Science.gov

Sample records for chemometrical near-infrared spectroscopy

  1. A novel storage method for near infrared spectroscopy chemometric models.

    PubMed

    Zhang, Zhi-Min; Chen, Shan; Liang, Yi-Zeng

    2010-06-01

    Chemometric Modeling Markup Language (CMML) is developed by us for containing chemometrics models within one document through converting binary data into strings by base64 encode/decode algorithms to solve the interoperability issue in sharing chemometrics models. It provides a base functionality for storage of sampling, variable selection, pretreating, outlier and modeling parameters and data. With the help of base64 algorithm, the usability of CMML is in equilibrium with size by transforming the binary data into base64 encoded string. Due to the advantages of Extensible Markup Language (XML), models stored in CMML can be easily reused in various other software and programming languages as long as the programming language has XML parsing library. One can also use the XML Path Language (XPath) query language to select desired data from the CMML file effectively. The application of this language in near infrared spectroscopy model storage is implemented as a class in C++ language and available as open source software (http://code.google.com/p/cmml), and the implementations in other languages, such as MATLAB and R are in progress. PMID:20493291

  2. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    PubMed

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science.

  3. Classification of washing powder brands using near-infrared spectroscopy combined with chemometric calibrations.

    PubMed

    Zhang, Hongguang; Yang, Qinmin; Lu, Jiangang

    2014-01-01

    In this study, near-infrared (NIR) spectroscopy is applied for rapid and objective classification of 5 different brands of washing powder. Chemometric calibrations including partial least square discriminant analysis (PLS-DA), back propagation neural network (BP-NN) and least square support vector machine (LS-SVM) are investigated and compared to achieve an optimal result. Firstly, principal component analysis (PCA) is conducted to visualize the difference among washing powder samples of different brands and principal components (PCs) are extracted as inputs of BP-NN and LS-SVM models. The number of PCs and parameters of such models are optimized via cross validation. In experimental studies, a total of 225 spectra of washing powder samples (45 samples for each brand) were used to build models and 75 spectra of washing powder samples (15 samples for each brand) were used as the validation set to evaluate the performance of developed models. As for the comparison of the three investigated models, both BP-NN model and LS-SVM model successfully classified all samples in validation set according to their brands. However, the PLS-DA model failed to achieve 100% of classification accuracy. The results obtained in this investigation demonstrate that NIR spectroscopy combined with chemometric calibrations including BP-NN and LS-SVM can be successfully utilized to classify the brands of washing powder.

  4. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics.

    PubMed

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-15

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit.

  5. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-01

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit.

  6. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics.

    PubMed

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  7. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  8. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods.

    PubMed

    Ma, Hong-Liang; Wang, Ji-Wen; Chen, Yong-Jun; Cheng, Jin-le; Lai, Zhi-Tian

    2017-01-15

    Near-infrared reflectance (NIR) spectroscopy combined with chemometric techniques was developed for classification and quantification of cheaper starches (corn and wheat starch) in ultrafine granular powder of Shanyao (UGPSY). By performing orthogonal partial least squares discrimination analysis (OPLS-DA), NIR could efficiently distinguish among authentic UGPSY and UGPSY adulterated with cornstarch and wheat starch. In addition, the starch content in adulterated UGPSY was determined by NIR coupled with an appropriate multivariate calibration method. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were performed comparatively to calibrate the regression model. Experimental results showed that the performance of the siPLS model is the best compared to PLS and iPLS. These results show that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for the classification and quantification of the ultrafine granular powder of the herb. PMID:27542456

  9. Usefulness of near-infrared reflectance (NIR) spectroscopy and chemometrics to discriminate fishmeal batches made with different fish species.

    PubMed

    Cozzolino, Daniel; Chree, A; Scaife, J R; Murray, Ian

    2005-06-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to identify and authenticate fishmeal batches made with different fish species. Samples from a commercial fishmeal factory (n = 60) were scanned in the NIR region (1100-2500 nm) in a monochromator instrument in reflectance. Principal component analysis (PCA), dummy partial least-squares regression (DPLS), and linear discriminant analysis (LDA) based on PCA scores were used to identify the origin of fishmeal produced using different fish species. Cross-validation was used as validation method when classification models were developed. DPLS correctly classified 80 and 82% of the fishmeal samples. LDA calibration models correctly classified >80% of fishmeal samples according to fish species The results demonstrated the usefulness of NIR spectra combined with chemometrics as an objective and rapid method for the authentication and identification of fish species used to manufacture the fishmeal.

  10. In-situ monitoring of Saccharomyces cerevisiae ITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics.

    PubMed

    Corro-Herrera, Víctor Abel; Gómez-Rodríguez, Javier; Hayward-Jones, Patricia Margaret; Barradas-Dermitz, Dulce María; Aguilar-Uscanga, María Guadalupe; Gschaedler-Mathis, Anne Christine

    2016-03-01

    The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016. PMID:26743160

  11. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  12. Manufacturer identification and storage time determination of “Dong’e Ejiao” using near infrared spectroscopy and chemometrics*

    PubMed Central

    Li, Wen-long; Han, Hai-fan; Zhang, Lu; Zhang, Yan; Qu, Hai-bin

    2016-01-01

    We have developed a set of chemometric methods to address two critical issues in quality control of a precious traditional Chinese medicine (TCM), Dong’e Ejiao (DEEJ). Based on near infrared (NIR) spectra of multiple samples, the genuine manufacturer of DEEJ, e.g. Dong’e Ejiao Co., Ltd., was accurately identified among 21 suppliers by the fingerprint method using Hotelling T2, distance to Model X (DModX), and similarity match value (SMV) as discriminate criteria. Soft independent modeling of the class analogy algorithm led to a misjudgment ratio of 6.2%, suggesting that the fingerprint method is more suitable for manufacturer identification. For another important feature related to clinical efficacy of DEEJ, storage time, the partial least squares-discriminant analysis (PLS-DA) method was applied with a satisfactory misjudgment ratio (15.6%) and individual prediction error around 1 year. Our results demonstrate that NIR spectra comprehensively reflect the essential quality information of DEEJ, and with the aid of proper chemometric algorithms, it is able to identify genuine manufacturer and determine accurate storage time. The overall results indicate the promising potential of NIR spectroscopy as an effective quality control tool for DEEJ and other precious TCM products. PMID:27143266

  13. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    ERIC Educational Resources Information Center

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  14. Application of near infrared (NIR) spectroscopy coupled to chemometrics for dried egg-pasta characterization and egg content quantification.

    PubMed

    Bevilacqua, Marta; Bucci, Remo; Materazzi, Stefano; Marini, Federico

    2013-10-15

    Dried egg pasta is an important and traditional food in the Italian cuisine, and the eggs in pasta improve its nutritional value and organoleptic properties. For this reason the percentage of eggs present in the products sold as "egg pasta" has to always be clearly reported in the label. In this respect, the present research addresses the possibility of developing a method which would allow fast, simple and economic determination of egg content in dried egg-pasta, using near-infrared spectroscopy and chemometric analysis. However, as it is very likely that the spectroscopic fingerprint can also be affected by the manufacturing process of this product, in particular by drying temperature and time, the effect of the manufacturing process on the spectral profile of egg-pasta samples was thoroughly investigated, using experimental design coupled to a multivariate exploratory data analytical technique called ANOVA-Simultaneous Component Analysis (ASCA). Moreover, once confirmed the significance of the drying effect on spectral shape, with the aim of building a calibration model to quantify the egg content in pasta samples irrespective of the manufacturing protocol adopted, a non-linear approach based on local regression, namely LWR-PLS, was investigated. This method allowed the determination of the egg content in external validation samples with low error (RMSEP=1.25), resulting in predictions more accurate and precise than those obtained by a global PLS model.

  15. The use of near-infrared spectroscopy and chemometrics for determining the shelf-life of products.

    PubMed

    Pedro, Andre M K; Ferreira, Marcia M C

    2009-11-01

    In this work a procedure for determining the shelf-life of products by merging near-infrared (NIR) spectroscopy, multivariate techniques of data analysis, and kinetic theory is presented. This procedure allows information from several sources (sensory, physical chemical, and instrumental) to be merged via the multivariate accelerated shelf-life test (MASLT) algorithm. The MASLT is a multivariate approach that relies on soft modeling via an unfolding principal component analysis (u-PCA) and hard modeling, through the conventional kinetic theory, for determining the final shelf-life of products. The procedure was successfully applied to a consumer goods product (a body lotion), whose shelf-life was determined to be 3 years and 9 months, in accordance with results previously obtained using conventional analytical techniques and univariate methods of data analysis.

  16. Potential of visible-near infrared spectroscopy combined with chemometrics for analysis of some constituents of coffee and banana residues.

    PubMed

    Rambo, M K D; Amorim, E P; Ferreira, M M C

    2013-05-01

    Banana (stalk, leaf, rhizome, rachis and stem) and coffee (leaf and husks) residues are promising feedstock for fuel and chemical production. In this work we show the potential of near-infrared spectroscopy (NIR) and multivariate analysis to replace reference methods in the characterization of some constituents of coffee and banana residues. The evaluated parameters were Klason lignin (KL), acid soluble lignin (ASL), total lignin (TL), extractives, moisture, ash and acid insoluble residue (AIR) contents of 104 banana residues (B) and 102 coffee (C) residues from Brazil. PLS models were built for banana (B), coffee (C) and pooled samples (B+C). The precision of NIR methodology was better (p<0.05) than the reference method for almost all the parameters, being worse for moisture. With the exception of ash (B and C) and ASL (C) content, which was predicted poorly (R(2)<0.80), the models for all the analytes exhibited R(2)>0.80. The range error ratios varied from 4.5 to 16.0. Based on the results of external validation, the statistical tests and figures of merit, NIR spectroscopy proved to be useful for chemical prediction of banana and coffee residues and can be used as a faster and more economical alternative to the standard methodologies.

  17. On-line monitoring of the density of linear low-density polyethylene in a real plant by near-infrared spectroscopy and chemometrics.

    PubMed

    Watari, Masahiro; Higashiyama, Hisamitsu; Mitsui, Naoto; Tomo, Masahiro; Ozaki, Yukihiro

    2004-02-01

    This paper reports on-line monitoring of the density of linear low-density polyethylene (LLDPE) by near-infrared (NIR) spectroscopy and chemometrics. The on-line monitoring was carried out not only in a laboratory but also in a real plant. We composed an on-line monitoring system for molten polymers consisting of a Fourier transform near-infrared (FT-NIR) spectrometer, input/output (I/O) module, a personal computer, and a sampling cell that we developed. We first compared NIR spectra of LLDPE in the solid and melt states and then developed calibration models that predict the density using partial least squares regression (PLS). The sample sets for developing prediction models were collected for three months at the plant, and the density of LLDPE was continuously monitored on-line for another three months using the model. The standard error of prediction (SEP) for the on-line monitoring of the density of LLDPE at the plant was +/-2.1 mg/cm(3) (range: 0.91-0.95 g/cm(3)).

  18. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).

    PubMed

    Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E

    2016-07-27

    Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model. PMID:27309980

  19. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).

    PubMed

    Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E

    2016-07-27

    Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model.

  20. Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Chu; Kong, Wenwen; Liu, Fei; He, Yong

    2016-01-01

    Oilseed rape is used as both food and a renewable energy resource. Physiological parameters, such as the amino acid aspartic acid, can indicate the growth status of oilseed rape. Traditional detection methods are laborious, time consuming, costly, and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS) as a fast and non-destructive detection method of aspartic acid in oilseed rape leaves under herbicide stress. Different spectral pre-processing methods were compared for optimal prediction performance. The variable selection methods were applied for relevant variable selection, including successive projections algorithm (SPA), Monte Carlo-uninformative variable elimination (MC-UVE) and random frog (RF). The selected effective wavelengths (EWs) were used as input by multiple linear regression (MLR), partial least squares (PLS) and least-square support vector machine (LS-SVM). The best predictive performance was achieved by SPA-LS-SVM (Raw) model using 22 EWs, and the prediction results were Rp = 0.9962 and RMSEP = 0.0339 for the prediction set. The result indicated that NIR combined with LS-SVM is a powerful new method to detect aspartic acid in oilseed rape leaves under herbicide stress. PMID:27441244

  1. A novel near-infrared spectroscopy and chemometrics method for rapid analysis of several chemical components and antioxidant activity of mint (Mentha haplocalyx Briq.) samples.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2014-01-01

    A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.

  2. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  3. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  4. Non-destructive analysis of the two subspecies of African elephants, mammoth, hippopotamus, and sperm whale ivories by visible and short-wave near infrared spectroscopy and chemometrics.

    PubMed

    Shimoyama, Masahiko; Morimoto, Susumu; Ozaki, Yukihiro

    2004-06-01

    Visible (VIS) and short-wave near infrared (SW-NIR) spectroscopy was used for non-destructive analysis of ivories. VIS-SW-NIR (500-1000 nm) spectra were measured in situ for five kinds of ivories, that is two subspecies of African elephants, mammoth, hippopotamus, and sperm whale. Chemometrics analyses were carried out for the spectral data from 500 to 1000 nm region. The five kinds of ivories were clearly discriminated from each other on the scores plot of two principal components (PCs) obtained by principal component analysis (PCA). It was noteworthy that the ivories of the two subspecies of African elephants were discriminated by the scores of PC 1. The loadings plot for PC 1 showed that the discrimination relies on the intensity changes in bands due to collagenous proteins and water interacting with proteins. It was found that the scores plot of PC 2 is useful to distinguish between the ivories of the two subspecies of African elephants and the other ivories. We also developed a calibration model that predicted the specific gravity of five kinds of ivories from their VIS-SW-NIR spectral data using partial least squares (PLS)-1 regression. The correlation coefficient and root mean square error of cross validation (RMSECV) of this model were 0.960 and 0.037, respectively.

  5. Non-destructive analysis of the two subspecies of African elephants, mammoth, hippopotamus, and sperm whale ivories by visible and short-wave near infrared spectroscopy and chemometrics.

    PubMed

    Shimoyama, Masahiko; Morimoto, Susumu; Ozaki, Yukihiro

    2004-06-01

    Visible (VIS) and short-wave near infrared (SW-NIR) spectroscopy was used for non-destructive analysis of ivories. VIS-SW-NIR (500-1000 nm) spectra were measured in situ for five kinds of ivories, that is two subspecies of African elephants, mammoth, hippopotamus, and sperm whale. Chemometrics analyses were carried out for the spectral data from 500 to 1000 nm region. The five kinds of ivories were clearly discriminated from each other on the scores plot of two principal components (PCs) obtained by principal component analysis (PCA). It was noteworthy that the ivories of the two subspecies of African elephants were discriminated by the scores of PC 1. The loadings plot for PC 1 showed that the discrimination relies on the intensity changes in bands due to collagenous proteins and water interacting with proteins. It was found that the scores plot of PC 2 is useful to distinguish between the ivories of the two subspecies of African elephants and the other ivories. We also developed a calibration model that predicted the specific gravity of five kinds of ivories from their VIS-SW-NIR spectral data using partial least squares (PLS)-1 regression. The correlation coefficient and root mean square error of cross validation (RMSECV) of this model were 0.960 and 0.037, respectively. PMID:15152335

  6. Near-infrared spectroscopy for plaque characterization.

    PubMed

    Waxman, Sergio

    2008-12-01

    A near-infrared (NIR) spectroscopy catheter-based system has been developed for intracoronary detection of lipid-rich plaques, capable of scanning an artery through blood and during cardiac motion. The lipid-rich plaque chemometric algorithm was validated in an ex vivo study using coronary artery specimens from autopsy hearts. A parallel clinical study was performed to demonstrate safety of the system in patients and the similarity of spectra acquired in vivo to data from the ex vivo study. Proof of spectral similarity between data obtained in patients and data from autopsy specimens is required to demonstrate the applicability of the algorithm to patients, in whom tissue for analysis is not available. A preliminary analysis in an unblinded cohort of patients from the clinical study reported promising results. The final results of the clinical study will be submitted for publication. The potential clinical value of this NIR spectroscopy device is discussed.

  7. Novel, Rapid Identification, and Quantification of Adulterants in Extra Virgin Olive Oil Using Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Azizian, Hormoz; Mossoba, Magdi M; Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Karunathilaka, Sanjeewa R; Kramer, John K G

    2015-07-01

    A new, rapid Fourier transform near infrared (FT-NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT-NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT-NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm(-1)) and non-volatile (5180 cm(-1)) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT-NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation. PMID:26050093

  8. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    PubMed

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market.

  9. Non-destructive Measurement of Total Carotenoid Content in Processed Tomato Products: Infrared Lock-In Thermography, Near-Infrared Spectroscopy/Chemometrics, and Condensed Phase Laser-Based Photoacoustics—Pilot Study

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.

    2015-09-01

    Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.

  10. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn".

    PubMed

    Eisenstecken, Daniela; Panarese, Alessia; Robatscher, Peter; Huck, Christian W; Zanella, Angelo; Oberhuber, Michael

    2015-01-01

    The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples. PMID:26213913

  11. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: influence of a change in sample temperature and its compensation method.

    PubMed

    Watari, Masahiro; Ozaki, Yukihiro

    2005-05-01

    This paper reports on the influence of a change in sample temperature, and a method for its compensation, for the prediction of ethylene (C2) content in melt-state random polypropylene (RPP) and block polypropylene (BPP) by near-infrared (NIR) spectroscopy and chemometrics. Near-infrared (NIR) spectra of RPP in the melt and solid states were measured by a Fourier transform near-infrared (FT-NIR) on-line monitoring system and an FT-NIR laboratory system. There are some significant differences between the solid and melt-state RPP spectra. Moreover, we investigated the predicted values of the C2 content from the RPP or BPP spectra measured at 190 degrees C and 250 degrees C using the calibration model for the C2 content developed using the RPP or BPP spectra measured at 230 degrees C. The errors in the predicted values of the C2 content depend on the pretreatment methods for each calibration model. It was found that multiplicative signal correction (MSC) is very effective in compensating for the influence of the change of temperature for the RPP or BPP samples on the predicted C2 content. From the suggestion of principal component analysis (PCA) and difference spectrum analysis, we propose a new compensation method for the temperature change that uses the difference spectra between two spectra sets measured at different temperatures. We achieved good results using the difference spectra between the RPP/BPP spectra sets measured at 190 degrees C and 250 degrees C after correction and the calibration model developed with the spectra measured at 230 degrees C. The comparison between the method using MSC and the proposed method showed that the predicted error in the latter is slightly better than those in the former.

  12. In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example.

    PubMed

    Mureșan, Vlad; Danthine, Sabine; Mureșan, Andruța Elena; Racolța, Emil; Blecker, Christophe; Muste, Sevastița; Socaciu, Carmen; Baeten, Vincent

    2016-08-01

    A new near-infrared (NIR) spectroscopic method was developed for the analytical measurement of lipid oxidation in sunflower kernel paste (tahini), which was chosen as an example of a complex oilseed-based food product. The NIR spectra of sunflower tahini were acquired for the extracted fat phase (EFP) and for the intact sunflower tahini (IST) samples during controlled storage. The best peroxide value (PV) calibration models were considered suitable for quality control (ratio of performance of deviation [RPD]>5). The best PV partial least squares (PLS) model result for EFP (RPD 6.36) was obtained when using standard normal variate (SNV) and the Savitzky-Golay first derivative in the 1140-1184nm, 1388-1440nm and 2026-2194nm regions. In the case of IST spectra, the best PV models (RPD 5.23) were obtained when either multiple scattering correction (MSC) or SNV were followed by the Savitzky-Golay second derivative for the 1148-1180nm and 2064-2132nm regions. There were poor correlations between the NIR-predicted values and the reference data of the p-anisidine value (pAV) for both EFP and IST. Overall, the results obtained showed that NIR spectroscopy is an appropriate analytical tool for monitoring sunflower paste PV in situ. Due to the nonexistence of the extraction step, it demonstrates a unique and substantial advantage over presently known methods. Based on these results it is strongly recommended that, when using NIR PLS models to assess lipid oxidation in situ in similar oilseed-based food products (e.g., sesame tahini, hazelnut and cocoa liquor used for chocolate production, peanut butter, hazelnut, almond, pistachio spreads), suitable calibration sets containing samples of different particle sizes and stored at different temperatures be selected.

  13. In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example.

    PubMed

    Mureșan, Vlad; Danthine, Sabine; Mureșan, Andruța Elena; Racolța, Emil; Blecker, Christophe; Muste, Sevastița; Socaciu, Carmen; Baeten, Vincent

    2016-08-01

    A new near-infrared (NIR) spectroscopic method was developed for the analytical measurement of lipid oxidation in sunflower kernel paste (tahini), which was chosen as an example of a complex oilseed-based food product. The NIR spectra of sunflower tahini were acquired for the extracted fat phase (EFP) and for the intact sunflower tahini (IST) samples during controlled storage. The best peroxide value (PV) calibration models were considered suitable for quality control (ratio of performance of deviation [RPD]>5). The best PV partial least squares (PLS) model result for EFP (RPD 6.36) was obtained when using standard normal variate (SNV) and the Savitzky-Golay first derivative in the 1140-1184nm, 1388-1440nm and 2026-2194nm regions. In the case of IST spectra, the best PV models (RPD 5.23) were obtained when either multiple scattering correction (MSC) or SNV were followed by the Savitzky-Golay second derivative for the 1148-1180nm and 2064-2132nm regions. There were poor correlations between the NIR-predicted values and the reference data of the p-anisidine value (pAV) for both EFP and IST. Overall, the results obtained showed that NIR spectroscopy is an appropriate analytical tool for monitoring sunflower paste PV in situ. Due to the nonexistence of the extraction step, it demonstrates a unique and substantial advantage over presently known methods. Based on these results it is strongly recommended that, when using NIR PLS models to assess lipid oxidation in situ in similar oilseed-based food products (e.g., sesame tahini, hazelnut and cocoa liquor used for chocolate production, peanut butter, hazelnut, almond, pistachio spreads), suitable calibration sets containing samples of different particle sizes and stored at different temperatures be selected. PMID:27216691

  14. Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics

    NASA Astrophysics Data System (ADS)

    Yi, Weisong; Zhang, Jian; Jiang, Houmin; Zhang, Niya

    2014-09-01

    Gastric cancer is one of the leading causes of cancer death in the world due to its high morbidity and mortality. Hyperspectral imaging (HSI) is an emerging, non-destructive, cutting edge analytical technology that combines conventional imaging and spectroscopy in one single system. The manuscript has investigated the application of near-infrared hyperspectral imaging (900-1700 nm) (NIR-HSI) for gastric cancer detection with algorithms. Major spectral differences were observed in three regions (950-1050, 1150-1250, and 1400-1500 nm). By inspecting cancerous mean spectrum three major absorption bands were observed around 975, 1215 and 1450 nm. Furthermore, the cancer target detection results are consistent and conformed with histopathological examination results. These results suggest that NIR-HSI is a simple, feasible and sensitive optical diagnostic technology for gastric cancer target detection with chemometrics.

