we found that the 43TRKN46 sequence of CCL5 was indispensable for its inclusion in motile vesicles, and for its secretion. The TRKN-mutated chemokine reached the Golgi, but trafficked along the ER-to-post-Golgi route differently than the wild-type (WT) chemokine. Based on the studies showing that the 40s loop of CCL5 mediates its binding to glycosaminoglycans (GAG), we analyzed the roles of GAG in regulating CCL5 secretion. TRKN-mutated CCL5 had lower propensity for colocalization with GAG in the Golgi compared to the WT chemokine. Secretion of WT CCL5 was significantly reduced in CHO mutant cells deficient in GAG synthesis, and the WT chemokine acquired an ER-like distribution in these cells, similar to that of TRKN-mutated CCL5 in GAG-expressing cells. The release of WT CCL5 was also reduced after inhibition of GAG presence/synthesis by intracellular expression of heparanase, inhibition of GAG sulfation, and sulfate deprivation. The need for a 43TRKN46 motif and for a GAG-mediated process in CCL5 secretion may enable the future design of modalities that prevent CCL5 release by breast tumor cells. PMID:22355269

  17. CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis

    PubMed Central

    Sun, Hongxia; Chung, Wen-Cheng; Ryu, Seung-Hee; Ju, Zhenlin; Tran, Hai T.; Kim, Edward; Kurie, Jonathan M.; Koo, Ja Seok

    2009-01-01

    The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC. PMID:19138976

  18. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    PubMed Central

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  19. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0210 TITLE: Citrullinated Chemokines in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: David A. Fox CONTRACTING...CONTRACT NUMBER Citrullinated Chemokines in Rheumatoid Arthritis 5b. GRANT NUMBER W81XWH-13-1-0210 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David A. Fox...citrulline, which contributes to the pathogenesis of rheumatoid arthritis (RA). We show that citrullinated epithelial- derived neutrophil-activating peptide 78

  20. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models.

    PubMed

    Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang

    2015-10-29

    Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.

  1. A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II)

    PubMed Central

    Deshpande, Kanchanmala; Mishra, Rupesh K.; Bhand, Sunil

    2010-01-01

    A highly sensitive and specific enzyme inhibition assay based on alcohol oxidase (AlOx) and horseradish peroxidase (HRP) for determination of mercury Hg(II) in water samples has been presented. This article describes the optimization and miniaturization of an enzymatic assay using a chemiluminescence reaction. The analytical performance and detection limit for determination of Hg(II) was optimized in 96 well plates and further extended to 384 well plates with a 10-fold reduction in assay volume. Inhibition of the enzyme activity by dissolved Hg(II) was found to be linear in the range 5–500 pg·mL−1 with 3% CV in inter-batch assay. Due to miniaturization of assay in 384 well plates, Hg(II) was measurable as low as 1 pg·mL−1 within 15 min. About 10-fold more specificity of the developed assay for Hg(II) analysis was confirmed by challenging with interfering divalent metal ions such as cadmium Cd(II) and lead Pb(II). Using the proposed assay we could successfully demonstrate that in a composite mixture of Hg(II), Cd(II) and Pb(II), inhibition by each metal ion is significantly enhanced in the presence of the others. Applicability of the proposed assay for the determination of the Hg(II) in spiked drinking and sea water resulted in recoveries ranging from 100–110.52%. PMID:22163555

  2. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed bymore » transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.« less

  3. Mechanisms and Implications of Air Pollution Particle Associations with Chemokines

    PubMed Central

    Seagrave, JeanClare

    2008-01-01

    Inflammation induced by inhalation of air pollutant particles has been implicated as a mechanism for the adverse health effects associated with exposure to air pollution. The inflammatory response is associated with upregulation of various pro-inflammatory cytokines and chemokines. We have previously shown that diesel exhaust particles (DEP), a significant constituent of air pollution particulate matter in many urban areas, bind and concentrate IL-8, an important human neutrophil-attracting chemokine, and that the chemokine remains biologically active. In this report, we examine possible mechanisms of this association and the effects on clearance of the chemokine. The binding appears to be the result of ionic interactions between negatively charged particles and positively charged chemokine molecules, possibly combined with intercalation into small pores in the particles. The association is not limited to diesel exhaust particles and IL-8: several other particle types also adsorb the chemokine and several other cytokines are adsorbed onto the diesel particles. However, there are wide ranges in the effectiveness of various particle types and various cytokines. Finally, male Fisher 344 rats were intratracheally instilled with chemokine alone or combined with diesel exhaust or silica particles under isofluorane anesthesia. In contrast to silica particles, which do not bind the chemokine, the presence of diesel exhaust particles, which bind the chemokine, prolonged the retention of the chemokine. PMID:18755206

  4. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  5. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  6. Environmental Factors Impacting Bone-Relevant Chemokines

    PubMed Central

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  7. The Effect of Solar Irradiated Vibrio cholerae on the Secretion of Pro-Inflammatory Cytokines and Chemokines by the JAWS II Dendritic Cell Line In Vitro

    PubMed Central

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2015-01-01

    The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the

  8. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway

    PubMed Central

    Jiang, Li-Bo; Meng, De-Hua; Lee, Soo-Min; Liu, Shu-Hao; Xu, Qin-Tong; Wang, Yang; Zhang, Jian

    2016-01-01

    Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition. PMID:27941926

  9. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  10. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  11. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  12. CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

    PubMed Central

    de Oliveira, Carlos Eduardo Coral; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; de Oliveira, Karen Brajão; Ariza, Carolina Batista; Neto, Jamil Soni; Banin Hirata, Bruna Karina; Watanabe, Maria Angelica Ehara

    2014-01-01

    Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy. PMID:24591756

  13. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz

    2007-09-15

    Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topomore » II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin.« less

  14. Chronic inhibition of Ca(2+)/calmodulin kinase II activity in the pilocarpine model of epilepsy.

    PubMed

    Churn, S B; Kochan, L D; DeLorenzo, R J

    2000-09-01

    The development of symptomatic epilepsy is a model of long-term plasticity changes in the central nervous system. The rat pilocarpine model of epilepsy was utilized to study persistent alterations in calcium/calmodulin-dependent kinase II (CaM kinase II) activity associated with epileptogenesis. CaM kinase II-dependent substrate phosphorylation and autophosphorylation were significantly inhibited for up to 6 weeks following epileptogenesis in both the cortex and hippocampus, but not in the cerebellum. The net decrease in CaM kinase II autophosphorylation and substrate phosphorylation was shown to be due to decreased kinase activity and not due to increased phosphatase activity. The inhibition in CaM kinase II activity and the development of epilepsy were blocked by pretreating seizure rats with MK-801 indicating that the long-lasting decrease in CaM kinase II activity was dependent on N-methyl-D-aspartate receptor activation. In addition, the inhibition of CaM kinase II activity was associated in time and regional localization with the development of spontaneous recurrent seizure activity. The decrease in enzyme activity was not attributed to a decrease in the alpha or beta kinase subunit protein expression level. Thus, the significant inhibition of the enzyme occurred without changes in kinase protein expression, suggesting a long-lasting, post-translational modification of the enzyme. This is the first published report of a persistent, post-translational alteration of CaM kinase II activity in a model of epilepsy characterized by spontaneous recurrent seizure activity.

  15. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    PubMed

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  16. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Dulal, Kalpana; Cheng, Tong; Hjortø, Gertrud M.; Larsen, Olav; Burg, John S.; Jarvis, Michael A.; Christopher Garcia, K.; Zhu, Hua; Kledal, Thomas N.; Rosenkilde, Mette M.

    2015-01-01

    The use of receptor–ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo. PMID:26080445

  17. Chemokines and their receptors: insights from molecular modeling and crystallography.

    PubMed

    Kufareva, Irina

    2016-10-01

    Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes.

    PubMed

    Liu, Yun; Shen, Huan-Jia; Wang, Xin-Qiu-Yue; Liu, Hai-Qi; Zheng, Ling-Yun; Luo, Jian-Dong

    2018-06-20

    Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction. © 2018 Wiley Periodicals, Inc.

  19. Biology and clinical relevance of chemokines and chemokine receptors CXCR4 and CCR5 in human diseases

    PubMed Central

    Choi, Won-Tak; An, Jing

    2014-01-01

    Chemokines and their receptors are implicated in a wide range of human diseases, including acquired immune deficiency syndrome (AIDS). The entry of human immunodeficiency virus type 1 (HIV-1) into a cell is initiated by the interaction of the virus’s surface envelope proteins with two cell surface components of the target cell, namely CD4 and a chemokine co-receptor, usually CXCR4 or CCR5. Typical anti-HIV-1 agents include protease and reverse transcriptase inhibitors, but the targets of these agents tend to show rapid mutation rates. As such, strategies based on HIV-1 co-receptors have appeal because they target invariant host determinants. Chemokines and their receptors are also of general interest since they play important roles in numerous physiological and pathological processes in addition to AIDS. Therefore, intensive basic and translational research is ongoing for the dissection of their structure – function relationships in an effort to understand the molecular mechanism of chemokine – receptor interactions and signal transductions across cellular membranes. This paper reviews and discusses recent advances and the translation of new knowledge and discoveries into novel interventional strategies for clinical application. PMID:21565895

  20. Emodin inhibits epithelial‑mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC‑chemokine ligand 5 secreted from adipocytes.

    PubMed

    Song, Xiaoyun; Zhou, Xiqiu; Qin, Yuenong; Yang, Jianfeng; Wang, Yu; Sun, Zhenping; Yu, Kui; Zhang, Shuai; Liu, Sheng

    2018-07-01

    Triple negative breast cancer (TNBC) has the lowest survival rate of the breast cancer subtypes owing to its aggressive and metastatic behavior. It has been reported that peritumoral adipose tissue contributes to the cell invasiveness and dissemination of TNBC. Emodin is an active anthraquinone derivative isolated from Rheum palmatum, with anticancer properties that have been reported to inhibit lung metastasis in a nude mouse xenograft model. In the present study, the effects of emodin on human TNBC cells and adipocytes were investigated in vivo and in vitro. The TNBC cell lines MDA‑MB‑231 and MDA‑MB‑453 were co‑cultured with human adipocytes and treated with either emodin or epirubicin. Cell proliferation was assessed by MTT assay and migration and invasion were examined using a wound healing assay and a Transwell assay. interleukin‑8, CC‑chemokine ligand 5 (CCL5) and insulin‑like growth factor‑1 levels in the culture supernatants were detected by ELISA. The epithelial‑mesenchymal transition (EMT) or metastasis associated markers were determined by western blot analysis. Nude mice fed with a high fat and sugar diet were used investigate the in vivo effect of emodin. The results showed that emodin inhibited TNBC proliferation and invasion more efficiently than epirubicin when co‑cultured with adipocytes by downregulating the level of CCL5 in adipocyte supernatants; inhibiting the expression level of protein kinase B (AKT); and activating glycogen synthase kinase‑3i (GSK3) and β‑catenin. This led to the suppressed expression of EMT‑ and invasion‑associated markers, including vimentin, snail, matrix metalloproteinase (MMP)‑2 and MMP‑9, and upregulation of E‑cadherin, contributing to the inhibition of invasion. The in vivo assay showed that emodin inhibited tumor growth, and suppressed the lung and liver metastasis of TNBC cells by decreasing the secretion of CCL5 in mice fed a high fat and sugar diet more efficiently when

  1. Elevated expression of CXC chemokines in pediatric osteosarcoma patients.

    PubMed

    Li, Yiting; Flores, Ricardo; Yu, Alexander; Okcu, M Fatih; Murray, Jeffrey; Chintagumpala, Murali; Hicks, John; Lau, Ching C; Man, Tsz-Kwong

    2011-01-01

    Osteosarcoma is the most common malignant bone tumor in children. Despite the advent of chemotherapy, the survival of osteosarcoma patients has not been significantly improved recently. Chemokines are a group of signaling molecules that have been implicated in tumorigenesis and metastasis. The authors used an antibody microarray to identify chemokines that were elevated in the plasma samples of osteosarcoma patients. The results were validated using enzyme-linked immunosorbent assays on an independent set of samples. The tumor expressions of 3 chemokines were examined in 2 sets of osteosarcoma tissue arrays. The authors also evaluated the proliferative effect of the chemokines in 4 osteosarcoma cell lines. The authors found that the plasma levels of CXCL4, CXCL6, and CXCL12 in the osteosarcoma patients were significantly higher than those in the controls, and the results were validated by an independent osteosarcoma cohort (P < .05). However, CXCL4 (100%) and CXCL6 (91%) were frequently expressed in osteosarcoma, whereas CXCL12 was only expressed in 4%. Survival analysis further showed that higher circulating levels of CXCL4 and CXCL6, but not CXCL12, were associated with a poorer outcome of osteosarcoma patients. Addition of exogenous chemokines significantly promoted the growth of different osteosarcoma cells (P < .05). The results demonstrate that CXCL4 and CXCL6 are frequently expressed in osteosarcoma, and that the plasma levels of these 2 chemokines are associated with patient outcomes. Further study of these circulating chemokines may provide a promising approach for prognostication of osteosarcoma. Targeting these chemokines or their receptors may also lead to a novel therapeutic invention. © 2010 American Cancer Society.

  2. Protein kinase C βII and TGFβRII in ω-3 fatty acid–mediated inhibition of colon carcinogenesis

    PubMed Central

    Murray, Nicole R.; Weems, Capella; Chen, Lu; Leon, Jessica; Yu, Wangsheng; Davidson, Laurie A.; Jamieson, Lee; Chapkin, Robert S.; Thompson, E. Aubrey; Fields, Alan P.

    2002-01-01

    Încreasing evidence demonstrates that protein kinase C βII (PKCβII) promotes colon carcinogenesis. We previously reported that colonic PKCβII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCβII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression and reduces sensitivity to TGF-β–mediated growth inhibition in intestinal epithelial cells. Transgenic PKCβII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFβRII expression. Chemopreventive dietary ω-3 fatty acids inhibit colonic PKCβII activity in vivo and block PKCβII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFβRII expression in the colonic epithelium of transgenic PKCβII mice. These data indicate that dietary ω-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCβII signaling and restoration of TGF-β responsiveness. PMID:12058013

  3. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells.

    PubMed

    Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K

    2016-07-01

    Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.

  4. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    PubMed Central

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857

  5. Alternative C-Terminal Helix Orientation Alters Chemokine Function

    PubMed Central

    Kuo, Je-Hung; Chen, Ya-Ping; Liu, Jai-Shin; Dubrac, Alexandre; Quemener, Cathy; Prats, Hervé; Bikfalvi, Andreas; Wu, Wen-guey; Sue, Shih-Che

    2013-01-01

    Chemokines, a subfamily of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines adopt remarkable conserved tertiary structure comprising an anti-parallel β-sheet core domain followed by a C-terminal helix that packs onto the β-sheet. The conserved structural feature has been considered critical for chemokine function, including binding to cell surface receptor. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E, and L67H. In this study we show by x-ray structural determination that CXCL4L1 adopts a previously unrecognized structure at its C terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. The L67H mutation is mainly responsible for the swing-out effect of the helix, whereas mutations of P58L and K66E only act secondarily. This is the first observation that reports an open conformation of the C-terminal helix in a chemokine. This change leads to a decrease of its glycosaminoglycan binding properties and to an enhancement of its anti-angiogenic and anti-tumor effects. This unique structure is recent in evolution and has allowed CXCL4L1 to gain novel functional properties. PMID:23536183

  6. Itraconazole inhibits TNF-α-induced CXCL10 expression in oral fibroblasts.

    PubMed

    Ohta, K; Ishida, Y; Fukui, A; Nishi, H; Naruse, T; Takechi, M; Kamata, N

    2015-01-01

    Itraconazole (ICZ) has a broad spectrum of antifungal activity including a wide range of Candida spp. TNF-α, an inflammatory cytokine associated with Th1-mediated oral inflammatory disease, enhances inflammatory mediators, such as CXCR3-agonistic chemokines including CXCL10. We examined the anti-inflammatory potential of ICZ against TNF-α-induced chemokines in oral fibroblasts. We investigated the effects of ICZ on mRNA expressions of various TNF-α-induced chemokines in immortalized oral keratinocytes (RT7) and oral fibroblasts (GT1) using quantitative PCR analysis. Subsequently, the effects of ICZ and fluconazole (FLZ) on TNF-α-induced CXCL10 proteins in GT1 and primary fibroblasts were examined using enzyme-linked immunosorbent assays (ELISA). The effect of ICZ on signal transduction protein phosphorylation involved in CXCL10 production from TNF-α-stimulated GT1 was examined by western blotting. ICZ inhibited TNF-α-induced CXCL10 mRNA in GT1, but not RT7. Although ICZ did not affect TNF-α-induced IL-8 mRNA, the mRNAs of TNF-α-induced CXCR3-agonistic chemokines such as CXCL9 and CXCL11 were inhibited by ICZ in GT1. TNF-α-induced CXCL10 protein production in GT1 and primary fibroblasts was inhibited by ICZ, but not FLZ. Finally, ICZ inhibited TNF-α-induced phosphorylation of c-JUN, which is related to CXCL10 production by TNF-α-stimulated GT1. ICZ may be useful as therapy for Th1-mediated oral inflammatory disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Impact of periodontitis on chemokines in smokers.

    PubMed

    Haytural, O; Yaman, D; Ural, E C; Kantarci, A; Demirel, Korkud

    2015-06-01

    The aim of this study was to investigate the chemokine expression profiles in gingival crevicular fluid (GCF) and serum in patients with advanced chronic periodontitis and to assess the impact of smoking on local and systemic levels of chemokines. Thirty patients with chronic periodontitis (CP; 20 smokers and 10 non-smokers) and 20 periodontally healthy subjects (10 smokers and 10 non-smokers) were recruited. Clinical parameters included the plaque index (PI), gingival index (GI), and bleeding on probing (BOP). Macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), and regulated on activation normal T cell expressed and secreted chemokine (RANTES) were measured in gingival crevicular fluid (GCF) and serum using a multiplex immunoassay. MIP-1α levels were significantly lower (10.15 ± 1.48; p = 0.039) while MIP-1β levels were significantly higher (42.05 ± 8.21; p = 0.005) in sera from non-smoker patients with CP compared to non-smoker healthy subjects. MCP-1 concentration in sera was significantly higher in smoker periodontitis patients (8.89 ± 1.65) compared to non-smoker patients with periodontitis (8.14 ± 0.97; p = 0.004). MIP-1α and RANTES were significantly higher in GCF of the patients with CP (p = 0.001) while there were no statistically significant correlations between the GCF levels of these analytes and the smoking status. Periodontal inflammation increases the chemokine concentrations in the GCF while smoking suppresses chemokine levels in serum suggesting that different local and systemic mechanisms are involved during the response to periodontitis in smokers. Understanding the local and systemic chemokine responses in smokers will enable the development of biologically-based treatment methods for chronic periodontitis.

  8. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  9. EXPRESSION, PURIFICATION AND IN VITRO FUNCTIONAL RECONSTITUTION OF THE CHEMOKINE RECEPTOR CCR1

    PubMed Central

    Allen, Samantha J.; Ribeiro, Sofia; Horuk, Richard; Handel, Tracy M.

    2009-01-01

    Chemokine receptors are a specific class of G protein-coupled receptors (GPCRs) that control cell migration associated with routine immune surveillance, inflammation and development. In addition to their roles in normal physiology, these receptors and their ligands are involved in a large number of inflammatory diseases, cancer and AIDS, making them prime therapeutic targets in the pharmaceutical industry. Like other GPCRs, a significant obstacle in determining structures and characterizing mechanisms of activation has been the difficulty in obtaining high levels of pure, functional receptor. Here we describe a systematic effort to express the chemokine receptor CCR1 in mammalian cells, and to purify and reconstitute it in functional form. The highest expression levels were obtained using an inducible HEK293 system. The receptor was purified using a combination of N- (StrepII or Hemagglutinin) and C-terminal (His8) affinity tags. Function was assessed by ligand binding using a novel fluorescence polarization assay with fluorescein-labeled chemokine. A strict dependence of function on the detergent composition was observed, as solubilization of CCR1 in n-dodecyl-β-D-maltopyranoside/cholesteryl hemisuccinate yielded functional receptor with a Kd of 21 nM for the chemokine CCL14, whereas it was non-functional in phosphocholine detergents. Differences in function were observed despite the fact that both these detergent types maintained the receptor in a state characterized by monomers and small oligomers, but not large aggregates. While optimization is still warranted, yields of ~ 0.1–0.2mgs of pure functional receptor per 109 cells will permit biophysical studies of this medically important receptor. PMID:19275940

  10. Mercury(II) binds to both of chymotrypsin's histidines, causing inhibition followed by irreversible denaturation/aggregation.

    PubMed

    Stratton, Amanda; Ericksen, Matthew; Harris, Travis V; Symmonds, Nick; Silverstein, Todd P

    2017-02-01

    The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his 40 and his 57 ) quickly and completely, with an IC 50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his 57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his 57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his 40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his 40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation. © 2017 The Protein Society.

  11. INTRARENAL GHRELIN RECEPTOR INHIBITION AMELIORATES ANGIOTENSIN II-DEPENDENT HYPERTENSION IN RATS.

    PubMed

    Kemp, Brandon A; Howell, Nancy L; Padia, Shetal H

    2018-06-20

    The intrarenal ghrelin receptor (GR) is localized to collecting duct (CD) cells where it increases αENaC-dependent sodium reabsorption in rodents. We hypothesized that chronic GR inhibition with intrarenal GR siRNA lowers blood pressure (BP) in Angiotensin II-dependent hypertension via reductions in αENaC-dependent sodium reabsorption. Uninephrectomized Sprague-Dawley rats (N=121) received subcutaneous osmotic pumps for chronic systemic delivery of Angiotensin II or vehicle (5% dextrose in water). Rats also received intrarenal infusion of vehicle, GR siRNA, or scrambled (SCR) siRNA. In rats receiving intrarenal vehicle or intrarenal SCR siRNA, systemic Angiotensin II infusion increased sodium retention and BP on day 1, and BP remained elevated throughout the 5-day study. These rats also demonstrated increased CD GR expression after 5 days of infusion. However, intrarenal GR siRNA infusion prevented Angiotensin II-mediated sodium retention on day 1, induced a continuously negative cumulative sodium balance compared with Angiotensin II alone, and reduced BP chronically. Glomerular filtration rate and renal blood flow remained unchanged in GR siRNA-infused rats. Systemic Angiotensin II infusion also increased serum aldosterone levels, CD αENaC and pSGK1 expression in rats with intrarenal SCR siRNA; however these effects were not observed in the presence of intrarenal GR siRNA, despite exposure to the same systemic Angiotensin II. These data demonstrate that chronic inhibition of intrarenal GR activity significantly reduces αENaC -dependent sodium retention, resulting in a negative cumulative sodium balance, thereby ameliorating Angiotensin II-induced hypertension in rats. Renal GRs represent a novel therapeutic target for the treatment of hypertension and other sodium-retaining states.

  12. Chemokines, their receptors, and transplant outcome.

    PubMed

    Colvin, Bridget L; Thomson, Angus W

    2002-07-27

    Organ transplant rejection is mediated largely by circulating peripheral leukocytes induced to infiltrate the graft by various inflammatory stimuli. Of these, chemotactic cytokines called chemokines, expressed by inflamed graft tissues, as well as by early innate-responding leukocytes that infiltrate the graft, are responsible for the recruitment of alloreactive leukocytes. This report discusses the impact of these leukocyte-directing proteins on transplant outcome and novel therapeutic approaches for antirejection therapy based on targeting of chemokines and/or their receptors.

  13. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    PubMed

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  14. Regulation of Inflammatory Chemokine Receptors on Blood T Cells Associated to the Circulating Versus Liver Chemokines in Dengue Fever

    PubMed Central

    Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C.; Alves, Ada M. B.; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44HIGH and CD127LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines

  15. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  16. Suppressor of cytokine signalling (SOCS) 1 and 3 enhance cell adhesion and inhibit migration towards the chemokine eotaxin/CCL11.

    PubMed

    Stevenson, Nigel J; McFarlane, Cheryl; Ong, Seow Theng; Nahlik, Krystyna; Kelvin, Alyson; Addley, Mark R; Long, Aideen; Greaves, David R; O'Farrelly, Cliona; Johnston, James A

    2010-11-05

    Suppressors of cytokine signalling (SOCS) proteins regulate signal transduction, but their role in responses to chemokines remains poorly understood. We report that cells expressing SOCS1 and 3 exhibit enhanced adhesion and reduced migration towards the chemokine CCL11. Focal adhesion kinase (FAK) and the GTPase RhoA, control cell adhesion and migration and we show the presence of SOCS1 or 3 regulates expression and tyrosine phosphorylation of FAK, while also enhancing activation of RhoA. Our novel findings suggest that SOCS1 and 3 may control chemotaxis and adhesion by significantly enhancing both FAK and RhoA activity, thus localizing immune cells to the site of allergic inflammation. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.

    PubMed

    Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y

    2000-04-04

    The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.

  18. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2.

    PubMed

    Qin, Chen-Jie; Zhao, Ling-Hao; Zhou, Xu; Zhang, Hui-Lu; Wen, Wen; Tang, Liang; Zeng, Min; Wang, Ming-Da; Fu, Gong-Bo; Huang, Shuai; Huang, Wei-Jian; Yang, Yuan; Bao, Zhi-Jun; Zhou, Wei-Ping; Wang, Hong-Yang; Yan, He-Xin

    2018-04-28

    Obesity is a major risk factor for hepatocellular carcinoma (HCC) and is typically accompanied by higher levels of serum dipeptidyl peptidase 4 (DPP4). However, the role of DPP4 in obesity-promoted HCC is unclear. Here, we found that consumption of a high-fat diet (HFD) promoted HCC cell proliferation and metastasis and led to poor survival in a carcinogen-induced model of HCC in rats. Notably, genetic ablation of DPP4 or treatment with a DPP4 inhibitor (vildagliptin) prevented HFD-induced HCC. Moreover, HFD-induced DPP4 activity facilitated angiogenesis and cancer cell metastasis in vitro and in vivo, and vildagliptin prevented tumor progression by mediating the pro-angiogenic role of chemokine ligand 2 (CCL2). Loss of DPP4 effectively reversed HFD-induced CCL2 production and angiogenesis, indicating that the DPP4/CCL2/angiogenesis cascade had key roles in HFD-associated HCC progression. Furthermore, concomitant changes in serum DPP4 and CCL2 were observed in 210 patients with HCC, and high serum DPP4 activity was associated with poor clinical prognosis. These results revealed a link between obesity-related high serum DPP4 activity and HCC progression. Inhibition of DPP4 may represent a novel therapeutic intervention for patients with HCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Inhibition of Angiotensin-II Production Increases Susceptibility to Acute Ischemia/Reperfusion Arrhythmia

    PubMed Central

    Taskin, Eylem; Tuncer, Kadir Ali; Guven, Celal; Kaya, Salih Tunc; Dursun, Nurcan

    2016-01-01

    Background Myocardial ischemia and reperfusion lead to impairment of electrolyte balance and, eventually, lethal arrhythmias. The aim of this study was to investigate the effects of pharmacological inhibition of angiotensin-II (Ang-II) production on heart tissue with ischemia-reperfusion damage, arrhythmia, and oxidative stress. Material/Methods Rats were divided into 4 groups: only ischemia/reperfusion (MI/R), captopril (CAP), aliskiren (AL), and CAP+AL. The drugs were given by gavage 30 min before anesthesia. Blood pressure and electrocardiography (ECG) were recorded during MI/R procedures. The heart tissue and plasma was kept so as to evaluate the total oxidant (TOS), antioxidant status (TAS), and creatine kinase-MB (CK-MB). Results Creatine kinase-MB was not different among the groups. Although TAS was not affected by inhibition of Ang-II production, TOS was significantly lower in the CAP and/or AL groups than in the MI/R group. Furthermore, oxidative stress index was significantly attenuated in the CAP and/or AL groups. Captopril significantly increased the duration of VT during ischemia; however, it did not have any effect on the incidence of arrhythmias. During reperfusion periods, aliskiren and its combinations with captopril significantly reduced the incidence of other types of arrhythmias. Captopril alone had no effect on the incidence of arrhythmias, but significantly increased arrhythmias score and durations of arrhythmias during reperfusion. MAP and heart rate did not show changes in any groups during ischemic and reperfusion periods. Conclusions Angiotensin-II production appears to be associated with elevated levels of reactive oxygen species, but Ang-II inhibitions increases arrhythmia, mainly by initiating ventricular ectopic beats. PMID:27889788

  20. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  1. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  2. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II).

    PubMed

    Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin

    2017-06-16

    Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC 50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.

  3. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    PubMed

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. [Evaluation of chemokines in tears of patients with infectious keratitis].

    PubMed

    Hori, Shinsuke; Shoji, Jun; Inada, Noriko; Sawa, Mitsuru

    2013-02-01

    To investigate the chemokine profile in tears of patients with infectious keratitis. Subjects were 32 eyes of 16 patients with infectious keratitis and 5 eyes of 5 healthy volunteers as a control. The patients with infectious keratitis were classified into two groups of eyes: 10 with bacterial keratitis and 6 with Acanthamoeba keratitis. Tear fluid was obtained from both eyes of the patients with infectious keratitis and from the right eyes of the control subjects using filter paper. Chemokine concentration (unit: Odu/mm2) and its profile in tears was analyzed using an antibody-array. In terms of chemokine profile in the bacterial keratitis group, the expression volume of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in the diseased eyes was significantly higher than in the healthy eyes (p < 0.05). The expression volume of mucosae-associated epithelial chemokines (MECs) in the diseased eyes of the bacterial keratitis group was significantly lower than in the healthy eyes of that group (p < 0.05). In the Acanthamoeba keratitis group, chemokines were not significantly increased in the diseased eyes compared with those in the healthy eyes. However, MCP-1 was increased in tears of the Acanthamoeba keratitis group. Regarding the chemokine ratio, the IL-8/MEC ratio in the diseased eyes of the Pseudomonas keratitis group and the MCP-1/IL-8 in the diseased eyes of the Acanthamoeba keratitis group showed a significantly high level (p < 0.05). We concluded that the analyses of the chemokine profile and chemokine ratio in the tears of infectious keratitis patients is useful as a clinical tear laboratory test to interpret the pathologic condition of infectious keratitis

  5. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  6. Bilirubin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro.