  15. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    PubMed

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  16. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  17. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found. PMID:11539179

  18. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found.

  19. Near-infrared spectroscopy in NGC 7538

    NASA Astrophysics Data System (ADS)

    Puga, E.; Marín-Franch, A.; Najarro, F.; Lenorzer, A.; Herrero, A.; Acosta Pulido, J. A.; Chavarría, L. A.; Bik, A.; Figer, D.; Ramírez Alegría, S.

    2010-07-01

    Aims: The characterisation of the stellar population in young high-mass star-forming regions allows fundamental cluster properties like distance and age to be constrained. These are essential when using high-mass clusters as probes for conducting Galactic studies. Methods: NGC 7538 is a star-forming region with an embedded stellar population unearthed only in the near-infrared (NIR). We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with subarcsecond JHKs photometry of the region using the imaging mode of the same instrument. Results: We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the H ii region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources, as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7 ± 0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass 1.7 × 103 Msun for the older population. Based on observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-01

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength.

  1. Near-infrared spectroscopy for personal screening

    NASA Astrophysics Data System (ADS)

    Canal, Céline M.; Saleem, Aamer; Green, Roger J.; Hutchins, David A.

    2010-10-01

    This paper will demonstrate that near infrared (NIR) signals at wavelengths in the range 0.9 to 2.5 microns can be used for personal screening applications. At these wavelengths, there is sufficient spectral information to provide chemical identification, while still providing transmission through many types of common clothing materials. Thus, chemical identification in diffuse reflection is possible. Initial measurements on selected clothing materials have indicated that there is sufficient transmission to allow NIR spectra from concealed chemicals to be collected. The effect of the clothing material on the observed spectra has also been quantified. The clothing materials ranged from cotton to man-made fibres. Spectra have been collected at stand-off distances of several metres or more, using a suitable lens system and an NIR spectrometer. The optics required to achieve this will be described, and some spectra from chemicals hidden behind clothing will be presented. The further steps necessary to provide correct identification of chemicals such as ammonium nitrate in granular form will also be given, involving signal analysis methods. A set of spectra will be shown that have been collected and analysed, for a wide range of clothing fabric materials, indicating that the technique could have wide application to personal screening situations.

  2. Near-Infrared Spectroscopy of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Boulanger, F.; Onaka, T.; Pilleri, P.; Joblin, C.

    2011-03-01

    Near infrared observations of reflection nebulae have set the historical ground for the discovery of interstellar PAHs, but since, space observations have focused on their mid-IR features, and data shortward of 5 μm have remained scarce. The Spitzer/IRAC images in the 3.6 and 4.5 μm channels do show that the near-IR emission from small dust particles is ubiquitous across the Galaxy, but provide no spectroscopic information. To investigate the nature of this near-IR dust emission, we have obtained AKARI spectroscopic observations, over the 2.5-5 μm spectral range, for a set of archetype PDRs mapped with the Spitzer spectrometer at mid-IR wavelengths. These AKARI data supplement earlier observations with the SWS ISO spectrometer, in providing the gain in sensitivity needed to observe low excitation sources, and the spatial information required to spatially correlate near-IR spectroscopic signatures with physical conditions and observed changes in mid-IR spectra. This paper presents the first results of the data analysis, in relation to two open questions on interstellar PAHs. (1) Is there an evolutionary link from aliphatic carbon dust to PAHs? (2) What is the origin of the near-IR dust continuum? The AKARI spectra display features longward of the main 3.29 μm PAH feature, and continuum emission. The intensity ratio between the features ascribed to aliphatic CH bonds and the 3.29 μm aromatic band, varies spatially in a way that may be interpreted as evidence for aromatization of the smallest dust particles by photo-processing. The continuum displays a striking step-increase across the 3.29 μm feature. We also present a spectrum of a photodissociation region with a feature at 4.65 μm, which has been speculated to be related to the CD stretch in aliphatic hydrocarbon side-groups on PAHs.

  3. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite.

    PubMed

    Lu, Longfei; Cai, Jingong; Frost, Ray L

    2010-03-01

    The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm(-1) and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm(-1) and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm(-1) are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful. PMID:20071218

  4. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    PubMed Central

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P. V.

    2016-01-01

    Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed

  5. Chemometric evaluation of near infrared, fourier transform infrared, and Raman spectroscopic models for the prediction of nimodipine polymorphs.

    PubMed

    Siddiqui, Akhtar; Rahman, Ziyaur; Sayeed, Vilayat A; Khan, Mansoor A

    2013-11-01

    The objective of this study was to assess the performance of the chemometric model to predict the proportion of the recrystallized polymorphs of nimodipine from the cosolvent formulations. Ranging from 100% to 0% (w/w) of polymorph I, the two polymorphs mixtures were prepared and characterized spectroscopically using Fourier transformed infrared spectroscopy (FTIR), near-infrared spectroscopy (NIR), and Raman spectroscopy. Instrumental responses were treated to construct multivariate calibration model using principal component regression (PCR) and partial least square regression approaches. Treated data showed better model fitting than without treatment, which demonstrated higher correlation coefficient (R(2) ) and lower root mean square of standard error (RMSE) and standard error (SE). Multiple scattering correction and standard normal variate exhibited higher R(2) and lower RMSE and SE values than second derivative. Goodness of fit for FTIR and NIR (R(2) ∼ 0.99) data was better than Raman (R(2) ∼ 0.95). Furthermore, the models were applied on the recrystallized polymorphs obtained by storing nimodipine-cosolvent formulations at selected stability conditions. The relative composition of the polymorphs differed with storage conditions. NIR-chemical imaging on recrystallized sample of nimodipine at 15°C qualitatively corroborated the model-based prediction of the two polymorphs. Therefore, these studies strongly suggest the importance of the potential utility of the chemometric model in predicting nimodipine polymorphs.

  6. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  7. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  8. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miranda, D. A.; Cristiano, K. L.; Gutiérrez, J. C.

    2013-11-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated.

  9. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  10. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  11. Discriminant analyzing system for wood wastes using a visible-near-infrared chemometric imaging technique.

    PubMed

    Kobori, Hikaru; Yonenobu, Hitoshi; Noma, Junichi; Tsuchikawa, Satoru

    2008-08-01

    A new optical system was developed and applied to automated separation of wood wastes, using a combined technique of visible-near-infrared (Vis-NIR) imaging analysis and chemometrics. Three kinds of typical wood wastes were used, i.e., non-treated, impregnated, and plastic-film overlaid wood. The classification model based on soft independent modeling of class analogy (SIMCA) was examined using the difference luminance brightness of a sample. Our newly developed system showed a good/promising performance in separation of wood wastes, with an average rate of correct separation of 89%. Hence, it is concluded that the system is efficiently feasible for online monitoring and separation of wood wastes in recycling mills.

  12. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  13. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  14. Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data.

    PubMed

    Fahmy, Usama A

    2016-01-01

    Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV) concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10-250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug-plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed.

  15. Innovative uses of near-infrared spectroscopy in food processing.

    PubMed

    Bock, J E; Connelly, R K

    2008-09-01

    Near-infrared spectroscopy (NIRS) has experienced widespread use as an analytical tool in the last 3 decades. Researchers today are exploring ways of applying NIRS that expand beyond compositional analyses into process control. Processes such as meat tenderness evaluation, curd cutting, and dough mixing have traditionally been controlled by highly skilled master craftsmen; new NIRS research applications are demonstrating that these complex processes can be monitored and controlled in situ to produce consistent, high quality end products with online NIRS technology. Additionally, researchers also now have the potential ability to develop new nondestructive spectroscopic techniques to probe the underlying molecular evolution of these products during processing.

  16. Note: wearable near-infrared spectroscopy imager for haired region.

    PubMed

    Kiguchi, M; Atsumori, H; Fukasaku, I; Kumagai, Y; Funane, T; Maki, A; Kasai, Y; Ninomiya, A

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  17. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  18. Chemometric analysis for near-infrared spectral detection of beef in fish meal

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Garrido-Novell, Cristóbal; Pérez-Marín, Dolores; Guerrero-Ginel, José E.; Garrido-Varo, Ana; Kim, Moon S.

    2015-05-01

    This paper reports the chemometric analysis of near-infrared spectra drawn from hyperspectral images to develop, evaluate, and compare statistical models for the detection of beef in fish meal. There were 40 pure-fish meal samples, 15 pure-beef meal samples, and 127 fish/beef mixture meal samples prepared for hyperspectral line-scan imaging by a machine vision system. Spectral data for 3600 pixels per sample, in which individual spectra was obtain, were retrieved from the region of interest (ROI) in every sample image. The spectral data spanning 969 nm to 1551 nm (across 176 spectral bands) were analyzed. Statistical models were built using the principal component analysis (PCA) and the partial least squares regression (PLSR) methods. The models were created and developed using the spectral data from the purefish meal and pure-beef meal samples, and were tested and evaluated using the data from the ROI in the mixture meal samples. The results showed that, with a ROI as large as 3600 pixels to cover sufficient area of a mixture meal sample, the success detection rate of beef in fish meal could be satisfactory 99.2% by PCA and 98.4% by PLSR.

  19. Multivariate analysis of coconut residues by near infrared spectroscopy.

    PubMed

    Rambo, M K D; Alves, A R; Garcia, W T; Ferreira, M M C

    2015-06-01

    Near infrared (NIR) spectroscopy was used to determine the content of Klason lignin, acid-soluble lignin, total lignin, extractives, ash, acid-insoluble residue, glucose, xylose, rhamnose, galactose, arabinose, mannose and total sugars in coconut residues. The samples were analyzed at several processing stages: wet unground (WU), dried unground (DU) and dried and sieved (DS). Partial least squares models were built, and the models for the analytes exhibited R(2)>0.80, with the exceptions of rhamnose, arabinose, galactose, mannose and ash from all fractions, and the lignin content from the WU fraction, which were predicted poorly (R(2)<0.70). There were some significant differences between the models for the main lignocellulosic components at the various stages of biomass. These results proved that NIR spectroscopy is useful for analysis at biorefineries, and it can be used as a faster and more economical alternative to the standard methods.

  20. Near infrared spectroscopy in the development of solid dosage forms.

    PubMed

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  1. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics.

    PubMed

    Otsuka, Makoto; Yamane, Ikuro

    2006-07-01

    The purpose of this research is to elucidate the effect of lubricant mixing on tablet hardness by near-infrared (NIR) chemometrics as a basic study of process analytical technology. Formulation cellulose (F-C) consisted of sulpyrine (SP), microcrystalline cellulose (MC), and magnesium stearate (MgSt). Formulation lactose/starch (F-L) consisted of SP bulk drug powder, spray-dried lactose (SL), corn starch (CS), and MgSt. First, F-L and F-C without MgSt were mixed in a twin-shell mixer for 60 min. MgSt was added to the mixed powder, and was mixed for various mixing times, after which the mixed powders were compressed by 8-mm diameter punch and die. NIR spectra of raw mixed powders of F-L and F-C were taken using a reflection type of Fourier transform NIR spectra spectrometer, and chemometric analysis was performed using principal component regression (PCR). The tablet hardnesses of F-L and F-C decreased with increasing mixing time. All NIR spectra of the mixed powders of F-L and F-C fluctuated depending on mixing time. In order to predict tablet hardness before tablet compression, NIR spectra of F-L and F-C mixed powders were analyzed and evaluated for hardness by PCR. The minimum standard error of cross-validation values could be realized by using five- and six-principal component models, respectively. In the cases of F-L and F-C, the relationships between the actual and predicted tablet hardnesses showed straight lines, respectively. In the regression vectors of F-L and FC, the peaks related to hydrogen groups of SP, CS, and MC appeared as positive peaks. In contrast, the peaks related to hydrocarbon due to MgSt appeared as negative peaks in the regression vectors. The calibration models to evaluate the tablet hardness were obtained based on NIR spectra of raw mixed powders by PCR. This approach to predicting tablet hardness prior to compression could be used as a routine test to indicate the quality of the final product without spending time and energy to produce

  2. A near-infrared spectroscopy computational model for cerebral hemodynamics.

    PubMed

    Kannan, R; Przekwas, A

    2012-11-01

    Near infrared spectroscopy (NIRS) is a technique used to detect and measure changes in the concentrations of oxygenated hemoglobin, deoxygenated hemoglobin, and water in tissues based on the differential absorption, scattering, and refraction of the near infrared light. In this imaging technique, the optical properties of tissues are reconstructed from the measurements obtained from the sensors located on the boundary. A computational method for the rapid noninvasive detection ∕ quantification of cerebral hemorrhage is described using the above procedure. CFD Research Corporation's finite volume computational biology code was used to numerically mimic the NIRS procedure by (i) noninvasively 'numerically penetrating' the brain tissues and (ii) reconstructing the optical properties the presence of water, oxygenated, and deoxygenated blood. These numerical noninvasive measurements are then used to predict the extent and severity of the brain hemorrhage. The paper also discusses ideas to obtain the location and the severity of a localized injury. Two-dimensional and three-dimensional simulations are performed as a proof of concept for the numerical formulation being feasible for the above mentioned detection/quantification. The results demonstrate that this numerical NIRS formulation can be used as a noninvasive technique for both qualitative and quantitative evaluation of cerebral hemodynamics.

  3. Pulsed near-infrared photoacoustic spectroscopy of blood

    NASA Astrophysics Data System (ADS)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  4. Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data

    PubMed Central

    Fahmy, Usama A

    2016-01-01

    Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV) concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10–250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug–plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed. PMID:27540278

  5. Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data.

    PubMed

    Fahmy, Usama A

    2016-01-01

    Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV) concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10-250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug-plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed. PMID:27540278

  6. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    PubMed

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey. PMID:26669162

  7. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    PubMed

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  8. Classification of burn injuries using near-infrared spectroscopy.

    PubMed

    Sowa, Michael G; Leonardi, Lorenzo; Payette, Jeri R; Cross, Karen M; Gomez, Manuel; Fish, Joel S

    2006-01-01

    Early surgical management of those burn injuries that will not heal spontaneously is critical. The decision to excise and graft is based on a visual assessment that is often inaccurate but yet continues to be the primary means of grading the injury. Superficial and intermediate partial-thickness injuries generally heal with appropriate wound care while deep partial- and full-thickness injuries generally require surgery. This study explores the possibility of using near-infrared spectroscopy to provide an objective and accurate means of distinguishing shallow injuries from deeper burns that require surgery. Twenty burn injuries are studied in five animals, with burns covering <1% of the total body surface area. Carefully controlled superficial, intermediate, and deep partial-thickness injuries as well as full-thickness injuries could be studied with this model. Near-infrared reflectance spectroscopy was used to evaluate these injuries 1 to 3 hours after the insult. A probabilistic model employing partial least-squares logistic regression was used to determine the degree of injury, shallow (superficial or intermediate partial) from deep (deep partial and full thickness), based on the reflectance spectrum of the wound. A leave-animal-out cross-validation strategy was used to test the predictive ability of a 2-latent variable, partial least-squares logistic regression model to distinguish deep burn injuries from shallow injuries. The model displayed reasonable ranking quality as summarized by the area under the receiver operator characteristics curve, AUC = 0.879. Fixing the threshold for the class boundaries at 0.5 probability, the model sensitivity (true positive fraction) to separate deep from shallow burns was 0.90, while model specificity (true negative fraction) was 0.83. Using an acute porcine model of thermal burn injuries, the potential of near-infrared spectroscopy to distinguish between shallow healing burns and deeper burn injuries was demonstrated. While

  9. [Rapid determination of beet sugar content using near infrared spectroscopy].

    PubMed

    Yang, Yong; Ren, Jian; Zheng, Xi-Qun; Zhao, Li-Ying; Li, Mao-Mao

    2014-10-01

    In order to classify and set different prices on basis of difference of beet sugar content in the acquisition process and promote the development of beet sugar industry healthily, a fast, nondestructive, accurate method to detect sugar content of beet was determined by applying near infrared spectroscopy technology. Eight hundred twenty samples from 28 representative varieties of beet were collected as calibration set and 70 samples were chosen as prediction set. Then near infrared spectra of calibration set samples were collected by scanning, effective information was extracted from NIR spectroscopy, and the original spectroscopy data was optimized by data preprocessing methods appropriately. Then partial least square(PLS)regression was used to establish beet sugar quantitative prediction mathematical model. The performances of the models were evaluated by the root mean square of cross-validation (RMSECV), the coefficient of determination (R2) of the calibration model and the standard error of prediction (SEP), and the predicted results of these models were compared. Results show that the established mathematical model by using first derivative (FD) and standard normal variate transformation (SNV) coupled with partial least squares has good predictive ability. The R2 of calibration models of sugar content of beet is 0.908 3, and the RMSECV is 0.376 7. Using this model to forecast the prediction set including 70 samples, the correlation coefficient is 0.921 4 between predicted values and measured values, and the standard error of prediction (SEP) is 0.439, without significant difference (p > 0.05) between predicted values and measured values. These results demonstrated that NIRS can take advantage of simple, rapid, nondestructive and environmental detection method and could be applied to predict beet sugar content. This model owned high accuracy and can meet the precision need of determination of beet sugar content. This detection method could be used to classify

  10. Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Tan, Chao; Wu, Tong; Wang, Li; Zhu, Wanping

    2014-09-01

    Chinese liquor is one of the famous distilled spirits and counterfeit liquor is becoming a serious problem in the market. Especially, age liquor is facing the crisis of confidence because it is difficult for consumer to identify the marked age, which prompts unscrupulous traders to pose off low-grade liquors as high-grade liquors. An ideal method for authenticity confirmation of liquors should be non-invasive, non-destructive and timely. The combination of near-infrared spectroscopy with chemometrics proves to be a good way to reach these premises. A new strategy is proposed for classification and verification of the adulteration of liquors by using NIR spectroscopy and chemometric classification, i.e., ensemble support vector machines (SVM). Three measures, i.e., accuracy, sensitivity and specificity were used for performance evaluation. The results confirmed that the strategy can serve as a screening tool applied to verify adulteration of the liquor, that is, a prior step used to condition the sample to a deeper analysis only when a positive result for adulteration is obtained by the proposed methodology.

  11. Detecting counterfeit antimalarial tablets by near-infrared spectroscopy.

    PubMed

    Dowell, Floyd E; Maghirang, Elizabeth B; Fernandez, Facundo M; Newton, Paul N; Green, Michael D

    2008-11-01

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discriminating between counterfeit and genuine artesunate antimalarial tablets. Using NIRS, we found that artesunate tablets could be identified as genuine or counterfeit with high accuracy. Multivariate classification models indicated that this discriminatory ability was based, at least partly, on the presence or absence of spectral signatures related to artesunate. This technique can be field-portable and requires little training after calibrations are developed, thus showing great promise for rapid and accurate fake detection. PMID:18703302

  12. Functional near-infrared spectroscopy studies in children

    PubMed Central

    2012-01-01

    Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS), have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders. PMID:22433235

  13. Cardiac tissue characterization using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh Moon, Rajinder; Hendon, Christine P.

    2014-03-01

    Cardiac tissue from swine and canine hearts were assessed using diffuse reflectance near-infrared spectroscopy (NIRS) ex vivo. Slope measured between 800-880 nm reflectance was found to reveal differences between epicardial fat and normal myocardium tissue. This parameter was observed to increase monotonically from measurements obtained from the onset of radiofrequency ablation (RFA). A sheathe-style fiber optic catheter was then developed to allow real-time sampling of the zone of resistive heating during RFA treatment. A model was developed and used to extract changes in tissue absorption and reduced scattering based on the steady-state diffusion approximation. It was found that key changes in tissue optical properties occur during application of RF energy and can be monitored using NIRS. These results encourage the development of NIRS integrated catheters for real-time guidance of the cardiac ablation treatment.

  14. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  15. Review of functional near-infrared spectroscopy in neurorehabilitation.

    PubMed

    Mihara, Masahito; Miyai, Ichiro

    2016-07-01

    We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback. PMID:27429995

  16. Characteristic wavelength of textile fiber in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Hongnian; Jin, Shangzhong; Gan, Bin

    2006-01-01

    Near Infrared (NIR) spectroscopy in the region from 1300 to 1700nm, coupled with multivariate analytic statistical techniques, have been used to predict the chemical properties of textile fiber. Molecule absorbs electromagnetic wave with especial wavelength, which leads to bring characteristic absorption spectrum. Characteristic wavelength is the most important parameter in NIR detection. How to select characteristic wavelength is the key to NIR measure. Different mathematical methods are used to find relationship between the NIR absorption spectrum and the chemical properties of the textile fiber. We adopt stepwise multiple linear regression (SMLR) to select characteristic wavelength. As objective condition is limited, this article only refers to cotton and terylene. By computing correlation coefficient, we establish calibration equation with the smoothed absorbance data. Finally, the bias was controlled under 6%. Then, we find that NIR can be used to carry on qualitative analysis and quantitative analysis of the textile.

  17. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  18. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors

  19. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  20. Biochemical and physiological basis of medical near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Joebsis-vander Vliet, Frans F.; Joebsis, Paul

    1999-10-01

    Near infrared spectroscopy (NIRS) can monitor both the redox status of Cytochrome c oxidase located in the mitochondria within the cell and the oxygenation of the blood in the tissue being monitored. Since the enzyme catalyzes more than 90% of oxygen utilization, it is the sink for the oxygen while the hemoglobin in the capillaries is the oxygen source. In order to evaluate the oxidative metabolic status of a tissue the optical data obtained from both molecules are commonly interpreted in the basis of test tube experiments with purified preparations. We are concerned that the validity of this practice may not have been tested sufficiently and raise four basic questions that have not yet been answered. Citing some examples of in vitro versus in vivo differences we conclude that more effort should be expended on the in vivo testing of the range of the signals, their natural variability, and the physiological and pathological meaning of their deviations from norm.

  1. Near-infrared chemometric approach to exhaustive analysis of rice straw pretreated for bioethanol conversion.

    PubMed

    Horikawa, Yoshiki; Imai, Tomoya; Takada, Rie; Watanabe, Takashi; Takabe, Keiji; Kobayashi, Yoshinori; Sugiyama, Junji

    2011-05-01

    We report a simple analytical procedure combining near-infrared (NIR) spectroscopy with multivariate analysis to detect the saccharification efficiency of pretreated rice straw. Three types of sample preparation methods were tested to develop a powerful calibration model, with the disk sample used as the standard protocol. From the spectra dataset of NaOH-treated biomass, we obtained a good calibration for the saccharification ratio and some major structural components by partial least-squares regression. Adding dataset from hot water and dilute sulfuric acid pretreatments to NaOH sample dataset, an acceptable calibration model to predict the saccharification ratio as well as the glucose, xylose, and lignin contents was generated. NIR has a great potential for rapid screening of saccharification efficiency of pretreated biomass, which would allows us to control the quality of processing toward better bioethanol production.

  2. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    PubMed Central

    Liu, Bin; Liu, Jin; Chen, Tianpeng; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-01-01

    The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs). The gas chromatography (GC) based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS) technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2) being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production. PMID:25826532

  3. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  4. [Research and application progress of near infrared spectroscopy analytical technology in China in the past five years].

    PubMed

    Chu, Xiao-Li; Lu, Wan-Zhen

    2014-10-01

    In the past decade, near infrared spectroscopy (NIR) has expanded rapidly and been applied widely in many fields in China. The recent progress of the research and application of NIR analytical technology in China especially in the past five years has been reviewed. It includes hardware and software R&D, Chemometric algorithms and experimental methods research, and quantitative and qualitative applications in the typical fields such as food, agriculture, pharmaceuticals, petrochemicals, forestry, and medical diagnosis. 209 references are cited, which are mainly published in national journals, professional magazines, and book chapters. The developing trend of near infrared spectroscopy and the strategies to further promote its innovation and development in China in the near future are put forward and discussed. PMID:25739193

  5. Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques.

    PubMed

    Balabin, Roman M; Safieva, Ravilya Z; Lomakina, Ekaterina I

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm(-1) NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  6. [Research progress and application prospect of near-infrared spectroscopy in analysis of food amino acid].

    PubMed

    Yu, Xiao-Lan; Xu, Ning; He, Yong

    2014-09-01

    To investigate the progress and application of near infrared spectroscopy (NIR) used to detect amino acids in the growth of crops and food processing process. With online searching databases including ISI (Web of Knowledge), CNKI (China Knowledge Network), summarize the detection of chemical value using high performance liquid chromatography (HPLC) and chemometric methods involved in the application of NIR used to analyze amino acids in food, meanwhile summarize the data, materials and main topics in relevant original literature. Overview the methods of chemical value detection using HPLC and chemometric analysis, their applications in detecting the quality of crops, determining the content of water, amino acids and polyphenol in green tea, detecting the quality of feed and determining the content of amino acids in cheese, ham and meat products, We forecasted the application of NIR in determining the content of amino acids in food and analyzed its merits and drawbacks. The development of NIR's application in amino acids detection should be based on the HPLC detection, and the problem of model transfer mainly restricts its large-scale promotion currently. Online analysis can monitor the entire reaction and change process from raw materials to products and thus meets the needs of real-time monitoring food quality from production to sales, and it will be an important direction for future.

  7. Noncontact tissue oxygenation measurement using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Murata, Hideaki; Shinohara, Shigenobu

    2006-07-01

    Here, we present a noncontact tissue oxygenation monitor that uses near-infrared spectroscopy (NIRS). We examined changes in sensitivity of tissue oxygenation measurement due to changes in the distance between the optical probe and the skin surface using a Monte Carlo simulation and in vivo tests. We also examined the effects of skin and fat layer thickness. Photon migration was analyzed in a model consisting of the skin, fat, and muscle layers. The relationship between measurement sensitivity and the probe-tissue distance was obtained from the results of the simulation and was used for correction of measurements. A noncontact tissue oximeter was used to perform the in vivo tests and measure oxygen consumption of the forearm muscle. The value of corrected oxygen consumption was 0.12±0.03ml/(100gmin), which is consistent with previously reported values obtained using contact NIRS measurement and magnetic resonance spectroscopy. Quantitative measurement of oxygenation using noncontact NIRS is potentially useful for novel applications such as quantification of inflammation.

  8. Near-infrared spectroscopy for burning plasma diagnostic applicationsa)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and γ-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  9. Near-infrared spectroscopy: a methodology-focused review.

    PubMed

    Pellicer, Adelina; Bravo, María del Carmen

    2011-02-01

    Near infrared spectroscopy (NIRS) is a light-based technology used to monitor tissue oxygen status. Refinements to the method since it was first described have extended its applicability to different research and clinical settings due to its non-invasiveness, instrument portability and ease of use. Classic NIRS recordings, based in the Beer-Lambert law, can be used for the trend monitoring of changes in tissue perfusion-oxygenation parting from an arbitrary zero point. However, in order to derive intermittently quantitative values in absolute terms, certain manoeuvres must be performed. More recently, the evolution of the technique has led to the development of instruments that provide an absolute value of regional hemoglobin saturation in a continuous manner. This review will focus on the physical principles of tissue spectroscopy including a brief description of the different operating principles that are currently in use or under development. The theoretical details, experimental procedures and data analysis involved in the measurements of physiological variables using NIRS will be described. The future beyond the scope of NIRS and potential lines of research will also be discussed.

  10. Selection of Haploid Maize Kernels from Hybrid Kernels for Plant Breeding Using Near-Infrared Spectroscopy and SIMCA Analysis

    SciTech Connect

    Jones, Roger W.; Reinot, Tonu; Frei, Ursula K.; Tseng, Yichia; Lübberstedt, Thomas; McClelland, John F.

    2012-04-01

    Samples of haploid and hybrid seed from three different maize donor genotypes after maternal haploid induction were used to test the capability of automated near-infrared transmission spectroscopy to individually differentiate haploid from hybrid seeds. Using a two-step chemometric analysis in which the seeds were first classified according to genotype and then the haploid or hybrid status was determined proved to be the most successful approach. This approach allowed 11 of 13 haploid and 25 of 25 hybrid kernels to be correctly identified from a mixture that included seeds of all the genotypes.

  11. Rapid Characterization of Tanshinone Extract Powder by Near Infrared Spectroscopy

    PubMed Central

    Luo, Gan; Xu, Bing; Shi, Xinyuan; Li, Jianyu; Dai, Shengyun; Qiao, Yanjiang

    2015-01-01

    Chemical and physical quality attributes of herbal extract powders play an important role in the research and development of Chinese medicine preparations. The active pharmaceutical ingredients have a direct impact on the herbal extract's efficacy, while the physical properties of raw material affect the pharmaceutical manufacturing process and the final products' quality. In this study, tanshinone extract powders from Salvia miltiorrhiza which are widely used for the treatment of cardiovascular diseases in the clinic are taken as the research object. Both the chemical information and physical information of tanshinone extract powders are analyzed by near infrared (NIR) spectroscopy. The partial least squares (PLS) and least square support vector machine (LS-SVM) models are investigated to build the relationship between NIR spectra and reference values. PLS models performed well for the content of crytotanshinone, tanshinone IIA, the moisture, and average median particle size, while, for specific surface area and tapped density, the LS-SVM models performed better than the PLS models. Results demonstrated NIR to be a valid and fast process analytical technology tool to simultaneously determine multiple quality attributes of herbal extract powders and indicated that there existed some nonlinear relationship between NIR spectra and physical quality attributes. PMID:25866511

  12. The application of near infrared spectroscopy in nutritional intervention studies

    PubMed Central

    Jackson, Philippa A.; Kennedy, David O.

    2013-01-01

    Functional near infrared spectroscopy (NIRS) is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF) and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in hemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavoring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain. PMID:23964231

  13. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  14. Textile integrated sensors and actuators for near-infrared spectroscopy.

    PubMed

    Zysset, Christoph; Nasseri, Nassim; Büthe, Lars; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Kleiser, Stefan; Salvatore, Giovanni A; Wolf, Martin; Tröster, Gerhard

    2013-02-11

    Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices.

  15. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  16. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  17. Bundled-Optode Method in Functional Near-Infrared Spectroscopy

    PubMed Central

    Nguyen, Hoang-Dung; Hong, Keum-Shik; Shin, Yong-Il

    2016-01-01

    In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS) is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb) during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm) fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging. PMID:27788178

  18. Examining the Phonological Neighborhood Density Effect Using Near Infrared Spectroscopy

    PubMed Central

    Chen, Hsin-Chin; Vaid, Jyotsna; Boas, David A.; Bortfeld, Heather

    2010-01-01

    Phonological density refers to the number of words that can be generated by replacing a phoneme in a target word with another phoneme in the same position. Although the precise nature of the phonological neighborhood density effect is not firmly established, many behavioral psycholinguistic studies have shown that visual recognition of individual words is influenced by the number and type of neighbors the words have. This study explored neurobehavioral correlates of phonological neighborhood density in skilled readers of English using near infrared spectroscopy. On the basis of a lexical decision task, our findings showed that words with many phonological neighbors (e.g., FRUIT) were recognized more slowly than words with few phonological neighbors (e.g., PROOF), and that words with many neighbors elicited significantly greater changes in blood oxygenation in the left than in the right hemisphere of the brain, specifically in the areas BA 22/39/40. In previous studies these brain areas have been implicated in fine-grained phonological processing in readers of English. The present findings provide the first demonstration that areas BA 22/39/40 are also sensitive to phonological density effects. PMID:20690126

  19. [A simple design of functional near-infrared spectroscopy system].

    PubMed

    Xu, Gang; Li, Xiao-li; Liu, Xiao-min

    2015-02-01

    With the development in last twenty years, functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique which widely used in cognitive neuroscience studies. Based on mechanism of neurovascular coupling, increased functional neural activities in brain induce higher regional cerebral blood flow, which will cause relative concentration change of oxygenated and deoxygenated hemoglobin. In this paper, a single channel continuous wave fNIRS system based on multi-function data acquisition board was proposed. With the benefits of narrow spectral peaks and low divergence, laser diodes provided a better accuracy for measurement with optimal dual-wavelength of 690 and 830 nm. Frequency multiplexing technique was used to distinguish light sources from different emitters, and remove environmental stable interference sources such as ambient light and line power noise as well. LabVIEW was used to design graphical user interface with functionalities including source sequence schedule, auto gain setting, digital inhase and quadrature demodulation, data visualization and storage. The experimental results during holding breath and mental arithmetic task indicated that our system was capable of monitoring regional concentration change of hemoglobin in real time, and detecting activation associated with advanced brain functions. PMID:25970931

  20. Detecting concealed information using functional near-infrared spectroscopy.

    PubMed

    Sai, Liyang; Zhou, Xiaomei; Ding, Xiao Pan; Fu, Genyue; Sang, Biao

    2014-09-01

    The present study focused on the potential application of fNIRS in the detection of concealed information. Participants either committed a mock crime or not and then were presented with a randomized series of probes (crime-related information) and irrelevants (crime-irrelevant information) in a standard concealed information test (CIT). Participants in the guilty group were instructed to conceal crime-related information they obtained from the mock crime, thus making deceptive response to the probes. Meanwhile, their brain activity to probes and irrelevants was recorded by functional near-infrared spectroscopy (fNIRS). At the group level, we found that probe items were associated with longer reaction times and greater activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex than irrelevant items in the guilty group, but not in the innocent group. These findings provided evidence on neural correlates of recognition during a CIT. Finally, on the basis of the activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex, the correct classification of guilty versus innocent participants was approximately 75 % and the combination of fNIRS and reaction time measures yielded a better classification rate of 83.3 %. These findings illustrate the feasibility and promise of using fNIRS to detect concealed information. PMID:24514911

  1. Near-infrared spectroscopy for rapid classification of fruit spirits.

    PubMed

    Jakubíková, M; Sádecká, J; Kleinová, A; Májek, P

    2016-06-01

    Multivariate analysis combined with near-infrared (NIR) spectral analysis was evaluated to classify fruit spirits. A total of 67 fruit spirits (12 apple, 18 apricot, 19 pear and 18 plum spirits) were analyzed. NIR spectra were collected in the wavenumber range of 4000-10,000 cm(-1). Linear discriminant analysis based on principal component analysis (PCA-LDA) and general discriminant analysis (GDA) based directly on NIR spectral data were used to classify the samples. The prediction performance of models in different wavenumber ranges was also investigated. The best PCA-LDA and GDA models gave a 100 % classification of spirits of the four fruit kinds in the wavenumber range from 5500 to 6050 cm(-1) corresponding to either the C-H stretch of the first overtones of CH3 and CH2 groups, or to compounds containing O-H aromatic groups. The results demonstrated that NIR spectroscopy could be used as a rapid method for classification of fruit spirits. PMID:27478236

  2. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.

  3. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  4. Calibration models for the vinyl acetate concentration in ethylene-vinyl acetate copolymers and its on-line monitoring by near-infrared spectroscopy and chemometrics: use of band shifts associated with variations in the vinyl acetate concentration to improve the models.

    PubMed

    Watari, Masahiro; Ozaki, Yukihiro

    2005-07-01

    The present study investigates calibration models for the vinyl acetate (VA) concentration in ethylene-vinyl acetate (EVA) copolymers and its on-line monitoring by near-infrared (NIR) spectroscopy and chemometrics. The key point in the present study is to make use of band shifts associated with concentration changes in the vinyl acetate (VA) for the improvement of the models. NIR spectra of EVA in melt and solid states were measured by a Fourier transform near-infrared (FT-NIR) on-line monitoring system and a FT-NIR laboratory system. Some of the bands in the NIR spectra for both states show significant shifts with the variations in the VA concentration. The peak shifts induced by the VA concentration changes are larger in the solid-state EVA than those in the melt-state EVA. We have developed calibration models for the VA concentration in the solid-state EVA and investigated how to improve the calibration models. The factor analysis of partial least squares (PLS) regression has suggested that the wavenumber shifts caused by the VA concentration changes affect the calibration models for the VA concentration in EVA. From the analysis, it has been proposed that the wavenumbers in the spectrum of one sample in nine EVA samples (VA concentration range: 0-41.1%) are shifted for the improvement of the calibration models, and the effects of the proposed method have been confirmed by using the PLS calibration models for the VA concentration in the solid EVA samples. As the next step, the effects of the wavenumber shift method have been explored for the calibration models for the VA concentration in the melt-state EVA. After that, the discrimination method using the score plots of PLS and the application sequence for the on-line monitoring to use the proposed wavenumber shift method were studied. The simulation results using the discrimination and wavenumber shift methods have shown that those methods are very effective to improve the predicted values of the calibration

  5. Quantification of the extracerebral contamination of near infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Mudra, R.; Niederer, P.; Keller, E.

    2005-04-01

    Recently, conventional near infrared spectroscopy (NIRS) for oxymetry has been extended with an indocyanine green (ICG) dye dilution method which allows the estimation of cerebral blood flow (CBF) and cerebral blood volume (CBV). The signal obtained through the skull is substantially influenced by extracerebral tissue. In order to quantify and eliminate extracerebral contamination of the optical density signal we have applied two approaches. Firstly, we used spatially resolved spectroscopy (SRS) with a two receiver arrangement, with separations between emitter and two receivers in distances of d1=4.0cm and d2=6.5cm. The magnitude of the determined extracerebral contamination was verified with NIRS measurements in patients after brain herniation. Intracerebral circulatory arrest was confirmed by transcerebral Doppler examination. Secondly, Monte Carlo simulation was used to simulate the light propagation through the head to quantify the extracerebral contamination of the optical density signal of NIRS. The anatomical structure is determined from 3D-magnetic resonance imaging (MRI) using a voxel resolution of 0.8 x 0.8 x 0 .8 mm3 for three different pairs of T1/T2 values. We segment the MRI data to obtain a material matrix describing the composition of skin, skull, cerebral spinal fluid (CSF), grey and white matter. Each voxel in this material matrix characterizes the light absorption and dispersion coefficient of the identified material. This material matrix is applied in the Monte Carlo simulation. With SRS an extracerebral contamination of 65% of the optical density signal is extracted, while the Monte Carlo simulation results show that the extracerebral contamination decreases from 70% to 30% with increasing emitter-receiver distance. Differences between the NIRS ICG dye dilution technique and conventional NIRS oxymetry concerning the extracerebral contamination are discussed.

  6. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  7. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  8. Reliability of Near-Infrared Spectroscopy for Determining Muscle Oxygen Saturation during Exercise

    ERIC Educational Resources Information Center

    Austin, Krista G.; Daigle, Karen A.; Patterson, Patricia; Cowman, Jason; Chelland, Sara; Haymes, Emily M.

    2005-01-01

    Near-infrared spectroscopy is currently used to assess changes in the oxygen saturation of the muscle during exercise. The primary purpose of this study was to assess the reliability of near-infrared spectroscopy in determining muscle oxygen saturation (StO[subscript 2]) in the vastus lateralis during cycling and the gastrocnemius during running…

  9. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  10. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  11. MOS spectroscopy with the JWST Near-Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Beck, Tracy; Gilbert, Karoline; Pontoppidan, Klaus Martin; Curtis, Gary; Shyrokov, Alexander

    2015-08-01

    The James Webb Space Telescope's Near-Infrared Spectrograph (NIRSpec) will feature astronomy’s first space-based, multi-object spectroscopic (MOS) capability enabled by the instrument’s micro-shutter array (MSA). The MSA is a four-quadrant fixed grid of nearly 250,000 tiny shutters that can be configured into slits on multiple astronomical targets in a field. In MOS mode, NIRSpec can obtain spectra of more than 100 targets simultaneously in one of three spectral bands (1.0 - 1.8 μm, 1.7 - 3.0 μm, and 2.9 - 5.0 μm) at medium (R~1000) or high resolution (R~2700) with the gratings, or at lower resolution (R~100, 0.6 - 5.0 μm) with the PRISM. The NIRSpec team and software developers at the Space Telescope Science Institute (STScI) have developed an MSA Planning Tool (MPT) to facilitate the complex observation planning process for a variety of observing strategies. The purpose of the tool is to find optimal pointings on the sky where many sources (or many high-valued sources) can be observed at a given pointing, or through a set of telescope dithers, and to design the associated MSA configurations at each position. The MPT is available to the astronomical community as part of the Astronomer’s Proposal Tool (APT), an integrated software package developed by STScI for the preparation of observing proposals. We will summarize the operational concept for MOS spectroscopy with the instrument, describe the MSA Planning Tool and its algorithms, and highlight recent developments that extend the tool’s applicability to diverse science cases.

  12. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  13. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations.

  14. Effect of Mechanical Optical Clearing on Near-infrared Spectroscopy

    PubMed Central

    Idelson, Christopher R.; Vogt, William C.; King-Casas, Brooks; LaConte, Stephen M.; Rylander, Christopher G.

    2015-01-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5 fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  15. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  16. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chuang, Yung-Kun; Tsai, Chao-Yin; Chang, Yao-Chien A.; Yang, I.-Chang; Chang, Yung-Huei; Tai, Chu-Chun; Hou, Jiunn-Yan

    2013-05-01

    Carbohydrate contents have been demonstrated as indicators for flowering quality of Phalaenopsis plants. In this study, near infrared reflectance (NIR) spectroscopy was employed for quantitative analysis of carbohydrate contents like fructose, glucose, sucrose, and starch in Phalaenopsis. The modified partial least squares regression (MPLSR) method was adopted for spectra analyses of 176 grown plant samples (88 shoots and 88 roots), over the full wavelength range (FWR, 400 to 2498 nm). For fructose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.210% DW, SEV = 0.324% DW) in the wavelength ranges of 1400-1600, 1800-2000, and 2200-2300 nm. For glucose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.975, SEC = 0.196% DW, SEV = 0.264% DW) in the wavelength range of 1400-1600, 1800-2000, and 2100-2400 nm. For sucrose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.237% DW, SEV = 0.322% DW) in the wavelength range of 1300-1400, 1500-1800, 2000-2100, and 2200-2300 nm. For starch concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.873, SEC = 0.697% DW, SEV = 0.774% DW) in the wavelength ranges of 500-700, 1200-1300, 1700-1800, and 2200-2300 nm. This study successfully developed the calibration models for inspecting concentrations of carbohydrates to predict the flowering quality in different cultivation environments of Phalaenopsis. The specific wavelengths can be used to predict the quality of Phalaenopsis flowers and thus to adjust cultivation managements.

  17. Fresh Soil Sensing using Visible and Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maleki, M. R.

    2009-04-01

    Fast, precise and affordable soil analytical techniques are needed for the determination of soil fertility of each zone of a field in site specific land management. The objective of this poster is to demonstrate how nutrients can be estimated from fresh soil using visible (VIS) and near infrared (NIR) spectroscopy method. This could be carried out by summarizing the methodology to develop a calibration model for soil phosphorus with the VIS-NIR spectroscopy method. Obviously, it can be simply extended for other nutrients with the same methodology. A large samples set should be collected from different fields with a wide range of soil type and texture. The samples in this set should be represented a wide range of moisture content and soil nutrient which is desired to be calibrated by the spectroscopy technique. Immediately after sampling, the samples should be kept in a cold room (± 1 °C) until the time of the spectral measurement and the chemical analysis. The samples should be taken from the cold room one hour before the spectral measurement to ensure that the samples were at room temperature and no condensation occurs on the optical instruments. Each soil sample was thoroughly mixed and debris such as plant material and stones were removed. The soil sample was divided into three parts, one part for spectral measurement, another part for chemical analysis and the rest was archived. The part for chemical analysis should be examined for their soil nutrients. A small amount of soil (about 30 g) should be placed in a small plastic petridish (e.g. 7.5 mm depth and 30 mm diameter). The soil in the petridish should be first pressed and then carefully levelled in order to obtain a smooth surface for a maximum light reflectance. Soil samples should be put under the spectrophotometer. Three reflectance spectra should be measured on each soil specimen by rotating the plastic cups over 120°. Having finished measuring, the reflectance data should be put against the chemical

  18. Near-infrared spectroscopy as a diagnostic tool for distinguishing between normal and malignant colorectal tissues.

    PubMed

    Chen, Hui; Lin, Zan; Mo, Lin; Wu, Tong; Tan, Chao

    2015-01-01

    Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm(-1)) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues. PMID:25654106

  19. Mars: Near-infrared comparative spectroscopy during the 1986 opposition

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Mccord, Thomas B.