    PubMed

    Churn, S B; DeLorenzo, R J; Shapiro, S M

    1995-12-01

    Excessive bilirubin levels in newborn infants result in long-term neurologic deficits that remain after bilirubin levels return to normal. Much of the observed neurologic deficits can be attributed to bilirubin-induced, delayed neuronal cell death. Inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II) activity that precedes cell death is observed in conditions such as seizure activity, stroke, and glutamate excitotoxicity. Because neonatal bilirubin exposure results in neuronal loss in developing brain systems, we tested whether bilirubin exposure would induce an immediate inhibition of CaM activity, in vitro. P-81 filtration assay of basal and calcium-stimulated kinase activity was performed under standard kinase assay conditions. Bilirubin and/or albumin was added to the reaction vessels to determine the effect of these agents on kinase activity. Bilirubin exposure resulted in a concentration-dependent inhibition of CaM kinase II activity (IC50 = 16.78 microM). At concentrations above 50 microM, bilirubin exposure resulted in a 71 +/- 8% (mean +/- SD) inhibition of kinase activity (p < 0.001, t test, n = 10). Bilirubin exposure did not result in kinase inhibition if excessive bilirubin was removed by albumin binding before stimulation of kinase activity (106.9 +/- 9.6% control activity, n = 5). However, removal of bilirubin by binding with albumin after calcium addition did not restore kinase activity. (36.1 +/- 3.8% control activity, n = 5). Thus, once inhibition was observed, the activity could not be restored by addition of albumin. The data suggest that bilirubin exposure resulted in a calcium-dependent inhibition of CaM kinase II activity that, once induced, was not reversible by removing bilirubin by the addition of albumin. Because inhibition of CaM kinase II activity has been correlated with delayed neuronal cell death in many neuropathologic conditions, bilirubin-induced inhibition of this enzyme may be a cellular mechanism by which

  7. Structure-function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites.

    PubMed

    Tournamille, Christophe; Filipe, Anne; Wasniowska, Kazimiera; Gane, Pierre; Lisowska, Elwira; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2003-09-01

    The Duffy antigen/receptor for chemokines (DARC), a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group, acts as a widely expressed promiscuous chemokine receptor. In a structure-function study, we analysed the binding of chemokines and anti-Fy monoclonal antibodies (mAbs) to K562 cells expressing 39 mutant forms of DARC with alanine substitutions spread out on the four extracellular domains (ECDs). Using synthetic peptides, we defined previously the Fy6 epitope (22-FEDVW-26), and we characterized the Fya epitope as the linear sequence 41-YGANLE-46. In agreement with these results, mutations of F22-E23, V25 and Y41, G42, N44, L45 on ECD1 abolished the binding of anti-Fy6 and anti-Fya mAbs to K562 cells respectively, Anti-Fy3 binding was abolished by D58-D59 (ECD1), R124 (ECD2), D263 and D283 (ECD4) substitutions. Mutations of C51 (ECD1), C129 (ECD2), C195 (ECD3) and C276 (ECD4 severely reduced anti-Fy3 and CXC-chemokine ligand 8 (CXCL-8) binding. CXCL-8 binding was also abrogated by mutations of F22-E23, P50 (ECD1) and D263, R267, D283 (ECD4). These results defined the Fya epitope and suggested that (1) two disulphide bridges are involved in the creation of an active chemokine binding pocket; (2) a limited number of amino acids in ECDs 1-4 participate in CXCL-8 binding; and (3) Fy3 is a conformation-dependent epitope involving all ECDs. We also showed that N-glycosylation of DARC occurred on N16SS and did not influence antibody and chemokine binding.

  8. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  9. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    PubMed

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  10. LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages.

    PubMed

    Bandow, Kenjiro; Kusuyama, Joji; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2012-05-21

    LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-?B, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88(-/-) and cot/tpl2(-/-) macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. S100 chemokines mediate bookmarking of premetastatic niches

    PubMed Central

    Rafii, Shahin; Lyden, David

    2010-01-01

    Primary tumours release soluble factors, including VEGF-A, TGFβ and TNFα, which induce expression of the chemokines S100A8 and S100A9 in the myeloid and endothelial cells within the lung before tumour metastasis. These chemokine-activated premetastatic niches support adhesion and invasion of disseminating malignant cells, thereby establishing a fertile habitat for metastatic tumours. PMID:17139281

  12. Structural basis of ligand interaction with atypical chemokine receptor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally drivenmore » models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.« less

  13. An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium.

    PubMed

    Rump, Lisa; Mattey, Derek L; Kehoe, Oksana; Middleton, Jim

    2017-09-01

    Rheumatoid arthritis (RA) is a destructive and chronic autoimmune inflammatory disease. Synovial inflammation is a major feature of RA and is associated with leukocyte recruitment. Leukocytes cross the endothelial cells (ECs) into the synovial tissue and fluid and this migration is mediated via a range of chemokines and adhesion molecules on the ECs. As important mediators of leukocyte extravasation, a number of chemokines from each of the chemokine families have been established as expressed in the RA joint. However, as little information is available on which chemokines are expressed/presented by the ECs themselves, the purpose of the study was to ascertain which of the CC chemokines were localised in RA ECs. Immunofluoresence was used to assess the presence of the CC-family chemokines in RA synovial ECs using von-Willebrand factor (VWF) as a pan-endothelial marker and a range of human chemokine antibodies. The percentage of VWF positive vessels which were positive for the chemokines was determined. The presence of the four most highly expressed novel chemokines were further investigated in non-RA synovial ECs and the sera and synovial fluid (SF) from patients with RA and osteoarthritis (OA). Statistical analysis of immunofluorescence data was carried out by Student's t-test. For analysis of ELISA data, Kruskal-Wallis ANOVA followed by Dunn's multiple comparison test was utilised to analyse differences in sera and SF levels for each chemokine between RA and OA. Spearman rank correlations of sera and SF chemokine levels with a range of clinical variables were also performed. Chemokine detection varied, the least abundant being CCL27 which was present in 8.3% of RA blood vessels and the most abundant being CCL19 which was present in 80%. Of the 26 chemokines studied, 19 have not been previously observed in RA ECs. Four of these novel chemokines, namely CCL7, CCL14, CCL16 and CCL22 were present on ≥60% of vessels. CCL14 and CCL22 were shown to be increased in RA

  14. Regulation of Hepatic Cholesteryl Ester Transfer Protein Expression and Reverse Cholesterol Transport by Inhibition of DNA Topoisomerase II.

    PubMed

    Liu, Mengyang; Chen, Yuanli; Zhang, Ling; Wang, Qixue; Ma, Xingzhe; Li, Xiaoju; Xiang, Rong; Zhu, Yan; Qin, Shucun; Yu, Yang; Jiang, Xian-cheng; Duan, Yajun; Han, Jihong

    2015-06-05

    Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/β nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    PubMed

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number

  16. Inhibition of Angiotensin II-Induced Cardiac Fibrosis by Atorvastatin in Adiponectin Knockout Mice.

    PubMed

    Choi, Sun Young; Park, Jong Sung; Roh, Mee Sook; Kim, Chong-Rak; Kim, Moo Hyun; Serebruany, Victor

    2017-05-01

    Adiponectin is a polypeptide known to inhibit cardiac fibrosis via the activation of ‎adenosine monophosphate-activated protein kinase (AMPK). Statins can also activate AMPK, resulting in the secretion of adiponectin. We determined whether atorvastatin inhibits angiotensin II-induced cardiac fibrosis (AICF) in the presence or absence of adiponectin. Adiponectin knockout (APN-KO, n = 44) and wild type (WT, n = 44) mice were received subcutaneous angiotensin II (1.5 mg/kg/day), and atorvastatin (10 mg/kg/day) was administered orally for 15 days. The mRNA expression levels of collagen type I and III, as well as AMPK phosphorylation levels in cardiac tissue were then measured. In the APN-KO mice, collagen type I (p < 0.001) and type III (p = 0.001) expression was significantly greater when treated with angiotensin II, while their expression was significantly reduced in the presence of angiotensin II and atorvastatin. Relative AMPK phosphorylation levels in APN-KO mice were also significantly higher in the angiotensin II + atorvastatin group when compared with angiotensin II group alone. We conclude that atorvastatin attenuates AICF independently from adiponectin by activating AMPK. These data suggest potential cardioprotection beyond lipid modulation potentially supporting statin pleiotropic hypothesis.

  17. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells.

    PubMed

    Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P

    2017-07-01

    Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

  18. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions. Published by Elsevier Inc.

  19. Duffy Antigen Receptor for Chemokine (DARC) Polymorphisms and Its Involvement in Acquisition of Inhibitory Anti-Duffy Binding Protein II (DBPII) Immunity

    PubMed Central

    Santos-Alves, Jessica R.; Tang, Michaelis Loren; Sanchez, Bruno A. M.; Sousa, Tais N.; Fontes, Cor J. F.; Nogueira, Paulo A.; Rocha, Roberto S.; Brito, Cristiana F. A.; Adams, John H.; Kano, Flora S.; Carvalho, Luzia H.

    2014-01-01

    The Plasmodium vivax Duffy binding protein (PvDBP) and its erythrocytic receptor, the Duffy antigen receptor for chemokines (DARC), are involved in the major P. vivax erythrocyte invasion pathway. An open cohort study to analyze DARC genotypes and their relationship to PvDBP immune responses was carried out in 620 volunteers in an agricultural settlement of the Brazilian Amazon. Three cross-sectional surveys were conducted at 6-month intervals, comprising 395, 410, and 407 subjects, respectively. The incidence rates of P. vivax infection was 2.32 malaria episodes per 100 person-months under survey (95% confidence interval [CI] of 1.92-2.80/100 person-month) and, of P. falciparum, 0.04 per 100 person-months (95% CI of 0.007–0.14/100 person-month). The distribution of DARC genotypes was consistent with the heterogeneous ethnic origins of the Amazon population, with a predominance of non-silent DARC alleles: FY*A > FY*B. The 12-month follow-up study demonstrated no association between DARC genotypes and total IgG antibodies as measured by ELISA targeting PvDBP (region II, DBPII or regions II–IV, DBPII-IV). The naturally acquired DBPII specific binding inhibitory antibodies (BIAbs) tended to be more frequent in heterozygous individuals carrying a DARC-silent allele (FY*BES). These results provide evidence that DARC polymorphisms may influence the naturally acquired inhibitory anti-Duffy binding protein II immunity. PMID:24710306

  20. Evidence for chemokine synergy during neutrophil migration in ARDS

    PubMed Central

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. PMID:27496101

  1. Differential chemokine responses in the murine brain following lyssavirus infection.

    PubMed

    Hicks, D J; Núñez, A; Banyard, A C; Williams, A; Ortiz-Pelaez, A; Fooks, A R; Johnson, N

    2013-11-01

    The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

    PubMed

    Pereira, L A; van der Knaap, J A; van den Boom, V; van den Heuvel, F A; Timmers, H T

    2001-11-01

    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.

  3. Interferon-γ regulates chemokine expression and release in the human mast cell line HMC1: role of nitric oxide

    PubMed Central

    Gilchrist, M; Befus, A D

    2008-01-01

    Mast cells (MCs) are critical immune effector cells that release cytokines and chemokines involved in both homeostasis and disease. Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates multiple cellular activities. IFN-γ modulates rodent MC responsiveness via production of nitric oxide (NO), although the effects in human MC populations is unknown. We sought to investigate the effects of IFN-γ on expression of the chemokines interleukin-8 (IL-8) and CCL1 (I-309) in a human mast cell line (HMC1) and to determine the underlying regulatory mechanism. Nitric oxide synthase (NOS), IL-8 and CCL1 expression was determined using real-time polymerase chain reaction (PCR). NOS protein expression was analysed using western blot. NOS activity was determined using the citrulline assay. IL-8 and CCL1 release was measured by specific enzyme-linked immunosorbent assay (ELISA). IFN-γ inhibited phorbol 12-myristate 13-acetate (PMA)-induced release of IL-8 and CCL1 (by 47 and 38%). Real-time PCR analysis of IFN-γ-treated HMC1 showed a significant (P < 0·05) time-dependent increase in NOS1 and NOS3 mRNA. NOS3 protein was significantly increased at 18 hr, which correlated with a significant (P < 0·05) increase in constitutive NOS (cNOS) activity. IFN-γ-induced inhibition of chemokine expression and release was NO dependent, as treatment with the NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) reduced the IFN-γ inhibitory effect on IL-8 and CCL1 mRNA expression. NO donors mimicked the IFN-γ effect. IFN-γ inhibited PMA-induced cAMP response element binding protein (CREB) phosphorylation and DNA-binding activity. Our observations indicate for the first time that IFN-γ enhances endogenous NO formation through NOS3 activity, and that NO regulates the transcription and release of IL-8 and CCL1 in a human MC line. PMID:17662042

  4. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy

    PubMed Central

    Nagarsheth, Nisha; Wicha, Max S.; Zou, Weiping

    2017-01-01

    The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer. PMID:28555670

  5. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice.

    PubMed

    Martorell, Sara; Hueso, Luisa; Gonzalez-Navarro, Herminia; Collado, Aida; Sanz, Maria-Jesus; Piqueras, Laura

    2016-08-01

    Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression. © 2016 American

  6. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel

    PubMed Central

    Wilson, Parker C.; Fitzgibbon, Wayne R.; Garrett, Sara M.; Jaffa, Ayad A.; Luttrell, Louis M.; Brands, Michael W.

    2015-01-01

    Angiotensin II (AngII) plays a critical role in the regulation of vascular tone and blood pressure mainly via regulation of Ca2+ mobilization. Several reports have implicated sphingosine kinase 1 (SK1)/sphingosine 1-phosphate (S1P) in the mobilization of intracellular Ca2+ through a yet-undefined mechanism. Here we demonstrate that AngII-induces biphasic calcium entry in vascular smooth muscle cells, consisting of an immediate peak due to inositol tris-phosphate-dependent release of intracellular calcium, followed by a sustained transmembrane Ca2+ influx through store-operated calcium channels (SOCs). Inhibition of SK1 attenuates the second phase of transmembrane Ca2+ influx, suggesting a role for SK1 in AngII-dependent activation of SOC. Intracellular S1P triggers SOC-dependent Ca2+ influx independent of S1P receptors, whereas external application of S1P stimulated S1P receptor-dependent Ca2+ influx that is insensitive to inhibitors of SOCs, suggesting that the SK1/S1P axis regulates store-operated calcium entry via intracellular rather than extracellular actions. Genetic deletion of SK1 significantly inhibits both the acute hypertensive response to AngII in anaesthetized SK1 knockout mice and the sustained hypertensive response to continuous infusion of AngII in conscious animals. Collectively these data implicate SK1 as the missing link that connects the angiotensin AT1A receptor to transmembrane Ca2+ influx and identify SOCs as a potential intracellular target for SK1. PMID:25871850

  7. Evidence for chemokine synergy during neutrophil migration in ARDS.

    PubMed

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Role of CXC group chemokines in lung cancer development and progression.

    PubMed

    Spaks, Artjoms

    2017-04-01

    Clinical and translational research on lung cancer patients undergoing surgical treatment can provide valuable scientific data and unique opportunity to study tumor microenvironment. CXC chemokines, which are members of a big family of cytokines, are undoubtedly involved in tumor growth regulation and metastasizing pathways. For better understanding of CXC chemokine involvement in the process of carcinogenesis we have studied the cohort of early stage non-small cell lung cancer patients undergoing surgery with curative intent. Our aim was to assess CXC chemokine ligand (CXCL) levels in patient blood samples representing systemic circulation and tumor microenvironment; assess CXC chemokine receptor (CXCR) expression in tumor tissue; and measure tumor infiltrating immune cell subpopulations. A total of 54 patients with NSCLC had radical lung resection were enrolled in a single center prospective study and were followed-up annually for up to six years. During surgical procedure peripheral and tumor draining blood samples were taken. CXCL1, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11 and CXCL12 levels were determined by ELISA, and chemokine concentration gradient was calculated. Tumor infiltrating immune cells (T helper cells, T cytotoxic cells, macrophages, B cells, plasma cells) and expression of CXCR1, CXCR2, CXCR3 and CXCR4 in tumor tissue were assessed by immunohistochemistry. Statistically significant decrease in chemokine concentration was found for CXCL4 (P=0.002) and CXCL5 (P=0.011), and statistically significant concentration increase was found for CXCL7 (P=0.001) in total cohort. We have found statistically significant CXC chemokine concentration change for majority of chemokines-CXCL1 (P=0.002), CXCL4 (P=0.001), CXCL5 (P=0.013), CXCL7 (P=0.036), CXCL8 (P=0.026), CXCL9 (P=0.034) and CXCL10 (P=0.032) in a group of patients who had good clinical result after surgery with no evidence of relapse, on the other hand patients with cancer recurrence

  9. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis.

    PubMed

    Inomata, Minoru; Kamio, Koichiro; Azuma, Arata; Matsuda, Kuniko; Kokuho, Nariaki; Miura, Yukiko; Hayashi, Hiroki; Nei, Takahito; Fujita, Kazue; Saito, Yoshinobu; Gemma, Akihiko

    2014-02-08

    Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly

  10. The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization*

    PubMed Central

    Gilliland, C. Taylor; Salanga, Catherina L.; Kawamura, Tetsuya; Trejo, JoAnn; Handel, Tracy M.

    2013-01-01

    Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation. PMID:24056371

  11. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    PubMed

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    PubMed

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  13. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn; Zhang, Dong-Mei; Yu, Xiao-Jing

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiacmore » atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  14. Chemokine RANTES in atopic dermatitis.

    PubMed

    Glück, J; Rogala, B

    1999-01-01

    Chemokines play a key role in inflammatory diseases. The aim of this study was to estimate chemokine RANTES in the sera of patients with atopic dermatitis (AD) and to analyze the correlation between RANTES serum level and the immunological and clinical parameters of the disease. Serum levels of RANTES (ELISA; R&D Systems), total IgE and specific IgE (FEIA; Pharmacia CAP System) were estimated in 24 patients with AD, 28 patients with pollinosis (PL) and 22 healthy nonatopic subjects (HC). The division of the AD group into a pure AD (pAD) subgroup, without a coexisting respiratory allergy, and a subgroup of patients with AD and a respiratory allergy (AD+AO) was done according to Wütrich. Levels of RANTES were higher in the AD group than in the HC group and the PL group. RANTES levels did not differ among subgroups with various clinical scores and between the pAD and AD+AO subgroups. There were no correlations between levels of RANTES and total IgE. Significant positive correlations between serum levels of RANTES and Dermatophagoides farinae and cat dander-specific IgE were found in the AD group. We conclude that the serum level of chemokine RANTES differs patients with AD from patients with PL. The increase of RANTES concentration in the serum of patients with AD depends neither on a clinical picture nor an IgE system.

  15. Chemokine CCR3 ligands-binding peptides derived from a random phage-epitope library.

    PubMed

    Houimel, Mehdi; Mazzucchelli, Luca

    2013-01-01

    Eosinophils are major effectors cells implicated in a number of chronic inflammatory diseases in humans, particularly bronchial asthma and allergic rhinitis. The human chemokine receptor C-C receptor 3 (hCCR3) provides a mechanism for the recruitment of eosinophils into tissue and thus has recently become an attractive biological target for therapeutic intervention. In order to develop peptides antagonists of hCCR3-hCCL11 (human eotaxin) interactions, a random bacteriophage hexapeptide library was used to map structural features of hCCR3 by determining the epitopes of neutralizing anti-hCCR3 mAb 7B11. This mAb t is selective for hCCR3 and exhibit potent antagonist activity in receptor binding and functional assays. After three rounds of biopanning, four mAb7B11-binding peptides were identified from a 6-mer linear peptide library. The phage bearing the peptides showed specific binding to immobilized mAb 7B11 with over 94% of phages bound being competitively inhibited by free synthetic peptides. In FACScan analysis all selected phage peptides were able to strongly inhibit the binding of mAb 7B11 to hCCR3-transfected preB-300-19 murine cells. Furthermore, synthetic peptides of the corresponding phage epitopes were effective in blocking the antibody-hCCR3 interactions and to inhibit the binding of hCCL11 to hCCR3 transfectants. Chemically synthesized peptides CKGERF, FERKGK, SSMKVK and RHVSSQ, effectively competed for (125)I-hCCL11 binding to hCCR3 with IC(50) ranging from 3.5 to 9.7μM. Calcium release and chemotaxis of hCCR3 transfectants or human eosinophils were inhibited by all peptides in a dose-dependent manner. Furthermore, they showed inhibitory effects on chemotaxis of human eosinophils induced by hCCL11, hCCL5, hCCL7, hCCL8, and hCCL24. Specificities of all selected peptides were assessed with hCXCR1, hCXCR2, hCXCR3, and hCCR5 receptors. Peptides CKGERF and FERKGK showed inhibitory effects on eosinophil chemotaxis in a murine model of mCCL11-induced

  16. The Atypical Chemokine Receptor ACKR2 is Protective Against Sepsis.

    PubMed

    Castanheira, Fernanda V E Silva; Borges, Vanessa; Sônego, Fabiane; Kanashiro, Alexandre; Donate, Paula B; Melo, Paulo H; Pallas, Kenneth; Russo, Remo C; Amaral, Flávio A; Teixeira, Mauro M; Ramalho, Fernando S; Cunha, Thiago M; Liew, Foo Y; Alves-Filho, José C; Graham, Gerard J; Cunha, Fernando Q

    2018-06-01

    Sepsis is a systemic inflammatory response as a result of uncontrolled infections. Neutrophils are the first cells to reach the primary sites of infection, and chemokines play a key role in recruiting neutrophils. However, in sepsis chemokines could also contribute to neutrophil infiltration to vital organs leading to multiple organ failure. ACKR2 is an atypical chemokine receptor, which can remove and degrade inflammatory CC chemokines. The role of ACK2 in sepsis is unknown. Using a model of cecal ligation and puncture (CLP), we demonstrate here that ACKR2 deficient () mice exhibited a significant reduction in the survival rate compared with similarly treated wild-type (WT) mice. However, neutrophil migration to the peritoneal cavity and bacterial load were similar between WT and ACKR2 mice during CLP. In contrast, ACKR2 mice showed increased neutrophil infiltration and elevated CC chemokine levels in the lung, kidney, and heart compared with the WT mice. In addition, ACKR2 mice also showed more severe lesions in the lung and kidney than those in the WT mice. Consistent with these results, WT mice under nonsevere sepsis (90% survival) had higher expression of ACKR2 in these organs than mice under severe sepsis (no survival). Finally, the lungs from septic patients showed increased number of ACKR2 cells compared with those of nonseptic patients. Our data indicate that ACKR2 may have a protective role during sepsis, and the absence of ACKR2 leads to exacerbated chemokine accumulation, neutrophil infiltration, and damage to vital organs.

  17. Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.

    PubMed

    He, Na; Gong, Qi-Hai; Zhang, Feng; Zhang, Jing-Yi; Lin, Shu-Xian; Hou, Hua-Hua; Wu, Qin; Sun, An-Sheng

    2018-05-01

    To investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms. Cardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca 2+ ] i ) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis. Compared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca 2+ ] i ) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca 2+ ] i concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05). Evo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca 2+ ]i concentration, and inhibition of Ca

  18. Differential activity of pro-angiogenic CXC chemokines

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Eldridge, Lindsey; Wagner, Elizabeth M.

    2010-01-01

    We showed previously in a mouse model of lung ischemia-induced angiogenesis, enhanced expression of the three ELR+ CXC chemokines (KC, LIX, and MIP-2 ) and that blockade of the ligand receptor CXCR2 limited neovascularization. The present study was undertaken to determine the relative abundance and angiogenic potential of the three CXC chemokines and whether RhoA activation explained the measured differences in potencies. We found that LIX showed the greatest absolute amount in the in vivo model 4 hrs after left pulmonary artery obstruction (LIX>KC>MIP-2; p<0.05). In vitro, LIX induced the greatest degree of arterial endothelial cell chemotaxis and KC was without effect. A significant increase (~40%) in active RhoA was observed with both LIX and MIP-2 compared with vehicle control (p<0.05). On average, LIX induced the greatest amount of tube formation within pleural tissue in culture. Thus, the results of the present study suggest that among the three ELR+ CXC chemokines, LIX predominates in eliciting a pro-angiogenic phenotype. PMID:20144627

  19. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    PubMed Central

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  20. Substance P Inhibits the Collagen Synthesis of Rat Myocardial Fibroblasts Induced by Ang II.

    PubMed

    Yang, Zhiyong; Zhang, Xinzhong; Guo, Naipeng; Li, Bin; Zhao, Sheng

    2016-12-16

    BACKGROUND The aim of this study was to explore the regulating effects of Substance P (SP) on the collagen synthesis of rat myocardial fibroblasts (CFBs) induced by angiotensin II (Ang II) and its potential mechanism. MATERIAL AND METHODS The CFBs of a neonatal SD rat were separately cultured and divided into the control group, Ang II treatment group, and treatment groups with different concentrations of SP, Ang II +; each group was given corresponding treatment respectively. RESULTS Ang II successfully induced the collagen synthesis of CFBs. Compared with the control group, the phosphorylation levels of TGF-β, erk, and smad2/3 were higher (p<0.05). Different concentrations of SP had an effect on Ang II-induced CFBs, reduced the collagen synthesis of CFBs, and increased the expressions of SP receptors, accompanied by lowering TGF-β protein, erk protein phosphorylation level, and smad2/3 protein phosphorylation level (p<0.05). Moreover, the higher the concentrations of SP, the more obvious of an effect it exerted. Treating the Ang II + SP group with aprepitant reduced the inhibiting effects of SP on collagen synthesis. The expression changes of collagen I and collagen III detected by immunocytochemistry were exactly in accordance with the results of qPCR and Western blotting. CONCLUSIONS SP can inhibit collagen synthesis of CFBs after Ang II inducing which may adjust the downstream signaling pathways associated protein including TGF-β, erk and smad2/3. SP can block the progress of myocardial fibrosis and is dose dependent, which is expected to be a promising target for the treatment of myocardial fibrosis.

  1. Angiotensin II Inhibits the ROMK-like Small Conductance K Channel in Renal Cortical Collecting Duct during Dietary Potassium Restriction*

    PubMed Central

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M.; Wang, Wen-Hui

    2010-01-01

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction. PMID:17194699

  2. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.

    PubMed

    Wei, Yuan; Zavilowitz, Beth; Satlin, Lisa M; Wang, Wen-Hui

    2007-03-02

    Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.

  3. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

    PubMed

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P; Veldkamp, Christopher T

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis. © 2016 Elsevier Inc. All rights reserved.

  4. Preparation and analysis of N-terminal chemokine receptor sulfopeptides using tyrosylprotein sulfotransferase enzymes

    PubMed Central

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P.; Veldkamp, Christopher T.

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by post-translational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8 and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the liability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods from sulfopeptide analysis. PMID:26921955

  5. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  6. Platelets and their chemokines in atherosclerosis—clinical applications

    PubMed Central

    von Hundelshausen, Philipp; Schmitt, Martin M. N.

    2014-01-01

    The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and

  7. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    PubMed

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  8. Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice.

    PubMed

    Sadler, Katelyn E; Zappia, Katherine J; O'Hara, Crystal L; Langer, Sarah N; Weyer, Andy D; Hillery, Cheryl A; Stucky, Cheryl L

    2018-04-23

    Approximately one third of individuals with sickle cell disease (SCD) develop chronic pain. This debilitating pain is inadequately treated because the underlying mechanisms driving the pain are poorly understood. In addition to persistent pain, SCD patients are also in a tonically pro-inflammatory state. Previous studies have revealed that there are elevated plasma levels of many inflammatory mediators including chemokine (c-c motif) ligand 2 (CCL2) in individuals with SCD. Using a transgenic mouse model of SCD, we investigated the contributions of CCL2 signaling to SCD-related pain. Inhibition of the chemokine receptor 2 (CCR2), but not CCR4, alleviated the behavioral mechanical and cold hypersensitivity in SCD. Further, acute CCR2 blockade reversed both the behavioral and the in vitro responsiveness of sensory neurons to an agonist of TRPV1, a neuronal ion channel previously implicated in SCD pain. These results provide insight into the immune-mediated regulation of hypersensitivity in SCD and could inform future development of analgesics or therapeutic measures to prevent chronic pain.

  9. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells *

    PubMed Central

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-01-01

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [3H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. PMID:27458015

  10. Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES

    PubMed Central

    Wiktor, Maciej; Hartley, Oliver; Grzesiek, Stephan

    2013-01-01

    RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content. PMID:24314089

  11. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts*

    PubMed Central

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W.

    2016-01-01

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4+ but not CD8+ cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. PMID:26699196

  12. Chemokine gene polymorphisms associate with gender in patients with uveitis.

    PubMed

    Chen, Y; Vaughan, R W; Kondeatis, E; Fortune, F; Graham, E M; Stanford, M R; Wallace, G R

    2004-01-01

    Uveitis is an inflammatory condition of ocular tissue characterized by leukocyte infiltration, tissue damage, and decreased visual acuity. Chemokines have been implicated in the pathogenesis of uveitis. Polymorphisms in the genes encoding chemokines have been described as affecting chemokine production or function. We analyzed the frequency of single-nucleotide polymorphisms (SNPs) in genes encoding CCL2 (-2518 and -2076) and CCL5 (-403 and -28) in patients with Behçet's disease (BD), a systemic form of uveitis, and patients with retinal vasculitis (RV), an organ-specific form of disease. We report that there was no association between any SNP and disease. However, when segregated on the basis of gender the CCR5 -403 AA genotype was only found in male patients with BD. Similarly, CCL2 genotypes 1/2 were predominant in males, while genotype 4 was significantly associated with disease in female patients with BD. Differences in disease symptoms and severity between males and females have been described in BD and gender-specific genetic differences in chemokine gene function may be involved.

  13. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils

    PubMed Central

    Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S.

    2018-01-01

    Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)–dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. PMID:29592875

  14. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils.

    PubMed

    Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S; McEver, Rodger P

    2018-04-10

    Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. © 2018 by The American Society of Hematology.

  15. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production.

    PubMed

    Escobar, Pauline; Bouclier, Céline; Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-10-06

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs.

  16. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    PubMed Central

    Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-01-01

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs. PMID:26362269

  17. Dual MAPK inhibition is an effective therapeutic strategy for a subset of class II BRAF mutant melanoma.

    PubMed

    Dankner, Matthew; Lajoie, Mathieu; Moldoveanu, Dan; Nguyen, Tan-Trieu; Savage, Paul; Rajkumar, Shivshankari; Huang, Xiu; Lvova, Maria; Protopopov, Alexei; Vuzman, Dana; Hogg, David; Park, Morag; Guiot, Marie-Christine; Petrecca, Kevin; Mihalcioiu, Catalin; Watson, Ian R; Siegel, Peter M; Rose, April A N

    2018-06-14

    Dual MAPK pathway inhibition (dMAPKi) with BRAF and MEK inhibitors improves survival in BRAF V600E/K mutant melanoma, but the efficacy of dMAPKi in non-V600 BRAF mutant tumors is poorly understood. We sought to characterize the responsiveness of class II (enhanced kinase activity, dimerization dependent) BRAF mutant melanoma to dMAPKi. Tumors from patients with BRAF WT, V600E (class I) and L597S (class II) metastatic melanoma were used to generate patient-derived-xenografts (PDX). We assembled a panel of melanoma cell lines with class IIa (activation segment) or IIb (p-loop) mutations and compared these to wild-type or V600E/K BRAF mutant cells. Cell lines and PDXs were treated with BRAFi (vemurafenib, dabrafenib, encorafenib, LY3009120), MEKi (cobimetinib, trametinib, binimetinib) or the combination. We identified two patients with BRAF L597S metastatic melanoma who were treated with dMAPKi. BRAFi impaired MAPK signalling and cell growth in class I and II BRAF mutant cells. dMAPKi was more effective than either single MAPKi at inhibiting cell growth in all class II BRAF mutant cells tested. dMAPKi caused tumor regression in two melanoma PDXs with class II BRAF mutations, and prolonged survival of mice with class II BRAF mutant melanoma brain metastases. Two patients with BRAF L597S mutant melanoma clinically responded to dMAPKi. Class II BRAF mutant melanoma are growth inhibited by dMAPKi. Responses to dMAPKi have been observed in two patients with class II BRAF mutant melanoma. This data provides rationale for clinical investigation of dMAPKi in patients with class II BRAF mutant metastatic melanoma. Copyright ©2018, American Association for Cancer Research.