    1987-01-01

    Near-infrared spectral observations of Mars during the 1986 opposition were performed at the Mauna Kea Observatory utilizing the University of Hawaii's 88 inch telescope. Spectra were obtained of several Martian locations using a continuously variable filter (CVF) spectrometer with a resolution of 1.25 percent. Spot-to-spot ratios were produced between spectra taken in different geological regions.

  20. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  1. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  2. Using Visible/Near-Infrared Spectroscopy to Identify Cryptotephra Layers

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Thomson, B. J.; Fisher, E.

    2014-12-01

    Continually accumulating marine sediments incorporate tephra layers within their depositional record that can be linked to individual explosive volcanic events. These layers can range from several meters in thickness, to discrete layers invisible to the naked eye (cryptotephra). Identification of cryptotephra layers is paramount for complete characterization of the eruptive record of a volcanic center, not just the largest eruptive events. However, cryptotephra recognition is hampered by their small volume in most drill cores. A non-destructive method to distinguish tephra layers, particularly those of a high silica nature which may not be readily detectable with magnetic methods, is visible/near-infrared (Vis/NIR) spectroscopy. The Vis/NIR region of the light spectrum contains strong absorption features due to charge-transfer absorptions in transition metals (dominated by iron) and vibration and overtone bands due to hydroxyl and water (including near 1.4 μm, 1.9 μm, and 2.2-2.5 μm). The exact position and nature of these bands provide a means to identify various carbonate-, hydroxyl-, iron-, phyllosilicate-, sulfate-, and water-bearing minerals (e.g., Pieters and Englert, 1993). We produced a series of mixtures of hemipelagic sediment and tephra which were used to identify band positions and features which strongly correlate with the presence of tephra (see figure). The addition of ~15-20 wt.% tephra to a sediment results in recognizable spectral changes. The mixture data was used to create a MATLAB program to run unknown sample analyses through. We then used an ASD FieldSpec to collect Vis/NIR data (0.39-2.5 μm) on the upper 10 m of core collected during IODP 340 (U1396C) off the coast of Montserrat at 0.5 cm resolution and applied our tephra recognition program to this data. We identified 29 potential cryptotephra layers in the 10 m analyzed. Dissolution techniques are being completed to corroborate the spectral data.

  3. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  4. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  5. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  6. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  7. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    PubMed

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples.

  8. Infrared and Near-Infrared Spectroscopy of Acetylacetone and Hexafluoroacetylacetone.

    PubMed

    Howard, Daryl L; Kjaergaard, Henrik G; Huang, Jing; Meuwly, Markus

    2015-07-23

    The infrared and near-infrared spectra of acetylacetone, acetylacetone-d8, and hexafluoroacetylacetone are characterized from experiment and computations at different levels. In the fundamental region, the intramolecular hydrogen bonded OH-stretching transition is clearly observed as a very broad band with substantial structure and located at significantly lower frequency compared to common OH-stretching frequencies. There is no clear evidence for OH-stretching overtone transitions in the near-infrared region, which is dominated by the CH-stretching overtones of the methine and methyl CH bonds. From molecular dynamics (MD) simulations, with a potential energy surface previously validated for tunneling splittings, the infrared spectra are determined and used in assigning the experimentally measured ones. It is found that the simulated spectrum in the region associated with the proton transfer mode is exquisitely sensitive to the height of the barrier for proton transfer. Comparison of the experimental and the MD simulated spectra establishes that the barrier height is around 2.5 kcal/mol, which favorably compares with 3.2 kcal/mol obtained from high-level electronic structure calculations.

  9. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  10. Fluorescence polarization standard for near infrared spectroscopy and microscopy.

    PubMed

    Luchowski, Rafal; Sarkar, Pabak; Bharill, Shashank; Laczko, Gabor; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2008-11-20

    We present studies of polarized absorption [linear dichroism (LD)] and fluorescence polarization of the styryl derivative (LDS 798) embedded in oriented poly(vinyl alcohol) (PVA) films. These films were oriented by progressive stretching up to eight folds. Both vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The dichroic ratio and fluorescence anisotropy values were analyzed as a function of PVA film stretching ratio by fitting according to the previously developed theory. For maximum stretching ratios, exceptionally high anisotropy (approximately 0.8) and polarization (approximately 0.9) values have been measured. The stretched films have high polarization values also for isotropic excitation in a wide spectral range (500-700 nm). Such films can be conveniently used as high polarization standards and we envision they will also have applications in near infrared (NIR) imaging microscopy, where they can be used for correcting an instrumental factor in polarization measurements.

  11. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  12. Integral field spectroscopy with the Gemini Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Allington-Smith, Jeremy R.; Dubbeldam, Cornelis M.; Content, Robert; Dunlop, Colin J.; Robertson, David J.; Elias, Jay; Rodgers, Bernadette; Turner, James E.

    2004-09-01

    The Astronomical Instrumentation Group (AIG) of the University of Durham has recently completed an integral field unit (IFU) for use on the Gemini-South telescope with the Gemini Near-Infrared Spectrograph (GNIRS) built by the National Optical Astronomy Observatories (NOAO, USA). When the IFU is deployed remotely inside the instrument cryostat, GNIRS is converted into an integral field spectrograph with a field of 5 × 3 arcsec2 and spatial sampling of 0.15 × 0.15 arcsec2, optimised for 1-2.5μm but operable up to 5μm. We present summaries of the design and construction and results from laboratory testing. We also show results obtained at the telescope where a throughput of 90% was measured at 2.5μm, and show that this is consistent with predictions of a simple model where surface scattering is the dominant loss mechanism. The throughput data are well fit by the roughness measured in the laboratory. Finally, we show a few examples of astrophysical data from the commissioning run in April 2004.

  13. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-08-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. During our 2014A time thus far, we have been intensely following the nearest SN Ia in a generation -- SN 2014J -- and have already submitted our initial results.

  14. Predicting beef tenderness using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeyamkondan, Subbiah; Kranzler, Glenn A.; Morgan, Brad J.; Rust, Sarah

    2004-03-01

    A near-infrared spectral reflectance system was developed and tested online to predict 14-day aged, cooked beef tenderness. A contact probe with a built-in tungsten-halogen light source supplied broadband light to the ribeye surface. Fiberoptics in the probe transmitted reflected light to a spectrometer with a spectral range of 400-2500 nm. In the first phase, steak samples (n=292) were brought from packing plants to the lab and scanned with the spectrometer. After scanning, samples were vacuum-packaged and aged for 14 days. They were then cooked in an impingement oven to an internal temperature of 70°C. Slice-shear force values were recorded for tenderness reference. In phase two, the spectrometer was modified for packing plant conditions. Spectral scans were obtained on-line on ribbed carcasses (n=276). A partial least square regression model was developed to predict tenderness scores from spectral reflectance. In phase three, the developed model was validated by scanning carcasses (n=200) on-line. The predicted shear-force values and samples were sent to the U.S. Meat Animal Research Center for third-party validation. At up to 70% certification levels, the system was able to successfully sort tough from tender carcasses.

  15. Constraining Type Ia Supernova Physics with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sand, David; Valenti, Stefano; Howell, Andy; Graham, Melissa; Parrent, Jerod

    2014-02-01

    Despite their success as standardizable candles, relatively little is known about the exact progenitor(s) and explosion physics of type Ia supernovae -- a potential source of systematic uncertainty for future dark energy surveys, and a hole in our knowledge about stellar end-states. One promising route forward is the combination of dense optical time series and near-infrared (NIR) spectroscopic data sets. Recent work has suggested that the NIR can discern unburned carbon from the progenitor white dwarf more cleanly than in the optical, and its unique access to relatively unblended magnesium lines also probes the inner edge of carbon burning. Both measures provide a direct constraint for SN Ia explosion models, but only a handful of appropriate NIR spectroscopic time series exist. We propose to continue our campaign to roughly double the sample of SN Ia with such data (leveraging our access to a worldwide network of 1m imaging telescopes and twin robotic optical spectrographs) in order to begin to tackle our understanding of NIR spectral diagnostics and how they vary from supernova to supernova. Note that we were allocated time with Gemini South Flamingos-2 in 2013B, but have not triggered any ToO time yet, partially due to the persistent alignment issues with the On-Instrument Wave Front Sensor.

  16. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants.

    PubMed

    Iverson, Nicole M; Bisker, Gili; Farias, Edgardo; Ivanov, Vsevolod; Ahn, Jiyoung; Wogan, Gerald N; Strano, Michael S

    2016-05-01

    Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life. PMID:27305824

  17. Non-linear calibration models for near infrared spectroscopy.

    PubMed

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-02-27

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.

  18. Diagnosing latent copper deficiency in intact barley leaves (Hordeum vulgare, L.) using near infrared spectroscopy.

    PubMed

    van Maarschalkerweerd, Marie; Bro, Rasmus; Egebo, Max; Husted, Søren

    2013-11-20

    Chemometric analysis of near-infrared (NIR) spectra recorded directly on fresh leaves of barley plants (Hordeum vulgare, L.) enabled the separation of control and Cu deficient samples before any visual deficiency symptoms developed. This demonstrates that the molecular structure of leaves is modified during latent Cu deficiency. Lignin biosynthesis is a primary target of Cu deficiency, but lignin concentrations were unaltered when separation was first possible, indicating that alteration of lignin composition, not concentration, is among the earliest effects of Cu deficiency in plants. Validation of chemometric models using an independent test set found that 92% of samples were correctly classified as control or Cu deficient, respectively. Models were undisturbed by including spectra from plants deficient in P, Mg, B, or Mn, establishing their specificity for Cu deficiency. This study is the first to demonstrate that NIR has the potential to successfully diagnose the deficiency of an essential trace element in plants.

  19. Chemometric optimization of the robustness of the near infrared spectroscopic method in wheat quality control.

    PubMed

    Pojić, Milica; Rakić, Dušan; Lazić, Zivorad

    2015-01-01

    A chemometric approach was applied for the optimization of the robustness of the NIRS method for wheat quality control. Due to the high number of experimental (n=6) and response variables to be studied (n=7) the optimization experiment was divided into two stages: screening stage in order to evaluate which of the considered variables were significant, and optimization stage to optimize the identified factors in the previously selected experimental domain. The significant variables were identified by using fractional factorial experimental design, whilst Box-Wilson rotatable central composite design (CCRD) was run to obtain the optimal values for the significant variables. The measured responses included: moisture, protein and wet gluten content, Zeleny sedimentation value and deformation energy. In order to achieve the minimal variation in responses, the optimal factor settings were found by minimizing the propagation of error (POE). The simultaneous optimization of factors was conducted by desirability function. The highest desirability of 87.63% was accomplished by setting up experimental conditions as follows: 19.9°C for sample temperature, 19.3°C for ambient temperature and 240V for instrument voltage.

  20. Chemometric optimization of the robustness of the near infrared spectroscopic method in wheat quality control.

    PubMed

    Pojić, Milica; Rakić, Dušan; Lazić, Zivorad

    2015-01-01

    A chemometric approach was applied for the optimization of the robustness of the NIRS method for wheat quality control. Due to the high number of experimental (n=6) and response variables to be studied (n=7) the optimization experiment was divided into two stages: screening stage in order to evaluate which of the considered variables were significant, and optimization stage to optimize the identified factors in the previously selected experimental domain. The significant variables were identified by using fractional factorial experimental design, whilst Box-Wilson rotatable central composite design (CCRD) was run to obtain the optimal values for the significant variables. The measured responses included: moisture, protein and wet gluten content, Zeleny sedimentation value and deformation energy. In order to achieve the minimal variation in responses, the optimal factor settings were found by minimizing the propagation of error (POE). The simultaneous optimization of factors was conducted by desirability function. The highest desirability of 87.63% was accomplished by setting up experimental conditions as follows: 19.9°C for sample temperature, 19.3°C for ambient temperature and 240V for instrument voltage. PMID:25281098

  1. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  2. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  3. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  4. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  5. Research on content measurement of textile mixture by near infrared spectroscopy based on principal component regression

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Li

    2010-07-01

    A new method for accurate measurement of content of textile mixture by use of Fourier transform near infrared spectroscopy is put forward. The near infrared spectra of 56 samples with different cotton and polyester contents were obtained, in which 41 samples, 10 samples and 5 samples were used for the calibration set, validation set and prediction set respectively. Principal component analysis (PCA) was utilized for the spectra data compression. Principal component regression (PCR) model was developed. It indicates that the MAE is within 2.9% and the RMSE is less than 3.6% for the validation samples, which is suitable for the prediction of unknown samples. The PCR model was applied to predict unknown samples. Experimental results show that this approach by use of Fourier transform Near Infrared Spectroscopy can be used to quantitative analysis for textile fiber.

  6. Quantitative analysis of peanut oil content in ternary blended edible oil using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Huacai; Liu, Fuli; Wang, Zhilan; Jin, Shangzhong

    2008-03-01

    Calibration models of quantitative analysis of peanut oil content in ternary blended edible oil by near infrared spectroscopy were built using partial least square (PLS) regression. A total of 92 samples blended with three kinds of pure oil in different proportion (V/V) were prepared. Near infrared diffuse reflectance spectra of the samples were collected over 4 000 cm -1-10 000 cm -1 spectral region with a FT-NIR spectrometer. A calibration model of prediction to the peanut oil content was established with PLS using the original spectra and validated with leave-one-out cross validation method. The correlation coefficient and the RMSEC of the model were 0.9926 and 2.91%, respectively. The result showed that near infrared spectroscopy could be an ideal tool for fast determination to the peanut oil content in blended edible oil.

  7. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal.

    PubMed

    Haughey, Simon A; Graham, Stewart F; Cancouët, Emmanuelle; Elliott, Christopher T

    2013-02-15

    Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of 2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients of determination (R(2)) were found to be 0.89-0.99 depending on the mathematical algorithm used, the data pre-processing applied and the sample type used. The corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.276% and 0.134-0.368%, respectively, again depending on the chemometric treatment applied to the data and sample type. In addition, adopting a qualitative approach with the spectral data and applying PCA, it was possible to discriminate between the four samples types and also, by generation of Cooman's plots, possible to distinguish between adulterated and non-adulterated samples.

  8. [Studies on Cancer Diagnosis by Using Spectroscopy Combined with Chemometrics].

    PubMed

    Zhang, Zhuo-yong

    2015-09-01

    Studies on cancer diagnosis using various spectroscopic methods combined with chemometrics are briefly reviewed. Elemental contents in serum samples were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES), bidirectional associative memory (BAM) networks were used to establish diagnosis models for the relationships between elemental contents and lung cancer, liver cancer, and stomach cancer, respectively. Near infrared spectroscopy (NIRS) is a non-destructive detection technology. Near infrared spectra of endometrial carcinoma samples were determined and spectral features were extracted by chemoometric methods, a fuzzy rule-based expert system (FuRES) was used for establishing diagnosis model, satisfactory results were obtained. We also proposed a novel variable selection method based on particle swarm optimization (PSO) for near infrared spectra of endometrial carcinoma samples. Spectra with optimized variable were then modeled by support victor machine (SVM). Terahertz technology is an emerging technology for non-destructive detection, which has some unique characteristics. Terahertz time domain spectroscopy (THz-TDS) was used for cervical carcinoma measurement. Absorption coefficients were calculated from the measured time domain spectra and then processed with derivative, orthogonal signal correction (PC-OSC) to reduce interference components, and then fuzzy rule-based expert system (FuRES), fuzzy optimal associative memory (FOAM), support victor machine (SVM), and partial least squares discriminant analysis (PLS-DA) were used for diagnosis model establishment. The above results provide useful information for cancer occurring and development, and provide novel approaches for early stage diagnosis of various cancers. PMID:26669135

  9. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    ERIC Educational Resources Information Center

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  10. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  11. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  12. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  13. Prefrontal Dysfunction in Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Negoro, Hideki; Sawada, Masayuki; Iida, Junzo; Ota, Toyosaku; Tanaka, Shohei; Kishimoto, Toshifumi

    2010-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders with measurement of hemoglobin concentrations as cerebral blood volume. Twenty medication-naive children with attention-deficit/hyperactivity disorder (ADHD) and 20 age- and sex-matched healthy control…

  14. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated using visible and near-infrared (VIS/NIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately following and approximately 1 h after rib removal from 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simula...

  15. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  16. Integrating Near Infrared Spectroscopy (NIR) into the USDA-ARS sugarcane breeding program in Houma, LA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near Infrared Spectroscopy (NIRs) is a relatively new technique that has the potential to benefit Louisiana’s sugarcane industry, and is being successfully used in other parts of the world (e.g., South Africa) and even Florida. Recently, the USDA-ARS in Houma, LA purchased a NIR Cane Presentation Sy...

  17. Visible and near-infrared spectroscopy detects queen honey bee insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the...

  18. Visible and Near-Infrared Spectroscopy Detects Honey Bee Queen Insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the ...

  19. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  20. Quantification of rosmarinic acid levels by near infrared spectroscopy in laboratory culture grown spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid quantization of rosmarinic acid (RA) in tissues of spearmint using near-infrared (NIR) spectroscopy was developed by correlating with the results of methanol extracts analyzed on a HPLC photo-diode array (PDA) system. NIR and HPLC analyses performed on over 500 samples were u...

  1. Detection of sucrose content of sugar beet by visible/near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose content is the most important quality parameter in the production and processing of sugar beet. This paper reports on the application of visible/near-infrared (Vis-NIR) spectroscopy for measurement of the sucrose content of sugar beet. Two portable spectrometers, covering the spectral region...

  2. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of visible and near-infrared spectroscopy for measurement of the sucrose content of sugar beet was investigated with two portable spectrometers that cover the spectral regions of 400-1,100 nm and 900-1,600 nm, respectively. Spectra in interactance mode were collected first from 398 i...

  3. Age dependency of cerebral oxygenation assessed with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Colier, Willy N.; van Haaren, Nicole J.; van de Ven, Marjo J.; Folgering, Hans T.; Oeseburg, Berend

    1997-04-01

    Near-IR spectroscopy (NIRS) is an optical technique that provides information on cerebral tissue oxygenation and hemodynamics on a continuous, direct, and noninvasive basis. It is used to determine cerebral blood volume (CBV) and cerebrovascular CO2 reactivity during normoxic hyper- and hypocapnia in a group of 28 healthy volunteers aged 20 to 83 years. The main focus is on to the age dependency of the measured variables. The influence of changes in minute ventilation during normocapnia on the cerebral oxygenation was also studied. The mean CBV in age was, for 20 to 30 years, 2.14 +/- 0.51 ml/100 g of brain tissue; for 45 to 50 years, 1.92 +/- 0.40 ml/100 g; and for 70 to 83 years, 1.47 +/- 0.55 ml/100 g. The CBV showed a significant decease with advancing age. No influence was found for a change in minute ventilation on cerebral oxygenation. During hypercapnia cerebral blood flow (CBF) significantly increased in al age groups, with a factor of 1.31 +/- 0.17 kPa-1, 1.64 +/- 1.39 kPa-1, and 2.4 +/- 1.7 kPa-1, respectively, for the three age groups. The difference in change among the age groups was not statistically significant. The trend seen was an increased change in CBF with advancing age. During hypocapnia, the CBF significantly decreased in all age groups, with a factor of 0.89 +/- 0.08 kPa-1, 0.89 +/- 0.04 kPa-1, and 0.85 +/- 0.11 kPa-1, respectively. There was no significant difference among the age groups.

  4. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  5. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  6. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    PubMed Central

    Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction. PMID:24883388

  7. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy.

    PubMed

    Sarraguça, Mafalda C; Cruz, Ana V; Soares, Sandra O; Amaral, Helena R; Costa, Paulo C; Lopes, João A

    2010-08-01

    The physical properties of pharmaceutical powders are of upmost importance in the pharmaceutical industry. The knowledge of their flow properties is of critical significance in operations such as blending, tablet compression, capsule filling, transportation, and in scale-up operations. Powders flow properties are measured using a number of parameters such as, angle of repose, compressibility index (Carr's index) and Hausner ratio. To estimate these properties, specific and expensive equipment with time-consuming analysis is required. Near infrared spectroscopy is a fast and low-cost analytical technique thoroughly used in the pharmaceutical industry in the quantification and qualification of products. To establish the potential of this technique to determine the parameters associated with the flow properties of pharmaceutical powders, blended powders based on paracetamol as the active pharmaceutical ingredient were constructed in pilot scale. Spectra were recorded on a Fourier-transform near infrared spectrometer in reflectance mode. The parameters studied were the angle of repose, aerated and tapped bulk density. The correlation between the reference method values and the near infrared spectrum was performed by partial least squares and optimized in terms of latent variables using cross-validation. The near infrared based properties predictions were compared with the reference methods results. Prediction errors, which varied between 2.35% for the angle of repose, 2.51% for the tapped density and 3.18% for the aerated density, show the potential of NIR spectroscopy in the determination of physical properties affecting the flowability of pharmaceutical powders.

  8. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    PubMed

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  9. Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

    SciTech Connect

    Lupoi, Jason

    2012-01-01

    This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.