  18. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis

    PubMed Central

    2014-01-01

    Background Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Methods Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Results Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs

  19. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    PubMed

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  20. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    PubMed Central

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90–topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death. PMID:16504968

  1. Altered plasma levels of chemokines in autism and their association with social behaviors.

    PubMed

    Shen, Yidong; Ou, JInajun; Liu, Mengmeng; Shi, Lijuan; Li, Yamin; Xiao, Lu; Dong, Huixi; Zhang, Fengyu; Xia, Kun; Zhao, Jingping

    2016-10-30

    Autism Spectrum Disorder (ASD) is a group of neurodevelopment disorders with an unclear etiology. Chemokines have been implicated in the etiology and pathogenesis of ASD. The current study investigated the plasma levels of seven chemokines (RANTES, Eotaxin, MIP-1 α, MIP-1 β, MCP-1, IP-10, and MIG) in 42 young autistic patients and 35 age-matched typically developing (TD) children. The study also tested the association between these chemokine levels and social behaviors, as measured by the Social Responsiveness Scale (SRS). Compared to the TD children, RANTES, MIP-1α, and MIP-1β were higher, while IP-10 and MIG were lower in the autistic patients, after correcting for multiple comparisons. Among these seven chemokines, MIP-1α, MIP-1β and IP-10 levels were found to be associated with social behaviors in all the participants. Moreover, MIP-1α and IP-10 were found to be independent predictors of social behaviors. The results of our study support the hypothesis that altered chemokine levels are involved in the pathophysiology of ASD and they indicate that chemokines plasma levels could be potential biomarkers for ASD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Role of CXC group chemokines in lung cancer development and progression

    PubMed Central

    2017-01-01

    Background Clinical and translational research on lung cancer patients undergoing surgical treatment can provide valuable scientific data and unique opportunity to study tumor microenvironment. CXC chemokines, which are members of a big family of cytokines, are undoubtedly involved in tumor growth regulation and metastasizing pathways. For better understanding of CXC chemokine involvement in the process of carcinogenesis we have studied the cohort of early stage non-small cell lung cancer patients undergoing surgery with curative intent. Our aim was to assess CXC chemokine ligand (CXCL) levels in patient blood samples representing systemic circulation and tumor microenvironment; assess CXC chemokine receptor (CXCR) expression in tumor tissue; and measure tumor infiltrating immune cell subpopulations. Methods A total of 54 patients with NSCLC had radical lung resection were enrolled in a single center prospective study and were followed-up annually for up to six years. During surgical procedure peripheral and tumor draining blood samples were taken. CXCL1, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11 and CXCL12 levels were determined by ELISA, and chemokine concentration gradient was calculated. Tumor infiltrating immune cells (T helper cells, T cytotoxic cells, macrophages, B cells, plasma cells) and expression of CXCR1, CXCR2, CXCR3 and CXCR4 in tumor tissue were assessed by immunohistochemistry. Results Statistically significant decrease in chemokine concentration was found for CXCL4 (P=0.002) and CXCL5 (P=0.011), and statistically significant concentration increase was found for CXCL7 (P=0.001) in total cohort. We have found statistically significant CXC chemokine concentration change for majority of chemokines—CXCL1 (P=0.002), CXCL4 (P=0.001), CXCL5 (P=0.013), CXCL7 (P=0.036), CXCL8 (P=0.026), CXCL9 (P=0.034) and CXCL10 (P=0.032) in a group of patients who had good clinical result after surgery with no evidence of relapse, on the other hand

  3. CXCL12 chemokine genotypes as predictive biomarkers of ovarian cancer outcome.

    PubMed

    Coelho, Ana; Pereira, Deolinda; Nogal, Ana; Pinto, Daniela; Catarino, Raquel; Araújo, António; Medeiros, Rui

    2009-01-01

    Ovarian cancer is an aggressive disease with high mortality. The CXCL12 chemokine has been associated with the development of this neoplasia. The aim of this study was to evaluate the genetic influence of the CXCL12-3'A polymorphism as a prognostic/predictive factor in ovarian cancer patients treated with platinum/paclitaxel chemotherapy. The mean survival rates for early stages (I/II) of the disease were statistically different according to patient genotype (96 months for GG and 57 months for A carrier genotypes; p=0.017). The mean progression-free interval was statistically lower in patients with early stages (I/II) of the tumour carrying the A allele (55 months) than in those carrying the GG genotype (91 months; P=0.009). The CXCL12-3'A polymorphism leads to a poorer response to chemotherapy with cisplatin/paclitaxel, and diminishes the mean survival rate and the progression-free interval in patients with ovarian cancer. CXCL12-3'A may therefore serve as an important predictive biomarker for the determination of outcome in ovarian cancer.

  4. Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells.

    PubMed

    Jewett, Anahid; Cacalano, Nicholas A; Head, Christian; Teruel, Antonia

    2006-04-01

    Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.

  5. The expression of cytokines and chemokines in the blood of patients with severe weight loss from anorexia nervosa: an exploratory study.

    PubMed

    Pisetsky, D S; Trace, S E; Brownley, K A; Hamer, R M; Zucker, N L; Roux-Lombard, P; Dayer, J-M; Bulik, C M

    2014-09-01

    Anorexia nervosa (AN) is a serious, potentially life-threatening disorder characterized by severe weight loss, dysregulated eating, and often excessive exercise. While psychiatric illnesses such as depression are associated with increased levels of pro-inflammatory mediators, evidence for such disturbances in patients with AN has been less clear. In an exploratory study of possible disturbances in immune responses in AN, we assayed a panel of cytokines and chemokines in the blood of patients undergoing inpatient treatment, testing the hypothesis that metabolic disturbances in this disease would lead to a pattern of immune disturbances distinct from that of other psychiatric diseases. For this purpose, we evaluated patients by the Beck Depression Inventory-II (BDI-II) and the Eating Disorders Examination-Questionnaire and assessed cytokines and chemokines by enzyme-linked immunosorbent assays. Patients reported a moderate level of depression (mean BDI-II = 22.6) but exhibited few immunologic abnormalities of the kind associated with major depressive disorder [e.g., increased interleukin (IL)-6]; RANTES showed the most frequent elevations and was increased in 4 of the patients studied. Together, these findings suggest that features of AN such as loss of adipose tissue and excessive exercise may attenuate cytokine production and thus modulate the experience of illness that impacts on core features of disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    PubMed

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  7. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer.

    PubMed

    Vandercappellen, Jo; Van Damme, Jo; Struyf, Sofie

    2011-02-01

    Chemokines are chemotactic cytokines which recruit leukocytes to inflammatory sites. They also affect tumor development and metastasis by acting as growth factor, by attracting pro- or anti-tumoral leukocytes or by influencing angiogenesis. Platelet factor-4 (CXCL4/PF-4) was the first chemokine shown to inhibit angiogenesis. CXCL4L1/PF-4var, recently isolated from thrombin-stimulated platelets, differing from authentic CXCL4/PF-4 in three carboxy-terminally located amino acids, was found to be more potent than CXCL4/PF-4 in inhibiting angiogenesis and tumor growth. Both glycosaminoglycans (GAG) and CXCR3 are implicated in the activities of the PF-4 variants. This report reviews the current knowledge on the role of CXCL4/PF-4 and CXCL4L1/PF-4var in physiological and pathological processes. In particular, the role of CXCL4/PF-4 in cancer, heparin-induced thrombocytopenia and atherosclerosis is described. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cytokine and chemokine levels in tears from healthy subjects.

    PubMed

    Carreño, Ester; Enríquez-de-Salamanca, Amalia; Tesón, Marisa; García-Vázquez, Carmen; Stern, Michael E; Whitcup, Scott M; Calonge, Margarita

    2010-11-01

    There is growing evidence for the existence of an 'immune tone' in normal tears. The aim of this study was to determine the levels of a large panel of cytokines and chemokines in tears obtained from healthy subjects. These levels can then serve as baseline values for comparison with patients suffering from ocular surface diseases. Nine healthy subjects participated in this study, and normal ocular surface health was documented by the results of a dry eye questionnaire, Schirmer strip wetting, and vital staining of the cornea. Four microliters of tears were collected from each eye and analysed separately with multiplex bead-based assays for the concentration of 30 cytokines and chemokines. Twenty-five cytokines/chemokines were detected. CCL11/Eotaxin1, GM-CSF, G-CSF, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-10, IL-13, IL-12p70, IL-15, CX3CL1/Fractalkine, TNF-α, epidermal growth factor, and CCL4/MIP-1β were present at 5-100 pg/ml. IL-1β, IL-6, IL-7A, CXCL8/IL-8, and CCL2/MCP-1 were present at 100-400 pg/ml. IL-1Ra, CXCL10/IP-10 and vascular endothelial growth factor were present at more than 1000 pg/ml. Multiplex bead-based assays are convenient for cytokine/chemokine detection in tears. Fracktalkine has been detected in human healthy tears for the first time. The knowledge of cytokine/chemokine concentrations in tears from normal subjects is an important reference for further comparison with patients suffering from ocular surface diseases. Variability in their levels can reflect a phenomenon of potential importance for the understanding of the ocular surface cytokine pattern. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  9. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Yuan, H; Kong, Y

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved

  10. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  11. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

    PubMed Central

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  12. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages.

    PubMed

    Lee, SeungHwan; Zhang, Ji

    2012-08-01

    Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly

  13. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    PubMed

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM).

  14. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells

    PubMed Central

    2011-01-01

    Introduction The aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms. Methods PCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production. Results PCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED50 of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC50 = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1β and IL-6 production in primary monocytes (IC50 = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD2, TNF-α, IL-8 and MCP-1. Conclusions PCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells

  15. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    PubMed

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    PubMed

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  17. Inhibition of GSK-3β Alleviates Collagen II-Induced Rheumatoid Arthritis in Rats.

    PubMed

    Zhou, Haiyan; Liu, Jun; Zeng, Jiashun; Hu, Bailong; Fang, Xiuyi; Li, Long

    2016-03-31

    Glycogen synthase kinase-3β (GSK-3β) inhibitor is a serine/threonine kinase with an inhibitory role in glycogen synthesis, which is essential in inflammatory and immunological diseases. The purpose of our study was to determine if TDZD-8 can alleviate collagen II-induced rheumatoid arthritis in rats. Twenty collagen II-induced rheumatoid arthritis rats were treated with selective GSK-3β inhibitor. The effects of GSK-3β inhibition on collagen II-induced rheumatoid arthritis in the rats were evaluated by paw edema, histological examination of arthritic synovium, radiographic examination of knee joint, and the level of inflammation mediators such as prostaglandin E2, 5-hydroxytryptamin, and histamine. The level of cytokines such as IL-6, IL-12, IL-10, and TNF-α, was examined by Elisa. GSK-3β inhibitor significantly reduced the development of rheumatoid arthritis in rats. The levels of inflammation mediators such as prostaglandin E2, 5-hydroxytryptamin, and histamine were decreased in the TDZD-8 group. Serum levels of IL-6, IL-12, and TNF-α were significantly reduced in the TDZD-8 group compared with the RA group. Treatment with GSK-3β inhibitor suppressed inflammatory response in RA rats. These findings suggest that the inhibition of GSK-3β can be an effective treatment for RA.

  18. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Kuniko; Nomiyama, Hisayuki; Miura, Retsu

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in twomore » regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.« less

  19. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis

    PubMed Central

    2011-01-01

    Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis. PMID:21463523

  20. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    PubMed

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  1. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    PubMed Central

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  2. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.

    PubMed

    Shi, Fengqiang; Zhang, Peifeng; Mao, Yujia; Wang, Can; Zheng, Meiqing; Zhao, Zhongwei

    2017-01-29

    In vivo physiological ligand citrate can bind iron(II) ions to form the iron(II)-citrate complex. Inhibition of hydroxyl radical (OH) production from the Fenton-like reaction of iron(II)-citrate with H 2 O 2 is biologically important, as this reaction may account for one of the mechanisms of the labile iron pool in vivo to induce oxidative stress and pathological conditions. Nitroxides have promising potentials as therapeutic antioxidants. However, there are controversial findings indicating that they not only act as antioxidants but also as pro-oxidants when engaged in Fenton reactions. Although the underlying mechanisms are proposed to be the inhibition or enhancement of the OH production by nitroxides, the proposed elucidations are only based on assessing biological damages and not demonstrated directly by measuring the OH production in the presence of nitroxides. In this study, therefore, we employed EPR and fluorescence spectroscopies to show direct evidence that nitroxide 2,2,6,6-tetramethyl-piperidine-1-oxyl (Tempo) inhibited OH production from the Fenton-like reaction of iron(II)-citrate with H 2 O 2 by up to 90%. We also demonstrated spectrophotometrically, for the first time, that this inhibition was due to oxidation of the iron(II)-citrate by Tempo with a stoichiometry of Tempo:Iron(III)-citrate = 1.1:1.0. A scheme was proposed to illustrate the roles of nitroxides engaged in Fenton/Fenton-like reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhuo; Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013; Wang, Hao

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, andmore » immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.« less

  4. Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV.

    PubMed

    Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2011-08-05

    The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.

  5. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. Tobacco smoke induces production of chemokine CCL20 to promote lung cancer.

    PubMed

    Wang, Gui-Zhen; Cheng, Xin; Li, Xin-Chun; Liu, Yong-Qiang; Wang, Xian-Quan; Shi, Xu; Wang, Zai-Yong; Guo, Yong-Qing; Wen, Zhe-Sheng; Huang, Yun-Chao; Zhou, Guang-Biao

    2015-07-10

    Tobacco kills nearly 6 million people each year, and 90% of the annual 1.59 million lung cancer deaths worldwide are caused by cigarette smoke. Clinically, a long latency is required for individuals to develop lung cancer since they were first exposed to smoking. In this study, we aimed to identify clinical relevant inflammatory factors that are critical for carcinogenesis by treating normal human lung epithelial cells with tobacco carcinogen nicotine-derived nitrosaminoketone (NNK) for a long period (60 days) and systematic screening in 84 cytokines/chemokines. We found that a chemokine CCL20 was significantly up-regulated by NNK, and in 78/173 (45.1%) patients the expression of CCL20 was higher in tumor samples than their adjacent normal lung tissues. Interestingly, CCL20 was up-regulated in 48/92 (52.2%) smoker and 29/78 (37.2%) nonsmoker patients (p = 0.05), and high CCL20 was associated with poor prognosis. NNK induced the production of CCL20, which promoted lung cancer cell proliferation and migration. In addition, an anti-inflammation drug, dexamethasone, inhibited NNK-induced CCL20 production and suppressed lung cancer in vitro and in vivo. These results indicate that CCL20 is crucial for tobacco smoke-caused lung cancer, and anti-CCL20 could be a rational approach to fight against this deadly disease. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*

    PubMed Central

    2016-01-01

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273

  8. Neutrophil-derived chemokines on the road to immunity.

    PubMed

    Tecchio, Cristina; Cassatella, Marco A

    2016-04-01

    During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations. Copyright © 2016. Published by Elsevier Ltd.

  9. Involvement of chemokine receptors in breast cancer metastasis

    NASA Astrophysics Data System (ADS)

    Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert

    2001-03-01

    Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

  10. Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells.

    PubMed

    Morandi, Fabio; Ferretti, Elisa; Castriconi, Roberta; Dondero, Alessandra; Petretto, Andrea; Bottino, Cristina; Pistoia, Vito

    2011-11-24

    Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.

  11. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    PubMed

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  12. CXCR3 chemokine ligands during respiratory viral infections predict lung allograft dysfunction.

    PubMed

    Weigt, S S; Derhovanessian, A; Liao, E; Hu, S; Gregson, A L; Kubak, B M; Saggar, R; Saggar, R; Plachevskiy, V; Fishbein, M C; Lynch, J P; Ardehali, A; Ross, D J; Wang, H-J; Elashoff, R M; Belperio, J A

    2012-02-01

    Community-acquired respiratory viruses (CARV) can accelerate the development of lung allograft dysfunction, but the immunologic mechanisms are poorly understood. The chemokine receptor CXCR3 and its chemokine ligands, CXCL9, CXCL10 and CXCL11 have roles in the immune response to viruses and in the pathogenesis of bronchiolitis obliterans syndrome, the predominant manifestation of chronic lung allograft rejection. We explored the impact of CARV infection on CXCR3/ligand biology and explored the use of CXCR3 chemokines as biomarkers for subsequent lung allograft dysfunction. Seventeen lung transplant recipients with CARV infection had bronchoalveolar lavage fluid (BALF) available for analysis. For comparison, we included 34 BALF specimens (2 for each CARV case) that were negative for infection and collected at a duration posttransplant similar to a CARV case. The concentration of each CXCR3 chemokine was increased during CARV infection. Among CARV infected patients, a high BALF concentration of either CXCL10 or CXCL11 was predictive of a greater decline in forced expiratory volume in 1 s, 6 months later. CXCR3 chemokine concentrations provide prognostic information and this may have important implications for the development of novel treatment strategies to modify outcomes after CARV infection. © 2011 American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Chemokine Ligand 5 (CCL5) and chemokine receptor (CCR5) genetic variants and prostate cancer risk among men of African Descent: a case-control study

    PubMed Central

    2012-01-01

    Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs) are associated with various cancers, their impact on prostate cancer (PCA) among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls) using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA) and rs3817655 (AA, AG, AG+AA) genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655) and CCR5 (rs1799988) sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent. PMID:23168091

  14. Suppression of lipopolysaccharide-stimulated cytokine/chemokine production in skin cells by sandalwood oils and purified α-santalol and β-santalol.

    PubMed

    Sharma, M; Levenson, C; Bell, R H; Anderson, S A; Hudson, J B; Collins, C C; Cox, M E

    2014-06-01

    Medicinally, sandalwood oil (SO) has been attributed with antiinflammatory properties; however, mechanism(s) for this activity have not been elucidated. To examine how SOs affect inflammation, cytokine antibody arrays and enzyme-linked immunosorbent assays were used to assess changes in production of cytokines and chemokines by co-cultured human dermal fibroblasts and neo-epidermal keratinocytes exposed to lipopolysaccharides and SOs from Western Australian and East Indian sandalwood trees or to the primary SO components, α-santalol and β-santalol. Lipopolysaccharides stimulated the release of 26 cytokines and chemokines, 20 of which were substantially suppressed by simultaneous exposure to either of the two sandalwood essential oils and to ibuprofen. The increased activity of East Indian SO correlated with increased santalol concentrations. Purified α-santalol and β-santalol equivalently suppressed production of five indicator cytokines/chemokines at concentrations proportional to the santalol concentrations of the oils. Purified α-santalol and β-santalol also suppressed lipopolysaccharide-induced production of the arachidonic acid metabolites, prostaglandin E2, and thromboxane B2, by the skin cell co-cultures. The ability of SOs to mimic ibuprofen non-steroidal antiinflammatory drugs that act by inhibiting cyclooxygenases suggests a possible mechanism for the observed antiinflammatory properties of topically applied SOs and provides a rationale for use in products requiring antiinflammatory effects. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing.

    PubMed

    Yoon, Dong Suk; Lee, Yunki; Ryu, Hyun Aae; Jang, Yeonsue; Lee, Kyoung-Mi; Choi, Yoorim; Choi, Woo Jin; Lee, Moses; Park, Kyung Min; Park, Ki Dong; Lee, Jin Woo

    2016-07-01

    In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound

  16. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12.

    PubMed

    Chung, Brile; Esmaeili, Ali A; Gopalakrishna-Pillai, Sailesh; Murad, John P; Andersen, Emily S; Kumar Reddy, Naveen; Srinivasan, Gayathri; Armstrong, Brian; Chu, Caleb; Kim, Young; Tong, Tommy; Waisman, James; Yim, John H; Badie, Behnam; Lee, Peter P

    2017-01-01

    The tumor microenvironment is composed of heterogeneous populations of cells, including cancer, immune, and stromal cells. Progression of tumor growth and initiation of metastasis is critically dependent on the reciprocal interactions between cancer cells and stroma. Through RNA-Seq and protein analyses, we found that cancer-associated fibroblasts derived from human breast cancer brain metastasis express significantly higher levels of chemokines CXCL12 and CXCL16 than fibroblasts from primary breast tumors or normal breast. To further understand the interplay between cancer cells and cancer-associated fibroblasts from each site, we developed three-dimensional organoids composed of patient-derived primary or brain metastasis cancer cells with matching cancer-associated fibroblasts. Three-dimensional CAF aggregates generated from brain metastasis promote migration of cancer cells more effectively than cancer-associated fibroblast aggregates derived from primary tumor or normal breast stromal cells. Treatment with a CXCR4 antagonist and/or CXCL16 neutralizing antibody, alone or in combination, significantly inhibited migration of cancer cells to brain metastatic cancer-associated fibroblast aggregates. These results demonstrate that human brain metastasis cancer-associated fibroblasts potently attract breast cancer cells via chemokines CXCL12 and CXCL16, and blocking CXCR6-CXCL16/CXCR4-CXCL12 receptor-ligand interactions may be an effective therapy for preventing breast cancer brain metastasis.

  17. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, Christopher D.; Tu, Chingkuang; McKenna, Robert, E-mail: rmckenna@ufl.edu

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes tomore » mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.« less

  18. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  19. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  20. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts.

    PubMed

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W

    2016-02-19

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    PubMed

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  2. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis.

    PubMed

    Akram, Israa G; Georges, Rania; Hielscher, Thomas; Adwan, Hassan; Berger, Martin R

    2016-02-01

    C-C chemokine receptor type 1 (CCR1) and chemokine C-C motif receptor-like 2 (CCRL2) have not yet been sufficiently investigated for their role in colorectal cancer (CRC). Here, we investigated their expression in rat and human CRC samples, their modulation of expression in a rat liver metastasis model, as well as the effects on cellular properties resulting from their knockdown. One rat and five human colorectal cancer cell lines were used. CC531 rat colorectal cells were injected via the portal vein into rats and re-isolated from rat livers after defined periods. Following mRNA isolation, the gene expression was investigated by microarray. In addition, all cell lines were screened for mRNA expression of CCR1 and CCRL2 by reverse transcription polymerase chain reaction (RT-PCR). Cell lines with detectable expression were used for knockdown experiments; and the respective influence was determined on the cells' proliferation, scratch closure, and colony formation. Finally, specimens from the primaries of 50 patients with CRC were monitored by quantitative RT-PCR for CCR1 and CCRL2 expression levels. The microarray studies showed peak increases of CCR1 and CCRL2 in the early phase of liver colonization. Knockdown was sufficient at mRNA but only moderate at protein levels and resulted in modest but significant inhibition of proliferation (p < 0.05), scratch closure, and colony formation (p < 0.05). All human CRC samples were positive for CCR1 and CCRL2 and showed a significant pairwise correlation (p < 0.0004), but there was no correlation with tumor stage or age of patients. In summary, the data point to an important role of CCR1 and CCRL2 under conditions of organ colonization and both chemokine receptors qualify as targets of treatment during early colorectal cancer liver metastasis.

  3. Urine chemokines indicate pathogenic association of obesity with BPH/LUTS.

    PubMed

    Tyagi, Pradeep; Motley, Saundra S; Kashyap, Mahendra; Pore, Subrata; Gingrich, Jeffrey; Wang, Zhou; Yoshimura, Naoki; Fowke, Jay H

    2015-07-01

    High prevalence of lower urinary tract symptoms (LUTS) consistent with benign prostate hyperplasia (BPH) is associated with obesity and prostatic inflammation. Here, we investigated whether chemokines associated with obesity and prostatic inflammation can be measured in normally voided urine of BPH/LUTS patients to demonstrate the mechanistic association between obesity and BPH/LUTS. Frozen urine specimens of BPH/LUTS patients enrolled in the Nashville Men's Health Study were sent for blinded analysis to University of Pittsburgh. Thirty patients were blocked by their AUA-SI (>7 or ≤7) and prostatic enlargement (<40, 40-60, >60 cc). Clinical parameters including age, prostate size, and medications were derived from chart review. CXC chemokines (CXCL-1, CXCL-8, and CXCL-10), CC chemokines (CCL2 and CCL3), and sIL-1ra were measured in thawed urine using Luminex™ xMAP(®) technology and ELISA for NGF. Urinary CCL2 levels were several fold higher compared with the other six proteins, of which CCL3 was detectable in less than one-fourth of patients. Urine levels of sIL-1ra and CXCL-8 were significantly associated with increasing BMI and waist circumference in BPH patients. CXCL-8 showed a marginal association with overall AUA-SI scores, as well as obstructive (p = 0.08) symptom subscores. Prostate volume was inversely and marginally associated with urinary CXCL-10 (p = 0.09). Urine levels of CXCL-8, CXCL-10, and sIL-1ra were associated with varying degrees with LUTS severity, prostate size, and obesity, respectively. These findings in urine are consistent with past studies of chemokine levels from expressed prostatic secretions and demonstrate the potential of noninvasively measured chemokine in urine to objectively classify BPH/LUTS patients.

  4. Activation of peroxisome proliferator-activated receptor δ inhibits angiotensin II-induced activation of matrix metalloproteinase-2 in vascular smooth muscle cells.

    PubMed

    Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk

    2014-01-01

    We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.

  5. Targeting Angiotensin II Type-1 Receptor (AT1R) Inhibits the Harmful Phenotype of Plasmodium-Specific CD8+ T Cells during Blood-Stage Malaria.

    PubMed

    Silva-Filho, João L; Caruso-Neves, Celso; Pinheiro, Ana A S

    2017-01-01

    CD8 + T-cell response is critical in the pathogenesis of cerebral malaria during blood-stage. Our group and other have been shown that angiotensin II (Ang II) and its receptor AT 1 (AT 1 R), a key effector axis of renin-angiotensin system (RAS), have immune regulatory effects on T cells. Previously, we showed that inhibition of AT 1 R signaling protects mice against the lethal disease induced by Plasmodium berghei ANKA infection However, most of the Ang II/AT 1 R actions were characterized by using only pharmacological approaches, the effects of which may not always be due to a specific receptor blockade. In addition, the mechanisms of action of the AT 1 R in inducing the pathogenic activity of Plasmodium -specific CD8 + T cells during blood-stage were not determined. Here, we examined how angiotensin II/AT 1 R axis promotes the harmful response of Plasmodium -specific CD8 + T-cell during blood-stage by using genetic and pharmacological approaches. We evaluated the response of wild-type (WT) and AT 1 R -/- Plasmodium -specific CD8 + T cells in mice infected with a transgenic PbA lineage expressing ovalbumin; and in parallel infected mice receiving WT Plasmodium -specific CD8 + T cells were treated with losartan (AT 1 R antagonist) or captopril (ACE inhibitor). Both, AT 1 R -/- OT-I cells and WT OT-I cells from losartan- or captopril-treated mice showed lower expansion, reduced IL-2 production and IL-2Rα expression, lower activation (lower expression of CD69, CD44 and CD160) and lower exhaustion profiles. AT 1 R -/- OT-I cells also exhibit lower expression of the integrin LFA-1 and the chemokine receptors CCR5 and CXCR3, known to play a key role in the development of cerebral malaria. Moreover, AT 1 R -/- OT-I cells produce lower amounts of IFN-γ and TNF-α and show lower degranulation upon restimulation. In conclusion, our results show the pivotal mechanisms of AT 1 R-induced harmful phenotype of Plasmodium -specific CD8 + T cells during blood-stage malaria.

  6. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black

  7. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes.

    PubMed

    Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun

    2015-07-01

    Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells.

    PubMed

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16

    PubMed Central

    Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten

    2017-01-01

    Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo. PMID:28698473

  10. The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16.

    PubMed

    Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten

    2017-07-08

    Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo.

  11. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    PubMed

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  12. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins

    PubMed Central

    Eaton, James R. O.; Alenazi, Yara; Singh, Kamayani; Davies, Graham; Geis-Asteggiante, Lucia; Kessler, Benedikt; Robinson, Carol V.; Kawamura, Akane; Bhattacharya, Shoumo

    2018-01-01

    Tick chemokine-binding proteins (evasins) are an emerging class of biologicals that target multiple chemokines and show anti-inflammatory activities in preclinical disease models. Using yeast surface display, we identified a CCL8-binding evasin, P672, from the tick Rhipicephalus pulchellus. We found that P672 binds CCL8 and eight other CC-class chemokines with a Kd < 10 nm and four other CC chemokines with a Kd between 10 and 100 nm and neutralizes CCL3, CCL3L1, and CCL8 with an IC50 < 10 nm. The CC chemokine–binding profile was distinct from that of evasin 1 (EVA1), which does not bind CCL8. We also show that P672's binding activity can be markedly modulated by the location of a StrepII-His purification tag. Combining native MS and bottom-up proteomics, we further demonstrated that P672 is glycosylated and forms a 1:1 complex with CCL8, disrupting CCL8 homodimerization. Homology modeling of P672 using the crystal structure of the EVA1 and CCL3 complex as template suggested that 44 N-terminal residues of P672 form most of the contacts with CCL8. Replacing the 29 N-terminal residues of EVA1 with the 44 N-terminal residues of P672 enabled this hybrid evasin to bind and neutralize CCL8, indicating that the CCL8-binding properties of P672 reside, in part, in its N-terminal residues. This study shows that the function of certain tick evasins can be manipulated simply by adding a tag. We conclude that homology modeling helps identify regions with transportable chemokine-binding functions within evasins, which can be used to construct hybrid evasins with altered properties. PMID:29487134

  13. Chemokine receptor binding and signal transduction in native cells of the central nervous system.

    PubMed

    Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K

    2003-04-01

    Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.

  14. Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II.

    PubMed

    Dennis, Andrew P; Lonard, David M; Nawaz, Zafar; O'Malley, Bert W

    2005-03-01

    In the present study, we investigated the involvement of protein degradation via the 26S proteasome during progesterone receptor (PR)-mediated transcription in T-47D cells containing a stably integrated MMTV-CAT reporter construct (CAT0 cells). Progesterone induced CAT and HSD11beta2 transcription while co-treatment with the proteasome inhibitor, MG132, blocked PR-induced transcription in a time-dependent fashion. MG132 treatment also inhibited transcription of beta-actin and cyclophilin, but not two proteasome subunit genes, PSMA1 and PSMC1, indicating that proteasome inhibition affects a subset of RNA polymerase II (RNAP(II))-regulated genes. Progesterone-mediated recruitment of RNAP(II) was blocked by MG132 treatment at time points later than 1 h that was not dependent on the continued presence of PR, associated cofactors, and components of the general transcription machinery, supporting the concept that proteasome-mediated degradation is needed for continued transcription. Surprisingly, progesterone-mediated acetylation of histone H4 was inhibited by MG132 with the concomitant recruitment of HDAC3, NCoR, and SMRT. We demonstrate that the steady-state protein levels of SMRT and NCoR are higher in the presence of MG132 in CAT0 cells, consistent with other reports that SMRT and NCoR are targets of the 26S proteasome. However, inhibition of histone deacetylation by trichostatin A (TSA) treatment or SMRT/NCoR knockdown by siRNA did not restore MG132-inhibited progesterone-dependent transcription. Therefore, events other than histone deacetylation and stability of SMRT and NCoR must also play a role in inhibition of PR-mediated transcription.

  15. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion

    PubMed Central

    Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.

    2014-01-01

    The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627

  16. Human gingival fibroblasts express functional chemokine receptor CXCR6.

    PubMed

    Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T

    2009-06-01

    We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.