  10. Compositional analysis of protein content in milk with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Yang, Xiaoli; Li, Chao; Liu, Haiying

    2006-02-01

    A fast analytical method was introduced based on near-infrared (NIR) technology in this paper. The protein content was measured in short order using the near-infrared transmission spectroscopy (1000-1700nm) of milk. There were several waves of milk's NIR spectroscopy selected. By correlating the spectrum data of the waves selected and the protein content in milk, a calibration model was established. The protein content could be measured by importing the spectrum data to the calibration model. In this model there were several parameters, which were the spectrum data of the waves selected. Then, the method how to select the waves best was introduced and the characteristic waves of milk were selected by utilizing genetic algorithm. A partial least squares (PLS) regression model between the spectroscopy and the protein content was presented for milk samples, and the predictive repeatability was also researched.

  11. In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains.

    PubMed

    Sampaio, Pedro N; Sales, Kevin C; Rosa, Filipa O; Lopes, Marta B; Calado, Cecília R

    2014-10-20

    Near infrared (NIR) spectroscopy was used to in situ monitoring the cultivation of two recombinant Saccharomyces cerevisiae strains producing heterologous cyprosin B. NIR spectroscopy is a fast and non-destructive technique, that by being based on overtones and combinations of molecular vibrations requires chemometrics tools, such as partial least squares (PLS) regression models, to extract quantitative information concerning the variables of interest from the spectral data. In the present work, good PLS calibration models based on specific regions of the NIR spectral data were built for estimating the critical variables of the cyprosin production process: biomass concentration, cyprosin activity, cyprosin specific activity, the carbon sources glucose and galactose concentration and the by-products acetic acid and ethanol concentration. The PLS models developed are valid for both recombinant S. cerevisiae strains, presenting distinct cyprosin production capacities, and therefore can be used, not only for the real-time control of both processes, but also in optimization protocols. The PLS model for biomass yielded a R(2)=0.98 and a RMSEP=0.46 g dcw l(-1), representing an error of 4% for a calibration range between 0.44 and 13.75 g dcw l(-1). A R(2)=0.94 and a RMSEP=167 Um l(-1) were obtained for the cyprosin activity, corresponding to an error of 6.7% of the experimental data range (0-2509 Um l(-1)), whereas a R(2)=0.93 and RMSEP=672 U mg(-1) were obtained for the cyprosin specific activity, corresponding to an error of 7% of the experimental data range (0-11,690 Um g(-1)). For the carbon sources glucose and galactose, a R(2)=0.96 and a RMSECV of 1.26 and 0.55 g l(-1), respectively, were obtained, showing high predictive capabilities within the range of 0-20 g l(-1). For the metabolites resulting from the cell growth, the PLS model for acetate was characterized by a R(2)=0.92 and a RMSEP=0.06 g l (-1), which corresponds to a 6.1% error within the range of 0

  12. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  13. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  14. [Application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality].

    PubMed

    Xie, Li-Juan; Ying, Yi-Bin; Yu, Hai-Yan; Fu, Xia-Ping

    2007-06-01

    Nondestructive detection techniques of vegetable include electrical properties, optical reflectance and transmission, sonic vibration, nuclear magnetic resonance (NMR), machine vision, aromatic volatile emission, vibration characteristics and others. The most widely employed and successful technique is to use its optical property. Near infrared spectroscopy technique is extremely fast, highly efficient, cheap to implement, of good recurrence and no sample preparation, and is a rapid and non-destructive modern measuring technique that has been widely used in many fields. In the present paper, the application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality was briefly introduced. Some considerable aspects existing in the application were also discussed, and it is pointed out that because of vegetable's diversity and rot-proneness, automation analysis machine should be developed to improve the speed of quality detection, and cooperating with several other nondestructive techniques, such as NMR and machine vision, is the research trend.

  15. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  16. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis.

    PubMed

    Liu, L; Cozzolino, D; Cynkar, W U; Gishen, M; Colby, C B

    2006-09-01

    Visible (vis) and near-infrared (NIR) spectroscopy combined with multivariate analysis was used to classify the geographical origin of commercial Tempranillo wines from Australia and Spain. Wines (n = 63) were scanned in the vis and NIR regions (400-2500 nm) in a monochromator instrument in transmission. Principal component analysis (PCA), discriminant partial least-squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) based on PCA scores were used to classify Tempranillo wines according to their geographical origin. Full cross-validation (leave-one-out) was used as validation method when PCA and LDA classification models were developed. PLS-DA models correctly classified 100% and 84.7% of the Australian and Spanish Tempranillo wine samples, respectively. LDA calibration models correctly classified 72% of the Australian wines and 85% of the Spanish wines. These results demonstrate the potential use of vis and NIR spectroscopy, combined with chemometrics as a rapid method to classify Tempranillo wines accordingly to their geographical origin.

  17. Detection of glutamic acid in oilseed rape leaves using near infrared spectroscopy and the least squares-support vector machine.

    PubMed

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide.

  18. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  19. Near-infrared Spectroscopy of Brown Dwarf and Planetary-Mass Members in Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Lodieu, Nicolas

    2016-01-01

    In these proceedings, I present new VLT/X-shooter near-infrared spectroscopy of brown dwarf and planetary-mass candidates with masses below 30 Jupiter masses identified in a deep VISTA ZYJ survey of 13.5 square degrees in the Upper Scorpius (USco) association. These spectra represent new benchmarks at 5-10 Myr to compare with known and future discoveries of members in nearby moving groups and other young regions.

  20. A novel objective sour taste evaluation method based on near-infrared spectroscopy.

    PubMed

    Hoshi, Ayaka; Aoki, Soichiro; Kouno, Emi; Ogasawara, Masashi; Onaka, Takashi; Miura, Yutaka; Mamiya, Kanji

    2014-05-01

    One of the most important themes in the development of foods and drinks is the accurate evaluation of taste properties. In general, a sensory evaluation system is frequently used for evaluating food and drink. This method, which is dependent on human senses, is highly sensitive but is influenced by the eating experience and food palatability of individuals, leading to subjective results. Therefore, a more effective method for objectively estimating taste properties is required. Here we show that salivary hemodynamic signals, as measured by near-infrared spectroscopy, are a useful objective indicator for evaluating sour taste stimulus. In addition, the hemodynamic responses of the parotid gland are closely correlated to the salivary secretion volume of the parotid gland in response to basic taste stimuli and respond to stimuli independently of the hedonic aspect. Moreover, we examined the hemodynamic responses to complex taste stimuli in food-based solutions and demonstrated for the first time that the complicated phenomenon of the "masking effect," which decreases taste intensity despite the additional taste components, can be successfully detected by near-infrared spectroscopy. In summary, this study is the first to demonstrate near-infrared spectroscopy as a novel tool for objectively evaluating complex sour taste properties in foods and drinks.

  1. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC

    NASA Astrophysics Data System (ADS)

    Alves, Julio Cesar L.; Henriques, Claudete B.; Poppi, Ronei J.

    2014-01-01

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams.

  2. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC.

    PubMed

    Alves, Julio Cesar L; Henriques, Claudete B; Poppi, Ronei J

    2014-01-01

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams.

  3. Near infrared spectroscopic (NIRS) analysis of drug-loading rate and particle size of risperidone microspheres by improved chemometric model.

    PubMed

    Song, Jia; Xie, Jing; Li, Chenliang; Lu, Jia-Hui; Meng, Qing-Fan; Yang, Zhaogang; Lee, Robert J; Wang, Di; Teng, Le-Sheng

    2014-09-10

    Microspheres have been developed as drug carriers in controlled drug delivery systems for years. In our present study, near infrared spectroscopy (NIRS) is applied to analyze the particle size and drug loading rate in risperidone poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Various batches of risperidone PLGA microspheres were designed and prepared successfully. The particle size and drug-loading rate of all the samples were determined by a laser diffraction particle size analyzer and high performance liquid chromatography (HPLC) system. Monte Carlo algorithm combined with partial least squares (MCPLS) method was applied to identify the outliers and choose the numbers of calibration set. Furthermore, a series of preprocessing methods were performed to remove signal noise in NIR spectra. Moving window PLS and radical basis function neural network (RBFNN) methods were employed to establish calibration model. Our data demonstrated that PLS-developed model was only suitable for drug loading analysis in risperidone PLGA microspheres. Comparatively, RBFNN-based predictive models possess better fitting quality, predictive effect, and stability for both drug loading rate and particle size analysis. The correlation coefficients of calibration set (Rc(2)) were 0.935 and 0.880, respectively. The performance of optimum RBFNN models was confirmed by independent verification test with 15 samples. Collectively, our method is successfully performed to monitor drug-loading rate and particle size during risperidone PLGA microspheres preparation.

  4. [Detection of reducing sugar content of potato granules based on wavelet compression by near infrared spectroscopy].

    PubMed

    Dong, Xiao-Ling; Sun, Xu-Dong

    2013-12-01

    The feasibility was explored in determination of reducing sugar content of potato granules based on wavelet compression algorithm combined with near-infrared spectroscopy. The spectra of 250 potato granules samples were recorded by Fourier transform near-infrared spectrometer in the range of 4000- 10000 cm-1. The three parameters of vanishing moments, wavelet coefficients and principal component factor were optimized. The optimization results of three parameters were 10, 100 and 20, respectively. The original spectra of 1501 spectral variables were transfered to 100 wavelet coefficients using db wavelet function. The partial least squares (PLS) calibration models were developed by 1501 spectral variables and 100 wavelet coefficients. Sixty two unknown samples of prediction set were applied to evaluate the performance of PLS models. By comparison, the optimal result was obtained by wavelet compression combined with PLS calibration model. The correlation coefficient of prediction and root mean square error of prediction were 0.98 and 0.181%, respectively. Experimental results show that the dimensions of spectral data were reduced, scarcely losing effective information by wavelet compression algorithm combined with near-infrared spectroscopy technology in determination of reducing sugar in potato granules. The PLS model is simplified, and the predictive ability is improved. PMID:24611373

  5. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.

    PubMed

    Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada

    2013-12-15

    The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey.

  6. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].

    PubMed

    Huang, Hua-Jun; Yan, Yan-Lu; Shen, Bing-Hui; Liu, Zhe; Gu, Jian-Cheng; Li, Shao-Ming; Zhu, De-Hai; Zhang, Xiao-Dong; Ma, Qin; Li, Lin; An, Dong

    2014-05-01

    Near infrared spectroscopy analysis method of discrimination of maize hybrid seed purity was studied with the sample of Nong Hua 101 (NH101) from different origins and years. Spectral acquisition time lasted for 10 months. Using Fourier transform (FT) near infrared spectroscopy instruments, including 23 days in different seasons (divided into five time periods), a total of 920 near infrared diffuse reflectance spectra of single corn grain of those samples were collected. Moving window average, first derivative and vector normalization were used to pretreat all original spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to reduce data dimensionality, and the discrimination model was established based on biomimetic pattern recognition (BPR) method. Spectral distortion was calibrated by spectra pretreatment, which makes characteristics spatial distribution range of sample spectra set contract. The relative distance between hybrid and female parent increased by nearly 70-fold, and the discrimination model achieved the identification of hybrid and female parent seeds. Through the choice of representative samples, the model's response capacity to the changes in spectral acquisition time, place and environment, etc. was improved. Besides, the model's response capacity to the changes in time and site of seed production was also improved, and the robustness of the model was enhanced. The average correct acceptance rate (CAR) of the test set reached more than 95% while the average correct rejection rate (CRR) of the test set also reached 85%. PMID:25095417

  7. Exploration of in vivo Effect Assessment Factor Monitoring by Near-infrared Spectroscopy during LITT

    NASA Astrophysics Data System (ADS)

    Qian, Ai-ping; Hua, Guo-ran; Zhang, Hua; Qian, Zhi-yu

    2011-02-01

    By studying the variation trends of the absorption coefficient (μa) and the reduced scattering coefficient (μ's), which were monitored in vivo by functional near infrared spectroscopy (fNIRS) system in real time during laser induced interstitial thermotherapy (LITT), the optimized near infrared effect assessment factor would be explored. In vivo measurements of the absorption coefficient (ua) and the reduced scattering coefficient (u's) were performed with a functional near infrared spectroscopy system during LITT. Fresh porcine liver tissue samples in vitro and the subcutaneous implanted rat liver cancers were examined in different laser doses and define heating times. The absorption coefficient obtained by the fNIRS increased in the pork liver experiments, but decreased in the rat liver cancer experiments. The reduced scattering coefficient increased in the pork liver experiments and the rat liver cancer experiments, it increased quickly at beginning, and gradually reached the stable state. Therefore, the reduced scattering coefficient is more suitable for reflecting the progress of damage during different biological tissues' LITT than the absorption coefficient. This conclusion will effectively guide the study of suitable therapy effect assessment system during LITT in real time.

  8. [Applications of near infrared reflectance spectroscopy technique (NIRS) to soil attributes research].

    PubMed

    Liu, Yan-De; Xiong, Song-Sheng; Liu, De-Li

    2014-10-01

    Soil is a much complicated substance, because animals, plants and microbes live together, organic and inorganic exist together. So soil contains a large amount of information. The traditional method in laboratory is a time-consuming effort. But the technology of near infrared reflectance spectroscopy (NIRS) has been widely used in many areas, owing to its rapidness, high efficiency, no pollution and low cost, NIRS has become the most important method to detect the composition of soil. This paper mainly introduce some traditional methods in laboratory, the basic processes of soil detection by NIRS, some algorithms for data preprocessing and modeling. Besides, the present paper illustrates the latest research progress and the development of portable near infrared instruments of the soil. According to this paper, the authors also hope to promote the application conditions of NIRS in the grassland ecology research in China, and accelerate the modernization of research measures in this area.

  9. Determination of in vivo skin moisture level by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Spigulis, Janis

    2015-03-01

    Near-infrared spectroscopy has a potential for noninvasive determination of skin moisture level due to high water absorption. In this study, diffuse reflectance spectra of in vivo skin were acquired in the spectral range of 900 nm to 1700 nm by using near-infrared spectrometer, optical fiber and halogen bulb light source. Absorption changes after applying skin moisturizers were analyzed over time at different body sites. Results show difference in absorption when comparing dry and normal skin. Comparison of absorption changes over time after applying moisturizer at different body sites is analyzed and discussed. Some patterns of how skin reacts to different skin moisturizers are shown, although no clear pattern can be seen due to signal noise.

  10. [Sugar characterization of mini-watermelon and rapid sugar determination by near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Shuo; Yuan, Hong-fu; Song, Chun-feng; Xie, Jin-chun; Li, Xiao-yu; Feng, Le-ping

    2012-08-01

    In the present paper, the distribution of sugar level within the mini-watermelon was studied, a new sugar characterization method of mini-watermelon using average sugar level, the highest sugar level and the lowest sugar level index is proposed. Feasibility of nondestructive determination of mini-watermenlon sugar level using diffuse reflectance spectroscopy information was investigated by an experiment. PLS models for measuring the 3 sugar levels were established. The results obtained by near infrared spectroscopy agreed with that of the new method established above.

  11. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  12. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2015-03-01

    The coffee strip-picking harvesting method, preferred in Brazil, results in high percentages of immature and overripe beans, as the fruits in a single tree branch do not reach ripeness at the same time. This practice, together with inappropriate processing and storage conditions, contribute to the production of high amounts of defective coffee beans in Brazil, which upon roasting will impart negative sensory aspects to the beverage. Therefore, the development of analytical methodologies that will enable the discrimination and quantification of defective and non-defective coffees after roasting is rather desirable. Given that infrared spectroscopy has been successfully applied to coffee analysis, the objective of this work was to evaluate and to compare the performances of Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopies for the quantification of defective beans in roasted coffees. Defective and non-defective Arabica coffee beans were manually selected, roasted, ground and sieved. Mixtures of defective and non-defective roasted and ground coffees were produced and analyzed, with % defects ranging from 0% to 30%. FTIR and NIR spectra were recorded, respectively, within a range of 3100-800 cm(-1) and 1200-2400 nm and submitted to mathematical processing. Quantitative models were developed by partial least squares regression (PLSR). Excellent predictive results were obtained indicating that defective coffees could be satisfactorily quantified. The correlation coefficients and the root mean squared errors of validation for the FTIR and NIR models developed to quantify the amount of defective roasted coffees mixed with non-defective ones were, respectively, as high as 0.891 and as low as 0.032, and as high as 0.953 and as low as 0.026. A comparison between the two techniques indicated that NIR provided more robust models. PMID:25618683

  13. Mesenteric near-infrared spectroscopy and risk of gastrointestinal complications in infants undergoing surgery for congenital heart disease.

    PubMed

    Iliopoulos, Ilias; Branco, Ricardo G; Brinkhuis, Nadine; Furck, Anke; LaRovere, Joan; Cooper, David S; Pathan, Nazima

    2016-04-01

    We hypothesised that lower mesenteric near-infrared spectroscopy values would be associated with a greater incidence of gastrointestinal complications in children weighing <10 kg who were recovering from cardiac surgery. We evaluated mesenteric near-infrared spectroscopy, central venous oxygen saturation, and arterial blood gases for 48 hours post-operatively. Enteral feeding intake, gastrointestinal complications, and markers of organ dysfunction were monitored for 7 days. A total of 50 children, with median age of 16.7 (3.2-31.6) weeks, were studied. On admission, the average mesenteric near-infrared spectroscopy value was 71±18%, and the systemic oxygen saturation was 93±7.5%. Lower admission mesenteric near-infrared spectroscopy correlated with longer time to establish enteral feeds (r=-0.58, p<0.01) and shorter duration of feeds at 7 days (r=0.48, p<0.01). Children with gastrointestinal complications had significantly lower admission mesenteric near-infrared spectroscopy (58±18% versus 73±17%, p=0.01) and higher mesenteric arteriovenous difference of oxygen at admission [39 (23-47) % versus 19 (4-27) %, p=0.02]. Based on multiple logistic regression, admission mesenteric near-infrared spectroscopy was independently associated with gastrointestinal complications (Odds ratio, 0.95; 95% confidence interval, 0.93-0.97; p=0.03). Admission mesenteric near-infrared spectroscopy showed an area under the receiver operating characteristic curve of 0.76 to identify children who developed gastrointestinal complications, with a suggested cut-off value of 72% (78% sensitivity, 68% specificity). In this pilot study, we conclude that admission mesenteric near-infrared spectroscopy is associated with gastrointestinal complications and enteral feeding tolerance in children after cardiac surgery.

  14. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  15. Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy

    PubMed Central

    Bernet, Franziska H; Reineke, David; Zerkowski, Hans-Reinhard; Baykut, Doan

    2006-01-01

    Background In off-pump coronary artery bypass surgery, manipulations on the beating heart can lead to transient interruptions of myocardial oxygen supply, which can generate an accumulation of oxygen-dependent metabolites in coronary venous blood. The objective of this study was to evaluate the reliability of intravascular near-infrared spectroscopy as a monitoring method to detect possible ischemic events in off-pump coronary artery bypass procedures. Methods In 15 elective patients undergoing off-pump myocardial revascularization, intravascular near-infrared spectroscopic analysis of coronary venous blood was performed. NIR signals were transferred through a fiberoptic catheter for signal emission and collection. For data analysis and processing, a miniature spectrophotometer with multivariate statistical package was used. Signal acquisition and analysis were performed before and after revascularization. Spectroscopic data were compared with hemodynamic parameters, electrocardiogram, transesophageal echocardiography and laboratory findings. Results A conversion to extracorporeal circulation was not necessary. The mean number of grafts per patient was 3.1 ± 0.6. An intraoperative myocardial ischemia was not evident, as indicated by electrocardiogram and transesophageal echocardiography. Continuous spectroscopic analysis showed reproducible absorption spectra of coronary sinus blood. Due to uneventful intraoperative courses, clear ischemia-related changes could be detected in none of the patients. Conclusion Our initial results show that intravascular near-infrared spectroscopy can reliably be used for an online intraoperative ischemia monitoring in off-pump coronary artery bypass surgery. However, the method has to be further evaluated and standardized to determine the role of spectroscopy in off-pump coronary artery bypass surgery. PMID:16723014

  16. Near-infrared spectroscopy-based microcirculatory assessment in acute atrial fibrillation.

    PubMed

    Barrett, O S H; Macdonald, S P J; Playford, D A

    2015-01-01

    Near-infrared spectroscopy is a means of assessing microcirculatory function, but has not been studied in atrial fibrillation (AF). We evaluated the effect of acute AF on thenar eminence near-infrared spectroscopy-derived microcirculatory variables. Stable patients presenting to the emergency department with acute onset AF underwent dynamic near-infrared spectroscopy assessment with a three minute vascular occlusion test (VOT). This was repeated after cardioversion to sinus rhythm (SR). Each assessment included baseline tissue oxygen saturation (StO2), slope of StO2 decrease during VOT, slope of StO2 increase post VOT, minimum and maximum StO2, amplitude of StO2 response and post-ischaemic hyperperfusion. Pre and post cardioversion values were compared by Wilcoxon signed-rank test. Twelve participants (seven male, five female) with a median age of 63 years (interquartile range 52 to 70 years) were enrolled. Median baseline StO2 was 74% before and 77% after cardioversion (P=0.03). The median slope of StO2 decrease during VOT was -0.19%/second and -0.16%/second (P=0.018) and the median slope of StO2 increase post VOT was 3.03%/second and 2.56%/second (P=0.002), pre and post cardioversion, respectively. Minimum StO2 was lower (39% versus 52%, P=0.002) and the amplitude of StO2 response greater (49% versus 40%, P=0.005) in AF, but there was no significant difference in maximum StO2 or the degree of reperfusion hyperaemia. In summary, baseline and minimum StO2 were lower with a greater ischaemic decrease in StO2 during AF, reflecting reduced tissue perfusion, compared with sinus rhythm. Recovery after ischaemia was higher in AF, suggesting normalisation of capillary recruitment during ischaemia.

  17. Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy.