  17. The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction.

    PubMed

    Cochain, Clément; Auvynet, Constance; Poupel, Lucie; Vilar, José; Dumeau, Edouard; Richart, Adèle; Récalde, Alice; Zouggari, Yasmine; Yin, Kiave Yune Ho Wang; Bruneval, Patrick; Renault, Gilles; Marchiol, Carmen; Bonnin, Philippe; Lévy, Bernard; Bonecchi, Raffaella; Locati, Massimo; Combadière, Christophe; Silvestre, Jean-Sébastien

    2012-09-01

    Leukocyte infiltration in ischemic areas is a hallmark of myocardial infarction, and overwhelming infiltration of innate immune cells has been shown to promote adverse remodeling and cardiac rupture. Recruitment of inflammatory cells in the ischemic heart depends highly on the family of CC-chemokines and their receptors. Here, we hypothesized that the chemokine decoy receptor D6, which specifically binds and scavenges inflammatory CC-chemokines, might limit inflammation and adverse cardiac remodeling after infarction. D6 was expressed in human and murine infarcted myocardium. In a murine model of myocardial infarction, D6 deficiency led to increased chemokine (C-C motif) ligand 2 and chemokine (C-C motif) ligand 3 levels in the ischemic heart. D6-deficient (D6(-/-)) infarcts displayed increased infiltration of pathogenic neutrophils and Ly6Chi monocytes, associated with strong matrix metalloproteinase-9 and matrix metalloproteinase-2 activities in the ischemic heart. D6(-/-) mice were cardiac rupture prone after myocardial infarction, and functional analysis revealed that D6(-/-) hearts had features of adverse remodeling with left ventricle dilation and reduced ejection fraction. Bone marrow chimera experiments showed that leukocyte-borne D6 had no role in this setting, and that leukocyte-specific chemokine (C-C motif) receptor 2 deficiency rescued the adverse phenotype observed in D6(-/-) mice. We show for the first time that the chemokine decoy receptor D6 limits CC-chemokine-dependent pathogenic inflammation and is required for adequate cardiac remodeling after myocardial infarction.

  18. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less

  19. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    PubMed Central

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  20. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    PubMed

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressedmore » CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.« less

  2. Molecular mechanisms of pancreatic cancer dissemination: the role of the chemokine system.

    PubMed

    Marchesi, Federica; Grizzi, Fabio; Laghi, Luigi; Mantovani, Alberto; Allavena, Paola

    2012-01-01

    Over the last decade it has been established that cancer-associated inflammation affects many aspects of malignancy and in particular endorses tumor cell survival, proliferation and distant spread. Chemokines and their receptors are major players of the cancerrelated inflammation. Our understanding of the chemokine role in tumor biology now ranges from their ability to recruit blood leukocytes within tumors, to direct effects on cancer cell survival, metastatization and regulation of angiogenesis. Chemokines and their receptors are expressed in human pancreatic adenocarcinoma and are involved in its malignant behavior. Notably, the receptor CX3CR1 favors tumor perineural tropism which is typical of this neoplasm and is associated with early recurrence after surgery and with poor patient prognosis.

  3. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  4. Cytokine and chemokine expression in the skin from patients with maculopapular exanthema to drugs.

    PubMed

    Fernandez, T D; Mayorga, C; Torres, M J; Cornejo-Garcia, J A; López, S; Chaves, P; Rondon, C; Blanca, M

    2008-06-01

    Maculopapular exanthema (MPE) is the most frequent clinical manifestation of nonimmediate allergic reactions to drugs and T helper 1 (Th1) cytokines and CD4(+) T cells have been shown to play an important role in its pathogenesis. We assessed the role of cytokines and chemokines and their receptors in the pathogenesis of MPE. We evaluated skin biopsies and peripheral CD4(+) and CD8(+) T cells from 27 patients during the acute phase of the reaction and 26 exposed controls. Semiquantitative real-time PCR was performed to determine the expression of cytokines and chemokines and their receptors and immunohistochemistry was used to determine the same chemokines and their receptor proteins in skin. There was a high expression of the Th1 cytokines interferon-gamma (P = 0.006) and tumor necrosis factor-alpha (P = 0.022) in skin and CD4(+) T cells (P = 0.007 and P = 0.005, respectively); and of the Th1 chemokines CXCL9 (P = 0.005) and CXCL10 (P = 0.028) in the skin, while their receptor CXCR3 was increased in skin (P = 0.006) and CD4(+) T cells (P = 0.03). Homing chemokine receptors were also increased: CCR6 in skin (P = 0.026) and CD4(+) T cells (P = 0.016), and CCR10 only in CD4(+) T cells (P = 0.016), as well as their ligands, CCL20 and CCL27, in skin alone. Immunohistochemistry confirmed these results. These data show significant differences in the expression of chemokines and chemokine receptors, related with a Th1 profile, in both skin biopsies and peripheral CD4(+) T cells in patients with drug-induced MPE.

  5. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells.

    PubMed

    Panzer, Ulf; Zahner, Gunther; Wienberg, Ulrike; Steinmetz, Oliver M; Peters, Anett; Turner, Jan-Eric; Paust, Hans-Joachim; Wolf, Gunter; Stahl, Rolf A K; Schneider, André

    2008-12-01

    Activators of the peroxisome proliferator-activated receptor gamma (PPARgamma), originally found to be implicated in lipid metabolism and glucose homeostasis, have been shown to modulate inflammatory responses through interference with cytokine and chemokine production. Given the central role of mesangial cell-derived chemokines in glomerular leukocyte recruitment in human and experimental glomerulonephritis, we studied the influence of natural and synthetic PPARgamma activators on INF-gamma-induced expression of the T cell-attracting chemokines IP-10/CXCL10, Mig/CXCL9 and I-TAC/CXCL11 in mouse mesangial cells. INF-gamma-treated mesangial cells were cultured in the presence or absence of either the naturally occurring PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) or synthetic PPARgamma activators of the glitazone group. Chemokine mRNA and protein expression and activation of the JAK/STAT signalling pathway were analysed. The 15d-PGJ(2), but not synthetic PPARgamma ligands, dose-dependently inhibited INF-gamma-induced chemokine gene (mRNA and protein) expression. Combined results from EMSA and western blot analysis revealed the inhibitory ability of 15d-PGJ(2), but not of synthetic PPARgamma ligands, on IFN-gamma-induced tyrosine phosphorylation of JAK1, JAK2, STAT1 and nuclear STAT1 translocation and DNA binding. Our results demonstrate that 15d-PGJ(2) inhibits INF-gamma-induced chemokine expression in mesangial cells by targeting the JAK/STAT signalling pathway. This effect is independent of an interference with PPARgamma.

  6. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells.

    PubMed

    Lee, Hanna; Ham, Sun Ah; Kim, Min Young; Kim, Jae-Hwan; Paek, Kyung Shin; Kang, Eun Sil; Kim, Hyo Jung; Hwang, Jung Seok; Yoo, Taesik; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Han, Chang Woo; Seo, Han Geuk

    2012-07-01

    Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.

  7. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    PubMed Central

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  8. Mechanisms of Tanshinone II a inhibits malignant melanoma development through blocking autophagy signal transduction in A375 cell.

    PubMed

    Li, Xiaojing; Li, Zhifeng; Li, Xianping; Liu, Baoguo; Liu, Zhijun

    2017-05-22

    Malignant melanoma (MM) is one of the high degree of malignancy and early prone to blood and lymph node metastasis. There is not cured for MM. Tan II A has been reported to reduce cancer cell proliferation. But the mechanism by which Tan II A inhibited melanoma growth are not well characterized. We sought to explore the possible mechanism by which Tan II A regulated cell proliferation through autophagy signaling pathway in A375 cells. We tested the effects of Tan II A on melanoma A375, MV3, M14, and other human cell lines including Hacat and HUVEC cells in cell culture model. Cell proliferation was assessed by using methyl thiazol tetrazolium (MTT) assay. Cell migration ability melanoma A375 was monitored by using cell scratch assay. Transwell chamber experimental was performed to assess the effect of Tan II A on A375 melanoma cell invasion ability. The autophagy body was examined by using flow cytometry. The expression of autophagy-associated protein beclin-1 and microtubule-associated protein 1 light chain 3(LC3)-II, as well as phosphatidylinositol 3-kinase(PI3K)、protein kinase B (Akt)、mammalian target of rapamycin (mTOR)、p70S6K1 signaling pathways were detected by using Western blotting. The effects of Tan II A on tumor progression was also examined in melanoma A375 induced tumor in mouse model. We found that Tan IIA inhibited melanoma A375, MV3, and M14 cell proliferation in dose and time dependent manner. Tan II A reduced CXCL12-induced A375 cell invasive ability and migration in a dose dependent manner. Tan IIA promoted autophagic body production and increased autophagy-associated protein beclin-1 and LC3-II expression in A375 cells. However, Tan IIA reduced the phosphorylation of PI3K, P-AKT, P-mTOR, and P-p7036k1. We also confirmed that Tan II A reduced melanoma A375 induced tumor volume and weight in mouse model. We concluded that Tan II A reduced A375 cells proliferation by activation of autophagy production, blocked PI3K- Akt - mTOR - p70S6K1

  9. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    PubMed

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  10. The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants

    PubMed Central

    Torres, Leticia M.; Lima, Barbara A. S.; Sousa, Taís N.; Alves, Jéssica R. S.; Rocha, Roberto S.; Fontes, Cor J. F.; Sanchez, Bruno A. M.; Adams, John H.; Brito, Cristiana F. A.; Pires, Douglas E. V.; Ascher, David B.; Sell, Ana Maria; Carvalho, Luzia H.

    2016-01-01

    Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase

  11. Inhibition of CD26/dipeptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo.

    PubMed

    Forssmann, Ulf; Stoetzer, Carsten; Stephan, Michael; Kruschinski, Carsten; Skripuletz, Thomas; Schade, Jutta; Schmiedl, Andreas; Pabst, Reinhard; Wagner, Leona; Hoffmann, Torsten; Kehlen, Astrid; Escher, Sylvia E; Forssmann, Wolf-Georg; Elsner, Jörn; von Hörsten, Stephan

    2008-07-15

    Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11((3-74)). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.

  12. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  13. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.

  14. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    PubMed

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  15. Repeated measurement of nasal lavage fluid chemokines in school-age children with asthma.

    PubMed

    Noah, Terry L; Tudor, Gail E; Ivins, Sally S; Murphy, Paula C; Peden, David B; Henderson, Frederick W

    2006-02-01

    Inflammatory processes at the mucosal surface may play a role in maintenance of asthma pathophysiology. Cross-sectional studies in asthmatic patients suggest that chemokines such as interleukin 8 (IL-8) are overproduced by respiratory epithelium. To test the hypothesis that chemokine levels are persistently elevated in the respiratory secretions of asthmatic children at a stable baseline. We measured nasal lavage fluid (NLF) levels of chemokines and other mediators at 3- to 4-month intervals in a longitudinal study of asthmatic children, with nonasthmatic siblings as controls. In a linear mixed-model analysis, both family and day of visit had significant effects on nasal mediators. Thus, data for 12 asthmatic-nonasthmatic sibling pairs who had 3 or more same-day visits were analyzed separately. For sibling pairs, median eosinophil cationic protein levels derived from serial measurements in NLF were elevated in asthmatic patients compared with nonasthmatic patients, with a near-significant tendency for elevation of total protein and eotaxin levels as well. However, no significant differences were found for IL-8 or several other chemokines. Ratios of IL-13 or IL-5 to interferon-gamma released by house dust mite antigen-stimulated peripheral blood mononuclear cells, tested on a single occasion, were significantly increased for asthmatic patients. Substantial temporal and family-related variability exists in nasal inflammation in asthmatic children. Although higher levels of eosinophil cationic protein are usually present in NLF of patients with stable asthma compared with patients without asthma, chemokines other than eotaxin are not consistently increased. Eosinophil activation at the mucosal surface is a more consistent predictor of asthmatic symptoms than nonspecific elevation of epithelium-derived inflammatory chemokine levels.

  16. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation

    PubMed Central

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-01-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides. PMID:18336592

  17. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation.

    PubMed

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-05-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides.

  18. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation

  19. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    PubMed

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  20. Powerful inhibition of in-vivo growth of experimental hepatic cancers by bombesin/gastrin-releasing peptide antagonist RC-3940-II.

    PubMed

    Szepeshazi, Karoly; Schally, Andrew V; Rick, Ferenc G; Block, Norman L; Vidaurre, Irving; Halmos, Gabor; Szalontay, Luca

    2012-10-01

    Hepatic carcinoma is a major health problem worldwide. Its incidence is increasing in Western countries and there is currently no effective systemic therapy against it. Targeted treatment modalities developed in the past few years have provided very limited success. Development of new treatment strategies is therefore essential. We investigated the effects of bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC-3940-II on experimental human liver cancers in nude mice. SK-Hep-1 and Hep-G2 cancers transplanted subcutaneously into nude mice were treated daily with 10 or 20 µg of RC-3940-II. Tumor growth was monitored for 50-184 days in five experiments. Tumor gene expression was analyzed with PCR array and protein expression by immunoblotting. Characteristics of BN/GRP receptors in the tumors were analyzed by binding assays. Effects of RC-3940-II on cell proliferation were investigated in vitro. RC-3940-II inhibited the growth of SK-Hep-1 cancers in nude mice by 65-98%, with total regression in 9 of 36 tumors in three experiments. The BN/GRP antagonist inhibited the growth of Hep-G2 cancers as well by 73-82% in two experiments, being effective even on originally large tumors. Gene expression analysis showed an increase in several angiogenesis inhibitors and decrease in proangiogenic genes after RC-3940-II treatment. Receptor assays demonstrated high-affinity binding sites for BN/GRP in both tumor lines. BN/GRP antagonist RC-3940-II powerfully inhibits growth of SK-Hep-1 and Hep-G2 cancers in nude mice. Its effect may be linked to changes in expression of those cancer genes important in angiogenesis, invasion, and metastasis. RC-3940-II may be considered for further investigations in treatment of liver cancers.

  1. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma

    PubMed Central

    Torok, Kathryn S.; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N.; Medsger, Thomas; Feghali-Bostwick, Carol A.

    2015-01-01

    Objective To evaluate peripheral blood T-helper (TH) cell associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. Methods A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Results Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. Conclusion This is the first time that multiple cytokines and chemokines have been examined simultaneously LS. In general, a TH-1 (IFN-γ) and TH-17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN–γ signature with elevated IP-10, MCP-1 and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. PMID:26254121

  2. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection

    PubMed Central

    Giuffrida, María J; Valero, Nereida; Mosquera, Jesús; Alvarez de Mon, Melchor; Chacín, Betulio; Espina, Luz Marina; Gotera, Jennifer; Bermudez, John; Mavarez, Alibeth

    2014-01-01

    Background Respiratory viral infections can induce different cytokine/chemokine profiles in lung tissues and have a significant influence on patients with asthma. There is little information about the systemic cytokine status in viral respiratory-infected asthmatic patients compared with non-asthmatic patients. Objectives The aim of this study was to determine changes in circulating cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP1: monocyte chemoattractant protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in patients with an asthmatic versus a non-asthmatic background with respiratory syncytial virus, parainfluenza virus or adenovirus respiratory infection. In addition, human monocyte cultures were incubated with respiratory viruses to determine the cytokine/chemokine profiles. Patients/Methods Patients with asthmatic (n = 34) and non-asthmatic (n = 18) history and respiratory infections with respiratory syncytial virus, parainfluenza, and adenovirus were studied. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in blood and culture supernatants was determined by ELISA. Monocytes were isolated by Hystopaque gradient and cocultured with each of the above-mentioned viruses. Results Similar increased cytokine concentrations were observed in asthmatic and non-asthmatic patients. However, higher concentrations of chemokines were observed in asthmatic patients. Virus-infected monocyte cultures showed similar cytokine/chemokine profiles to those observed in the patients. Conclusions Circulating cytokine profiles induced by acute viral lung infection were not related to asthmatic status, except for chemokines that were already increased in the asthmatic status. Monocytes could play an important role in the increased circulating concentration of cytokines found during respiratory viral infections. PMID:23962134

  3. Bacopa monniera (L.) wettst inhibits type II collagen-induced arthritis in rats.

    PubMed

    Viji, V; Kavitha, S K; Helen, A

    2010-09-01

    Bacopa monniera (L.) Wettst is an Ayurvedic herb with antirheumatic potential. This study investigated the therapeutic efficacy of Bacopa monniera in treating rheumatoid arthritis using a type II collagen-induced arthritis rat model. Arthritis was induced in male Wistar rats by immunization with bovine type II collagen in complete Freund's adjuvant. Bacopa monniera extract (BME) was administered after the development of arthritis from day 14 onwards. The total duration of experiment was 60 days. Paw swelling, arthritic index, inflammatory mediators such as cyclooxygenase, lipoxygenase, myeloperoxidase and serum anti-collagen IgG and IgM levels were analysed in control and experimental rats. Arthritic induction significantly increased paw edema and other classical signs of arthritis coupled to upregulation of inflammatory mediators such as cyclooxygenase, lipoxygenase, neutrophil infiltration and increased anti-collagen IgM and IgG levels in serum. BME significantly inhibited the footpad swelling and arthritic symptoms. BME was effective in inhibiting cyclooxygenase and lipoxygenase activities in arthritic rats. Decreased neutrophil infiltration was evident from decreased myeloperoxidase activity and histopathological data where an improvement in joint architecture was also observed. Serum anti-collagen IgM and IgG levels were consistently decreased. Thus the study demonstrates the potential antiarthritic effect of Bacopa monniera for treating arthritis which might confer its antirheumatic activity. Copyright 2010 John Wiley & Sons, Ltd.

  4. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland

    PubMed Central

    Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192

  5. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor.

    PubMed

    Burg, John S; Ingram, Jessica R; Venkatakrishnan, A J; Jude, Kevin M; Dukkipati, Abhiram; Feinberg, Evan N; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O; Ploegh, Hidde L; Garcia, K Christopher

    2015-03-06

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor's inactive state. Copyright © 2015, American Association for the Advancement of Science.

  6. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression.

    PubMed

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-05-01

    Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1-CXCR2 and CX3CL1-CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™

    PubMed Central

    Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.

    2013-01-01

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196

  8. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™.

    PubMed

    Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A

    2013-11-06

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.

  9. Natural Hemozoin Stimulates Syncytiotrophoblast to Secrete Chemokines and Recruit Peripheral Blood Mononuclear Cells

    PubMed Central

    Lucchi, Naomi W.; Sarr, Demba; Owino, Simon O.; Mwalimu, Stephen M.; Peterson, David S.; Moore, Julie M.

    2011-01-01

    Background Placental malaria is associated with local accumulation of parasitized erythrocytes, deposition of the parasite hemoglobin metabolite, hemozoin, and accumulation of mononuclear cells in the intervillous space. Fetal syncytiotrophoblast cells in contact with maternal blood are known to respond immunologically to cytoadherent Plasmodium falciparum-infected erythrocytes, but their responsiveness to hemozoin, a potent pro-inflammatory stimulator of monocytes, macrophages and dendritic cells, is not known. Methods The biochemical and immunological changes induced in primary syncytiotrophoblast by natural hemozoin was assessed. Changes in syncytiotrophoblast mitogen-activated protein kinase activation was assessed by immunoblotting and secreted cytokine and chemokine proteins were assayed by ELISA. Chemotaxis of peripheral blood mononuclear cells was assessed using a two-chamber assay system and flow cytometry was used to assess the activation of primary monocytes by hemozoin-stimulated syncytiotrophoblast conditioned medium. Results Hemozoin stimulation induced ERK1/2 phosphorylation. Treated cells secreted CXCL8, CCL3, CCL4, and tumor necrosis factor and released soluble intercellular adhesion molecule-1. Furthermore, the dependence of the hemozoin responses on ERK1/2 stimulation was confirmed by inhibition of chemokine release in syncytiotrophoblast treated with an ERK pathway inhibitor. Hemozoin-stimulated cells elicited the specific migration of PBMCs, and conditioned medium from the cells induced the upregulation of intercellular adhesion molecule-1 on primary monocytes. Conclusions These findings confirm an immunostimulatory role for hemozoin and expand the cell types known to be responsive to hemozoin to include fetal syncytiotrophoblast. The results provide further evidence that syncytiotrophoblast cells can influence the local maternal immune response to placental malaria. PMID:21632106

  10. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    PubMed Central

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  11. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria.

    PubMed

    Bernheim, Aude; Calvo-Villamañán, Alicia; Basier, Clovis; Cui, Lun; Rocha, Eduardo P C; Touchon, Marie; Bikard, David

    2017-12-12

    Type II CRISPR-Cas systems introduce double-strand breaks into DNA of invading genetic material and use DNA fragments to acquire novel spacers during adaptation. These breaks can be the substrate of several DNA repair pathways, paving the way for interactions. We report that non-homologous end-joining (NHEJ) and type II-A CRISPR-Cas systems only co-occur once among 5563 fully sequenced prokaryotic genomes. We investigated experimentally the possible molecular interactions using the NHEJ pathway from Bacillus subtilis and the type II-A CRISPR-Cas systems from Streptococcus thermophilus and Streptococcus pyogenes. Our results suggest that the NHEJ system has no effect on CRISPR immunity. On the other hand, we provide evidence for the inhibition of NHEJ repair by the Csn2 protein. Our findings give insights on the complex interactions between CRISPR-Cas systems and repair mechanisms in bacteria, contributing to explain the scattered distribution of CRISPR-Cas systems in bacterial genome.

  12. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.

    PubMed

    Qu, Guosheng; Piazza, Carol Lyn; Smith, Dorie; Belfort, Marlene

    2018-06-15

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis , inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. © 2018, Qu et al.

  13. Inhibitions of late INa and CaMKII act synergistically to prevent ATX-II-induced atrial fibrillation in isolated rat right atria.

    PubMed

    Liang, Faquan; Fan, Peidong; Jia, Jessie; Yang, Suya; Jiang, Zhan; Karpinski, Serge; Kornyeyev, Dmytro; Pagratis, Nikos; Belardinelli, Luiz; Yao, Lina

    2016-05-01

    Increases in late Na(+) current (late INa) and activation of Ca(2+)/calmodulin-dependent protein kinase (CaMKII) are associated with atrial arrhythmias. CaMKII also phosphorylates Nav1.5, further increasing late INa. The combination of a CaMKII inhibitor with a late INa inhibitor may be superior to each compound alone to suppress atrial arrhythmias. Therefore, we investigated the effect of a CaMKII inhibitor in combination with a late INa inhibitor on anemone toxin II (ATX-II, a late INa enhancer)-induced atrial arrhythmias. Rat right atrial tissue was isolated and preincubated with either the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), the late INa inhibitor GS458967, or both, and then exposed to ATX-II. ATX-II increased diastolic tension and caused fibrillation of isolated right atrial tissue. AIP (0.3μmol/L) and 0.1μmol/L GS458967 alone inhibited ATX-II-induced arrhythmias by 20±3% (mean±SEM, n=14) and 34±5% (n=13), respectively, whereas the two compounds in combination inhibited arrhythmias by 81±4% (n=10, p<0.05, vs either AIP or GS458967 alone or the calculated sum of individual effects of both compounds). AIP and GS458967 also attenuated the ATX-induced increase of diastolic tension. Consistent with the mechanical and electrical data, 0.3μmol/L AIP and 0.1μmol/L GS458967 each inhibited ATX-II-induced CaMKII phosphorylation by 23±3% and 32±4%, whereas the combination of both compounds inhibited CaMKII phosphorylation completely. The effects of an enhanced late INa to induce arrhythmic activity and activation of CaMKII in atria are attenuated synergistically by inhibitors of late INa and CaMKII. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  15. Chemokine scavenger D6 is expressed by trophoblasts and aids the survival of mouse embryos transferred into allogeneic recipients.

    PubMed

    Madigan, Judith; Freeman, Dilys J; Menzies, Fiona; Forrow, Steve; Nelson, Scott M; Young, Anne; Sharkey, Andrew; Moffett, Ashley; Graham, Gerard J; Greer, Ian A; Rot, Antal; Nibbs, Robert J B

    2010-03-15

    Proinflammatory CC chemokines are thought to drive recruitment of maternal leukocytes into gestational tissues and regulate extravillous trophoblast migration. The atypical chemokine receptor D6 binds many of these chemokines and is highly expressed by the human placenta. D6 is thought to act as a chemokine scavenger because, when ectopically expressed in cell lines in vitro, it efficiently internalizes proinflammatory CC chemokines and targets them for destruction in the absence of detectable chemokine-induced signaling. Moreover, D6 suppresses inflammation in many mouse tissues, and notably, D6-deficient fetuses in D6-deficient female mice show increased susceptibility to inflammation-driven resorption. In this paper, we report strong anti-D6 immunoreactivity, with specific intracellular distribution patterns, in trophoblast-derived cells in human placenta, decidua, and gestational membranes throughout pregnancy and in trophoblast disease states of hydatidiform mole and choriocarcinoma. We show, for the first time, that endogenous D6 in a human choriocarcinoma-derived cell line can mediate progressive chemokine scavenging and that the D6 ligand CCL2 can specifically associate with human syncytiotrophoblasts in term placenta in situ. Moreover, despite strong chemokine production by gestational tissues, levels of D6-binding chemokines in maternal plasma decrease during pregnancy, even in women with pre-eclampsia, a disease associated with increased maternal inflammation. In mice, D6 is not required for syngeneic or semiallogeneic fetal survival in unchallenged mice, but interestingly, it does suppress fetal resorption after embryo transfer into fully allogeneic recipients. These data support the view that trophoblast D6 scavenges maternal chemokines at the fetomaternal interface and that, in some circumstances, this can help to ensure fetal survival.

  16. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    PubMed

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformation‐Assisted Oxime Ligation

    PubMed Central

    Agten, Stijn M.; Koenen, Rory R.; Ippel, Hans; Eckardt, Veit; von Hundelshausen, Philipp; Mayo, Kevin H.; Weber, Christian

    2016-01-01

    Abstract Protein–protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES‐PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function. PMID:27785869

  18. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  19. The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round.

    PubMed

    De Buck, Mieke; Gouwy, Mieke; Struyf, Sofie; Opdenakker, Ghislain; Van Damme, Jo

    2018-06-02

    During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH 2 - or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response. Copyright © 2018. Published by Elsevier B.V.

  20. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations.

    PubMed

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-08-24

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.

  1. Elevated CXC chemokines in urine noninvasively discriminate OAB from UTI.

    PubMed

    Tyagi, Pradeep; Tyagi, Vikas; Qu, Xianggui; Chuang, Yao Chi; Kuo, Hann-Chorng; Chancellor, Michael

    2016-09-01

    Overlapping symptoms of overactive bladder (OAB) and urinary tract infection (UTI) often complicate the diagnosis and contribute to overprescription of antibiotics. Inflammatory response is a shared characteristic of both UTI and OAB and here we hypothesized that molecular differences in inflammatory response seen in urine can help discriminate OAB from UTI. Subjects in the age range of (20-88 yr) of either sex were recruited for this urine analysis study. Urine specimens were available from 62 UTI patients with positive dipstick test before antibiotic treatment. Six of these patients also provided urine after completion of antibiotic treatment. Subjects in cohorts of OAB (n = 59) and asymptomatic controls (n = 26) were negative for dipstick test. Urinary chemokines were measured by MILLIPLEX MAP Human Cytokine/Chemokine Immunoassay and their association with UTI and OAB was determined by univariate and multivariate statistics. Significant elevation of CXCL-1, CXCL-8 (IL-8), and CXCL-10 together with reduced levels for a receptor antagonist of IL-1A (sIL-1RA) were seen in UTI relative to OAB and asymptomatic controls. Elevated CXCL-1 urine levels predicted UTI with odds ratio of 1.018 and showed a specificity of 80.77% and sensitivity of 59.68%. Postantibiotic treatment, reduction was seen in all CXC chemokines with a significant reduction for CXCL-10. Strong association of CXCL-1 and CXCL-10 for UTI over OAB indicates mechanistic differences in signaling pathways driving inflammation secondary of infection in UTI compared with a lack of infection in OAB. Urinary chemokines highlight molecular differences in the paracrine signaling driving the overlapping symptoms of UTI and OAB. Copyright © 2016 the American Physiological Society.

  2. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells.

    PubMed

    Hsu, Ya-Ling; Hung, Jen-Yu; Tsai, Ying-Ming; Tsai, Eing-Mei; Huang, Ming-Shyan; Hou, Ming-Feng; Kuo, Po-Lin

    2015-02-18

    This study has two novel findings: it is not only the first to demonstrate that tumor-associated dendritic cells (TADCs) facilitate lung and breast cancer metastasis in vitro and in vivo by secreting inflammatory mediator CC-chemokine ligand 2 (CCL2), but it is also the first to reveal that 6-shogaol can decrease cancer development and progression by inhibiting the production of TADC-derived CCL2. Human lung cancer A549 and breast cancer MDA-MB-231 cells increase TADCs to express high levels of CCL2, which increase cancer stem cell features, migration, and invasion, as well as immunosuppressive tumor-associated macrophage infiltration. 6-Shogaol decreases cancer-induced up-regulation of CCL2 in TADCs, preventing the enhancing effects of TADCs on tumorigenesis and metastatic properties in A549 and MDA-MB-231 cells. A549 and MDA-MB-231 cells enhance CCL2 expression by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the activation of STAT3 induced by A549 and MDA-MB-231 is completely inhibited by 6-shogaol. 6-Shogaol also decreases the metastasis of lung and breast cancers in mice. 6-Shogaol exerts significant anticancer effects on lung and breast cells in vitro and in vivo by targeting the CCL2 secreted by TADCs. Thus, 6-shogaol may have the potential of being an efficacious immunotherapeutic agent for cancers.

  3. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    PubMed

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.

  4. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation

    PubMed Central

    Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.

    2001-01-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613

  5. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  6. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding.

    PubMed

    Thieme, Michael; Lanciano, Sophie; Balzergue, Sandrine; Daccord, Nicolas; Mirouze, Marie; Bucher, Etienne

    2017-07-07

    Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity. Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity. We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.

  7. Relative potencies of Type I and Type II pyrethroids for inhibition of spontaneous firing in neuronal networks.

    EPA Science Inventory

    Pyrethroids insecticides commonly used in pest control disrupt the normal function of voltage-sensitive sodium channels. We have previously demonstrated that permethrin (a Type I pyrethroid) and deltamethrin (a Type II pyrethroid) inhibit sodium channel-dependent spontaneous netw...

  8. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  9. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  10. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    PubMed

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2017-04-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  11. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κB in airway smooth muscle cells

    PubMed Central

    Matsukura, S.; Odaka, M.; Kurokawa, M.; Kuga, H.; Homma, T.; Takeuchi, H.; Notomi, K.; Kokubu, F.; Kawaguchi, M.; Schleimer, R. P.; Johnson, M. W.; Adachi, M.

    2013-01-01

    Summary Background Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-β) may be involved in the process of airway remodelling. Objective We analysed the effects of TGF-β on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. Methods HASM cells were cultured and treated with TGF-β and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. Results IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-β alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-β. Activation by IL-4 or IL-4 plus TGF-β was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-β was inhibited by mutation of the binding site for nuclear factor-κB (NF-κB) in the promoter. Pretreatment with an inhibitor of NF-κB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-β, indicating the importance of NF-κB in the cooperative activation of CCL11 transcription by TGF-β and IL-4. Conclusion These results indicate that Th2 cytokines and TGF-β may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-κB may play pivotal roles in this process. PMID:20214667

  12. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells.

    PubMed

    Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M

    2010-05-01

    Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.

  13. Probing Functional Heteromeric Chemokine Protein-Protein Interactions through Conformation-Assisted Oxime Ligation.

    PubMed

    Agten, Stijn M; Koenen, Rory R; Ippel, Hans; Eckardt, Veit; von Hundelshausen, Philipp; Mayo, Kevin H; Weber, Christian; Hackeng, Tilman M

    2016-11-21

    Protein-protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES-PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  15. Differentiation of patients with leprosy from non-infected individuals by the chemokine eotaxin/CCL11.

    PubMed

    Mendonça, Vanessa A; Malaquias, Luiz C; Brito-Melo, Gustavo E; Castelo-Branco, Alexandre; Antunes, Carlos M; Ribeiro, Antonio L; Teixeira, Mauro M; Teixeira, Antonio L

    2007-09-01

    Diagnosis of leprosy is usually made clinically and there are no tests available for the routine laboratory diagnosis of the disease. The aim of this study was to investigate the potential role of chemokines as biologic markers of disease activity. We used an enzyme-linked immunosorbent assay to measure chemokines in plasma of patients with leprosy (LE) and non-infected (NI) individuals. There were significantly greater concentrations of the chemokines CCL3 and CCL11 in plasma of LE patients than in NI individuals. When the use of CCL11 to differentiate LE patients versus NI individuals was evaluated, the area under the receiver-operator-characteristic curve was 0.95 +/- 0.03 (P < 0.0001). In a group of selected individuals, CCL11 was useful in diagnosis of leprosy, thereby suggesting that measurement of this chemokine may be useful as an aid in diagnosing leprosis.

  16. 12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy?

    NASA Astrophysics Data System (ADS)

    Messina, Jane L.; Fenstermacher, David A.; Eschrich, Steven; Qu, Xiaotao; Berglund, Anders E.; Lloyd, Mark C.; Schell, Michael J.; Sondak, Vernon K.; Weber, Jeffrey S.; Mulé, James J.

    2012-10-01

    We have interrogated a 12-chemokine gene expression signature (GES) on genomic arrays of 14,492 distinct solid tumors and show broad distribution across different histologies. We hypothesized that this 12-chemokine GES might accurately predict a unique intratumoral immune reaction in stage IV (non-locoregional) melanoma metastases. The 12-chemokine GES predicted the presence of unique, lymph node-like structures, containing CD20+ B cell follicles with prominent areas of CD3+ T cells (both CD4+ and CD8+ subsets). CD86+, but not FoxP3+, cells were present within these unique structures as well. The direct correlation between the 12-chemokine GES score and the presence of unique, lymph nodal structures was also associated with better overall survival of the subset of melanoma patients. The use of this novel 12-chemokine GES may reveal basic information on in situ mechanisms of the anti-tumor immune response, potentially leading to improvements in the identification and selection of melanoma patients most suitable for immunotherapy.

  17. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice.

    PubMed

    Ni, Xian-Qiang; Lu, Wei-Wei; Zhang, Jin-Sheng; Zhu, Qing; Ren, Jin-Ling; Yu, Yan-Rong; Liu, Xiu-Ying; Wang, Xiu-Jie; Han, Mei; Jing, Qing; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2018-06-26

    Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.

  18. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  19. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy.

    PubMed

    Wang, Zhe; Huang, He

    2013-05-01

    Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Epidermal growth factor stimulates mouse placental lactogen I but inhibits mouse placental lactogen II secretion in vitro.

    PubMed Central

    Yamaguchi, M; Ogren, L; Endo, H; Thordarson, G; Kensinger, R; Talamantes, F

    1992-01-01

    This study was undertaken to determine whether epidermal growth factor (EGF) regulates the secretion of mouse placental lactogen (mPL)-I and mPL-II. Primary cell cultures were prepared from placentas from days 7, 9, and 11 of pregnancy and cultured for up to 5 days. Addition of EGF (20 ng/ml) to the medium resulted in significant stimulation of mPL-I secretion by the second day of culture in cells from days 7 and 9 of pregnancy and significant inhibition of mPL-II secretion by the third or fourth day of culture in cells from days 7, 9, and 11. Dose-response studies carried out with cells from day 7 of pregnancy demonstrated that the minimum concentration of EGF that stimulated mPL-I secretion and inhibited mPL-II secretion was 1.0 ng/ml. EGF did not affect the DNA content of the cells or cell viability, assessed by trypan blue exclusion, nor did it have a general effect on protein synthesis. There are three types of PL-containing giant cells in mouse placental cell cultures: cells that contain either mPL-I or mPL-II and cells that contain both hormones. Immunocytochemical analysis and the reverse hemolytic plaque assay indicated that EGF treatment was accompanied by a significant increase in the number of cells that produce mPL-I, but among the PL cells that contained mPL-I, there was no change in the fraction of cells that contained only mPL-I or the fraction that contained both mPL-I and mPL-II. In contrast, EGF treatment did affect the distribution of mPL-II among PL cells. In control cultures, about 75% of the cells that contained mPL-II also contained mPL-I, but in EGF-treated cultures, all of the cells that contained mPL-II also contained mPL-I. These data suggest that EGF regulates mPL-I and mPL-II secretion at least partly by regulating PL cell differentiation. PMID:1454826

  1. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis.

    PubMed

    Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian

    2016-09-01

    This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.

  2. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine - Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression.

    PubMed

    Trojan, Ewa; Ślusarczyk, Joanna; Chamera, Katarzyna; Kotarska, Katarzyna; Głombik, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka

    2017-01-01

    An increasing number of studies indicate that the chemokine system may be the third major communication system of the brain. Therefore, the role of the chemokine system in the development of brain disorders, including depression, has been recently proposed. However, little is known about the impact of the administration of various antidepressant drugs on the brain chemokine - chemokine receptor axis. In the present study, we used an animal model of depression based on the prenatal stress procedure. We determined whether chronic treatment with tianeptine, venlafaxine, or fluoxetine influenced the evoked by prenatal stress procedure changes in the mRNA and protein levels of the homeostatic chemokines, CXCL12 (SDF-1α), CX3CL1 (fractalkine) and their receptors, in the hippocampus and frontal cortex. Moreover, the impact of mentioned antidepressants on the TGF-β, a molecular pathway related to fractalkine receptor (CX3CR1), was explored. We found that prenatal stress caused anxiety and depressive-like disturbances in adult offspring rats, which were normalized by chronic antidepressant treatment. Furthermore, we showed the stress-evoked CXCL12 upregulation while CXCR4 downregulation in hippocampus and frontal cortex. CXCR7 expression was enhanced in frontal cortex but not hippocampus. Furthermore, the levels of CX3CL1 and CX3CR1 were diminished by prenatal stress in the both examined brain areas. The mentioned changes were normalized with various potency by chronic administration of tested antidepressants. All drugs in hippocampus, while tianeptine and venlafaxine in frontal cortex normalized the CXCL12 level in prenatally stressed offspring. Moreover, in hippocampus only fluoxetine enhanced CXCR4 level, while fluoxetine and tianeptine diminished CXCR7 level in frontal cortex. Additionally, the diminished by prenatal stress levels of CX3CL1 and CX3CR1 in the both examined brain areas were normalized by chronic tianeptine and partially fluoxetine administration

  3. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    DTIC Science & Technology

    2014-08-01

    versus-host disease (GHVD). We use T-cell receptor deep sequencing to characterize the repertoire of effector T-cells in allogeneic hematopoietic stem ... cell transplant (HSCT) recipients and identify the role of chemokine receptors in effector cell infiltration of target organs. In the recent funding

  4. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    PubMed

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  5. CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment.

    PubMed

    Sarabi, A; Kramp, B K; Drechsler, M; Hackeng, T M; Soehnlein, O; Weber, C; Koenen, R R; Von Hundelshausen, P

    2011-01-01

    The non-allelic variant of CXCL4/PF4, CXCL4L1/PF4alt, differs from CXCL4 in three amino acids of the C-terminal α-helix and has been characterized as a potent anti-angiogenic regulator. Although CXCL4 structurally belongs to the chemokine family, it does not behave like a 'classical' chemokine, lacking significant chemotactic properties. Specific hallmarks are its angiostatic, anti-proliferative activities, and proinflammatory functions, which can be conferred by heteromer-formation with CCL5/RANTES enhancing monocyte recruitment. Here we show that tube formation of endothelial cells was inhibited by CXCL4L1 and CXCL4, while only CXCL4L1 triggered chemokinesis of endothelial cells. The chemotactic response towards VEGF and bFGF was attenuated by both variants and CXCL4L1-induced chemokinesis was blocked by bFGF or VEGF. Endothelial cell proliferation was inhibited by CXCL4 (IC(50) 6.9 μg mL(-1)) but not by CXCL4L1, while both chemokines bound directly to VEGF and bFGF. Moreover, CXCL4 enhanced CCL5-induced monocyte arrest in flow adhesion experiments and monocyte recruitment into the mouse peritoneal cavity in vivo, whereas CXCL4L1 had no effect. CXCL4L1 revealed lower affinity to CCL5 than CXCL4, as quantified by isothermal fluorescence titration. As evidenced by the reduction of the activated partial thromboplastin time, CXCL4L1 showed a tendency towards less heparin-neutralizing activity than CXCL4 (IC(50) 2.45 vs 0.98 μg mL(-1)).  CXCL4L1 may act angiostatically by causing random endothelial cell locomotion, disturbing directed migration towards angiogenic chemokines, serving as a homeostatic chemokine with a moderate structural distinction yet different functional profile from CXCL4. © 2010 International Society on Thrombosis and Haemostasis.

  6. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    PubMed

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  8. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons

  9. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

    PubMed

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng

    2015-07-31

    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Chemokines are secreted by monocytes following OK-432 (lyophilized Streptococcus pyogenes) stimulation

    PubMed Central

    Olsnes, Carla; Stavang, Helen; Brokstad, Karl; Olofsson, Jan; Aarstad, Hans J

    2009-01-01

    Background OK-432, penicillin-killed Streptococcus pyogenes, is used in treating lymphangiomas and carcinomas. We have studied in vitro the role of mononuclear phagocytes (MNPs), including purified monocytes (MOs), in the immune response to OK-432. MIP-1α/β and MCP-1 secretions were assessed in whole blood (WB), peripheral blood mononuclear cells (PBMCs) and purified MOs, after in vitro stimulation with OK-432 with or without adherence for 24 hours. Results OK-432 stimulated MNPs to secrete MCP-1 and MIP-1α/β in healthy individuals and in head and neck squamous cell carcinoma (HNSCC) patients, except for OK-432 stimulation of WB giving a minimal MIP-1α/β response. Upon culture on low-attachment wells, a spontaneous chemokine secretion was observed, with an unchanged secretion following OK-432 stimulation. Inhibition of Syk kinase and/or PI-3 kinase did not significantly change the chemokine response to OK-432, except for MIP-1α production being increased upon Syk inhibitor addition and an increased MCP-1 response upon addition of both inhibitors. Adhesion may possibly involve β1 and/or β3 integrins, not β2, whereas β1–3 integrins may act as co-stimulatory receptors for OK-432. Based on direct blockage of CD36 or CD18 by antibodies, MCP-1 production may be mediated by CD18 while MIP-1β and MCP-1 production may occur upon binding to CD36. Conclusion Adherent human MOs produce MCP-1 and MIP-1α/β upon stimulation with OK-432. CD36 modulates MIP-1β and MCP-1 response. Thus, to some extent OK-432 acts as a substance whereby only MOs adhered to surfaces secrete MCP-1 and MIP-1α/β, in part explaining why OK-432 is suited as a biological response modifying drug. PMID:19175917

  11. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis

    PubMed Central

    Liu, Dawen; Wise, Gary E.

    2007-01-01

    The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is

  12. Systemic Chemokine Levels with "Gut-Specific" Vedolizumab in Patients with Inflammatory Bowel Disease-A Pilot Study.

    PubMed

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte; Almer, Sven; Boström, Elisabeth A

    2017-08-22

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α₄β₇ integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn's disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment.

  13. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats

    PubMed Central

    Chen, Jin-Shuen

    2017-01-01

    Renin–angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar–Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. PMID:28700686

  14. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats.

    PubMed

    Chou, Chu-Lin; Lin, Heng; Chen, Jin-Shuen; Fang, Te-Chao

    2017-01-01

    Renin-angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats.

  15. A mini review on immune role of chemokines and its receptors in snakehead murrel Channa striatus.

    PubMed

    Bhatt, Prasanth; Kumaresan, Venkatesh; Palanisamy, Rajesh; Ravichandran, Gayathri; Mala, Kanchana; Amin, S M Nurul; Arshad, Aziz; Yusoff, Fatimah Md; Arockiaraj, Jesu

    2018-01-01

    Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A CCL chemokine-derived peptide (CDIP-2) exerts anti-inflammatory activity via CCR1, CCR2 and CCR3 chemokine receptors: Implications as a potential therapeutic treatment of asthma.

    PubMed

    Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A

    2014-05-01

    Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. miR-34a Modulates Angiotensin II-Induced Myocardial Hypertrophy by Direct Inhibition of ATG9A Expression and Autophagic Activity

    PubMed Central

    Huang, He; Ye, Jing; Pan, Wei; Zhong, Yun; Cheng, Chuanfang; You, Xiangyu; Liu, Benrong; Xiong, Longgen; Liu, Shiming

    2014-01-01

    Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity. PMID:24728149

  18. Increased Systemic Cytokine/Chemokine Expression in Asthmatic and Non-asthmatic Patients with Bacterial, Viral or Mixed Lung Infection.

    PubMed

    Giuffrida, M J; Valero, N; Mosquera, J; Duran, A; Arocha, F; Chacín, B; Espina, L M; Gotera, J; Bermudez, J; Mavarez, A; Alvarez-Mon, M

    2017-04-01

    This study was aimed to determine the profiles of serum cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP-1: monocyte chemoattract protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in individuals with an asthmatic versus a non-asthmatic background with bacterial, viral or mixed acute respiratory infection. Asthmatic (n = 14) and non-asthmatic (n = 29) patients with acute viral, bacterial or mixed (bacterial and viruses) respiratory infection were studied. Patients were also analysed as individuals with pneumonia or bronchitis. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in serum was determined by ELISA. Increased cytokine/chemokine concentration in asthmatic and non-asthmatic patients was observed. However, higher concentrations of chemokines (MCP-1 and RANTES) in asthmatic patients infected by viruses, bacteria or bacteria and viruses (mixed) than in non-asthmatic patients were observed. In general, viral and mixed infections were better cytokine/chemokine inducers than bacterial infection. Cytokine/chemokine expression was similarly increased in both asthmatic and non-asthmatic patients with pneumonia or bronchitis, except that RANTES remained at normal levels in bronchitis. Circulating cytokine profiles induced by acute viral, bacterial or mixed lung infection were not related to asthmatic background, except for chemokines that were increased in asthmatic status. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  19. Phosphorylation and mRNA Splicing of Collapsin Response Mediator Protein-2 Determine Inhibition of Rho-associated Protein Kinase (ROCK) II Function in Carcinoma Cell Migration and Invasion*

    PubMed Central

    Morgan-Fisher, Marie; Couchman, John R.; Yoneda, Atsuko

    2013-01-01

    The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2. PMID:24036111

  20. Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane.

    PubMed

    Yanatori, Izumi; Yasui, Yumiko; Noguchi, Yumiko; Kishi, Fumio

    2015-04-01

    Ferristatin II, discovered as an iron transport inhibitor, promotes the internalization and degradation of transferrin receptor 1 (TfR1). DMT1, which mediates iron transport across cell membranes, is located at the plasma membrane of enterocytes and imports dietary iron into the cytosol. TfR1 is not directly engaged in the intestinal absorption of free iron, and iron uptake by DMT1 is attenuated by ferristatin II treatment. In this study, we found another function for ferristatin II in iron uptake. Ferristatin II did not cause degradation of DMT1 but did induce DMT1 internalization from the plasma membrane. Dynasore, a small molecule inhibitor of dynamin, did not inhibit this internalization by ferristatin II, which might occur via a clathrin-independent pathway. © 2014 International Federation for Cell Biology.

  1. Role of inflammation in the development of renal damage and dysfunction in Angiotensin II-induced hypertension

    PubMed Central

    Liao, Tang-Dong; Yang, Xiao-Ping; Liu, Yun-He; Shesely, Edward G.; Cavasin, Maria A.; Kuziel, William A.; Pagano, Patrick J.; Carretero, Oscar A.

    2008-01-01

    Angiotensin II (Ang II)-induced hypertension is associated with an inflammatory response that may contribute to development of target organ damage. We tested the hypothesis that in Angiotensin II-induced hypertension, CC chemokine receptor 2 (CCR2) activation plays an important role in development of renal fibrosis, damage and dysfunction by causing: a) oxidative stress, b) macrophage infiltration, and c) cell proliferation. To test this hypothesis we used CCR2 knockout mice (CCR2−/−). The natural ligand of CCR2 is monocyte chemoattractant protein-1 (MCP-1), a chemokine important for macrophage recruitment and activation. CCR2−/− and age-matched wild-type (CCR2+/+) C57BL/6J mice were infused continuously with either Ang II (5.2 ng/10 g/min) or vehicle via osmotic mini-pumps for 2 or 4 weeks. Ang II infusion caused similar increases in systolic blood pressure and left ventricular hypertrophy in both strains of mice. However, in CCR2−/− mice with Ang II-induced hypertension, oxidative stress, macrophage infiltration, albuminuria and renal damage were significantly decreased and glomerular filtration rate was significantly higher than in CCR2+/+ mice. We concluded that in Ang II-induced hypertension, CCR2 activation plays an important role in development of hypertensive nephropathy via increased oxidative stress and inflammation. PMID:18541733

  2. Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1.

    PubMed

    Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J

    2014-11-04

    Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.

  3. Interferon-regulated chemokine score associated with improvement in disease activity in refractory myositis patients treated with rituximab.

    PubMed

    López De Padilla, Consuelo M; Crowson, Cynthia S; Hein, Molly S; Strausbauch, Michael A; Aggarwal, Rohit; Levesque, Marc C; Ascherman, Dana P; Oddis, Chester V; Reed, Ann M

    2015-01-01

    The purpose of this study was to investigate whether serum interferon (IFN)-regulated chemokine and distinct cytokine response profiles are associated with clinical improvement in patients with refractory inflammatory myopathy treated with rituximab. In a randomised, placebo-phase trial Rituximab in Myositis Trial (RIM), 200 refractory adult and paediatric myositis subjects received rituximab. Following rituximab, clinical response and disease activity were assessed. Serum samples and clinical data were collected at baseline and several time-points after rituximab treatment. Multiplexed sandwich immunoassays quantified serum levels of IFN-regulated chemokines and other pro-inflammatory cytokines. Composite IFN-regulated chemokine and Th1, Th2, Th17 and regulatory cytokine scores were computed. Baseline IFN-regulated chemokine, Th1, Th2, Th17 and regulatory cytokine scores correlated with baseline physician global VAS, whereas the baseline Th1, Th2 and Th17 cytokine scores correlated with baseline muscle VAS. We also found baseline IFN-regulated chemokine scores correlated with specific non-muscular targets such as baseline cutaneous (r=0.29; p=0.002) and pulmonary (r=0.18; p=0.02) VAS scores. Among all cytokine/chemokines examined, the baseline score of IFN-regulated chemokines demonstrated the best correlation with changes in muscle VAS at 8 (r=-0.19; p=0.01) and 16 weeks (r=-0.17; p=0.03) following rituximab and physician global VAS at 16 weeks (r=-0.16; p=0.04). In vitro experiments showed increased levels of IL-8 (p=0.04), MCP-1 (p=0.04), IL-6 (p=0.03), IL-1β (p=0.04), IL-13 (p=0.04), IL-10 (p=0.02), IL-2 (p=0.04) and IFN-γ (p=0.02) in supernatants of TLR-3 stimulated PBMCs from non-responder compared to patients responders to rituximab. IFN-regulated chemokines before treatment is associated with improvement in disease activity measures in refractory myositis patients treated with rituximab.

  4. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Suppressive effects of a novel CC chemokine receptor 4 antagonist on Th2 cell trafficking in ligand- and antigen-induced mouse models.

    PubMed

    Komiya, Takaki; Sugiyama, Tetsuya; Takeda, Kazuhiko; Watanabe, Noriki; Imai, Masamichi; Kokubo, Masaya; Tokuda, Natsuko; Ochiai, Hiroshi; Habashita, Hiromu; Shibayama, Shiro

    2013-11-15

    CC chemokine receptor 4 (CCR4) has been implicated as a preferential marker for T helper type 2 (Th2) cells, and is believed to be involved in the pathology of allergic diseases by controlling Th2 cell trafficking into inflamed tissues. The objective of the study was to characterize the pharmacological properties of E0001-163, a novel CCR4 antagonist. E0001-163 was tested in both in vitro chemotaxis assays as well as in vivo mouse models of CCR4 ligand-induced air pouch and antigen-induced airway inflammation by utilizing in vitro-polarized Th2 cells. In vitro, E0001-163 inhibited migratory response of human Th2-polarized cells to CCL22, a CCR4 ligand, with an IC50 value of 11.9 nM. E0001-163 significantly suppressed CCL22-induced Th2 cell trafficking into mouse air pouch in a dose-dependent manner at doses of 3 and 10mg/kg, suggesting that E0001-163 has an inhibitory effect on CCR4-mediated T cell trafficking in vivo. In addition, E0001-163 partially decreased Th2 cell trafficking and the level of IL-4 in the lungs in Th2-tansferred and ovalbumin (OVA)-challenged mice. T cell trafficking involves multiple chemokine receptors both in acute and chronic phases, and our findings suggest that CCR4, together with other chemokine receptors, may be involved in Th2 cell trafficking under disease conditions. © 2013 Elsevier B.V. All rights reserved.

  6. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka

    2016-01-01

    In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168

  7. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    PubMed Central

    Smirnov, Anna; Pohlmann, Stephanie; Nehring, Melanie; Ali, Shafaqat; Mann-Nüttel, Ritu; Scheu, Stefanie; Antoni, Anne-Charlotte; Hansen, Wiebke; Büettner, Manuela; Gardiasch, Miriam J.; Westendorf, Astrid M.; Wirsdörfer, Florian; Pastille, Eva; Dudda, Marcel; Flohé, Stefanie B.

    2017-01-01

    Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated

  9. The CXCL16-CXCR6 chemokine axis in glial tumors.

    PubMed

    Hattermann, Kirsten; Held-Feindt, Janka; Ludwig, Andreas; Mentlein, Rolf

    2013-07-15

    Since chemokines and their receptors play a pivotal role in tumors, we investigated the CXCL16-CXCR6-axis in human astroglial tumors. The transmembrane chemokine CXCL16 is heavily expressed by tumor, microglial and endothelial cells in situ and in vitro. In contrast, the receptor CXCR6 is restricted in glioblastomas to a small subset of proliferating cells positive for the stem-cell markers Musashi, Nanog, Sox2 and Oct4. In particular, the vast majority (about 90%) of Musashi-positive cells stained also for CXCR6. Thus, CXCL16 is highly expressed by glial tumor and stroma cells whereas CXCR6 defines a subset of cells with stem cell character. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Leukocyte production of inflammatory mediators is inhibited by the antioxidants phloretin, silymarin, hesperetin, and resveratrol.

    PubMed

    Fordham, Jezrom B; Naqvi, Afsar Raza; Nares, Salvador

    2014-01-01

    Antioxidants possess significant therapeutic potential for the treatment of inflammatory disorders. One such disorder is periodontitis characterised by an antimicrobial immune response, inflammation, and irreversible changes to the supporting structures of the teeth. Recognition of conserved pathogen-associated molecular patterns is a crucial component of innate immunity to Gram-negative bacteria such as Escherichia coli, as well as the periodontal pathogen Aggregatibacter actinomycetemcomitans. In this study, we investigated the antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol to ascertain whether they altered the production of inflammatory mediators by innately-activated leukocytes. Peripheral blood mononuclear cells were stimulated with lipopolysaccharide purified from Aggregatibacter actinomycetemcomitans, and the production of cytokines, chemokines, and differentiation factors was assayed by enzyme-linked immunosorbent assay, cytometric bead array, and RT-PCR. Significant inhibition of these factors was achieved upon treatment with Phloretin, Silymarin, Hesperetin, and Resveratrol. These data further characterise the potent anti-inflammatory properties of antioxidants. Their ability to inhibit the production of inflammatory cytokines, chemokines, and differentiation factors by a heterogeneous population of leukocytes has clear implications for their therapeutic potential in vivo.

  11. Leukocyte Production of Inflammatory Mediators Is Inhibited by the Antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol

    PubMed Central

    Fordham, Jezrom B.; Raza Naqvi, Afsar

    2014-01-01

    Antioxidants possess significant therapeutic potential for the treatment of inflammatory disorders. One such disorder is periodontitis characterised by an antimicrobial immune response, inflammation, and irreversible changes to the supporting structures of the teeth. Recognition of conserved pathogen-associated molecular patterns is a crucial component of innate immunity to Gram-negative bacteria such as Escherichia coli, as well as the periodontal pathogen Aggregatibacter actinomycetemcomitans. In this study, we investigated the antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol to ascertain whether they altered the production of inflammatory mediators by innately-activated leukocytes. Peripheral blood mononuclear cells were stimulated with lipopolysaccharide purified from Aggregatibacter actinomycetemcomitans, and the production of cytokines, chemokines, and differentiation factors was assayed by enzyme-linked immunosorbent assay, cytometric bead array, and RT-PCR. Significant inhibition of these factors was achieved upon treatment with Phloretin, Silymarin, Hesperetin, and Resveratrol. These data further characterise the potent anti-inflammatory properties of antioxidants. Their ability to inhibit the production of inflammatory cytokines, chemokines, and differentiation factors by a heterogeneous population of leukocytes has clear implications for their therapeutic potential in vivo. PMID:24707119

  12. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5).

    PubMed

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie

    2016-12-23

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia.

    PubMed

    de Rooij, Martin F M; Kuil, Annemieke; Geest, Christian R; Eldering, Eric; Chang, Betty Y; Buggy, Joseph J; Pals, Steven T; Spaargaren, Marcel

    2012-03-15

    Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.

  14. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation.

    PubMed

    Isoda, Kikuo; Akita, Koji; Kitamura, Kenichi; Sato-Okabayashi, Yayoi; Kadoguchi, Tomoyasu; Isobe, Sarasa; Ohtomo, Fumie; Sano, Motoaki; Shimada, Kazunori; Iwakura, Yoichiro; Daida, Hiroyuki

    2018-06-05

    Angiotensin II (Ang II) activates components of the inflammatory cascade, which promotes hypertension and development of abdominal aortic aneurysm (AAA). This study aimed to elucidate the effects of an IL-1 receptor antagonist (IL-1Ra) and an anti-IL-1β antibody (01BSUR) on Ang II-induced AAA. Male wild-type (WT) and IL-1Ra-deficient (IL-1Ra - / - ) mice were infused with Ang II (1000 ng/kg/min) using subcutaneous osmotic pumps for 28 days. Fourteen days post-infusion, both systolic blood pressure (SBP) (Ang II-treated IL-1Ra - / - :149 ± 2 vs. Ang II-treated WT:126 ± 3 mm Hg, p < 0.001) and abdominal aortic width (0.94 ± 0.09 vs. 0.49 ± 0.03 mm, p < 0.001) were significantly higher in IL-1Ra - / - mice than in WT mice. Because 28-day infusion with Ang II in IL-1Ra -/- mice significantly increased the occurrence of fatal aortic rupture (89% vs. 6%, p < 0.0001), both types of mice were infused with Ang II for only 14 days, and histological analyses were performed at 28 days. Interestingly, AAA increased more significantly in IL-1Ra - / - mice than in WT mice (p < 0.001), although SBP did not differ at 28 days in IL-1Ra - / - and WT mice (117 ± 4 vs. 115 ± 3 mm Hg, p = 0.71 (after cessation of Ang II infusion)). Histological analyses showed numerous inflammatory cells around the abdominal aorta in IL-1Ra - / - mice, but not in WT mice. Finally, compared with IgG2a treatment, treatment with 01BSUR decreased Ang II-induced AAA in IL-1Ra - / - mice. The present study demonstrates that inhibition of IL-1β significantly suppresses AAA formation after Ang II infusion, suggesting that suppression of IL-1β may provide an additional strategy to protect against AAA in hypertensive patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes.

    PubMed

    Garcia, Juliana; Carvalho, Alexandra T P; Dourado, Daniel F A R; Baptista, Paula; de Lourdes Bastos, Maria; Carvalho, Félix

    2014-06-01

    Poisonous α-amanitin-containing mushrooms are responsible for the major cases of fatalities after mushroom ingestion. α-Amanitin is known to inhibit the RNA polymerase II (RNAP II), although the underlying mechanisms are not fully understood. Benzylpenicillin, ceftazidime and silybin have been the most frequently used drugs in the management of α-amanitin poisoning, mostly based on empirical rationale. The present study provides an in silico insight into the inhibition of RNAP II by α-amanitin and also on the interaction of the antidotes on the active site of this enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics-generalized Born surface area method (MM-GBSA) were carried out to investigate the binding of α-amanitin and three antidotes benzylpenicillin, ceftazidime and silybin to RNAP II. Our results reveal that α-amanitin should affects RNAP II transcription by compromising trigger loop (TL) function. The observed direct interactions between α-amanitin and TL residues Leu1081, Asn1082, Thr1083, His1085 and Gly1088 alters the elongation process and thus contribute to the inhibition of RNAP II. We also present evidences that α-amanitin can interact directly with the bridge helix residues Gly819, Gly820 and Glu822, and indirectly with His816 and Phe815. This destabilizes the bridge helix, possibly causing RNAP II activity loss. We demonstrate that benzylpenicillin, ceftazidime and silybin are able to bind to the same site as α-amanitin, although not replicating the unique α-amanitin binding mode. They establish considerably less intermolecular interactions and the ones existing are essential confine to the bridge helix and adjacent residues. Therefore, the therapeutic effect of these antidotes does not seem to be directly related with binding to RNAP II. RNAP II α-amanitin binding site can be divided into specific zones with different properties providing a reliable platform for the structure-based drug design of

  16. Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells

    PubMed Central

    Ramnath, Raina Devi; Sun, Jia; Adhikari, Sharmila; Bhatia, Madhav

    2007-01-01

    Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini. PMID:18205703

  17. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells.

    PubMed

    Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J

    2011-03-31

    TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.

  18. Human Cytomegalovirus Clinical Strain-Specific microRNA miR-UL148D Targets the Human Chemokine RANTES during Infection

    PubMed Central

    Kim, Sungchul; Kim, Donghyun; Ahn, Jin-Hyun; Ahn, Kwangseog

    2012-01-01

    The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b' sequences of the Toledo genome, targeted the 3′-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV. PMID:22412377

  19. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  20. Borrelia burgdorferi basic membrane protein A could induce chemokine production in murine microglia cell line BV2.