    PubMed

    Bartocci, M; Winberg, J; Papendieck, G; Mustica, T; Serra, G; Lagercrantz, H

    2001-09-01

    Newborn infants in intensive care units are exposed to several unfamiliar smells, mostly related to the nosocomial environment. How the preterm baby perceives these olfactory stimulations remains unclear. Near-infrared spectroscopy can be performed noninvasively above the olfactory cortex to monitor changes of cerebral blood flow as an indicator of cortical activation. The aim of this study was to explore by near-infrared spectroscopy how odorous substances routinely used in the neonatal intensive care unit influence bilateral cortical hemodynamics in the olfactory region of the brains of preterm infants. Specifically, a detergent (Neomidil) and an adhesive remover (Remove) have been tested. Twenty preterm neonates of gestational age 30-37 wk (mean 33.7 +/- 2.3 SD) and postconceptional age 32-37.3 wk (mean 35.5 +/- 2.75 SD) were monitored by near-infrared spectroscopy. Two optode pairs were placed above the anterior orbitofrontal gyri, which is involved in olfactory processing, on each side of the skull. Fifteen babies were exposed to the smell of a disinfectant and five babies to that of a detergent, both applied to small cotton pads. Changes of oxygenated Hb and deoxygenated Hb were recorded before, during, and after a 10-s stimulus. In 17 out of 20 babies, there was a decrease in oxygenated Hb and total Hb after the exposure to the substances. The decrease was significantly greater in the right side than in the left side. This change was different from that observed in our previous study after exposure to colostrum and the pleasant smell of vanilla, which elicited an increase in blood oxygenation in the same region. The biologic significance of this finding is unknown. We conclude that cortical hemodynamic modifications occur in the preterm newborn after exposure to preparations commonly used in the neonatal intensive care unit. A lateralization seems to occur in processing unpleasant olfactory cues.

  18. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    PubMed

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  19. Near-Infrared Spectroscopy in the Monitoring of Adult Traumatic Brain Injury: A Review

    PubMed Central

    Su, Zhangjie; Clancy, Michael T.; Lucas, Samuel J. E.; Dehghani, Hamid; Logan, Ann; Belli, Antonio

    2015-01-01

    Abstract Cerebral near-infrared spectroscopy (NIRS) has long represented an exciting prospect for the noninvasive monitoring of cerebral tissue oxygenation and perfusion in the context of traumatic brain injury (TBI), although uncertainty still exists regarding the reliability of this technology specifically within this field. We have undertaken a review of the existing literature relating to the application of NIRS within TBI. We discuss current “state-of-the-art” NIRS monitoring, provide a brief background of the technology, and discuss the evidence regarding the ability of NIRS to substitute for established invasive monitoring in TBI. PMID:25603012

  20. Application of spectral derivative data in visible and near-infrared spectroscopy

    PubMed Central

    Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W; Chauchard, Fabien

    2011-01-01

    The use of the spectral derivative method in visible and near-infrared optical spectroscopy is presented, whereby instead of using discrete measurements around several wavelengths, the difference between nearest neighbouring spectral measurements is utilized. The proposed technique is shown to be insensitive to the unknown tissue and fibre contact coupling coefficients providing substantially increased accuracy as compared to more conventional techniques. The self-calibrating nature of the spectral derivative techniques increases its robustness for both clinical and industrial applications, as is demonstrated based on simulated results as well as experimental data. PMID:20505221

  1. Near-infrared spectroscopy for monitoring water permeability of optical coatings on plastics.

    PubMed

    Schulz, U; Kaiser, N

    1997-02-01

    Near-infrared spectroscopy has been applied to determine the water content of plastic lenses. An analytical method is presented for monitoring the water permeability of thin layers on plastic optics by utilizing the reversible moisture absorption of organic polymers. As an example, scratch-resistant and antireflective layers on poly[diethylenglycol-bis(allylcarbonate)] lenses are investigated. The measurements demonstrate the relatively high water barrier of coatings deposited by plasma-ion-assisted deposition compared with classical physical vapor deposition coatings and polysiloxane dip coatings.

  2. Application of near-infrared spectroscopy for discrimination of mental workloads

    NASA Astrophysics Data System (ADS)

    Sassaroli, A.; Zheng, F.; Coutts, M.; Hirshfield, L. H.; Girouard, A.; Solovey, E. T.; Jacob, R. J. K.; Tong, Y.; Frederick, B. deB.; Fantini, S.

    2009-02-01

    We show the potential of functional near-infrared spectroscopy for the discrimination of mental workloads during a cognitive task with two different levels of difficulty. Standard data analysis based on filtering and folding average procedures were carried out to locate those source-detector pairs sensitive to the activated cortical regions. On these channels we applied two classification algorithms for the discrimination of mental workloads. Both algorithms showed a high percentage of successful classifications (>80%) on three over a total of four subjects where brain activation was detected. These results are comparable to standard scores found in the field of electroencephalography.

  3. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Lott, Carsten; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1998-01-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  4. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans J.; Lott, C.; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1997-12-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  5. Near-infrared surface-enhanced Raman spectroscopy: New developments and applications

    SciTech Connect

    Angel, S.M.; Myrick, M.L.

    1989-01-01

    The surface-enhanced Raman phenomenon was discovered in 1974 and analytical applications of it are only now being developed. Near-infrared surface-enhanced Raman spectroscopy was first reported in 1988, and the characteristics of the technique are still being determined. The purpose of this paper is to introduce the reader to the technique and to describe some of its characteristics. In addition, some of the applications being explored by the authors, including remote monitoring of groundwater contaminants and qualitative assays for drugs, are presented. 61 refs., 12 figs.

  6. Resting state connectivity patterns with near-infrared spectroscopy data of the whole head

    PubMed Central

    Novi, Sergio L.; Rodrigues, Renato B. M. L.; Mesquita, Rickson C.

    2016-01-01

    Resting state cerebral dynamics has been a useful approach to explore the brain’s functional organization. In this study, we employed graph theory to deeply investigate resting state functional connectivity (rs-FC) as measured by near-infrared spectroscopy (NIRS). Our results suggest that network parameters are very similar across time and subjects. We also identified the most frequent connections between brain regions and the main hubs that participate in the spontaneous activity of brain hemodynamics. Similar to previous findings, we verified that symmetrically located brain areas are highly connected. Overall, our results introduce new insights in NIRS-based functional connectivity at rest. PMID:27446687

  7. Analyzing the resting state functional connectivity in the human language system using near infrared spectroscopy

    PubMed Central

    Molavi, Behnam; May, Lillian; Gervain, Judit; Carreiras, Manuel; Werker, Janet F.; Dumont, Guy A.

    2014-01-01

    We have evaluated the use of phase synchronization to identify resting state functional connectivity (RSFC) in the language system in infants using functional near infrared spectroscopy (fNIRS). We used joint probability distribution of phase between fNIRS channels with a seed channel in the language area to estimate phase relations and to identify the language system network. Our results indicate the feasibility of this method in identifying the language system. The connectivity maps are consistent with anatomical cortical connections and are also comparable to those obtained from functional magnetic resonance imaging (fMRI) functional connectivity studies. The results also indicate left hemisphere lateralization of the language network. PMID:24523685

  8. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    PubMed

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology. PMID:25358159

  9. [Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].

    PubMed

    Liu, Hui-jun; Ying, Yi-bin

    2015-11-01

    A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.

  10. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    PubMed

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  11. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm.

    PubMed

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.

  12. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  13. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2012-04-01

    Modern analytical chemistry of industrial products is in need of rapid, robust, and cheap analytical methods to continuously monitor product quality parameters. For this reason, spectroscopic methods are often used to control the quality of industrial products in an on-line/in-line regime. Vibrational spectroscopy, including mid-infrared (MIR), Raman, and near-infrared (NIR), is one of the best ways to obtain information about the chemical structures and the quality coefficients of multicomponent mixtures. Together with chemometric algorithms and multivariate data analysis (MDA) methods, which were especially created for the analysis of complicated, noisy, and overlapping signals, NIR spectroscopy shows great results in terms of its accuracy, including classical prediction error, RMSEP. However, it is unclear whether the combined NIR + MDA methods are capable of dealing with much more complex interpolation or extrapolation problems that are inevitably present in real-world applications. In the current study, we try to make a rather general comparison of linear, such as partial least squares or projection to latent structures (PLS); "quasi-nonlinear", such as the polynomial version of PLS (Poly-PLS); and intrinsically non-linear, such as artificial neural networks (ANNs), support vector regression (SVR), and least-squares support vector machines (LS-SVM/LSSVM), regression methods in terms of their robustness. As a measure of robustness, we will try to estimate their accuracy when solving interpolation and extrapolation problems. Petroleum and biofuel (biodiesel) systems were chosen as representative examples of real-world samples. Six very different chemical systems that differed in complexity, composition, structure, and properties were studied; these systems were gasoline, ethanol-gasoline biofuel, diesel fuel, aromatic solutions of petroleum macromolecules, petroleum resins in benzene, and biodiesel. Eighteen different sample sets were used in total. General

  14. Discriminant analysis of milk adulteration based on near-infrared spectroscopy and pattern recognition

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Lv, Guorong; He, Bin; Xu, Kexin

    2011-03-01

    Since the beginning of the 21st century, the issue of food safety is becoming a global concern. It is very important to develop a rapid, cost-effective, and widely available method for food adulteration detection. In this paper, near-infrared spectroscopy techniques and pattern recognition were applied to study the qualitative discriminant analysis method. The samples were prepared and adulterated with one of the three adulterants, urea, glucose and melamine with different concentrations. First, the spectral characteristics of milk and adulterant samples were analyzed. Then, pattern recognition methods were used for qualitative discriminant analysis of milk adulteration. Soft independent modeling of class analogy and partial least squares discriminant analysis (PLSDA) were used to construct discriminant models, respectively. Furthermore, the optimization method of the model was studied. The best spectral pretreatment methods and the optimal band were determined. In the optimal conditions, PLSDA models were constructed respectively for each type of adulterated sample sets (urea, melamine and glucose) and all the three types of adulterated sample sets. Results showed that, the discrimination accuracy of model achieved 93.2% in the classification of different adulterated and unadulterated milk samples. Thus, it can be concluded that near-infrared spectroscopy and PLSDA can be used to identify whether the milk has been adulterated or not and the type of adulterant used.

  15. Near-infrared spectroscopy as an auxiliary tool in the study of child development

    PubMed Central

    de Oliveira, Suelen Rosa; Machado, Ana Carolina Cabral de Paula; de Miranda, Débora Marques; Campos, Flávio dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    OBJECTIVE: To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. DATA SOURCE: Search was conducted in the PubMed and Lilacs databases using the following keywords: ''psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared'' and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. DATA SYNTHESIS: Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. CONCLUSIONS: NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. PMID:25862295

  16. Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy

    PubMed Central

    Hull, E L; Conover, D L; Foster, T H

    1999-01-01

    We have evaluated the ability of steady-state, radially-resolved, broad-band near infrared diffuse reflectance spectroscopy to measure carbogen-induced changes in haemoglobin oxygen saturation (SO2) and total haemoglobin concentration in a rat R3230 mammary adenocarcinoma model in vivo. Detectable shifts toward higher saturations were evident in all tumours (n = 16) immediately after the onset of carbogen breathing. The SO2 reached a new equilibrium within 1 min and remained approximately constant during 200–300 s of administration. The return to baseline saturation was more gradual when carbogen delivery was stopped. The degree to which carbogen increased SO2 was variable among tumours, with a tendency for tumours with lower initial SO2 to exhibit larger changes. Tumour haemoglobin concentrations at the time of peak enhancement were also variable. In the majority of cases, haemoglobin concentration decreased in response to carbogen, indicating that increased tumour blood volume was not responsible for the observed elevation in SO2. We observed no apparent relationship between the extent of the change in tumour haemoglobin concentration and the magnitude of the change in the saturation. Near infrared diffuse reflectance spectroscopy provides a rapid, non-invasive means of monitoring spatially averaged changes in tumour haemoglobin oxygen saturation induced by oxygen modifiers. © 1999 Cancer Research Campaign PMID:10206281

  17. First direct body fat content measurement during pregnancy using Fourier transform near-infrared spectroscopy.

    PubMed

    Azizian, Hormoz; Kramer, John K G; Phillips, Stuart M

    2014-01-01

    Currently, there are no direct and reliable methods to measure the body fat content of women during pregnancy. Estimates of fat accretion can significantly affect calculations of energy requirements. We report here the first direct measurement of determining the body fat content of two women during pregnancy using the Fourier transform near-infrared spectroscopy (FT-NIR) method. Fourier transform near-infrared spectroscopy was shown to provide comparable results to dual-energy X-ray absorptiometry and magnetic resonance imaging. These latter methods, even though very reliable to measure body fat levels, cannot be used to measure the body fat of women during pregnancy because of health concerns, while FT-NIR poses no health risk. The FT-NIR results showed the percent body fat remained relatively constant throughout pregnancy, but fat mass and fat free mass increased. Fat mass followed an S curve with a maximum increase between 15 to 25 weeks of gestation that was only detected by repeated measurements using the FT-NIR technique. These results demonstrate the value of the FT-NIR method to directly measure the fat content of pregnant women in minutes instead of relying on indirect calculations or taking measurements before and after pregnancy to track gestational fat mass accretion.

  18. [Applied Research in Grade Estimation of Surimi by Near Infrared Spectroscopy].

    PubMed

    Wu, Hao; Chen, Wei-hua; Wang, Xi-chang; Liu, Yuan

    2015-05-01

    The feasibility of utilizing near infrared spectroscopy for estimating frozen and thawed white croaker surimi with different grades was presented in the research. First-derivative and standard normal variable transformation were used as pretreatment method, then principal component analysis was carried out on the processed datas. Establish grade estimation model on white croaker surimi with different grades by principal component analysis-mahalanobis distance pattern recognition method. Seven kinds of physicochemical indexes (moisture, protein, crude fat, salt-soluble protein, gel strength, water-holding ability and whiteness) of white croaker surimi with different grades were determinated. We came to the following conclusions. Firstly, white croaker surimi with three grade could be distinguished effectively by principal component analysis. Secondly, the model of grade estimation established by principal component analysis-mahalanobis distance pattern recognition method had better performance on frozen white croaker surimi than thawed ones, the former's comprehensive accuracy was 96. 3 % with the latter's is 83. 3%. Thirdly, the physicochemical indexes of white croaker surimi with different grades had some distinctions. The research indicated that near infrared spectroscopy could estimate the grade of white croaker surimi rapidly and nondestructively.

  19. Cerebral oxygenation and hemodynamic changes during infant cardiac surgery: measurements by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    du Plessis, Adre J.; Volpe, Joseph J.

    1996-10-01

    Despite dramatic advances in the survival rate among infants undergoing cardiac surgery for congenital heart disease, the incidence of brain injury suffered by survivors remains unacceptably high. This is largely due to our limited understanding of the complex changes in cerebral oxygen utilization and supply occurring during the intraoperative period as a result of hypothermia, neuroactive drugs, and profound circulatory changes. Current techniques for monitoring the adequacy of cerebral oxygen supply and utilization during hypothermic cardiac surgery are inadequate to address this complex problem and consequently to identify the infant at risk for such brain injury. Furthermore, this inability to detect imminent hypoxic- ischemic brain injury is likely to become all the more conspicuous as new neuroprotective strategies, capable of salvaging 'insulated' neuronal tissue form cell death, enter the clinical arena. Near infrared spectroscopy is a relatively new, noninvasive, and portable technique capable of interrogating the oxygenation and hemodynamics of tissue in vivo. These characteristics of the technique have generated enormous interest among clinicians in the ability of near infrared spectroscopy to elucidate the mechanisms of intraoperative brain injury and ultimately to identify infants oat risk for such injury. This paper reviews the experience with this technique to date during infant cardiac surgery.

  20. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  1. Neuronal Correlates of Cognitive Control during Gaming Revealed by Near-Infrared Spectroscopy

    PubMed Central

    Witte, Matthias; Ninaus, Manuel; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In everyday life we quickly build and maintain associations between stimuli and behavioral responses. This is governed by rules of varying complexity and past studies have identified an underlying fronto-parietal network involved in cognitive control processes. However, there is only limited knowledge about the neuronal activations during more natural settings like game playing. We thus assessed whether near-infrared spectroscopy recordings can reflect different demands on cognitive control during a simple game playing task. Sixteen healthy participants had to catch falling objects by pressing computer keys. These objects either fell randomly (RANDOM task), according to a known stimulus-response mapping applied by players (APPLY task) or according to a stimulus-response mapping that had to be learned (LEARN task). We found an increased change of oxygenated and deoxygenated hemoglobin during LEARN covering broad areas over right frontal, central and parietal cortex. Opposed to this, hemoglobin changes were less pronounced for RANDOM and APPLY. Along with the findings that fewer objects were caught during LEARN but stimulus-response mappings were successfully identified, we attribute the higher activations to an increased cognitive load when extracting an unknown mapping. This study therefore demonstrates a neuronal marker of cognitive control during gaming revealed by near-infrared spectroscopy recordings. PMID:26244781

  2. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data.

    PubMed

    Xu, Jingping; Liu, Xiangyu; Zhang, Jinrui; Li, Zhen; Wang, Xindi; Fang, Fang; Niu, Haijing

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called "functional connectivity analysis tool for near-infrared spectroscopy data" (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies. PMID:26539473

  3. Simulating Future Near-Infrared Grism Spectroscopy Using The WFC3 Infrared Spectroscopic Parallels (WISP)

    NASA Astrophysics Data System (ADS)

    Colbert, James W.; Teplitz, H. I.; Atek, H.; Bunker, A. J.; Rafelski, M.; Scarlata, C.; Ross, N.; Malkan, M. A.; Bedregal, A.; Dominguez, A.; Dressler, A.; Henry, A. L.; Martin, C. L.; Masters, D.; McCarthy, P. J.; Siana, B. D.

    2014-01-01

    We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields observed using both the G102 and G141 grism. Using these derived emission line counts we make predictions for future space missions, like WFIRST, that will make extensive use of slitless grism spectroscopy in the near-IR over large areas of sky. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm2) than the near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm2), allowing us to both investigate the fainter emission lines the large area surveys will be missing and make count predictions for the deeper grism pointings that are likely to be done over smaller areas. Cumulative number counts of 0.7near-infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm2. We find good agreement between our derived luminosity functions and those from narrow band H-alpha surveys, like those of HiZELS (Sobral et al. 2013) and New Halpha (Ly et. 2011). The evolution in both the H-alpha luminosity function from z=0.3-1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges. We will also present simulations of future large area near-infrared grism spectroscopy, based on the observed distributions of emission line fluxes, galaxy sizes, redshifts, H-alpha/[OIII] ratios, and equivalent widths seen in the WISP survey.

  4. [Identification and classification of disease severity of wheat stripe rust using near infrared spectroscopy technology].

    PubMed

    Li, Xiao-long; Qin, Feng; Zhao, Long-lian; Li, Jun-hui; Ma, Zhan-hong; Wang, Hai-guang

    2015-02-01

    Wheat stripe rust caused by Puccinia striiformis f. sp. tritici, is an economically important disease in the world. It is of great significance to assess disease severity of wheat stripe rust quickly and accurately for monitoring and controlling the disease. In this study, wheat leaves infected with stripe rust pathogen under different severity levels were acquired through artificial inoculation in artificial climate chamber. Thirty wheat leaves with disease severity equal to 1%, 5%, 10%, 20%, 40%, 60%, 80% or 100% were picked out, respectively, and 30 healthy leaves were chosen as controls. A total of 270 wheat leaves were obtained and then their near infrared spectra were measured using MPA spectrometer. According to disease severity levels, 270 near infrared spectra were divided into 9 categories and each category included 30 spectra. From each category, 7 or 8 spectra were randomly chosen to make up the testing set that included 67 spectra. The remaining spectra were treated as the training set. A qualitative model for identification and classification of disease severity of wheat stripe rust was built using near infrared reflectance spectroscopy (NIRS) technology combined with discriminant partial least squares (DPLS). The effects of different preprocessing methods of obtained spectra, ratios between training sets and testing sets, and spectral ranges on qualitative recognition results of the model were investigated. The optimal model based on DPLS was built using cross verification method in the spectral region of 4000-9000 cm(-1) when "centralization" was used as the preprocessing method of spectra and the spectra were divided into the training set and the testing set with the ratio equal to 3:1. Accuracy rate of the training set was 95.57% and accuracy rate of the testing set was 97.01%. The results showed that good recognition performance could be acquired using the model based on DPLS. The results indicated that the method using near infrared reflectance

  5. Use of near infrared spectroscopy for the clinical monitoring of adult brain

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Peter J.; Smielewski, P.; Lam, J. M.; Al-Rawi, P.

    1996-10-01

    Adult near infrared spectroscopy (NIRS) is a potential method for noninvasively assessing changes in cerebral oxygenation. Unlike neonatal NIRS, access of light to the adult rain requires penetration through thick extracranial tissues, and hence detection of changed in cerebral chromophore concentration can only be achieved by using NIRS in the reflectance mode. This adds variables that are difficult to control. They include the effects of a different intraoptode distance, intersubject anatomical variation, and the influence of a pathological extra- to intracranial collateral blood supply. Although studies showing movements of oxyhemoglobin concentration following specific cerebral stimuli have been published, the separation of changes occurring in the extracranial and intracranial compartments remains a challenge. Experience with NIRS in the three adult clinical scenarios of carotid endarterectomy, head injury, and carbon dioxide stress testing is presented. The influence of extracranial contamination is demonstrated, as are the methods adopted to help control for extracranial blood flow changes. Provisional experience with spatially responded spectroscopy technology is also discussed.

  6. Modelling of sensory and instrumental texture parameters in processed cheese by near infrared reflectance spectroscopy.

    PubMed

    Blazquez, Carmen; Downey, Gerard; O'Callaghan, Donal; Howard, Vincent; Delahunty, Conor; Sheehan, Elizabeth; Everard, Colm; O'Donnell, Colm P

    2006-02-01

    This study investigated the application of near infrared (NIR) reflectance spectroscopy to the measurement of texture (sensory and instrumental) in experimental processed cheese samples. Spectra (750 to 2498 nm) of cheeses were recorded after 2 and 4 weeks storage at 4 degrees C. Trained assessors evaluated 9 sensory properties, a texture profile analyser (TPA) was used to record 5 instrumental parameters and cheese 'meltability' was measured by computer vision. Predictive models for sensory and instrumental texture parameters were developed using partial least squares regression on raw or pre-treated spectral data. Sensory attributes and instrumental texture measurements were modelled with sufficient accuracy to recommend the use of NIR reflectance spectroscopy for routine quality assessment of processed cheese. PMID:16433962

  7. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  8. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples. PMID:26260573

  9. Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors.