    PubMed

    Zhao, Hua; Liu, Aihua; Cui, Yuhui; Liang, Zhang; Li, Bingxue; Bao, Fukai

    2017-10-01

    Lyme neuroborreliosis is a nervous system infectious disease caused by Borrelia burgdorferi (B. burgdorferi). It has been demonstrated that cytokines induced by B. burgdorferi are related to Lyme neuroborreliosis. Microglia is known as a key player in the immune responses that occur within the central nervous system. In response to inflammation, it will be activated and generate cytokines and chemokines. Experiments in vitro cells have showed that B. Burgdorferi membrane protein A (BmpA), a major immunogen of B. Burgdorferi, could induce Lyme arthritis and stimulate human and murine lymphocytes to produce inflammatory cytokines. In our study, the murine microglia BV2 cell line was used as a cell model to explore the stimulating effects of recombinant BmpA (rBmpA); Chemokine chip, ELISA and QPCR technology were used to measure the production of chemokines from microglial cells stimulated by rBmpA. Compared with the negative control group, CXCL2, CCL22, and CCL5 concentrations in the cell supernatant increased significantly after the rBmpA stimulation; the concentration of these chemokines increased with rBmpA concentration increasing; the mRNA expression levels of chemokines (CXCL2, CCL22, and CCL5) in murine BV2 cells increased significantly with 10 μg/mL and 20 μg/mL rBmpA stimulation; CXCL13 was not change after the rBmpA stimulation. Our study shows that chemokines, such as CXCL2, CCL22, and CCL5 were up-regulated by the rBmpA in the BV2 cells. The production of chemokines in Lyme neuroborreliosis may be mainly from microglia cells and the rBmpA may be closely related with the development of Lyme neuroborreliosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  2. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    PubMed Central

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development. PMID:20049170

  3. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    PubMed

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  4. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol

    PubMed Central

    Gahbauer, Stefan; Pluhackova, Kristyna

    2018-01-01

    Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs. PMID:29529028

  5. Rat astrocytes during anoxia: Secretome profile of cytokines and chemokines.

    PubMed

    Samy, Zeinab Adel; Al-Abdullah, Lulwa; Turcani, Marian; Craik, James; Redzic, Zoran

    2018-06-04

    The precise mechanisms of the inflammatory responses after cerebral ischemia in vivo are difficult to elucidate because of the complex nature of multiple series of interactions between cells and molecules. This study explored temporal patterns of secretion of 30 cytokines and chemokines from Sprague Dawley rat astrocytes in primary culture in order to elucidate signaling pathways that are triggered by astrocytes during anoxia. Primary cultures of rat brain astrocytes were incubated for periods of 2-24 hr in the absence of oxygen (anoxia) or under normal partial pressure of oxygen (controls). Simultaneous detection of 29 cytokines and chemokines in the samples was performed using a rat cytokine array panel, while the temporal pattern of angiopoietin-1 (Ang-1) secretion was determined separately using ELISA. Wilcoxon-Mann-Whitney test was used to compare normoxic and anoxic samples and the Hodge-Lehman estimator with exact 95% confidence intervals was computed to assess the size of differences in cytokine secretion. The obtained data were imported into the Core Analysis tool of Ingenuity Pathways Analysis software in order to relate changes in secretion of cytokines and chemokines from astrocytes during anoxia to potential molecular signal networks. With the exception of Ang-1, concentrations of all cytokines/chemokines in samples collected after anoxia exposure were either the same, or higher, than in control groups. No clear pattern of changes could be established for groups of cytokines with similar effects (i.e., pro- or anti-inflammatory cytokines). The pattern of changes in cytokine secretion during anoxia was associated with the HIF-1α-mediated response, as well as cytokines IL-1β and cathepsin S pathways, which are related to initiation of inflammation and antigen presentation, respectively, and to ciliary neurotrophic factor. These in vitro findings suggest that astrocytes may play a role in triggering inflammation during anoxia/ischemia of the brain.

  6. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses.

    PubMed

    Menetski, J; Mistry, S; Lu, M; Mudgett, J S; Ransohoff, R M; Demartino, J A; Macintyre, D E; Abbadie, C

    2007-11-09

    Recent findings demonstrate that chemokines, and more specifically CC chemokine ligand 2 (CCL2 or monocyte chemoattractant protein-1), play a major role in pain processing. In the present study, we assess nociceptive responses of mice that overexpressed CCL2 under control of glial fibrillary acidic protein promoter (CCL2 tg). In models of acute nociception CCL2 tg mice demonstrated significantly enhanced nociceptive behavior relative to wild-type controls in responses to both thermal (hot plate) and chemical (formalin test) stimulus modalities. There were no differences in mechanical allodynia in the partial sciatic nerve ligation model, in terms of either magnitude or duration of the allodynic response; however, both groups responded to the maximal extent measurable. In a model of inflammatory pain, elicited by intraplantar administration of complete Freund's adjuvant (CFA), CCL2 tg mice displayed both greater edema and thermal hyperalgesia compared with control mice. In control mice, edema and hyperalgesia returned to baseline values 5-7 days post CFA. However, in CCL2 tg mice, thermal hyperalgesia was significantly different from baseline up to 3 weeks post CFA. Parallel to these enhanced behavioral responses CCL2 serum levels were significantly greater in CCL2 overexpressing mice and remained elevated 7 days post CFA. Consequently, proinflammatory cytokine mRNA expression (IL-1beta, IL-6, and TNFalpha) levels were greater in skin, dorsal root ganglia (DRG), and spinal cord, whereas the anti-inflammatory cytokine (IL-10) level was lower in skin and DRG in CCL2 overexpressing mice than in control mice. Taken together with data from CCR2-deficient mice, these present data confirm a key role of CCL2/CCR2 axis in pain pathways and suggest that inhibiting this axis may result in novel pain therapies.

  7. Atorvastatin therapy reduces interferon-regulated chemokine CXCL9 plasma levels in patients with systemic lupus erythematosus.

    PubMed

    Ferreira, G A; Teixeira, A L; Sato, E I

    2010-07-01

    A recent study showed transcriptional levels of interferon-inducible chemokines in peripheral blood cells were associated with disease activity and organ damage in systemic lupus erythematosus, and may be useful in monitoring disease activity and prognosis. Our objective was to evaluate the capacity of atorvastatin to reduce plasma levels of interferon-regulated chemokines (CCL2, CCL3 and CXCL9) and to study the correlation between these chemokines and disease activity in patients with systemic lupus erythematosus. Eighty-eight female patients with systemic lupus erythematosus were divided into two groups: 64 receiving 20 mg/day of atorvastatin (intervention group) and 24 without atorvastatin (control group). All patients were followed for 8 weeks. At baseline and after 8 weeks laboratory tests were performed for all patients. Plasma levels of chemokines were measured by ELISA using commercial kits (DuoSet, R&D Systems, Minneapolis, USA). In a univariate analysis we found correlation between CCL2, CCL3 and CXCL9 plasma levels and SLEDAI score. In the intervention group we observed a significant decrease in CXCL9 plasma levels comparing baseline and levels at the end of the study (p = 0.04); however, no differences were observed regarding CCL2 or CCL3 plasma levels in this study. No significant difference was observed in the plasma levels of these chemokines in the control group. We conclude that treatment with atorvastatin was associated with a significant decrease in the plasma levels of CXCL9 in patients with systemic lupus erythematosus. As the plasma levels of CXCL9 correlated with the SLEDAI score, we ask whether reducing levels of this chemokine could help to control systemic lupus erythematosus activity.

  8. Photosystem II-inhibitors play a limited role in sweet corn response to 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicides

    USDA-ARS?s Scientific Manuscript database

    Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...

  9. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  10. Synthesis, Characterization and the Corrosion Inhibition Study of Two Schiff Base Ligands Derived From Urea and Thiourea and Their Complexes with Cu(II) and Hg(II) Ions

    NASA Astrophysics Data System (ADS)

    Alwan, Wasan Mohammed

    2018-05-01

    The research includes synthesis of [L1] and [L2] Schiff base ligands by the reaction of vanillin with urea and thiourea respectively in 2:1 mol ratio. The two ligands were reacted with CuII ion in 1:2 mol ratio and HgII ion in 1:1 mol ratio. The prepared compounds have been identified by FTIR, U.V-Vis, 1H-NMR (L1, L2 and HgII complex) spectroscopies, microelemental analysis (C.H.N.S), magnetic susceptibility measurements, atomic absorption, chloride content along with conductivity and melting point measurements. According to applied characterization methods, the proposed general formulas of CuII and HgII complexes were [Cu2LnCl4] and [HgLnCl]Cl, respectively, (where n = 1, 2). The ability of corrosion inhibition with two ligands and their cupper complexes has been studied in diluted hydrochloric acid media.

  11. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity.

    PubMed

    Karin, Nathan; Razon, Hila

    2018-09-01

    Chemokines are mostly known for their chemotactic properties, and less for their ability to direct the biological function of target cells, including T cells. The current review focuses on a key chemokine named CXCL10 and its role in directing the migratory propertied and biological function of CD4+ and CD8+ T cells in the context of cancer and inflammatory autoimmunity. CXCR3 is a chemokine receptor that is abundant on CD4+ T cells, CD8+ T cells and NK cells. It has three known ligands: CXCL9, CXCL10 and CXCL11. Different studies, including those coming form our laboratory, indicated that aside of attracting CD8+ and CD4+ effector T cells to tumor sites and sites of inflammation CXCL10 directs the polarization and potentiates the biological function of these cells. This makes CXCL10 a "key driver chemokine" and a valid target for therapy of autoimmune diseases such as Inflammatory Bowl's Disease, Multiple Sclerosis, Rheumatoid arthritis and others. As for cancer this motivated different groups, including our group to develop CXCL10 based therapies for cancer due to its ability to enhance T-dependent anti cancer immunity. The current review summarizes these findings and their potential translational implication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  13. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  14. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    DTIC Science & Technology

    2015-08-01

    T - cells in allogeneic hematopoietic stem - cell transplant (HSCT) recipients and identify the role of chemokine receptors in...immune responses after allogeneic hematopoietic stem - cell transplantation (HSCT) in humans. Control of donor T - cells recruitment into target organs...effector T - cells after allogeneic stem - cell transplantation (Aim 1). To characterize the clonal diversity that correlates with

  15. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.

    PubMed

    Harada, Kazuki; Maekawa, Tsuyoshi; Tsuruta, Ryosuke; Kaneko, Tadashi; Sadamitsu, Daikai; Yamashima, Tetsumori; Yoshida Ki, Ken-ichi

    2002-03-01

    To clarify the involvement of intracellular signaling pathway and calpain in the brain injury and its protection by mild hypothermia, immunoblotting analyses were performed in the rat brain after global forebrain ischemia and reperfusion. After 30 min of ischemia followed by 60 min of reperfusion, Ca2+/calmodulin-dependent kinase II (CaM kinase II) and protein kinase C (PKC)-alpha, beta, gamma isoforms translocated to the synaptosomal fraction, while mild hypothermia (32 degrees C) inhibited the translocation. The hypothermia also inhibited fodrin proteolysis caused by ischemia-reperfusion, indicating the inhibition of calpain. These effects of hypothermia may explain the mechanism of the protection against brain ischemia-reperfusion injury through modulating synaptosomal function.

  16. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    PubMed

    Goldeck, David; Larbi, Anis; Pellicanó, Mariavaleria; Alam, Iftikhar; Zerr, Inga; Schmidt, Christian; Fulop, Tamas; Pawelec, Graham

    2013-01-01

    Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells) and CCR5 (Th1 cells and dendritic cells) was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  17. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms.

    PubMed

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-06-10

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC.

  18. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms

    PubMed Central

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-01-01

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC. PMID:25909173

  19. Thrombospondin-1 and Angiotensin II Inhibit Soluble Guanylyl Cyclase through an Increase in Intracellular Calcium Concentration

    PubMed Central

    Ramanathan, Saumya; Mazzalupo, Stacy; Boitano, Scott; Montfort, William R.

    2011-01-01

    Nitric Oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca2+]i) and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells, and that inhibition requires an increase in [Ca2+]i. Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca2+]i, up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca2+]i, also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca2+ remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in Km for GTP, which rises to 834 µM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca2+]i in response to NO, inducing vasodilation, but is also inhibited by high [Ca2+]i, providing a fine balance between signals for vasodilation and vasoconstriction. PMID:21823650

  20. Inhibition Kinetics And Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korman, T.P.; Tan, Y.-H.; Wong, J.

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5-10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP{sup +} and the inhibitor emodin were solved with the wild type and P94L mutant ofmore » actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns.« less

  1. Systemic Chemokine Levels with “Gut-Specific” Vedolizumab in Patients with Inflammatory Bowel Disease—A Pilot Study

    PubMed Central

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte

    2017-01-01

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α4β7 integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn’s disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment. PMID:28829369

  2. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    PubMed

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  3. OK-432-stimulated chemokine secretion from human monocytes depends on MEK1/2, and involves p38 MAPK and NF-κB phosphorylation, in vitro.

    PubMed

    Olsnes, Carla; Bredholt, Therese; Olofsson, Jan; Aarstad, Hans J

    2013-04-01

    Interaction between the immune system and cancer cells allows for the use of biological response modifiers, like OK-432, in cancer therapy. We have studied the involvement of monocytes (MOs) in the immune response to OK-432 by examining MCP-1, MIP-1α and MIP-1β secretion, in vitro. OK-432-induced IL-6/TNF-α secretion has previously been shown to depend on mitogen-activated protein kinases (MAPKs) ERK1/2 and p38, and we therefore investigated the role of these MAPKs in OK-432-induced chemokine secretion. Here we demonstrate that pharmacological MEK1/2 kinase inhibition generally impaired chemokine secretion from MOs, whereas p38 MAPK inhibition in particular reduced MIP-1α production. Furthermore, simultaneous inhibition of MEK1/2 and Syk kinase was seen to have an additive impact on reduced MCP-1, MIP-1α and MIP-1β secretion. Based on single cell flow cytometry analyses, OK-432, lipoteichoic acid (LTA) and lipopolysaccharide (LPS) were seen to induce p38 MAPK and NF-κB phosphorylation in MOs with different time kinetics. LTA and LPS have been shown to induce ERK1/2 phosphorylation, whereas the levels of phosphorylated ERK1/2 remained constant following OK-432 treatment at the time points tested. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, and we demonstrate increased TLR2 cell surface levels on the MO population, most profoundly following stimulation with LTA and OK-432. Together these results indicate that modulation of MEK1/2 and p38 MAPK signalling could affect the response to OK-432 treatment, having the potential to improve its therapeutic potential within cancer and lymphangioma treatment. © 2012 The Authors APMIS © 2012 APMIS.

  4. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.

    PubMed

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-07-16

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.

  5. The CXC-Chemokine CXCL4 Interacts with Integrins Implicated in Angiogenesis

    PubMed Central

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-01-01

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect. PMID:18648521

  6. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  7. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production

    PubMed Central

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-01-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374

  8. Identification of a cobia (Rachycentron canadum) CC chemokine gene and its involvement in the inflammatory response.

    PubMed

    Su, Youlu; Guo, Zhixun; Xu, Liwen; Jiang, Jingzhe; Wang, Jiangyong; Feng, Juan

    2012-01-01

    The chemokines regulate immune cell migration under inflammatory and physiological conditions. We investigated a CC chemokine gene (RcCC1) from cobia (Rachycentron canadum). The full-length RcCC1 cDNA is comprised 673 nucleotides and encodes a four-cysteine arrangement 99-amino-acid protein typical of known CC chemokines. The genomic DNA of RcCC1 consists of three exons and two introns. Phylogenetic analysis showed that RcCC1 was closest to the MIP group of CC chemokines. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed RcCC1 was constitutively expressed in all tissues examined, with relative strong expression in gill, blood, kidney, spleen, and head kidney. The RcCC1 transcripts in the head kidney, spleen, and liver were quickly up-regulated after stimulation with formalin-inactivated Vibrio carchariae (bacterial vaccine) or polyriboinosinic polyribocytidylic acid (poly I:C). These results indicate RcCC1 not only plays a role in homeostasis, but also may be involved in inflammatory responses to bacterial and viral infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    ERIC Educational Resources Information Center

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  10. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    PubMed

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier; Ludwig, Andreas; Dreymueller, Daniela

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  11. Altered chemokine Th1/Th2 balance in Addison's disease: relationship with hydrocortisone dosing and quality of life.

    PubMed

    Ekman, B; Alstrand, N; Bachrach-Lindström, M; Jenmalm, M C; Wahlberg, J

    2014-01-01

    The adrenalitis found in autoimmune Addison's disease (AAD) is considered having a Th1-driven pathogenesis. Circulating Th1- and Th2-associated chemokines responsible for the trafficking of leukocytes to inflammatory sites are markers for the Th1/Th2 balance. The aim of the study was to assess if the same daily hydrocortisone dose of 30 mg given in either 2 or 4 doses to patients with AAD could affect the Th1/Th2 balance of circulating chemokines.Fifteen patients (6 women) with AAD were included in this randomised, placebo controlled, double blind cross-over study. Samples for chemokines, Th1-associated (CXCL10, CXCL11) and Th2-associated (CCL17, CCL22), were drawn 5 times during a 24-h period at the end of each treatment period and analysed with Luminex. Seven control subjects did the same diurnal blood sampling once. Subjects with AAD had higher median diurnal levels of the Th1-associated chemokines than controls, CXCL10 [43 (33-56) pg/ml vs. 22 (19-34) pg/ml, p<0.01] and CXCL11 [37 (29-48) pg/ml vs. 16 (9-24) pg/ml, p<0.001], whereas no significant difference was found regarding the Th2-related chemokines. Similar chemokine levels were found when the same hydrocortisone dose of 30 mg was divided in 2 or 4 doses. Levels of CXCL11 correlated negatively with scores of SF-36 domains (high score indicate better health) of General Health (GH) and total score for Physical Component Summary (PCS), and these negative correlations were most pronounced at 04:00 h on the 2-dose regimen. Patients with AAD have a dominant Th1 chemokine profile that partially correlates to reduced quality of life. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury.

    PubMed

    Chalin, Arnaud; Lefevre, Benjamin; Devisme, Christelle; Pronier, Charlotte; Carrière, Virginie; Thibault, Vincent; Amiot, Laurence; Samson, Michel

    2018-06-04

    The chemokines CXCL10 (interferon ϒ-inducible protein 10 [IP-10]), CXCL11 (Human interferon inducible T cell alpha chemokine [I-TAC]), CXCL12 (stromal cell derived factor 1 [SDF-1]), and CXCL14 (breast and kidney-expressed chemokine [BRAK]) are involved in cell recruitment, migration, activation, and homing in liver diseases and have been shown to be upregulated during acute liver injury in animal models. However, their expression in patients with acute liver injury is unknown. Here, we aimed to provide evidence of the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during human acute liver injury to propose new inflammation biomarkers for acute liver injury. We analyzed the serum concentration of the studied chemokines in healthy donors (n = 36) and patients (n = 163) with acute liver injuries of various etiologies. Serum CXCL10, CXCL11 and CXCL12 levels were elevated in all the studied groups except biliary diseases for CXCL11. CXCL14 was associated with only acute viral infection and vascular etiologies. The strongest correlation was found between the IFN-inducible studied chemokines (CXCL10 and CXCL11) in all patients and more specifically in the acute viral infection group. These data provide evidence for the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during acute liver injury and are consistent with data obtained in animal models. CXCL10, CXCL11 and CXCL12 were the most highly represented and CXCL14 the least represented chemokines. Differential expression patterns were obtained depending on acute liver injury etiology, suggesting the potential use of these chemokines as acute liver injury biomarkers. Copyright © 2018. Published by Elsevier Ltd.

  13. Altered circulating leukocytes and their chemokines in a clinical trial of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy*.

    PubMed

    Jenkins, Dorothea D; Lee, Timothy; Chiuzan, Cody; Perkel, Jessica K; Rollins, Laura Grace; Wagner, Carol L; Katikaneni, Lakshmi P; Bass, W Thomas; Kaufman, David A; Horgan, Michael J; Laungani, Sheela; Givelichian, Laurence M; Sankaran, Koravangatta; Yager, Jerome Y; Martin, Renee

    2013-10-01

    To determine systemic hypothermia's effect on circulating immune cells and their corresponding chemokines after hypoxic ischemic encephalopathy in neonates. In our randomized, controlled, multicenter trial of systemic hypothermia in neonatal hypoxic ischemic encephalopathy, we measured total and leukocyte subset and serum chemokine levels over time in both hypothermia and normothermia groups, as primary outcomes for safety. Neonatal ICUs participating in a Neurological Disorders and Stroke sponsored clinical trial of therapeutic hypothermia. Sixty-five neonates with moderate to severe hypoxic ischemic encephalopathy within 6 hours after birth. Patients were randomized to normothermia of 37°C or systemic hypothermia of 33°C for 48 hours. Complete and differential leukocyte counts and serum chemokines were measured every 12 hours for 72 hours. The hypothermia group had significantly lower median circulating total WBC and leukocyte subclasses than the normothermia group before rewarming, with a nadir at 36 hours. Only the absolute neutrophil count rebounded after rewarming in the hypothermia group. Chemokines, monocyte chemotactic protein-1 and interleukin-8, which mediate leukocyte chemotaxis as well as bone marrow suppression, were negatively correlated with their target leukocytes in the hypothermia group, suggesting active chemokine and leukocyte modulation by hypothermia. Relative leukopenia at 60-72 hours correlated with an adverse outcome in the hypothermia group. Our data are consistent with chemokine-associated systemic immunosuppression with hypothermia treatment. In hypothermic neonates, persistence of lower leukocyte counts after rewarming is observed in infants with more severe CNS injury.

  14. The chemokine, CXCL16, and its receptor, CXCR6, are constitutively expressed in human annulus fibrosus and expression of CXCL16 is up-regulated by exposure to IL-1ß in vitro.

    PubMed

    Gruber, H E; Marrero, E; Ingram, J A; Hoelscher, G L; Hanley, E N

    2017-01-01

    Chemokines are an important group of soluble molecules with specialized functions in inflammation. The roles of many specialized chemokines and their receptors remain poorly understood in the human intervertebral disc. We investigated CXCL16 and its receptor, CXCR6, to determine their immunolocalization in disc tissue and their presence following exposure of cultured human annulus fibrosus cells to proinflammatory cytokines. CXCL16 is a marker for inflammation; it also can induce hypoxia-inducible factor 1α (HIF-1α), which is a phenotypic marker of heathy nucleus pulposus tissue. We found CXCL16 and CXCR6 immunostaining in many cells of the annulus portion of the disc. Molecular studies showed that annulus fibrosus cells exposed to IL-1ß, but not TNF-α, exhibited significant up-regulation of CXCL16 expression vs. control cells. There was no significant difference in the percentage of annulus cells that exhibited immunolocalization of CXCL16 in grade I/II, grade III or grade IV/V specimens. The presence of CXCL16 and its receptor, CXCR6, in the annulus in vivo suggests the need for future research concerning the role of this chemokine in proinflammatory functions, HIF-1α expression and disc vascularization.

  15. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    PubMed

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  16. Human Mas-Related G Protein-Coupled Receptors-X1 Induce Chemokine Receptor 2 Expression in Rat Dorsal Root Ganglia Neurons and Release of Chemokine Ligand 2 from the Human LAD-2 Mast Cell Line

    PubMed Central

    Solinski, Hans Jürgen; Petermann, Franziska; Rothe, Kathrin; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas

    2013-01-01

    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain. PMID:23505557

  17. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  18. Inhibition Kinetics and Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase†,‡

    PubMed Central

    Korman, Tyler Paz; Tan, Yuhong; Wong, Justin; Luo, Rui; Tsai, Shiou-Chuan

    2008-01-01

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5–10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns. PMID:18205400

  19. Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis

    PubMed Central

    KAKINUMA, T; NAKAMURA, K; WAKUGAWA, M; MITSUI, H; TADA, Y; SAEKI, H; TORII, H; KOMINE, M; ASAHINA, A; TAMAKI, K

    2002-01-01

    Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease characterized by the predominant infiltration of T cells, eosinophils and macrophages in lesional skin. Recently, macrophage-derived chemokine (MDC)/CCL22, a CC chemokine, was identified as a selective chemoattractant for CC chemokine receptor 4 (CCR4)-expressing cells, in addition to thymus and activation-regulated chemokine (TARC). We have previously reported that serum TARC levels correlate with the severity of AD. In this report, we investigated the participation of MDC in AD. First, we measured serum MDC levels in 45 patients with AD, 25 patients with psoriasis vulgaris and 25 healthy controls. Serum MDC levels in AD patients were significantly higher than those in healthy controls and psoriasis patients. Furthermore, the increases in serum MDC levels in AD patients were greater in the severely affected group than in the moderate or mild groups. We compared serum MDC levels in 11 AD patients, before and after treatment, and observed a significant decrease after treatment. Moreover, the serum MDC levels significantly correlated with the Scoring AD (SCORAD) index, serum soluble (s) E-selectin levels, serum soluble interleukin-2 receptor (sIL-2R) levels, serum TARC levels and eosinophil numbers in peripheral blood. Our study strongly suggests that serum MDC levels have a notable correlation with disease activity and that MDC, as well as the CC chemokine TARC, may be involved in the pathogenesis of AD. PMID:11876749

  20. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    PubMed

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  1. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: effects of pioglitazone and metformin treatment.

    PubMed

    Ciaraldi, Theodore P; Aroda, Vanita; Mudaliar, Sunder R; Henry, Robert R

    2013-11-01

    Chronic low-grade inflammation is a common feature of insulin resistant states, including obesity and type 2 diabetes. Less is known about inflammation in Polycystic Ovary Syndrome (PCOS). Thus we evaluated the impact of PCOS on circulating cytokine levels and the effects of anti-diabetic therapies on insulin action, cytokine and chemokine levels and inflammatory signaling in skeletal muscle. Twenty subjects with PCOS and 12 healthy normal cycling (NC) subjects of similar body mass index were studied. PCOS subjects received oral placebo or pioglitazone, 45 mg/d, for 6 months. All PCOS subjects then had metformin, 2 g/day, added to their treatment. Circulating levels of cytokines, chemokines, and adiponectin, skeletal muscle markers of inflammation and phosphorylation of signaling proteins, insulin action evaluated by the hyperinsulinemic/euglycemic clamp procedure and Homeostasis Model Assessment of Insulin Resistance were measured. Circulating levels of a number of cytokines and chemokines were generally similar between PCOS and NC subjects. Levels in PCOS subjects were not altered by pioglitazone or metformin treatment, even though whole body insulin action and adiponectin levels increased with pioglitazone. In spite of the lack of change in levels of cytokines and chemokines, several markers of inflammation in skeletal muscle were improved with Pio treatment. PCOS may represent a state of elevated sensitivity of inflammatory cells in skeletal muscle to cytokines and chemokines, a property that could be reversed by pioglitazone treatment together with improved insulin action. © 2013.

  2. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  4. Inhibition of electron transport on the oxygen-evolving side of photosystem II by an antiserum to a polypeptide isolated from the thylakoid membrane.

    PubMed

    Schmid, G H; Menke, W; Koenig, F; Radunz, A

    1976-01-01

    A polypeptide fraction with the apparent molecular weight 11 000 was isolated from stroma-freed chloroplasts from Anthirrhinum majus. An antiserum to this polypeptide fraction inhibits photosynthetic electron transport in chloroplasts from Nicotiana tabacum. The relative degree of inhibition is pH dependent and has its maximum at pH 7.4. The maximal inhibition observed was 93%. The dependence of the inhibition on the amount of antiserum yields a sigmoidal curve which hints at a cooperative effect. A calculation of the Hill interaction coefficient gave the value of 10. The inhibition occurs on the water splitting side of photosystem II between the sites of electron donation of tetramethyl benzidine and diphenylcarbazide. Tetramethyl benzidine donates its electrons before the site where diphenylcarbazide feeds in its electrons. Analysis of the steady state level of the variable fluorescence also indicates that the inhibition site is on the water splitting side of photosystem II. Tris-washed chloroplasts are equally inhibited by the antiserum and the inhibition is also observed in the presence of an inhibitor of photophosphorylation like dicyclohexyl carbodiimide and in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) which means that the inhibitory action is directed towards the electron transport chain. Valinomycin which is supposed to affect the cation permeability of the thylakoid membrane has no influence on the inhibitory action of the antiserum. The same is valid for gramicidin. Methylamine on the other hand can induce a state in the thylakoids in which the antiserum is not effective. If the antibodies are already adsorbed prior to the methylamine addition then the high inhibitory effect by the antiserum remains unchanged upon addition of methylamine. From the experiments it follows that a component from the vicinity of photosystem II is accessible to antibodies that is, the component is located in the outer surface of the thylakoid

  5. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  6. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing.

    PubMed

    Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying

    2016-01-01

    TLR2-dependent cellular signaling in Mycobacterium tuberculosis -infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2 -/- mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4 + T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.

  7. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism.

    PubMed

    Patel, Arti B; Tsilioni, Irene; Leeman, Susan E; Theoharides, Theoharis C

    2016-09-23

    We had reported elevated serum levels of the peptide neurotensin (NT) in children with autism spectrum disorders (ASD). Here, we show that NT stimulates primary human microglia, the resident immune cells of the brain, and the immortalized cell line of human microglia-SV40. NT (10 nM) increases the gene expression and release (P < 0.001) of the proinflammatory cytokine IL-1β and chemokine (C-X-C motif) ligand 8 (CXCL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 from human microglia. NT also stimulates proliferation (P < 0.05) of microglia-SV40. Microglia express only the receptor 3 (NTR3)/sortilin and not the NTR1 or NTR2. The use of siRNA to target sortilin reduces (P < 0.001) the NT-stimulated cytokine and chemokine gene expression and release from human microglia. Stimulation with NT (10 nM) increases the gene expression of sortilin (P < 0.0001) and causes the receptor to be translocated from the cytoplasm to the cell surface, and to be secreted extracellularly. Our findings also show increased levels of sortilin (P < 0.0001) in the serum from children with ASD (n = 36), compared with healthy controls (n = 20). NT stimulation of microglia-SV40 causes activation of the mammalian target of rapamycin (mTOR) signaling kinase, as shown by phosphorylation of its substrates and inhibition of these responses by drugs that prevent mTOR activation. NT-stimulated responses are inhibited by the flavonoid methoxyluteolin (0.1-1 μM). The data provide a link between sortilin and the pathological findings of microglia and inflammation of the brain in ASD. Thus, inhibition of this pathway using methoxyluteolin could provide an effective treatment of ASD.

  8. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping

    Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellularmore » carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.« less

  9. Structure-activity studies of dicationically substituted bis-benzimidazoles against Giardia lamblia: correlation of antigiardial activity with DNA binding affinity and giardial topoisomerase II inhibition.