    PubMed

    Gulsen, Gultekin; Yu, Hon; Wang, Jun; Nalcioglu, Orhan; Merritt, Sean; Bevilacqua, Frederic; Durkin, Anthony J; Cuccia, David J; Lanning, Ryan; Tromberg, Bruce J

    2002-12-01

    We present a combined near-infrared diffuse optical spectroscopy (DOS) and Magnetic Resonance Imaging (MRI) system for the study of animal model tumors. A combined broadband steady-state and frequency domain optical spectroscopy apparatus was integrated with the MRI. The physiological properties of tissue rendered by MRI, including vascular volume fraction and water, were compared with chromophore concentrations as determined from the parameters obtained by optical measurements. DOS measurements provided oxy-hemoglobin, deoxy-hemoglobin, and water concentration locally in tumors. A method for co-registration of the information obtained by both modalities was developed. Using Monte Carlo simulations, the optically sampled volume was superimposed on the MR images, illustrating which tissue structure was probed optically. Finally, two optical contrast agents, indocyanine green (ICG) and methylene blue (MB), were employed and their kinetics were measured by DOS system from different locations on the tumor and compared with Gd-DTPA enhancement maps obtained from MRI.

  10. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples.

  11. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection

    PubMed Central

    Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang

    2015-01-01

    This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value. PMID:26839549

  12. Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy

    PubMed Central

    Xu, Lu; Fu, Hai-Yan; Cai, Chen-Bo; She, Yuan-Bin

    2015-01-01

    Dampening during processing or storage can largely influence the quality of white lotus seeds (WLS). This paper investigated the feasibility of using near-infrared (NIR) spectroscopy and chemometrics for rapid and nondestructive discrimination of the dampened WLS. Regular (n = 167) and dampened (n = 118) WLS objects were collected from five main producing areas and NIR reflectance spectra (4000–12000 cm−1) were measured for bare kernels. The influence of spectral preprocessing methods, including smoothing, taking second-order derivatives (D2), and standard normal variate (SNV), on partial least squares discrimination analysis (PLSDA) was compared to select the optimal data preprocessing method. A moving-window strategy was combined with PLSDA (MWPLSDA) to select the most informative wavelength intervals for classification. Based on the selected spectral ranges, the sensitivity, specificity, and accuracy were 0.927, 0.950, and 0.937 for SNV-MWPLSDA, respectively. PMID:26221564

  13. Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy.

    PubMed

    Xu, Lu; Fu, Hai-Yan; Cai, Chen-Bo; She, Yuan-Bin

    2015-01-01

    Dampening during processing or storage can largely influence the quality of white lotus seeds (WLS). This paper investigated the feasibility of using near-infrared (NIR) spectroscopy and chemometrics for rapid and nondestructive discrimination of the dampened WLS. Regular (n = 167) and dampened (n = 118) WLS objects were collected from five main producing areas and NIR reflectance spectra (4000-12000 cm(-1)) were measured for bare kernels. The influence of spectral preprocessing methods, including smoothing, taking second-order derivatives (D2), and standard normal variate (SNV), on partial least squares discrimination analysis (PLSDA) was compared to select the optimal data preprocessing method. A moving-window strategy was combined with PLSDA (MWPLSDA) to select the most informative wavelength intervals for classification. Based on the selected spectral ranges, the sensitivity, specificity, and accuracy were 0.927, 0.950, and 0.937 for SNV-MWPLSDA, respectively.

  14. Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope.

    PubMed

    Szufladowicz, E; Maniewski, R; Kozluk, E; Zbiec, A; Nosek, A; Walczak, F

    2004-08-01

    Near-infrared spectroscopy (NIRS) offers a non-invasive, real-time monitoring of cerebral oxygenation. This method is based on the oxygenation and the light wavelength dependent absorption of near-infrared light by tissue chromophores, e.g. oxyhaemoglobin and deoxyhaemoglobin. The objective of the present study was the application of NIRS for evaluation of the brain function during vasovagal syncope (VVS). The VVS is a clinical syndrome affecting ca 3.5% of the population and for which the widely used diagnostic examination in this disease entity is the head-up tilt table test (HUT). In this study 69 patients with a history of VVS were examined using HUT. In 42 patients VVS was provoked. Results of the examination have shown that the changes in cerebral oxygenation measured by the NIRS technique are distinctly visible before the syncope. A gradual decrease of oxyhaemoglobin followed by its sudden drop was observed in all the VVS patients. Changes in the oxyhaemoglobin concentration measured by NIRS were observed on average 3.3 min before the syncope. They preceded the presyncope symptoms about 1.3 min (p < 0.005), the blood pressure and heart rate drop 2.2 min (p < 0.0001) and the arterial blood saturation 2.6 min (p < 0.00001).

  15. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  16. Spectroscopic technique with wide range of wavelength information improves near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Eda, Hideo; Aoki, Hiromichi; Eura, Shigeru; Ebe, Kazutoshi

    2009-02-01

    Near-infrared spectroscopy (NIRS) calculates hemoglobin parameters, such as oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) using the near-infrared light around the wavelength of 800nm. This is based on the modified-Lambert-Beer's law that changes in absorbance are proportional to changes in hemoglobin parameters. Many conventional measurement methods uses only a few wavelengths, however, in this research, basic examination of NIRS measurement was approached by acquiring wide range of wavelength information. Venous occlusion test was performed by using the blood pressure cuff around the upper arm. Pressure of 100mmHg was then applied for about 3 minutes. During the venous occlusion, the spectrum of the lower arm muscles was measured every 15 seconds, within the range of 600 to 1100nm. It was found that other wavelength bands hold information correlating to this venous occlusion task. Technique of improving the performance of NIRS measurement using the Spectroscopic Method is very important for Brain science.

  17. Near-Infrared Spectroscopy of Warm Spitzer-observed Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2013-10-01

    We have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. ExploreNEOs or “The Warm Spitzer NEO Survey: Exploring the history of the inner Solar System and near-Earth space” was allocated 500 hours over two years (2009-2011) to determine diameters and albedos for approximately 600 near-Earth objects using the 3.6 and 4.5 micron IRAC bands. We present the results of the SpeX component of our campaign. In order to increase our sample size we also include all near-infrared observations of ExploreNEOs targets in the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our complete dataset includes 125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey. The combination of the two surveys includes near-infrared spectroscopy of 187 ExploreNEOs targets. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We identified all potential ordinary chondrites within our sample and determined likely ordinary chondrite types using the equations derived by Dunn et al. 2010. Our resulting proportions of H, L, and LL ordinary chondrites are different than those previously calculated for ordinary chondrite-like near-Earth objects and meteorite falls.

  18. Recent progress in noninvasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Haiber, S.; Licht, M.; Ihrig, D. F.; Moll, C.; Stuecker, M.

    2006-02-01

    Near infrared spectroscopy exhibits a tremendous potential for clinical chemistry and tissue pathology. Owing to its penetration depth into human skin, near infrared radiation can probe chemical and structural information non-invasively. Metabolic diseases such as diabetes mellitus increase nonenzymatic glycation with the effect of glucose molecules bonding chemically to proteins. In addition, glycation accumulates on tissue proteins with the clearest evidence found in extracellular skin collagen, affecting also covalent crosslinking between adjacent protein strands, which reduces their flexibility, elasticity, and functionality. Non-enzymatically glycated proteins in human skin and following chemical and structural skin changes were our spectroscopic target. We carried out measurements on 109 subjects using two different NIR-spectrometers equipped with diffuse reflection accessories. Spectra of different skin regions (finger and hand/forearm skin) were recorded for comparison with clinical blood analysis data and further patient information allowing classification into diabetics and non-diabetics. Multivariate analysis techniques for supervised classification such as linear discriminant analysis (LDA) were applied using broad spectral interval data or a number of optimally selected wavelengths. Based on fingertip skin spectra recorded by fiber-optics, it was possible to classify diabetics and non-diabetics with a maximum accuracy of 87.8 % using leave-5-out cross-validation (sensitivity of 87.5. %, specificity of 88.2 %). With the results of this study, it can be concluded that ageing and glycation at elevated levels cannot always be separated from each other.

  19. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    USGS Publications Warehouse

    Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.

    2011-01-01

    In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.

  20. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion.

    PubMed

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-08-01

    The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus. NIR and FTIR of the samples were recorded, and data were mathematically pretreated using multiple scattering correction, standard normal variate, or Savitzky-Golay before multivariate analysis, partial-least-square regression (PLSR), and principle component regression (PCR). The PLSR models were more accurate than PCR for NIR and FTIR data as indicated by low value of root-mean-squared error of prediction, standard error of prediction and bias, and high value of R(2). Additionally, NIR data-based models were more accurate and precise than FTIR data models. In conclusion, NIR chemometric models provide simple and fast method to quantitate crystalline tacrolimus in the ASD formulation.

  1. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion.

    PubMed

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-08-01

    The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus. NIR and FTIR of the samples were recorded, and data were mathematically pretreated using multiple scattering correction, standard normal variate, or Savitzky-Golay before multivariate analysis, partial-least-square regression (PLSR), and principle component regression (PCR). The PLSR models were more accurate than PCR for NIR and FTIR data as indicated by low value of root-mean-squared error of prediction, standard error of prediction and bias, and high value of R(2). Additionally, NIR data-based models were more accurate and precise than FTIR data models. In conclusion, NIR chemometric models provide simple and fast method to quantitate crystalline tacrolimus in the ASD formulation. PMID:24931728

  2. Multicomponent blood lipid analysis by means of near infrared spectroscopy, in geese.

    PubMed

    Bazar, George; Eles, Viktoria; Kovacs, Zoltan; Romvari, Robert; Szabo, Andras

    2016-08-01

    This study provides accurate near infrared (NIR) spectroscopic models on some laboratory determined clinicochemical parameters (i.e. total lipid (5.57±1.95 g/l), triglyceride (2.59±1.36 mmol/l), total cholesterol (3.81±0.68 mmol/l), high density lipoprotein (HDL) cholesterol (2.45±0.58 mmol/l)) of blood serum samples of fattened geese. To increase the performance of multivariate chemometrics, samples significantly deviating from the regression models implying laboratory error were excluded from the final calibration datasets. Reference data of excluded samples having outlier spectra in principal component analysis were not marked as false. Samples deviating from the regression models but having non outlier spectra in PCA were identified as having false reference constituent values. Based on the NIR selection methods, 5% of the reference measurement data were rated as doubtful. The achieved models reached R(2) of 0.864, 0.966, 0.850, 0.793, and RMSE of 0.639 g/l, 0.232 mmol/l, 0.210 mmol/l, 0.241 mmol/l for total lipid, triglyceride, total cholesterol and HDL cholesterol, respectively, during independent validation. Classical analytical techniques focus on single constituents and often require chemicals, time-consuming measurements, and experienced technicians. NIR technique provides a quick, cost effective, non-hazardous alternative method for analysis of several constituents based on one single spectrum of each sample, and it also offers the possibility for looking at the laboratory reference data critically. Evaluation of reference data to identify and exclude falsely analyzed samples can provide warning feedback to the reference laboratory, especially in the case of analyses where laboratory methods are not perfectly suited to the subjected material and there is an increased chance of laboratory error. PMID:27216674

  3. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  4. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  5. Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ting; Gong, Hui; Luo, Qingming

    2011-04-01

    Using the visible Chinese human data set, which faithfully represents human anatomy, we visualize the light propagation in the head in detail based on Monte Carlo simulation. The simulation is verified to agree with published experimental results in terms of a differential path-length factor. The spatial sensitivity profile turns out to seem like a fat tropical fish with strong distortion along the folding cerebral surface. The sensitive brain region covers the gray matter and extends to the superficial white matter, leading to a large penetration depth (>3 cm). Finally, the optimal source-detector separation is suggested to be narrowed down to 3-3.5 cm, while the sensitivity of the detected signal to brain activation reaches the peak of 8%. These results indicate that the cerebral cortex folding geometry actually has substantial effects on light propagation, which should be necessarily considered for applications of functional near-infrared spectroscopy.

  6. Petroleum resins adsorption onto quartz sand: near infrared (NIR) spectroscopy study.

    PubMed

    Balabin, Roman M; Syunyaev, Rustem Z

    2008-02-15

    In this paper we have tried to evaluate adsorption parameters of petroleum resins. Near infrared (NIR) spectroscopy is applied for resins bulk concentration evaluation during adsorption process. NIR experimental scheme and parameters are provided. NIR spectra range of 9000-13,000 cm(-1) is chosen. Quartz sand (0.2-0.8 mm fraction) is used as adsorbent; benzene is used as solvent. Different approaches of "NIR spectra-resins concentration" calibration model building are discussed. Partial least squares (PLS) regression method is used. Langmuir model is chosen for experimental data fitting. Combined usage of kinetic and isothermic data gives us ability to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption (and desorption). The rate constants of resins adsorption and desorption are found to be concentration independent.

  7. Near-infrared spectroscopy and pattern-recognition processing for classifying wines of two Italian provinces

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Gordillo, B.; Mencaglia, Andrea A.; González-Miret, M. L.; Heredia, F. J.; Cichelli, A.

    2014-05-01

    This paper presents an experiment making use of the near-infrared spectrum for distinguishing the wines produced in two close provinces of Abruzzo region of Italy. A collection of 32 wines was considered, 18 of which were produced in the province of Chieti, while the other 14 were from the province of Teramo. A conventional dual-beam spectrophotometer was used for absorption measurements in the 1300-1900 nm spectroscopic range. Principal Component Analysis was used for explorative analysis. Score maps in the PC1-PC2 or PC2-PC3 spaces were obtained, which successfully grouped the wine samples in two distinct clusters, corresponding to Chieti and Teramo provinces, respectively. A modelling of dual-band spectroscopy was also proposed, making use of two LEDs for illumination and a PIN detector instead of the spectrometer. These data were processed using Linear Discriminant Analysis which demonstrated satisfactory classification results.

  8. [Detection of erucic acid and glucosinolate in intact rapeseed by near-infrared diffuse reflectance spectroscopy].

    PubMed

    Riu, Yu-kui; Huang, Kun-lun; Wang, Wei-min; Guo, Jing; Jin, Yin-hua; Luo, Yun-bo

    2006-12-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, raising great concern about transgenic food' s edible safety. To analyze the content of erucic acid and glucosinolate in transgenic rapeseed and its parents, all the seeds were scanned intact by continuous wave of near infrared diffuse reflectance spectrometry ranging from 12 000 to 4 000 cm(-1) with a resolution of 4 cm(-1) and 64 times of scanning. Bruker OPUS software package was applied for quantification, while the results were compared with the standard methods. The results showed that the method of NIRS was very precise, which proved that infrared diffuse reflectance spectroscopy can be applied to detect the toxins in transgenic food. On the other hand, the results also showed that the content of erucic acid in transgenic rapeseeds is 0. 5-1. 0 times

  9. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research.

    PubMed

    Kopton, Isabella M; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  10. Validation of practical diffusion approximation for virtual near infrared spectroscopy using a digital head phantom

    NASA Astrophysics Data System (ADS)

    Oki, Yosuke; Kawaguchi, Hiroshi; Okada, Eiji

    2009-03-01

    Light propagation in the digital head phantom for virtual near infrared spectroscopy and imaging is calculated by diffusion theory. In theory, diffusion approximation is not valid in a low-scattering cerebrospinal fluid (CSF) layer around the brain. The optical path length and spatial sensitivity profile predicted by the finite element method based upon the diffusion theory are compared with those predicted by the Monte Carlo method to validate a practical implementation of diffusion approximation to light propagation in an adult head. The transport scattering coefficient of the CSF layer is varied from 0.01 to 1.0 mm-1 to evaluate the influence of that layer on the error caused by diffusion approximation. The error is practically ignored and the geometry of the brain surface such as the sulcus structure in the digital head phantom scarcely affects the error when the transport scattering coefficient of the CSF layer is greater than 0.3 mm-1.

  11. Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water.

    PubMed

    Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects. PMID:24593411

  12. Extraction of heart rate from functional near-infrared spectroscopy in infants

    NASA Astrophysics Data System (ADS)

    Perdue, Katherine L.; Westerlund, Alissa; McCormick, Sarah A.; Nelson, Charles A.

    2014-06-01

    Changes in heart rate are a useful physiological measure in infant studies. We present an algorithm for calculating the heart rate (HR) from oxyhemoglobin pulsation in functional near-infrared spectroscopy (fNIRS) signals. The algorithm is applied to data collected from 10 infants, and the HR derived from the fNIRS signals is compared against the HR as calculated by electrocardiography. We show high agreement between the two HR signals for all infants (r>0.90), and also compare stimulus-related HR responses as measured by the two methods and find good agreement despite high levels of movement in the infants. This algorithm can be used to measure changes in HR in infants participating in fNIRS studies without the need for additional HR sensors.

  13. Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang

    2012-01-01

    A novel near-infrared (NIR) diffuse correlation spectroscopy (DCS) for tumor blood flow measurement is introduced in this review paper. DCS measures speckle fluctuations of NIR diffuse light in tissue, which are sensitive to the motions of red blood cells. DCS offers several attractive new features for tumor blood flow measurement such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth. DCS technology has been utilized for continuous measurement of tumor blood flow before, during, and after cancer therapies. In those pilot investigations, DCS hemodynamic measurements add important new variables into the mix for differentiation of benign from malignant tumors and for prediction of treatment outcomes. It is envisaged that with more clinical applications in large patient populations, DCS might emerge as an important method of choice for bedside management of cancer therapy, and it will certainly provide important new information about cancer physiology that may be of use in diagnosis.

  14. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  15. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  16. Determination of a novel bile acid sequestrant in rodent diet by near-infrared spectroscopy.

    PubMed

    Scull, J R; Moyer, K L; Green, J S; Woodeshick, R W; Alasandro, M S

    1999-05-01

    DMP 504 is a high molecular weight polymer currently under development by The DuPont Merck Pharmaceutical Company as a novel bile acid sequestrant to lower serum cholesterol. To assess its safety, DMP 504 is incorporated into rodent diet for oral administration to rats and mice. An analytical method was developed to determine the accuracy and homogeneity of the blends. Since a physical separation or extraction of DMP 504 from the diet was not feasible, near-infrared spectroscopy (near-IR) was employed. The near-IR method provides accurate and precise results for blends containing 1.5-8.0% of DMP 504. Comparison of results at the 1.5% level with a cholate binding referee method is also presented. Both methods provided equivalent results for the 1.5% level.

  17. Application of near-infrared spectroscopy to investigate brain activity: clinical research

    NASA Astrophysics Data System (ADS)

    Lichty, Wemara; Sakatania, Kaoru; Xie, Yuxiao; Zou, Huangcong

    2000-07-01

    Near infrared spectroscopy has recently been used to measure changes of optical parameters (i.e., light absorption or scattering) of brain tissue. The fact that the equipment is generally compact, portable, noninvasive, and reasonably prices makes it ideal for clinical and nonclinical evaluation and monitoring of brain function. Clinical and nonclinical studies evaluating changes related to light absorption are discussed, with an emphasis on cerebral blood oxygenation (CBO) changes and hemodynamic responses while performing cognitive tasks. With respect to the clinical studies, the focus is on variations in patterns of oxygenated hemoglobin (Oxy-Hb), deoxygentated hemoglobin (Deoxy-Hb) and Total-Hb (sum of Oxy-Hb and Deoxy-Hb). The studies about clinical applications includes research we have conducted with older adults and aphasics. Implications regarding the use of NIRS for clincal purposes are considered.

  18. Application of a voltammetric electronic tongue and near infrared spectroscopy for a rapid umami taste assessment.

    PubMed

    Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia

    2014-08-15

    The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques.

  19. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  20. Systematic optimization of MRI guided near infrared diffuse optical spectroscopy in breast

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; Xu, Junqing; Gui, Jiang; Pogue, Brian W.; Paulsen, Keith D.

    2015-03-01

    A hybrid frequency domain (FD)-continuous wave (CW) MRI/NIRS system was validated in a clinical trial involving patients with at least ACR 4 radiologic findings in Xi'an, China. In this study, MRI guided nonlinear iterative reconstruction of near-infrared spectroscopy (NIRS) images with limited phase data is investigated. In addition, a systematic optimization of the system hardware design has been conducted as well. We are able to get less than 3% variation in tumor contrast to the surrounding normal tissue, by reducing the number of FD detectors from 16 to 6, showing the potential of reducing the FD detectors. Furthermore, a lookup table of the scattering properties has been made by averaging four MRI-identified breast density groups. By using this look-up table for the patient with the noisy phase data, similar AUCs and p-values are achieved for differentiating the malignant from benign patients.

  1. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  2. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  3. Measurement of triglycerides concentration in human serum using near-infrared transmission spectroscopy and interval PLS

    NASA Astrophysics Data System (ADS)

    Huang, Furong; Yu, Jianhui; Li, Shiping

    2011-11-01

    In order to measurement of Triglycerides in human serum with reagent-less using near-infrared (NIR) spectroscopy. Interval partial least square (iPLS) was proposed as an effective variable selection approach for multivariate calibration. For this purpose, an independent sample set was employed to evaluate the prediction ability of the resulting model. The spectrum was split into different interval. Then, the informative region of Triglycerides (1654-1746nm), in which the PLS model has a low RMSEP with 0.157mmol/L and a high R with 0.967, is selected with 18 intervals. The results show that the informative region of Triglycerides can be obtained by iPLS and applied to design the simpler reagent-less NIR instruments for inexpensive Triglycerides measurement in future.

  4. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    PubMed Central

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  5. Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging

    PubMed Central

    Fard, Ali M.; Vacas-Jacques, Paulino; Hamidi, Ehsan; Wang, Hao; Carruth, Robert W.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Owing to its superior resolution, intravascular optical coherence tomography (IVOCT) is a promising tool for imaging the microstructure of coronary artery walls. However, IVOCT does not identify chemicals and molecules in the tissue, which is required for a more complete understanding and accurate diagnosis of coronary disease. Here we present a dual-modality imaging system and catheter that uniquely combines IVOCT with diffuse near-infrared spectroscopy (NIRS) in a single dual-modality imaging device for simultaneous acquisition of microstructural and compositional information. As a proof-of-concept demonstration, the device has been used to visualize co-incident microstructural and spectroscopic information obtained from a diseased cadaver human coronary artery. PMID:24514658

  6. Intraoperative 16-Channel Electroencephalography and Bilateral Near Infrared Spectroscopy Monitorization in Aortic Surgery.