    PubMed Central

    Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R

    1993-01-01

    Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934

  10. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion

    PubMed Central

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis. PMID:28267793

  11. Role of circulating soluble chemokines in septic shock.

    PubMed

    de Pablo, R; Monserrat, J; Prieto, A; Alvarez-Mon, M

    2013-11-01

    Chemokines are a large superfamily of small proteins that function not only in leukocyte trafficking, but are also necessary for linkage between innate and adaptive immunity. Little is known about their role in septic shock. We hypothesized that serum levels of the most important chemokines are related to organ failure, disease severity and outcome. A prospective observational study was carried out. Surgical-clinical Intensive Care Unit. Ninety-two patients diagnosed with septic shock using international criteria. Forty patients were excluded due to acquired immunity disturbances. Samples from 36 healthy controls were also analyzed. None. In 46% of the patients who suffered acute respiratory distress syndrome (ARDS), IL-8 levels were higher than in patients without ARDS (499.9±194.1 vs. 190.8±91.7 pg/ml; P=.039). This molecule was also higher in 36% of the patients with sepsis-induced acute renal failure (ARF) (453.3±181.6 vs. 201.3±95.9 pg/ml; P=.049). Coagulopathy was found in 19% of the septic shock patients with elevated serum IL-8 levels (635.8±292.3 vs. 218.7±87.0 pg/ml; P=.010), elevated MIP-1α (91.4±27.3 vs. 58.8±11.1 pg/ml; P=.044), and low circulating RANTES levels (8162.2±6321.0 vs. 18781.8±11.1 pg/ml; P=.027). No significant differences were found between survivors and non-survivors at any time of follow-up. Upon admission to the ICU, IL-8 is a reliable biomarker of sepsis-induced AFR, ARDS and coagulopathy. Altered circulating MIP-1α and RANTES levels are also found in patients with septic shock and coagulopathy. However, chemokines do not appear to be good biomarkers of mortality in septic shock. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  12. In a murine tuberculosis model, the absence of homeostatic chemokines delay granuloma formation and protective immunity

    PubMed Central

    Khader, Shabaana A.; Rangel-Moreno, Javier; Fountain, Jeffrey J.; Martino, Cynthia A; Reiley, William W; Pearl, John E.; Winslow, Gary M; Woodland, David L; Randall, Troy D; Cooper, Andrea M.

    2009-01-01

    Mycobacterium tuberculosis infection results in the generation of protective cellular immunity and formation of granulomatous structures in the lung. CXC chemokine ligand (CXCL)-13, CC chemokine ligand (CCL)-21 and CCL19 are constitutively expressed in the secondary lymphoid organs and play a dominant role in the homing of lymphocytes and dendritic cells. Although it is known that dendritic cell transport of M. tuberculosis from the lung to the draining lymph node is dependent on CCL19/CCL21, we show here that CCL19/CCL21 is also important for the accumulation of antigen-specific IFNγ-producing T cells in the lung, development of the granuloma, and control of mycobacteria. Importantly, we also show that CXCL13 is not required for generation of IFNγ responses, but is essential for the spatial arrangement of lymphocytes within granulomas, optimal activation of phagocytes and subsequent control of mycobacterial growth. Further, we show that these chemokines are also induced in the lung during the early immune responses following pulmonary M. tuberculosis infection. These results demonstrate that homeostatic chemokines perform distinct functions that cooperate to mediate effective expression of immunity against M. tuberculosis infection. PMID:19933855

  13. Complement inhibition decreases early fibrogenic events in the lung of septic baboons.

    PubMed

    Silasi-Mansat, Robert; Zhu, Hua; Georgescu, Constantin; Popescu, Narcis; Keshari, Ravi S; Peer, Glenn; Lupu, Cristina; Taylor, Fletcher B; Pereira, Heloise Anne; Kinasewitz, Gary; Lambris, John D; Lupu, Florea

    2015-11-01

    Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 10(9) cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-β, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung. © 2015 The Authors

  14. The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes.

    PubMed

    Cherney, David Z I; Reich, Heather N; Scholey, James W; Daneman, Denis; Mahmud, Farid H; Har, Ronnie L H; Sochett, Etienne B

    2013-10-01

    Acute clamped hyperglycaemia activates the renin-angiotensin-aldosterone system (RAAS) and increases the urinary excretion of inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Our objective was to determine whether blockade of the RAAS would blunt the effect of acute hyperglycaemia on urinary cytokine/chemokine excretion, thereby giving insights into potentially protective effects of these agents prior to the onset of clinical nephropathy. Blood pressure, renal haemodynamic function (inulin and para-aminohippurate clearances) and urinary cytokines/chemokines were measured after 6 h of clamped euglycaemia (4-6 mmol/l) and hyperglycaemia (9-11 mmol/l) on two consecutive days in patients with type 1 diabetes mellitus (n = 27) without overt nephropathy. Measurements were repeated after treatment with aliskiren (300 mg daily) for 30 days. Before aliskiren, clamped hyperglycaemia increased filtration fraction (from 0.188 ± 0.007 to 0.206 ± 0.007, p = 0.003) and urinary fibroblast growth factor-2 (FGF2), IFN-α2 and macrophage-derived chemokine (MDC) (p < 0.005). After aliskiren, the filtration fraction response to hyperglycaemia was abolished, resulting in a lower filtration fraction after aliskiren under clamped hyperglycaemic conditions (p = 0.004), and none of the biomarkers increased in response to hyperglycaemia. Aliskiren therapy also reduced levels of urinary eotaxin, FGF2, IFN-α2, IL-2 and MDC during clamped hyperglycaemia (p < 0.005). The increased urinary excretion of inflammatory cytokines/chemokines in response to acute hyperglycaemia is blunted by RAAS blockade in humans with uncomplicated type 1 diabetes mellitus.

  15. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    USDA-ARS?s Scientific Manuscript database

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  16. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  17. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  18. C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice

    PubMed Central

    Sawashita, Jinko; Zhang, Beiru; Hasegawa, Kazuhiro; Mori, Masayuki; Naiki, Hironobu; Kametani, Fuyuki; Higuchi, Keiichi

    2015-01-01

    In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. Here, we demonstrate that congenic mouse strains carrying type F apoA-II (APOA2F) protein, which contains four amino acid substitutions in the amyloidogenic regions of APOA2C, were absolutely resistant to amyloidosis, even after induction of amyloidosis by injection of AApoAII. In vitro fibril formation tests showed that N- and C-terminal APOA2F peptides did not polymerize into amyloid fibrils. Moreover, a C-terminal APOA2F peptide was a strong inhibitor of nucleation and extension of amyloid fibrils during polymerization. Importantly, after the induction of amyloidosis, we succeeded in suppressing amyloid deposition in senile amyloidosis-susceptible mice by treatment with the C-terminal APOA2F peptide. We suggest that the C-terminal APOA2F peptide might inhibit further extension of amyloid fibrils by blocking the active ends of nuclei (seeds). We present a previously unidentified model system for investigating inhibitory mechanisms against amyloidosis in vivo and in vitro and believe that this system will be useful for the development of novel therapies. PMID:25675489

  19. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation.

    PubMed

    Chen, Ya-Ping; Wu, Hsin-Li; Boyé, Kevin; Pan, Chen-Ya; Chen, Yi-Chen; Pujol, Nadège; Lin, Chun-Wei; Chiu, Liang-Yuan; Billottet, Clotilde; Alves, Isabel D; Bikfalvi, Andreas; Sue, Shih-Che

    2017-11-17

    CXCL4 chemokines have antiangiogenic properties, mediated by different mechanisms, including CXCR3 receptor activation. Chemokines have distinct oligomerization states that are correlated with their biological functions. CXCL4 exists as a stable tetramer under physiological conditions. It is unclear whether the oligomerization state impacts CXCL4-receptor interaction. We found that the CXCL4 tetramer is sensitive to pH and salt concentration. Residues Glu28 and Lys50 were important for tetramer formation, and the first β-strand and the C-terminal helix are critical for dimerization. By mutating the critical residues responsible for oligomerization, we generated CXCL4 mutants that behave as dimers or monomers under neutral/physiological conditions. The CXCL4 monomer acts as the minimal active unit for interacting CXCR3A, and sulfation of N-terminal tyrosine residues on the receptor is important for binding. Noticeably, CXCL4L1, a CXCL4 variant that differs by three residues in the C-terminal helix, could activate CXCR3A. CXCL4L1 showed a higher tendency to dissociate into monomers, but native CXCL4 did not. This result indicates that monomeric CXCL4 behaves like CXCL4L1. Thus, in this chemokine family, being in the monomeric state seems critical for interaction with CXCR3A.

  20. Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro.

    PubMed

    Marjanović, Nikola; Bosnar, Martina; Michielin, Francesca; Willé, David R; Anić-Milić, Tatjana; Culić, Ognjen; Popović-Grle, Sanja; Bogdan, Mile; Parnham, Michael J; Eraković Haber, Vesna

    2011-05-01

    Macrolide antibiotics are known to exert anti-inflammatory actions in vivo, including certain effects in COPD patients. In order to investigate the immunomodulatory profile of activity of macrolide antibiotics, we have studied the effects of azithromycin, clarithromycin, erythromycin and roxithromycin on the in vitro production of a panel of inflammatory mediators from cells isolated from human, steroid-naïve, COPD sputum samples. Macrolide effects were compared to three other commonly used anti-inflammatory compounds, the corticosteroid dexamethasone, the PDE4 inhibitor, roflumilast and the p38 kinase inhibitor, SB203580. Three of the four tested macrolides, azithromycin, clarithromycin and roxithromycin, exhibited pronounced, concentration-related reduction of IL-1β, IL-6, IL-10, TNF-α, CCL3, CCL5, CCL20, CCL22, CXCL1, CXCL5, and G-CSF release. Further slight inhibitory effects on IL-1α, CXCL8, GM-CSF, and PAI-1 production were also observed. Erythromycin was very weakly active. Qualitatively and quantitatively, macrolides exerted distinctive and, compared to other tested classes of compounds, more pronounced immunomodulatory effects, particularly in terms of chemokine (CCL3, CCL5, CCL20, CCL22, and CXCL5), IL-1β, G-CSF and PAI-1 release. The described modulation of inflammatory mediators could potentially contribute to further definition of biomarkers of macrolide anti-inflammatory activity in COPD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Potentially probiotic Lactobacillus strains with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice.

    PubMed

    Saxami, G; Karapetsas, A; Chondrou, P; Vasiliadis, S; Lamprianidou, E; Kotsianidis, I; Ypsilantis, P; Botaitis, S; Simopoulos, C; Galanis, A

    2017-08-24

    Lactobacillus pentosus B281 and Lactobacillus plantarum B282 are two Lactobacillus strains previously isolated from fermented table olives. Both strains were found to possess probiotic properties and displayed desirable technological characteristics for application as starters in novel functional food production. In the present study the anti-proliferative and immunostimulatory activities of the two strains were investigated. Firstly, we demonstrated that live L. pentosus B281 and L. plantarum B282 significantly inhibited the growth of human colon cancer cells (Caco-2) in a time- and dose-dependent manner. By employing the air pouch system in mice, we showed that administration of both strains led to a rapid and statistically significant infiltration of leukocytes in the air pouch exudates. The phenotypical characterisation of the recruited immune cells was performed by flow cytometry analysis. We demonstrated that the majority of the infiltrated leukocytes were neutrophils. Finally by using the Mouse Cytokine Array Panel A Detection Antibody cocktail, we showed that both strains induced the expression of granulocyte-colony stimulating factor, interleukin (IL)-1α, IL-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-1, chemokine (C-C motif) ligand (CCL)-3, CCL-4, and CXCL-2 and diminished the expression levels of soluble intercellular adhesion molecule, macrophage colony-stimulating factor and metallopeptidase inhibitor 1. Our results showed that both strains display anti-proliferative and immunostimulatory properties equal or even better in some cases than those of established and commonly used probiotic strains. These findings further support the probiotic character of the two strains.

  2. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  3. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney

    2018-04-01

    M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury.

    PubMed

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G Scott; Cines, Douglas B; Poncz, Mortimer; Kowalska, M Anna

    2017-02-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7 -/- and Cxcl4 -/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7 -/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4 -/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.

  5. Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression.

    PubMed

    Pigard, Nadine; Elovaara, Irina; Kuusisto, Hanna; Paalavuo, Raija; Dastidar, Prasun; Zimmermann, Klaus; Schwarz, Hans-Peter; Reipert, Birgit

    2009-04-30

    The objective of this study was to identify genes that are differentially expressed in peripheral T cells of patients with MS exacerbation receiving treatment with IVIG. Using microarray analysis, we identified 360 genes that were at least two-fold up- or down-regulated. The expression of four representative genes (PTGER4, CXCL5, IL11 and CASP2) was confirmed by quantitative PCR. Four of the differentially expressed genes encode chemokines (CXCL3, CXCL5, CCL13 and XCL2) that are involved in directing leukocyte migration. We suggest that the modulation of chemokine expression in peripheral T cells contributes to the beneficial activity of IVIG in patients with MS exacerbation.

  6. Chemokine Prostate Cancer Biomarkers — EDRN Public Portal

    Cancer.gov

    STUDY DESIGN 1. The need for pre-validation studies. Preliminary data from our laboratory demonstrates a potential utility for CXCL5 and CXCL12 as biomarkers to distinguish between patients at high-risk versus low-risk for harboring prostate malignancies. However, this pilot and feasibility study utilized a very small sample size of 51 patients, which limited the ability of this study to adequately assess certain technical aspects of the ELISA technique and statistical aspects of we propose studies designed assess the robustness (Specific Aim 1) and predictive value (Specific Aim 2) of these markers in a larger study population. 2. ELISA Assays. Serum, plasma, or urine chemokine levels are assessed using 50 ul frozen specimen per sandwich ELISA in duplicate using the appropriate commercially-available capture antibodies, detection antibodies, and standard ELISA reagents (R&D; Systems), as we have described previously (15, 17, 18). Measures within each patient group are regarded as biological replicates and permit statistical comparisons between groups. For all ELISAs, a standard curve is generated with the provided standards and utilized to calculate the quantity of chemokine in the sample tested. These assays provide measures of protein concentration with excellent reproducibility, with replicate measures characterized by standard deviations from the mean on the order of <3%.

  7. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis

    PubMed Central

    Azher, Tayaba N.; Yin, Xiao-Tang

    2017-01-01

    Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy. PMID:28491875

  8. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis.

    PubMed

    Azher, Tayaba N; Yin, Xiao-Tang; Stuart, Patrick M

    2017-01-01

    Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1 α , and IFN- γ and chemokines such as MIP-2, MCP-1, MIP-1 α , and MIP-1 β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.

  9. Increased plasma chemokine levels in children with Prader-Willi syndrome.

    PubMed

    Butler, Merlin G; Hossain, Waheeda; Sulsona, Carlos; Driscoll, Daniel J; Manzardo, Ann M

    2015-03-01

    Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes from the 15q11-q13 region and reportedly rearranged as a cause of autism. Additionally, increased inflammatory markers and features of autism are reported in PWS. Cytokines encoded by genes involved with inflammation, cell proliferation, migration, and adhesion play a role in neurodevelopment and could be disturbed in PWS as abnormal plasma cytokine levels are reported in autism. We analyzed 41 plasma cytokines in a cohort of well-characterized children with PWS between 5 and 11 years of age and unaffected unrelated siblings using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Data were analyzed using ANOVA testing for effects of diagnosis, gender, body mass index (BMI) and age on the 24 cytokines meeting laboratory criteria for inclusion. No significant effects were observed for age, gender or BMI. The log-transformed levels of the 24 analyzable cytokines were examined simultaneously using MANOVA adjusting for age and gender and a main effect of diagnosis was found (P-value <0.03). Four of 24 plasma cytokine levels (MCP1, MDC, Eotaxin, RANTES) were significantly higher in children with PWS compared with controls and classified as bioinflammatory chemokines supporting a disturbed immune response unrelated to obesity status. BMI was not statistically different in the two subject groups (PWS or unaffected unrelated siblings) and chemokine levels were not correlated with percentage of total body fat. Additional studies are required to identify whether possible early immunological disturbances and chemokine inflammatory processes found in PWS may contribute to neurodevelopment and behavioral features. © 2015 Wiley Periodicals, Inc.

  10. C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis

    PubMed Central

    Jiang, Qian; Wang, Fei; Shi, Lili; Zhao, Xiang; Gong, Maolei; Liu, Weihua; Song, Chengyi; Li, Qihan; Chen, Yongmei; Wu, Han; Han, Daishu

    2017-01-01

    Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis. PMID:29072682

  11. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    PubMed

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  12. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma

    PubMed Central

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-01-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (χ2 = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (χ2 = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (χ2 = 7.43, P < 0.05) and histological type (χ2 = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (χ2 = 4.67, P < 0.05; χ2 = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma. PMID:21527066

  13. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma.

    PubMed

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-05-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (Χ² = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (Χ(2) = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (Χ² = 7.43, P < 0.05) and histological type (Χ² = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (Χ² = 4.67, P < 0.05; Χ² = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma.

  14. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1) / Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele

    PubMed Central

    Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  15. Chemokines and their receptors in whiplash injury: elevated RANTES and CCR-5.

    PubMed

    Kivioja, J; Rinaldi, L; Ozenci, V; Kouwenhoven, M; Kostulas, N; Lindgren, U; Link, H

    2001-07-01

    The human sufferings and socioeconomic burden due to whip-lash-associated disorders (WAD) are obvious but the pathogenesis of WAD is obscure. The possible involvement of the immune system during the disease process in WAD is not known. Effector molecules including chemokines and their receptors could play a role in WAD. In a prospective study using flow cytometry, we examined percentages of blood mononuclear cells (MNC) expressing the chemokines RANTES, MCP-1, MIP-1alpha, MIP-1beta, and IL-8, the chemokine receptor CCR-5, the T cell activation marker CD25, and the T cell chemoattractant IL-16 in patients with WAD and, for reference, in healthy controls. Higher percentages of RANTES-expressing blood MNC and T cells were observed in patients with WAD examined within 3 days compared to 14 days after the whiplash injury and, likewise, compared with healthy controls. The patients with WAD examined within 3 days after the accident also had higher percentages of CCR-5-expressing blood MNC, T cells, and CD45RO+ T cells compared to healthy controls. In contrast, there were no differences for any of these variables between patients with WAD examined 14 days after injury and healthy controls. In conclusion, WAD is associated with a systemic but transient dysregulation in percentages of RANTES and CCR-5 expressing MNC and T cells.

  16. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury.

    PubMed

    Di Battista, Alex P; Rhind, Shawn G; Hutchison, Michael G; Hassan, Syed; Shiu, Maria Y; Inaba, Kenji; Topolovec-Vranic, Jane; Neto, Antonio Capone; Rizoli, Sandro B; Baker, Andrew J

    2016-02-16

    Traumatic brain injury (TBI) elicits intense sympathetic nervous system (SNS) activation with profuse catecholamine secretion. The resultant hyperadrenergic state is linked to immunomodulation both within the brain and systemically. Dysregulated inflammation post-TBI exacerbates secondary brain injury and contributes to unfavorable patient outcomes including death. The aim of this study was to characterize the early dynamic profile of circulating inflammatory cytokines/chemokines in patients admitted for moderate-to-severe TBI, to examine interrelationships between these mediators and catecholamines, as well as clinical indices of injury severity and neurological outcome. Blood was sampled from 166 isolated TBI patients (aged 45 ± 20.3 years; 74.7 % male) on admission, 6-, 12-, and 24-h post-injury and from healthy controls (N = 21). Plasma cytokine [interleukin (IL)-1β, -2, -4, -5, -10, -12p70, -13, tumor necrosis factor (TNF)-α, interferon (IFN)-γ] and chemokine [IL-8, eotaxin, eotaxin-3, IFN-γ-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, -4, macrophage-derived chemokine (MDC), macrophage inflammatory protein (MIP)-1β, thymus activation regulated chemokine (TARC)] concentrations were analyzed using high-sensitivity electrochemiluminescence multiplex immunoassays. Plasma catecholamines [epinephrine (Epi), norepinephrine (NE)] were measured by immunoassay. Neurological outcome at 6 months was assessed using the extended Glasgow outcome scale (GOSE) dichotomized as good (>4) or poor (≤4) outcomes. Patients showed altered levels of IL-10 and all chemokines assayed relative to controls. Significant differences in a number of markers were evident between moderate and severe TBI cohorts. Elevated IL-8, IL-10, and TNF-α, as well as alterations in 8 of 9 chemokines, were associated with poor outcome at 6 months. Notably, a positive association was found between Epi and IL-1β, IL-10, Eotaxin, IL-8, and MCP-1. NE was positively associated

  18. Synovial angiostatic non-ELR CXC chemokines in inflammatory arthritides: does CXCL4 designate chronicity of synovitis?

    PubMed

    Erdem, Hakan; Pay, Salih; Musabak, Ugur; Simsek, Ismail; Dinc, Ayhan; Pekel, Aysel; Sengul, Ali

    2007-08-01

    In our previous studies, we found higher synovial fluid (SF) levels of angiogenic ELR(+) CXC chemokines such as CXCL1, CXCL5, CXCL6 and CXCL8, which play an important role in neutrophil migration and angiogenesis, and more abundant synovial CXCR2 chemokine receptor expression in patients with rheumatoid arthritis (RA) than those with Behçet's disease (BD), familial Mediterranean fever and osteoarthritis (OA). As a continuation of our previous studies, we investigated synovial levels of angiostatic non-ELR CXC chemokines (CXCL4, CXCL9 and CXCL10) in patients with RA, BD, spondyloarthritis (SpA), and OA. Seventy (17 RA, 15 BD, 19 SpA, and 19 OA) patients were enrolled in the study. The levels of CXCL4, CXCL9, and CXCL10 were measured by ELISA. The SF levels of CXCL4 in patients with RA were higher than those of the patients with BD, SpA, and OA (P = 0.007, P = 0.022, and P = 0.017, respectively). No difference was found with respect to CXCL4 levels among the BD, SpA, and OA patients. The synovial CXCL9 levels of patients with RA and SpA were found to be higher than those of the patients with OA (P = 0.002 and P = 0.005, respectively), while no statistically significant difference was detected among the other groups. With regard to SF CXCL10 levels, patients with RA had higher levels as compared to patients with OA (P = 0.002), but no significant difference was found among the other groups. CXCL9 correlated with CXCL4 and CXCL10 (P < 0.05 for both) in patients with RA. No correlation was found in other parameters. The angiostatic non-ELR CXC chemokines were expressed in synovial inflammation. We proposed that angiostatic non-ELR CXC chemokines may increase to balance angiogenic ELR (+) CXC chemokines in which increased levels were shown in patients with inflammatory arthritides and CXCL4 may contribute to designate the chronicity of synovitis in patients with RA. In addition, as CXCL-9 and CXCL-10 play crucial role in inflammation characterized by Th1 polarization

  19. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. © 2015 Wiley Periodicals, Inc.

  20. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice.

    PubMed

    Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J

    2015-08-01

    Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.

  1. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    PubMed

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  2. Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways

    PubMed Central

    ZHOU, HENG; YUAN, YUAN; LIU, YUAN; DENG, WEI; ZONG, JING; BIAN, ZHOU-YAN; DAI, JIA; TANG, QI-ZHU

    2014-01-01

    Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways. PMID:24940396

  3. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis

    PubMed Central

    Nicholson, Erin G.; Schlegel, Chelsea; Garofalo, Roberto P.; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A.

    2016-01-01

    Background. Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Methods. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. Results. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ–inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. Conclusions. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. PMID:27190183

  4. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury

    PubMed Central

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G. Scott; Cines, Douglas B.; Poncz, Mortimer

    2017-01-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7−/− and Cxcl4−/− knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7−/− mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4−/− mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability. PMID:27755915

  5. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation.

    PubMed

    Lim, Soyeon; Lee, Myung Eun; Jeong, Jisu; Lee, Jiye; Cho, Soyoung; Seo, Miran; Park, Sungha

    2018-05-23

    The receptor for advanced glycation endproducts (RAGE) is an innate immunity receptor that has been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, the possibility that RAGE-mediated signaling is involved in angiotensin II (Ang II)-induced cardiac left ventricular hypertrophy has yet to be investigated. We therefore determined whether RAGE has a role in regulating pathological cardiac hypertrophy. Protein abundance was estimated using Western blotting and intracellular ROS level and phospho-p65 were detected using fluorescence microscopy. Enzyme-linked immunosorbent assay was used to detect HMGB1 and IL-1β. All in vitro experiments were performed using H9C2 cells. To induce cardiomyocyte hypertrophy, 300 nM Ang II was treated for 48 h and 2 µg/ml sRAGE was treated 1 h prior to addition of Ang II. sRAGE attenuated Ang II-induced cardiomyocyte hypertrophy by downregulating RAGE and angiotensin II type 1 receptor expression. Secretion levels of high motility group box 1 and interleukin-1β, estimated from a cell culture medium, were significantly reduced by sRAGE. Activated PKCs and ERK1/2, important signals in left ventricular hypertrophy (LVH) development, were downregulated by sRAGE treatment. Furthermore, we found that nuclear factor-κB and NOD-like receptor protein 3 (NLRP3) were associated with RAGE-mediated cardiomyocyte hypertrophy. In the context of these results, we conclude that RAGE induces cardiac hypertrophy through the activation of the PKCs-ERK1/2 and NF-κB-NLRP3-IL1β signaling pathway, and suggest that RAGE-NLRP3 may be an important mediator of Ang II-induced cardiomyocyte hypertrophy. In addition, we determined that inhibition of RAGE activation with soluble RAGE (sRAGE) has a protective effect on Ang II-induced cardiomyocyte hypertrophy.

  6. HMC05, Herbal Formula, Inhibits TNF-α-Induced Inflammatory Response in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Lee, Jong Suk; Park, Su-Young; Thapa, Dinesh; Kim, Ah Ra; Shin, Heung-Mook; Kim, Jung-Ae

    2011-01-01

    Vascular inflammation has been implicated in the progression of cardiovascular diseases such as atherosclerosis. In the present study, we found that HMC05, an extract from eight different herbal mixtures, dose-dependently inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to endothelial cells. Such inhibitory effect of HMC05 correlated with suppressed expression of monocyte chemoattractant protein-1, CC chemokine receptor 2, vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1. In addition, HMC05 significantly inhibited production of reactive oxygen species (ROS) and nuclear factor (NF)-κB activation by TNF-α. Those inhibitory effects of HMC05 (1–10 μg mL−1) on the TNF-α-induced inflammatory event was similar to those of berberine (1–10 μM), which is a major component of HMC05 and one of herbal compounds known to have vasorelaxing and lipid-lowering activities. However, berberine significantly reduced the viability of HUVECs in a time- and concentration-dependent manner. In contrast, HMC05 (1–10 μg ml−1) did not affect the cell viability for up to 48 h treatment. In conclusion, we propose that HMC05 may be a safe and potent herbal formula against vascular inflammation, and its action may be attributable to the inhibition of ROS- and NF-κB-dependent expression of adhesion molecules and chemokines. PMID:19736220

  7. Atorvastatin Reduces Plasma Levels of Chemokine (CXCL10) in Patients with Crohn's Disease

    PubMed Central

    Grip, Olof; Janciauskiene, Sabina

    2009-01-01

    Background In Crohn's disease high tissue expression and serum levels of chemokines and their receptors are known to correlate with disease activity. Because statins can reduce chemokine expression in patients with coronary diseases, we wanted to test whether this can be achieved in patients with Crohn's disease. Methodology/Principal Findings We investigated plasma levels of chemokines (CCL2, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26, CXCL8, CXCL10) and endothelial cytokines (sP-selectin, sE-selectin, sICAM-3, thrombomodulin) in ten Crohn's disease patients before and after thirteen weeks' daily treatment with 80 mg atorvastatin. Of the 13 substances investigated, only CXCL10 was found to be significantly reduced (by 34%, p = 0.026) in all of the treated patients. Levels of CXCL10 correlated with C-reactive protein (r = 0.82, p<0.01). Conclusions/Significance CXCL10 is a ligand for the CXCR3 receptor, the activation of which results in the recruitment of T lymphocytes and the perpetuation of mucosal inflammation. Hence the reduction of plasma CXCL10 levels by atorvastatin may represent a candidate for an approach to the treatment of Crohns disease in the future. Trial Registration ClinicalTrials.gov NCT00454545 PMID:19421322

  8. Elevation of macrophage-derived chemokine in eosinophilic pneumonia: a role of alveolar macrophages.

    PubMed

    Manabe, Kazuyoshi; Nishioka, Yasuhiko; Kishi, Jun; Inayama, Mami; Aono, Yoshinori; Nakamura, Yoichi; Ogushi, Fumitaka; Bando, Hiroyasu; Tani, Kenji; Sone, Saburo

    2005-02-01

    Macrophage-derived chemokine (MDC/CCL22) and thymus-and activation-regulated chemokine (TARC/CCL17) are ligands for CC chemokine receptor 4. Recently, TARC has been reported to play a role in the pathogenesis of idiopathic eosinophilic pneumonia (IEP). The purpose of this study was to evaluate the role of MDC in IEP and other interstitial lung diseases (ILDs). MDC and TARC in the bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay in patients with ILDs and healthy volunteers (HV). We also examined the expression of MDC mRNA in alveolar macrophages (AM) by real-time quantitative reverse transcriptase-polymerase chain reaction. Both MDC and TARC were detected only in BALF obtained from IEP patients. The concentration of MDC was higher than that of TARC in all cases. The level of MDC in IEP correlated with that of TARC. AM from IEP patients expressed a significantly higher amount of MDC than that from HV at the levels of protein and mRNA. MDC in BALF from IEP dramatically decreased when patients achieved remission. These findings suggest that MDC, in addition to TARC, might be involved in the pathogenesis of IEP, and AM play a role in the elevation of MDC in IEP.

  9. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2015-07-27

    The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microwave assisted synthesis of novel acridine-acetazolamide conjugates and investigation of their inhibition effects on human carbonic anhydrase isoforms hCA I, II, IV and VII.

    PubMed

    Ulus, Ramazan; Aday, Burak; Tanç, Muhammet; Supuran, Claudiu T; Kaya, Muharrem

    2016-08-15

    4-Amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide was condensed with cyclic-1,3-diketones (dimedone and cyclohexane-1,3-dione) and aromatic aldehydes under microwave irradiation, leading to a series of acridine-acetazolamide conjugates. The new compounds were investigated as inhibitors of carbonic anhydrases (CA, EC 4.2.1.1), and more precisely cytosolic isoforms hCA I, II, VII and membrane-bound one hCA IV. All investigated isoforms were inhibited in low micromolar and nanomolar range by the new compounds. hCA IV and VII were inhibited with KIs in the range of 29.7-708.8nM (hCA IV), and of 1.3-90.7nM (hCA VII). For hCA I and II the KIs were in the range of 6.7-335.2nM (hCA I) and of 0.5-55.4nM (hCA II). The structure-activity relationships (SAR) for the inhibition of these isoforms with the acridine-acetazolamide conjugates reported here were delineated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions.

    PubMed

    Ghosh, Sudeshna; Pandey, Nitin K; Banerjee, Priyanka; Chaudhury, Koel; Nagy, Nóra Veronika; Dasgupta, Swagata

    2015-01-01

    Hen egg white lysozyme (HEWL) adopts a molten globule-like state at high pH (~12.75) and is found to form amyloid fibrils at alkaline pH. Here, we report that Cu(II) inhibits self-association of HEWL at pH 12.75 both at 37 and 65 °C. A significant reduction in Thioflavin T fluorescence intensity, attenuation in β-sheet content and reduction in hydrophobic exposure were observed with increasing Cu(II) stoichiometry. Electron paramagnetic resonance spectroscopy suggests a 4N type of coordination pattern around Cu(II) during fibrillation. Cu(II) is also capable of altering the cytotoxicity of the proteinaceous aggregates. Fibrillar species of diverse morphology were found in the absence of Cu(II) with the generation of amorphous aggregates in the presence of Cu(II), which are more toxic compared to the fibrils alone.

  12. Cucumis sativus Aqueous Fraction Inhibits Angiotensin II-Induced Inflammation and Oxidative Stress In Vitro.

    PubMed

    Trejo-Moreno, Celeste; Méndez-Martínez, Marisol; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Perez-Garcia, Maria Dolores; Medina-Campos, Omar N; Pedraza-Chaverri, José; Santana, María Angélica; Esquivel-Guadarrama, Fernando R; Castillo, Aida; Cervantes-Torres, Jacquelynne; Fragoso, Gladis; Rosas-Salgado, Gabriela

    2018-02-28

    Inflammation and oxidative stress play major roles in endothelial dysfunction, and are key factors in the progression of cardiovascular diseases. The aim of this study was to evaluate in vitro the effect of three subfractions (SFs) from the Cucumis sativus aqueous fraction to reduce inflammatory factors and oxidative stress induced by angiotensin II (Ang II) in human microvascular endothelial cells-1 (HMEC-1) cells. The cells were cultured with different concentrations of Ang II and 0.08 or 10 μg/mL of SF1, SF2, or SF3, or 10 μmol of losartan as a control. IL-6 (Interleukin 6) concentration was quantified. To identify the most effective SF combinations, HMEC-1 cells were cultured as described above in the presence of four combinations of SF1 and SF3. Then, the effects of the most effective combination on the expression of adhesion molecules, the production of reactive oxygen species (ROS), and the bioavailability of nitric oxide (NO) were evaluated. Finally, a mass spectrometry analysis was performed. Both SF1 and SF3 subfractions decreased the induction of IL-6 by Ang II, and C4 (SF1 and SF3, 10 μg/mL each) was the most effective combination to inhibit the production of IL-6. Additionally, C4 prevented the expression of adhesion molecules, reduced the production of ROS, and increased the bioavailability of NO. Glycine, arginine, asparagine, lysine, and aspartic acid were the main components of both subfractions. These results demonstrate that C4 has anti-inflammatory and antioxidant effects.

  13. Cucumis sativus Aqueous Fraction Inhibits Angiotensin II-Induced Inflammation and Oxidative Stress In Vitro

    PubMed Central

    Trejo-Moreno, Celeste; Méndez-Martínez, Marisol; Perez-Garcia, Maria Dolores; Medina-Campos, Omar N.; Pedraza-Chaverri, José; Santana, María Angélica; Esquivel-Guadarrama, Fernando R.; Castillo, Aida; Cervantes-Torres, Jacquelynne; Fragoso, Gladis; Rosas-Salgado, Gabriela

    2018-01-01

    Inflammation and oxidative stress play major roles in endothelial dysfunction, and are key factors in the progression of cardiovascular diseases. The aim of this study was to evaluate in vitro the effect of three subfractions (SFs) from the Cucumis sativus aqueous fraction to reduce inflammatory factors and oxidative stress induced by angiotensin II (Ang II) in human microvascular endothelial cells-1 (HMEC-1) cells. The cells were cultured with different concentrations of Ang II and 0.08 or 10 μg/mL of SF1, SF2, or SF3, or 10 μmol of losartan as a control. IL-6 (Interleukin 6) concentration was quantified. To identify the most effective SF combinations, HMEC-1 cells were cultured as described above in the presence of four combinations of SF1 and SF3. Then, the effects of the most effective combination on the expression of adhesion molecules, the production of reactive oxygen species (ROS), and the bioavailability of nitric oxide (NO) were evaluated. Finally, a mass spectrometry analysis was performed. Both SF1 and SF3 subfractions decreased the induction of IL-6 by Ang II, and C4 (SF1 and SF3, 10 μg/mL each) was the most effective combination to inhibit the production of IL-6. Additionally, C4 prevented the expression of adhesion molecules, reduced the production of ROS, and increased the bioavailability of NO. Glycine, arginine, asparagine, lysine, and aspartic acid were the main components of both subfractions. These results demonstrate that C4 has anti-inflammatory and antioxidant effects. PMID:29495578

  14. Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16.

    PubMed

    Petit, Sarah J; Chayen, Naomi E; Pease, James E

    2008-08-01

    Chemokine receptor CXCR6 mediates the chemotaxis and adhesion of leukocytes to soluble and membrane-anchored forms of CXCL16, and is an HIV-1 co-receptor. Here, we describe the effects of mutation of acidic extracellular CXCR6 residues on receptor function. Although most CXCR6 mutants examined were expressed at levels similar to wild-type (WT) CXCR6, an N-terminal E3Q mutant was poorly expressed, which may explain previously reported protective effects of a similar single nucleotide polymorphism, with respect to late-stage HIV-1 infection. In contrast to several other chemokine receptors, mutation of the CXCR6 N terminus and inhibition of post-translational modifications of this region were without effect on receptor function. Likewise, N-terminal extension of CXCL16 resulted in a protein with decent potency and efficacy in chemotaxis and not, as anticipated, a CXCR6 antagonist. D176N and E274Q CXCR6 mutants were unable to interact with soluble CXCL16, suggesting a critical role for D176 and E274 in ligand binding. Intriguingly, although unable to interact with soluble CXCL16, the E274Q mutant could promote robust adhesion to membrane-anchored CXCL16, suggesting that soluble and membrane-bound forms of CXCL16 possess distinct conformations. Collectively, our data suggest a novel paradigm for the CXCR6:CXCL16 interaction, a finding which may impact the discovery of small-molecule antagonists of CXCR6.

  15. I-309/T cell activation gene-3 chemokine protects murine T cell lymphomas against dexamethasone-induced apoptosis.

    PubMed

    Van Snick, J; Houssiau, F; Proost, P; Van Damme, J; Renauld, J C

    1996-09-15

    We have previously reported that cytokines such as IL-9, IL-4, and IL-6 protect murine thymic lymphoma cell lines against dexamethasone-induced apoptosis. A similar activity, which could not be ascribed to any of these factors, was found in a number of human T cell supernatants that enabled mouse BW5147 thymic lymphoma not only to escape apoptosis but also to maintain proliferation. The protein responsible for this activity was purified to homogeneity from the culture medium of activated leukemic T cells and was found to be identical with the I-309 chemokine. Half-maximal anti-apoptotic activity was obtained with approximately 1 ng/ml, a concentration considerably lower than that required for the monocyte chemotactic activity of this molecule, as measured on THP-1 cells. The purified I-309 also improved the survival of two other mouse thymic lymphoma cell lines. This activity was as potent as that of IL-9, which was the strongest anti-apoptotic factor found to date for these cells. Similar results were obtained for BW5147 cells with recombinant I-309 and with T cell activation gene-3, the murine homologue of I-309, but not with other members of the chemokine family, including IL-8, neutrophil-activating peptide-2, granulocyte chemotactic protein-2, macrophage inflammatory protein-1a, RANTES (regulated upon activation, normal T cell expressed and secreted), monocyte chemotactic protein-1 (MCP-1), and MCP-2. MCP-3, however, showed a minor, but significant effect in this model. Unlike that of IL-9, the activity of I-309 was completely inhibited in the presence of pertussis toxin, indicating the involvement of a G protein in this process.

  16. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  17. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3.

    PubMed

    Mueller, Anja; Meiser, Andrea; McDonagh, Ellen M; Fox, James M; Petit, Sarah J; Xanthou, Georgina; Williams, Timothy J; Pease, James E

    2008-04-01

    The chemokine CXCL4/platelet factor-4 is released by activated platelets in micromolar concentrations and is a chemoattractant for leukocytes via an unidentified receptor. Recently, a variant of the human chemokine receptor CXCR3 (CXCR3-B) was described, which transduced apoptotic but not chemotactic signals in microvascular endothelial cells following exposure to high concentrations of CXCL4. Here, we show that CXCL4 can induce intracellular calcium release and the migration of activated human T lymphocytes. CXCL4-induced chemotaxis of T lymphocytes was inhibited by a CXCR3 antagonist and pretreatment of cells with pertussis toxin (PTX), suggestive of CXCR3-mediated G-protein signaling via Galphai-sensitive subunits. Specific binding by T lymphocytes of the CXCR3 ligand CXCL10 was not effectively competed by CXCL4, suggesting that the two are allotopic ligands. We subsequently used expression systems to dissect the potential roles of each CXCR3 isoform in mediating CXCL4 function. Transient expression of the CXCR3-A and CXCR3-B isoforms in the murine pre-B cell L1.2 produced cells that migrated in response to CXCL4 in a manner sensitive to PTX and a CXCR3 antagonist. Binding of radiolabeled CXCL4 to L1.2 CXCR3 transfectants was of low affinity and appeared to be mediated chiefly by glycosaminoglycans (GAGs), as no specific CXCL4 binding was observed in GAG-deficient 745-Chinese hamster ovary cells stably expressing CXCR3. We suggest that following platelet activation, the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the subsequent amplification of inflammation observed in diseases such as atherosclerosis. In such a setting, antagonism of the CXCR3/CXCL4 axis may represent a useful, therapeutic intervention.

  18. Cerebrospinal fluid cyto-/chemokine profile during acute herpes simplex virus induced anti-N-methyl-d-aspartate receptor encephalitis and in chronic neurological sequelae.

    PubMed

    Kothur, Kavitha; Gill, Deepak; Wong, Melanie; Mohammad, Shekeeb S; Bandodkar, Sushil; Arbunckle, Susan; Wienholt, Louise; Dale, Russell C

    2017-08-01

    To examine the cytokine/chemokine profile of cerebrospinal fluid (CSF) during acute herpes simplex virus-induced N-methyl-d-aspartate receptor (NMDAR) autoimmunity and in chronic/relapsing post-herpes simplex virus encephalitis (HSE) neurological syndromes. We measured longitudinal serial CSF cyto-/chemokines (n=34) and a glial marker (calcium-binding astroglial protein, S100B) in one patient during acute HSE and subsequent anti-NMDAR encephalitis, and compared the results with those from two patients with anti-NMDAR encephalitis without preceding HSE. We also compared cyto-/chemokines in cross-sectional CSF samples from three children with previous HSE who had ongoing chronic or relapsing neurological symptoms (2yr 9 mo-16y after HSE) with those in a group of children having non-inflammatory neurological conditions (n=20). Acute HSE showed elevation of a broad range of all T-helper-subset-related cyto-/chemokines and S100B whereas the post-HSE anti-NMDAR encephalitis phase showed persistent elevation of two of five T-helper-1 (chemokine [C-X-C motif] ligand 9 [CXCL9], CXCL10), three of five predominantly B-cell (CXCL13, CCL19, a proliferation-inducing ligand [APRIL])-mediated cyto-/chemokines, and interferon-α. The post-HSE anti-NMDAR encephalitis inflammatory response was more pronounced than anti-NMDAR encephalitis. All three chronic post-HSE cases showed persistent elevation of CXCL9, CXCL10, and interferon-α, and there was histopathological evidence of chronic lymphocytic inflammation in one biopsied case 7 years after HSE. Two of three chronic cases showed a modest response to immune therapy. HSE-induced anti-NMDAR encephalitis is a complex and pronounced inflammatory syndrome. There is persistent CSF upregulation of cyto-/chemokines in chronic or relapsing post-HSE neurological symptoms, which may be modifiable with immune therapy. The elevated cyto-/chemokines may be targets of monoclonal therapies. © 2017 Mac Keith Press.

  19. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma.

    PubMed

    Albert, Sébastien; Riveiro, Maria Eugenia; Halimi, Caroline; Hourseau, Muriel; Couvelard, Anne; Serova, Maria; Barry, Béatrix; Raymond, Eric; Faivre, Sandrine

    2013-12-01

    The human chemokine system includes approximately 48 chemokines and 19 chemokine receptors. The CXCL12/CXCR4 system is one of the most frequently studied that is also found overexpressed in a large variety of tumors. The CXCL12/CXCR4 axis has been increasingly identified as an important target in cancer growth, metastasis, relapse, and resistance to therapy. In this review, we highlight current knowledge of the molecular mechanisms involving chemokines CXCL12/CXCR4 and their consequences in head and neck squamous cell carcinoma (HNSCC). Overexpression of CXCL12/CXCR4 in HNSCC appears to activate cellular functions, including motility, invasion, and metastatic processes. Current findings suggest that CXCR4 and epithelial-mesenchymal transition markers are associated with tumor aggressiveness and a poor prognosis, and may be suitable biomarkers for head and neck tumors with high metastatic potential. Furthermore, knowledge of the role of CXCR4 in HNSCC could influence the development of new targeted therapies for treatment, aimed at improving the prognosis of this disease. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  20. Nickel(ii) inhibits the oxidation of DNA 5-methylcytosine in mammalian somatic cells and embryonic stem cells.

    PubMed

    Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin

    2018-03-01

    Nickel is found widely in the environment. It is an essential microelement but also toxic. However, nickel displays only weak genotoxicity and mutagenicity. Exploration of the epigenetic toxicity of nickel is extremely interesting. Iron(ii)- and 2-oxoglutarate-dependent Tet dioxygenases are a class of epigenetic enzymes that catalyze the oxidation of DNA 5-methylcytosine (5mC). Thus, they are critical for DNA demethylation and, importantly, are involved with nuclear reprogramming, embryonic development, and regulation of gene expression. Here, we demonstrated that nickel(ii) dramatically inhibits Tet proteins-mediated oxidation of DNA 5mC in cells ranging from somatic cell lines to embryonic stem cells, as manifested by the consistent observation of a significant decrease in 5-hydroxymethylcytosine, a critical intermediate resulting from the oxidation of 5mC. The inhibitory effects of nickel(ii) were concentration- and time-dependent. Using HEK293T cells overexpressing Tet proteins and ascorbic acid-stimulated Tet-proficient ES cells, we observed that nickel(ii) significantly reduced DNA demethylation at the global level. Interestingly, we also showed that nickel(ii) might affect the naïve or ground state of pluripotent embryonic stem cells. Here we show, for the first time, that nickel(ii) represses the oxidation of DNA 5mC and potentially alters the Tet proteins-regulated DNA methylation landscape in human cells. These findings provide new insights into the epigenetic toxicology of nickel.

  1. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  2. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis.

    PubMed

    Nicholson, Erin G; Schlegel, Chelsea; Garofalo, Roberto P; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A

    2016-08-15

    Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ-inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the

  4. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development.

    PubMed

    He, Li; Fu, Yi; Deng, Jingna; Shen, Yicong; Wang, Yingbao; Yu, Fang; Xie, Nan; Chen, Zhongjiang; Hong, Tianpei; Peng, Xinjian; Li, Qingqing; Zhou, Jing; Han, Jingyan; Wang, Ying; Xi, Jianzhong; Kong, Wei

    2018-07-01

    Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO 4 -induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D -/- mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell-derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling. © 2018 American Heart Association, Inc.

  5. Plasma Chemokines in Patients with Alcohol Use Disorders: Association of CCL11 (Eotaxin-1) with Psychiatric Comorbidity

    PubMed Central

    García-Marchena, Nuria; Araos, Pedro Fernando; Barrios, Vicente; Sánchez-Marín, Laura; Chowen, Julie A.; Pedraz, María; Castilla-Ortega, Estela; Romero-Sanchiz, Pablo; Ponce, Guillermo; Gavito, Ana L.; Decara, Juan; Silva, Daniel; Torrens, Marta; Argente, Jesús; Rubio, Gabriel; Serrano, Antonia; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier

    2017-01-01

    Recent studies have linked changes in peripheral chemokine concentrations to the presence of both addictive behaviors and psychiatric disorders. The present study further explore this link by analyzing the potential association of psychiatry comorbidity with alterations in the concentrations of circulating plasma chemokine in patients of both sexes diagnosed with alcohol use disorders (AUD). To this end, 85 abstinent subjects with AUD from an outpatient setting and 55 healthy subjects were evaluated for substance and mental disorders. Plasma samples were obtained to quantify chemokine concentrations [C–C motif (CC), C–X–C motif (CXC), and C–X3–C motif (CX3C) chemokines]. Abstinent AUD patients displayed a high prevalence of comorbid mental disorders (72%) and other substance use disorders (45%). Plasma concentrations of chemokines CXCL12/stromal cell-derived factor-1 (p < 0.001) and CX3CL1/fractalkine (p < 0.05) were lower in AUD patients compared to controls, whereas CCL11/eotaxin-1 concentrations were strongly decreased in female AUD patients (p < 0.001). In the alcohol group, CXCL8 concentrations were increased in patients with liver and pancreas diseases and there was a significant correlation to aspartate transaminase (r = +0.456, p < 0.001) and gamma-glutamyltransferase (r = +0.647, p < 0.001). Focusing on comorbid psychiatric disorders, we distinguish between patients with additional mental disorders (N = 61) and other substance use disorders (N = 38). Only CCL11 concentrations were found to be altered in AUD patients diagnosed with mental disorders (p < 0.01) with a strong main effect of sex. Thus, patients with mood disorders (N = 42) and/or anxiety (N = 16) had lower CCL11 concentrations than non-comorbid patients being more evident in women. The alcohol-induced alterations in circulating chemokines were also explored in preclinical models of alcohol use with male Wistar rats. Rats exposed to

  6. Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidase-1 in Cells

    PubMed Central

    Zhang, Feiran; Bhat, Shridhar; Gabelli, Sandra B.; Chen, Xiaochun; Miller, Michelle S.; Nacev, Benjamin A.; Cheng, Yim Ling; Meyers, David J.; Tenney, Karen; Shim, Joong Sup; Crews, Phillip; Amzel, L. Mario; Ma, Dawei; Liu, Jun O.

    2013-01-01

    Methionine aminopeptidases (MetAPs) which remove the initiator methionine from nascent peptides are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1–4). But all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1–4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells. PMID:23634668

  7. Central IKKβ inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes.

    PubMed

    Liu, Cuiqing; Fonken, Laura K; Wang, Aixia; Maiseyeu, Andrei; Bai, Yuntao; Wang, Tse-Yao; Maurya, Santosh; Ko, Yi-An; Periasamy, Muthu; Dvonch, Timothy; Morishita, Masako; Brook, Robert D; Harkema, Jack; Ying, Zhekang; Mukherjee, Bhramar; Sun, Qinghua; Nelson, Randy J; Rajagopalan, Sanjay

    2014-10-30

    Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus (Type II DM). We investigated the role of hypothalamic inflammation in PM2.5-mediated diabetes development. KKay mice, a genetically susceptible model of Type II DM, were assigned to either concentrated PM2.5 or filtered air (FA) for 4-8 weeks via a versatile aerosol concentrator and exposure system, or administered intra-cerebroventricular with either IKKβ inhibitor (IMD-0354) or TNFα antibody (infliximab) for 4-5 weeks simultaneously with PM2.5 exposure. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen, visceral adipose tissue and hypothalamus were collected to measure inflammatory cells using flow cytometry. Standard immunohistochemical methods and quantitative PCR were used to assess targets of interest. PM2.5 exposure led to hyperglycemia and insulin resistance, which was accompanied by increased hypothalamic IL-6, TNFα, and IKKβ mRNA expression and microglial/astrocyte reactivity. Targeting the NFκB pathway with intra-cerebroventricular administration of an IKKβ inhibitor [IMD-0354, n = 8 for each group)], but not TNFα blockade with infliximab [(n = 6 for each group], improved glucose tolerance, insulin sensitivity, rectified energy homeostasis (O2 consumption, CO2 production, respiratory exchange ratio and heat generation) and reduced peripheral inflammation in response to PM2.5. Central inhibition of IKKβ prevents PM2.5 mediated peripheral inflammation and exaggeration of type II diabetes. These results provide novel insights into how air pollution may mediate susceptibility to insulin resistance and Type II DM.

  8. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  9. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis

  10. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    PubMed

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  11. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities.

    PubMed

    Brelot, A; Heveker, N; Montes, M; Alizon, M

    2000-08-04

    CXCR4 is a G-coupled receptor for the stromal cell-derived factor (SDF-1) chemokine, and a CD4-associated human immunodeficiency virus type 1 (HIV-1) coreceptor. These functions were studied in a panel of CXCR4 mutants bearing deletions in the NH(2)-terminal extracellular domain (NT) or substitutions in the NT, the extracellular loops (ECL), or the transmembrane domains (TMs). The coreceptor activity of CXCR4 was markedly impaired by mutations of two Tyr residues in NT (Y7A/Y12A) or at a single Asp residue in ECL2 (D193A), ECL3 (D262A), or TMII (D97N). These acidic residues could engage electrostatical interactions with basic residues of the HIV-1 envelope protein gp120, known to contribute to the selectivity for CXCR4. The ability of CXCR4 mutants to bind SDF-1 and mediate cell signal was consistent with the two-site model of chemokine-receptor interaction. Site I involved in SDF-1 binding but not signaling was located in NT with particular importance of Glu(14) and/or Glu(15) and Tyr(21). Residues required for both SDF-1 binding and signaling, and thus probably part of site II, were identified in ECL2 (Asp(187)), TMII (Asp(97)), and TMVII (Glu(288)). The first residues () of NT also seem required for SDF-1 binding and signaling. A deletion in the third intracellular loop abolished signaling, probably by disrupting the coupling with G proteins. The identification of CXCR4 residues involved in the interaction with both SDF-1 and HIV-1 may account for the signaling activity of gp120 and has implications for the development of antiviral compounds.

  12. 6-mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages.

    PubMed

    Pols, Thijs W H; Bonta, Peter I; Pires, Nuno M M; Otermin, Iker; Vos, Mariska; de Vries, Margreet R; van Eijk, Marco; Roelofsen, Jeroen; Havekes, Louis M; Quax, Paul H A; van Kuilenburg, André B P; de Waard, Vivian; Pannekoek, Hans; de Vries, Carlie J M

    2010-08-01

    6-Mercaptopurine (6-MP), the active metabolite of the immunosuppressive prodrug azathioprine, is commonly used in autoimmune diseases and transplant recipients, who are at high risk for cardiovascular disease. Here, we aimed to gain knowledge on the action of 6-MP in atherosclerosis, with a focus on monocytes and macrophages. We demonstrate that 6-MP induces apoptosis of THP-1 monocytes, involving decreased expression of the intrinsic antiapoptotic factors B-cell CLL/Lymphoma-2 (Bcl-2) and Bcl2-like 1 (Bcl-x(L)). In addition, we show that 6-MP decreases expression of the monocyte adhesion molecules platelet endothelial adhesion molecule-1 (PECAM-1) and very late antigen-4 (VLA-4) and inhibits monocyte adhesion. Screening of a panel of cytokines relevant to atherosclerosis revealed that 6-MP robustly inhibits monocyte chemoattractant chemokine-1 (MCP-1) expression in macrophages stimulated with lipopolysaccharide (LPS). Finally, local delivery of 6-MP to the vessel wall, using a drug-eluting cuff, attenuates atherosclerosis in hypercholesterolemic apolipoprotein E*3-Leiden transgenic mice (P<0.05). In line with our in vitro data, this inhibition of atherosclerosis by 6-MP was accompanied with decreased lesion monocyte chemoattractant chemokine-1 levels, enhanced vascular apoptosis, and reduced macrophage content. We report novel, previously unrecognized atheroprotective actions of 6-MP in cultured monocytes/macrophages and in a mouse model of atherosclerosis, providing further insight into the effect of the immunosuppressive drug azathioprine in atherosclerosis.

  13. Inhibition of TNF-{alpha}-mediated inflammatory responses by a benzodioxolylacetylamino-linked benzothiazole analog in human fibroblast-like synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Rae; Jin, Guo Hua; Lee, Sang-Myeong

    Highlights: {yields} We synthesized SPA0537, a benzothiazole analog. {yields} SPA0537 is a potent NF-{kappa}B inhibitor. {yields} SPA0537 suppresses the production of proinflammatory mediators in human rheumatoid fibroblast-like synoviocytes. {yields} SPA0537 is effective at suppressing osteoclast differentiation. -- Abstract: The pathologic processes of rheumatoid arthritis are mediated by a number of cytokines, chemokines, and matrix metalloproteinases, the expressions of which are controlled by NF-{kappa}B. This study was performed to explore the effects of a benzothiazole analog, SPA0537, on the control of the NF-{kappa}B activation pathway. We also investigated whether SPA0537 had any anti-inflammatory effects in human rheumatoid fibroblast-like synoviocytes (FLS). SPA0537more » inhibited the nuclear translocation and the DNA binding of NF-{kappa}B subunits, which correlated with the inhibitory effects on IKK phosphorylation and I{kappa}B{alpha} degradation in TNF-{alpha}-stimulated rheumatoid FLS. These events further suppressed chemokine production, matrix metalloproteinase secretion, and TNF-{alpha}-induced cell proliferation. In addition, SPA0537 inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor (MCSF) and receptor activator of the NF-{kappa}B ligand (RANKL) in bone marrow macrophages. These findings suggest that SPA0537 exerts anti-inflammatory effects in rheumatoid FLS through the inhibition of the NF-{kappa}B pathway. Therefore, it may have therapeutic value for the treatment of rheumatoid arthritis.« less

  14. A dip-and-read test strip for the determination of mercury(II) ion in aqueous samples based on urease activity inhibition.

    PubMed

    Shi, Guo-Qing; Jiang, Guibin

    2002-11-01

    A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.

  15. Maximal Unbiased Benchmarking Data Sets for Human Chemokine Receptors and Comparative Analysis.

    PubMed

    Xia, Jie; Reid, Terry-Elinor; Wu, Song; Zhang, Liangren; Wang, Xiang Simon

    2018-05-29

    Chemokine receptors (CRs) have long been druggable targets for the treatment of inflammatory diseases and HIV-1 infection. As a powerful technique, virtual screening (VS) has been widely applied to identifying small molecule leads for modern drug targets including CRs. For rational selection of a wide variety of VS approaches, ligand enrichment assessment based on a benchmarking data set has become an indispensable practice. However, the lack of versatile benchmarking sets for the whole CRs family that are able to unbiasedly evaluate every single approach including both structure- and ligand-based VS somewhat hinders modern drug discovery efforts. To address this issue, we constructed Maximal Unbiased Benchmarking Data sets for human Chemokine Receptors (MUBD-hCRs) using our recently developed tools of MUBD-DecoyMaker. The MUBD-hCRs encompasses 13 subtypes out of 20 chemokine receptors, composed of 404 ligands and 15756 decoys so far and is readily expandable in the future. It had been thoroughly validated that MUBD-hCRs ligands are chemically diverse while its decoys are maximal unbiased in terms of "artificial enrichment", "analogue bias". In addition, we studied the performance of MUBD-hCRs, in particular CXCR4 and CCR5 data sets, in ligand enrichment assessments of both structure- and ligand-based VS approaches in comparison with other benchmarking data sets available in the public domain and demonstrated that MUBD-hCRs is very capable of designating the optimal VS approach. MUBD-hCRs is a unique and maximal unbiased benchmarking set that covers major CRs subtypes so far.

  16. Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase.

    PubMed Central

    Laitala, T; Väänänen, H K

    1994-01-01

    The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption. Images PMID:8200964

  17. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    PubMed

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  18. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis.

    PubMed

    Teramoto, K; Miura, S; Tsuzuki, Y; Hokari, R; Watanabe, C; Inamura, T; Ogawa, T; Hosoe, N; Nagata, H; Ishii, H; Hibi, T

    2005-03-01

    Although enhanced lymphocyte trafficking is associated with colitis formation, little information about its regulation is available. The aim of this study was to examine how the murine liver and activation-regulated chemokine (mLARC/CCL20) contributes to lymphocyte recruitment in concert with vascular adhesion molecules in murine chronic experimental colitis. T and B lymphocytes isolated from the spleen were fluorescence-labelled and administered to recipient mice. Lymphocyte adhesion to microvessels of the colonic mucosa and submucosa was observed with an intravital microscope. To induce colitis, the mice received two cycles of treatment with 2% dextran sodium sulphate (DSS). In some of the experiments antibodies against the adhesion molecules or anti-mLARC/CCL20 were administered, or CC chemokine receptor 6 (CCR6) of the lymphocytes was desensitized with excess amounts of mLARC/CCL20. Significant increases in T and B cell adhesion to the microvessels of the DSS-treated mucosa and submucosa were observed. In chronic colitis, the accumulation of lymphocytes was significantly inhibited by anti-mucosal addressin cell adhesion molecule (MAdCAM)-1 mAb, but not by anti-vascular cell adhesion molecule-1. In DSS-treated colonic tissue, the expression of mLARC/CCL20 was significantly increased, the blocking of mLARC/CCL20 by monoclonal antibody or the desensitization of CCR6 with mLARC/CCL20 significantly attenuated the DSS-induced T and B cell accumulation. However, the combination of blocking CCR6 with MAdCAM-1 did not further inhibit these accumulations. These results suggest that in chronic DSS-induced colitis, both MAdCAM-1 and mLARC/CCL20 may play important roles in T and B lymphocyte adhesion in the inflamed colon under flow conditions.

  19. CXC chemokine KC fails to induce neutrophil infiltration and neoangiogenesis in a mouse model of myocardial infarction.

    PubMed

    Oral, Hasan; Kanzler, Isabella; Tuchscheerer, Nancy; Curaj, Adelina; Simsekyilmaz, Sakine; Sönmez, Tolga Taha; Radu, Eugen; Postea, Otilia; Weber, Christian; Schuh, Alexander; Liehn, Elisa A

    2013-07-01

    Chemokines and neutrophils, known as important players in the inflammatory cascade, also contribute to heart tissue recovery and scar formation after myocardial infarction (MI). The objective of this study was to determine the importance of ELR-containing CXC chemokine KC in neutrophil infiltration and neoangiogenesis, in a mouse model of chronic MI. MI was induced in mice divided in four groups: control (untreated), anti-KC "later" (anti-KC antibody injections started 4 days after MI and then delivered every 72 hours for 3 weeks, to inhibit angiogenesis), anti-KC "earlier" (anti-KC antibody injections 1 day before and 1 day after MI, to block neutrophil infiltration), anti-KC (anti-KC antibody injections 1 day before and 1 day after MI, and then every 72 hours for 3 weeks). The efficiency of the anti-KC treatment was determined by the measurement of KC serum concentration and immunofluorescence staining, in each of the four groups. Surprisingly, we did not find any difference in neutrophil infiltration in the infarcted area between untreated and treated animals. Moreover, the heart function, infarct size, and neoangiogenesis were not different between the four groups. As expected, a comparable anti-CXCR2 treatment of mice before and after MI was able to significantly reduce neutrophil infiltration into the infarcted area and angiogenesis, but also to reduce the infarction size after long or "later" treatment. The major finding of our study is that KC, a potent neutrophil chemoattractant and an established angiogenic factor, failed to interfere in the post-infarction inflammatory response, in wound healing and scar formation after MI. Therefore, these aspects need to be carefully taken into account when devising therapeutic strategies for myocardial infarction and ischemic cardiomyopathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of interleukin-8 and RANTES on the Gardos channel activity in sickle human red blood cells: role of the Duffy antigen receptor for chemokines.

    PubMed

    Durpès, Marie-Claude; Nebor, Danitza; du Mesnil, Pierre Couespel; Mougenel, Danièle; Decastel, Monique; Elion, Jacques; Hardy-Dessources, Marie-Dominique

    2010-04-15

    We investigated the effects of the chemokines IL-8 and RANTES on the activity of the Gardos channel (GC) of sickle red blood cells (SSRBCs). SSRBCs expressing the Duffy antigen receptor for chemokines (DARC) incubated under oxygenated conditions exhibit GC activation. The deoxygenation-stimulated K(+) loss via the GC is activated by the chemokines in the Duffy-positive SSRBCs. The percentage of cells with high density is 17 times higher in the Duffy-positive group. These findings are consistent with a greater susceptibility of Duffy-positive SSRBCs to inflammatory chemokines leading to GC activation and cellular dehydration and suggest a coupling, promoted by the sickling process, between DARC and the GC.