    PubMed

    Demir, Aslı; Aydınlı, Bahar; Ünal, Ertekin Utku; Bindal, Mustafa; Koçulu, Rabia; Sarıtaş, Ahmet; Karadeniz, Ümit

    2015-08-01

    Transient neurologic dysfunction is common after aortic surgery. Major causes of postoperative complications followed by cardiac surgery are due to hypoperfusion states such as selective cerebral perfusion, embolic debris during cardiopulmonary bypass and ulcerated plaque emboli originated from carotid arteries. Neurologic complications prolong periods of intensive care unit and hospital stay, worsens quality of life and unfortunately they are an important cause of morbidity. Anaesthesia during a carotid and aortic surgery constitutes of providing adequate brain perfusion pressure, attenuating cerebral metabolism by anaesthetic agents and monitoring the cerebral metabolic supply and demand relationship during the intraoperative period. We present a monitoring approach with an intraoperative 16-channel electroencephalography and bilateral near infrared spectroscopy during redo aneurysm of the sinus of Valsalva surgery. PMID:27366510

  7. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach.

    PubMed

    Santos, João Rodrigo; Sarraguça, Mafalda C; Rangel, António O S S; Lopes, João A

    2012-12-01

    Characterisation of coffee quality based on bean quality assessment is associated with the relative amount of defective beans among non-defective beans. It is therefore important to develop a methodology capable of identifying the presence of defective beans that enables a fast assessment of coffee grade and that can become an analytical tool to standardise coffee quality. In this work, a methodology for quality assessment of green coffee based on near infrared spectroscopy (NIRS) is proposed. NIRS is a green chemistry, low cost, fast response technique without the need of sample processing. The applicability of NIRS was evaluated for Arabica and Robusta varieties from different geographical locations. Partial least squares regression was used to relate the NIR spectrum to the mass fraction of defective and non-defective beans. Relative errors around 5% show that NIRS can be a valuable analytical tool to be used by coffee roasters, enabling a simple and quantitative evaluation of green coffee quality in a fast way.

  8. Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy.

    PubMed

    Doublet, J; Boulanger, A; Ponthieux, A; Laroche, C; Poitrenaud, M; Cacho Rivero, J A

    2013-01-01

    The use of near infrared spectroscopy (NIRS) as an alternative method to predict the biochemical methane potential (BMP) of a broad range of organic substrates was investigated. A total of 296 samples including most of the substrates treated by anaerobic co-digestion were used for NIRS calibration and validation. The NIRS predictions of the BMP values were satisfactory (Root Mean Square Error = 40 ml CH(4) g(-1) VS(fed); r(2) = 0.85). The integration of the entire substrate diversity in the model remained nevertheless difficult due to the specific organic matter properties of stabilised substrates and the high level of uncertainty of the BMP values. The elaboration of a model restricted to "fresh" substrates allows the practical use of the NIR technique to design and operate anaerobic co-digestion plants. The addition of more samples in the dataset in order to perform local calibrations would probably make the elaboration of a global NIR-model possible.

  9. Infrared and near infrared transient absorption spectroscopy of molecular free radicals

    SciTech Connect

    Sears, T.J.; Wu, M.; Hall, G.E.; Chang, B.C.; Hansford, G.; Bloch, J.C.; Field, R.W.

    1993-12-31

    The advantages of absorption spectroscopy at low absorbances include a linear relationship between signal size and number of absorbing molecules, line of sight measurement, and easily interpretable lineshape functions. The main disadvantage is due to the necessity of measuring a small change in light intensity, usually in the presence of a strong background, which limits the sensitivity. In this work, recent results obtained using absorption techniques with continuous wave lasers to measure vibrational and electronic spectra in the mid- and near-infrared of small free radicals are reported. The radical of interest was generated by excimer laser photolysis of a chemically stable precursor molecule and detected by measuring the transient decrease in power of a continuous wave probe laser that traversed the photolyzed volume before being imaged onto a detector.

  10. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  11. Semantic judgment of Chinese-Japanese bilinguals: a near-infrared spectroscopy study.

    PubMed

    Oi, Misato; Saito, Hirofumi; Ito, Hiroshi; Rumme, Paul L

    2010-01-27

    We used functional near-infrared spectroscopy to investigate the role of the dorsolateral prefrontal cortex of bilinguals in semantic processing. Chinese-Japanese bilinguals and Japanese monolinguals judged if visually presented pairings of a word and a definition were Japanese. The four types of pairs appeared in Japanese and/or Chinese dictionaries: both, Japanese-specific, Chinese-specific, and neither. The bilinguals showed greater oxy-hemoglobin concentrations in their left dorsolateral prefrontal cortex for the Chinese-specific pair, while those in its right homologue were greater for the Japanese-specific, the Chinese-specific, and the neither pairs. These results imply that in the bilinguals, the left dorsolateral prefrontal cortex is related to reducing activation of semantic information in the nontarget language, while its right homologue focuses attention on the target language.

  12. The use of near-infrared spectroscopy in the study of typical and atypical development

    PubMed Central

    Vanderwert, Ross E.; Nelson, Charles A.

    2014-01-01

    The use of functional Near Infrared Spectroscopy (fNIRS) has grown exponentially over the past decade, particularly among investigators interested in early brain development. The use of this neuroimaging technique has begun to shed light on the development of a variety of sensory, perceptual, linguistic, and social-cognitive functions. Rather than cast a wide net, in this paper we first discuss typical development, focusing on joint attention, face processing, language, and sensorimotor development. We then turn our attention to infants and children whose development has been compromised or who are at risk for atypical development. We conclude our review by critiquing some of the methodological issues that have plagued the extant literature as well as offer suggestions for future research. PMID:24128733

  13. Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy.

    PubMed

    Gentili, Rodolphe J; Hadavi, Cyrus; Ayaz, Hasan; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2010-01-01

    The development of rehabilitation engineering technologies such as the design of smart prosthetics necessitates a deep understanding of brain mechanisms engaged in ecological situations when human interact with new tools and/or environments. Thus, we aimed to investigate potential hemodynamic signatures reflecting the level of cognitive-motor performance and/or the internal or mental states of individuals when learning a novel tool with unknown properties. These markers were derived from functional Near Infrared Spectroscopy (fNIR) signals. Our results indicate an increased level of oxy-hemoglobin in prefrontal sensors associated with enhanced kinematics during early compared with late learning. This is consistent with previous neuroimaging studies that revealed a higher contribution of prefrontal areas during early compare to late adaptation learning. These non-invasive functional hemodynamic markers may play a role in bioengineering applications such as smart neuroprosthesis and brain monitoring where adaptive behavior is important.

  14. Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy

    PubMed Central

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  15. Use of near infrared spectroscopy in monitoring of volatile fatty acids in anaerobic digestion.

    PubMed

    Jacobi, H Fabian; Moschner, Christian R; Hartung, Eberhard

    2009-01-01

    Recently biogas production from agricultural sources has rapidly developed. Therefore the demands on biogas plants to optimise the efficiency of the anaerobic digestion (AD) process have grown immensely. At present there is no online-supervision tool available to monitor the AD process, but costly and time-consuming chemical analyses are necessary. The possibility to use near-infrared spectroscopy (NIRS) in order to track relevant process parameters like total volatile fatty acids (VFA), acetic acid and propionic acid was investigated in the present research project. A NIR-sensor was integrated into a full-scale 1 MW biogas plant and NIR-spectra of the fermenter contents were recorded semi-continuously for 500 days. Weekly samples were taken and analysed for the above mentioned parameters. Calibration models were calculated, capable of following these parameters: VFA (r(2)=0.94), acetic acid (r(2)=0.69), propionic acid (r(2)=0.89). PMID:19633375

  16. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    NASA Astrophysics Data System (ADS)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  17. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy].

    PubMed

    Tu, Bin; Song, Zhi-qiang; Zheng, Xiao; Zeng, Lu-lu; Yin, Cheng; He, Dong-ping; Qi, Pei-shi

    2015-06-01

    The purpose of this study is mainly to have qualitative-quantitative analysis on the adulteration in rice bran oil by near-infrared spectroscopy analytical technology combined with chemo metrics methods. The author configured 189 adulterated oil samples according to the different mass ratios by selecting rice bran oil as base oil and choosing soybean oil, corn oil, colza oil, and waste oil of catering industry as adulterated oil. Then, the spectral data of samples was collected by using near-infrared spectrometer, and it was pre-processed through the following methods, including without processing, Multiplicative Scatter Correction(MSC), Orthogonal Signal Correction(OSC), Standard Normal Variate and Standard Normal Variate transformation DeTrending(SNV_DT). Furthermore, this article extracted characteristic wavelengths of the spectral datum from the pre-processed date by Successive Projections Algorithm(SPA), established qualitatively classified calibration methods of adulterated oil through classification method of Support Vector Machine(SVM), optimized model parameters(C, g) by Mesh Search Algorithm and determined the optimal process condition. In extracting characteristic wavelengths of the spectral datum from pretreatment by Backward interval Partial Least Squares(BiPLS) and SPA, quantitatively classified calibration models of adulterated oil through Partial Least Squares(PLS) and Support Vector Machine Regression(SVR) was established respectively. In the end, the author optimized the combination of model parameters(C, g) by Mesh Search Algorithm and determined the optimal parameter model. According to the analysis, the accuracy of prediction set and calibration set for SVC model reached 95% and 100% respectively. Compared with the prediction of the adulteration oil content of rice bran oil which was established by the PLS model, the SVR model is the better one, although both of them could implement the content prediction. Furthermore, the correlation

  18. High-Resolution Near-Infrared Spectroscopy of Deuterated CH_2^+

    NASA Astrophysics Data System (ADS)

    Wang, Haiming; Kleshcheva, Maria; Morong, Christopher P.; Oka, Takeshi

    2009-06-01

    Laboratory spectroscopy of deuterated molecular ions is essential in understanding deuterium ion chemistry-a significant area in astrochemistry since the discovery of many extraordinarily abundant deuterated species in prestellar cores and protostars in recent years. Aiming at providing approximate rotational constants for millimeter wave spectroscopists to identify the corresponding species in space, we are measuring the near-infrared spectrum of deuterated CH_2^+. CH_2^+ is the intermediate between the abundant CH^+ and yet to be observed but very important CH_3^+ in interstellar chemistry. Its abundance is expected in diffuse clouds although our search for interstellar CH_2^+ based on our infrared and near-infrared laboratory spectra has not been successful yet. CH_2^+ and its deuterated species are also of special interest for theoretical studies because of their unique intramolecular dynamics, i.e., the Renner-Teller interaction and quasi-linearity. Using He-dominated liquid-N_2 cooled plasmas (˜10 Torr) containing a small amount (˜0.1 Torr) of CD_4, we have measured the spectra of CD_2^+ in the near-infrared from 11,000 cm^{-1} to 12,500 cm^{-1} with our Ti:sapphire laser spectrometer that combines velocity modulation and phase modulation with heterodyne detection for near shot-noise-limited sensitivity. The tilde{A}(0,5,0)^1 ← tilde{X}(0,0,0)^0, tilde{A}(0,5,0)^0 ← tilde{X}(0,0,0)^1 and tilde{A}(0,4,0)^2 ← tilde{X}(0,0,0)^1 bands of CD_2^+ have been identified and analyzed so far Currently a scan for CHD^+ using CH_2D_2 gas is underway. The spectrum will be discussed in comparison with the theoretical predictions by Bunker and colleagues. M. Rösslein, C. M. Gabrys, M.-F. Jagod, and T. Oka, J. Mol. Spectrosc. 153, 738 (1992). J. L. Gottfried and T. Oka, J. Chem. Phys. 121, 11527 (2004). H.-M. Wang, C. P. Morong, and T. Oka, 62nd, 63rd OSU International Symposium on Molecular Spectroscopy, MJ02 (2007) and WG04 (2008). P. R. Bunker, private

  19. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data.

    PubMed

    Balabin, Roman M; Safieva, Ravilya Z

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000cm(-1)) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E=6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification. PMID:21397073

  20. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  1. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    PubMed Central

    Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624

  2. Near-infrared spectroscopy for the determination of testosterone in thin-film composites.

    PubMed

    Fountain, William; Dumstorf, Karen; Lowell, Amanda E; Lodder, Robert A; Mumper, Russell J

    2003-09-19

    More rapid, reproducible, and cost-effective methods to control product quality in the pharmaceutical industry continue to be a major emphasis, particularly with the FDA through its recent process analytical technologies (PAT) initiative. Many different methods have been used to determine the stability and content uniformity of a drug in various dosage forms; however, most of these methods include the destruction of the sample. Therefore, the development of nondestructive methods that allow the analysis of each individual dosage form has become the basis of much research. A new assay for the nondestructive determination of testosterone content in mucoadhesive bi-layer thin-film composites (TFCs) using near-infrared spectroscopy (NIR) was developed. Five sets of the circular films (n=5) with theoretical testosterone content of 0, 1, 2, 3, and 4 mg per 3/8th in. diameter disks were scanned in the near-infrared region of 1100-2500 nm to determine testosterone content. The NIR results were directly compared with those obtained using a previously developed ultraviolet assay for testosterone at 240 nm. Principal component regression (PCR) was performed to calibrate the NIR assay. This correlation produced r2=0.99 with a standard error of estimate (SEE)=0.18 mg, and a standard error of performance (SEP)=0.18 on cross validation with an equal number of samples (F test passed at P=0.05). Though the UV assay showed a slightly better r2 value, the NIR assay was much quicker, easier, and nondestructive. Therefore, the NIR assay may have significant potential for use in the quality control of pharmaceutical films containing drugs.

  3. Applying spectral peak area analysis in near-infrared spectroscopy moisture assays.

    PubMed

    Brülls, Mikael; Folestad, Staffan; Sparén, Anders; Rasmuson, Anders; Salomonsson, John

    2007-05-01

    Spectral peak area analysis has in this study been shown to be a viable method in near-infrared spectroscopy (NIRS) moisture assays. The study also shows that the required number of calibration samples can be minimized, and the method is, therefore, especially suitable for moisture assays in early formulation development and in-situ process monitoring. Diffuse NIRS was utilized in the development of moisture assays for the model compounds polyvinylpyrrolidone and hydroxypropyl-beta-cyclodextrin and also for a lyophilized formulation. Reference data were obtained using coulometric Karl Fischer titration. The NIRS measurements were performed through the bottoms of the sample vials using either a Fourier Transform-Near-Infrared (FT-NIR) spectrometer fitted with a diffuse reflectance probe or a dispersive single beam spectrometer. The ratios of the peak areas of a water peak at 5200 cm(-1) and a reference peak were evaluated using linear regression analysis. The spectral peak area analysis method was compared with a conventional partial least squares regression method. The moisture assays were verified using independent test sets. The investigated moisture range was 0-22% for the samples of PVP, 0-8.5% for the samples of hydroxypropyl-beta-cyclodextrin and 0.5-8.5% for the samples of the lyophilized formulation. The results of the spectral peak area analysis and the conventional partial least squares regression were similar, but the peak area method was more robust and could also make accurate predictions for lyophilized PVP samples, although the calibration set consisted of non-lyophilized samples. The peak area method required fewer calibration samples than the conventional partial least squares regression method.

  4. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    SciTech Connect

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M.; Marion, G. H.; Kirshner, R. P.; Burns, C. R.; Freedman, W. L.; Persson, S. E.; Winge, C.; Gerardy, C. L.; Hoeflich, P.; Im, M.; Jeon, Y.; Pignata, G.; Stanishev, V.; and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  5. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy].

    PubMed

    Tang, Qi-Kun; Wang, Yul; Wu, Yue-Jin; Min, Di; Chen, Da-Wei; Hu, Tong-Hua

    2014-10-01

    The objective of the present study is to develop a method for rapid determination of the content of stevioside (ST) and rebaudioside A (RA) in Stevia Rebaudiana leaves. One hundred and five samples of stevia from different areas containing ST of 0.27%-1.40% and RA of 0.61%-3.98% were used. The 105 groups' NIRS diagram was processed by different methods including subtracting a straight line (SLS), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD) and so on, and then all data were analyzed by partial least square (PLS). The study showed that SLS can be used to extracted spectra information thoroughly to analyze the contents of ST, the correlation coefficients of calibration (Re), the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation (RPD) were 0.986, 0.341, 1.00 and 2.8, respectively. The correlation coefficients of RA was 0.967, RMSEC was 1.50, RMSEP was 1.98 and RPD was 4.17. The results indicated that near infrared spectroscopy (NIRS) technique offers effective quantitative capability for ST and RA in Stevia Rebaudiana leaves. Then the model of stevia dried leaves was used to compare with the stevia powder near infrared model whose correlation coefficients of ST was 0.986, RMSEC was 0.32, RMSEP was 0.601 and RPD was 2.86 and the correlation coefficients of RA was 0.968, RMSEC was 1.50, RMSEP was 1.48 and RPD was 4.2. The result showed that there was no significant difference between the model of dried leaves and that of the powders. However, the dried leaves NIR model reduces the unnecessary the steps of drying and grinding in the actual detection process, saving the time and reducing the workload. PMID:25739214

  6. Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions.

    PubMed

    Schudlo, Larissa C; Chau, Tom

    2015-09-01

    Near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have primarily made use of measurements taken from a single cortical area. In particular, the anterior prefrontal cortex has been the key area used for detecting higher-level cognitive task performance. However, mental task execution typically requires coordination between several, spatially-distributed brain regions. We investigated the value of expanding the area of interrogation to include NIRS measurements from both the prefrontal and parietal cortices to decode mental states. Hemodynamic activity was monitored at 46 locations over the prefrontal and parietal cortices using a continuous-wave near-infrared spectrometer while 11 able-bodied adults rested or performed either the verbal fluency task (VFT) or Stroop task. Offline classification was performed for the three possible binary problems using 25 iterations of bagging with a linear discriminant base classifier. Classifiers were trained on a 10 dimensional feature set. When all 46 measurement locations were considered for classification, average accuracies of 80.4±7.0%, 82.4±7.6%, and 82.8±5.9% in differentiating VFT vs rest, Stroop vs rest and VFT vs Stroop, respectively, were obtained. Relative to using measurements from the anterior PFC alone, an overall average improvement of 11.3% was achieved. Utilizing NIRS measurements from the prefrontal and parietal cortices can be of value in classifying mental states involving working memory and attention. NIRS-BCI accuracies may be improved by incorporating measurements from several, distinct cortical regions, rather than a single area alone. Further development of an NIRS-BCI supporting combinations of VFT, Stroop task and rest states is also warranted. PMID:25960315

  7. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy].

    PubMed

    Tang, Qi-Kun; Wang, Yul; Wu, Yue-Jin; Min, Di; Chen, Da-Wei; Hu, Tong-Hua

    2014-10-01

    The objective of the present study is to develop a method for rapid determination of the content of stevioside (ST) and rebaudioside A (RA) in Stevia Rebaudiana leaves. One hundred and five samples of stevia from different areas containing ST of 0.27%-1.40% and RA of 0.61%-3.98% were used. The 105 groups' NIRS diagram was processed by different methods including subtracting a straight line (SLS), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD) and so on, and then all data were analyzed by partial least square (PLS). The study showed that SLS can be used to extracted spectra information thoroughly to analyze the contents of ST, the correlation coefficients of calibration (Re), the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation (RPD) were 0.986, 0.341, 1.00 and 2.8, respectively. The correlation coefficients of RA was 0.967, RMSEC was 1.50, RMSEP was 1.98 and RPD was 4.17. The results indicated that near infrared spectroscopy (NIRS) technique offers effective quantitative capability for ST and RA in Stevia Rebaudiana leaves. Then the model of stevia dried leaves was used to compare with the stevia powder near infrared model whose correlation coefficients of ST was 0.986, RMSEC was 0.32, RMSEP was 0.601 and RPD was 2.86 and the correlation coefficients of RA was 0.968, RMSEC was 1.50, RMSEP was 1.48 and RPD was 4.2. The result showed that there was no significant difference between the model of dried leaves and that of the powders. However, the dried leaves NIR model reduces the unnecessary the steps of drying and grinding in the actual detection process, saving the time and reducing the workload.

  8. Image-guided near infrared spectroscopy using boundary element method: phantom validation

    PubMed Central

    Srinivasan, Subhadra; Carpenter, Colin; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Image-guided near infrared spectroscopy (IG-NIRS) can provide high-resolution vascular, metabolic and molecular characterization of localized tissue volumes in-vivo. The approach for IG-NIRS uses hybrid systems where the spatial anatomical structure of tissue obtained from standard imaging modalities (such as MRI) is combined with tissue information from diffuse optical imaging spectroscopy. There is need to optimize these hybrid systems for large-scale clinical trials anticipated in the near future in order to evaluate the feasibility of this technology across a larger population. However, existing computational methods such as the finite element method mesh arbitrary image volumes, which inhibit automation, especially with large numbers of datasets. Circumventing this issue, a boundary element method (BEM) for IG-NIRS systems in 3–D is presented here using only surface rendering and discretization. The process of surface creation and meshing is faster, more reliable, and is easily generated automatically as compared to full volume meshing. The proposed method has been implemented here for multi-spectral non-invasive characterization of tissue. In phantom experiments, 3–D spectral BEM-based spectroscopy recovered the oxygen dissociation curve with mean error of 6.6% and tracked variation in total hemoglobin linearly. PMID:20445830

  9. Diagnosis of colorectal cancer by near-infrared optical fiber spectroscopy and random forest

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Lin, Zan; Wu, Hegang; Wang, Li; Wu, Tong; Tan, Chao

    2015-01-01

    Near-infrared (NIR) spectroscopy has such advantages as being noninvasive, fast, relatively inexpensive, and no risk of ionizing radiation. Differences in the NIR signals can reflect many physiological changes, which are in turn associated with such factors as vascularization, cellularity, oxygen consumption, or remodeling. NIR spectral differences between colorectal cancer and healthy tissues were investigated. A Fourier transform NIR spectroscopy instrument equipped with a fiber-optic probe was used to mimic in situ clinical measurements. A total of 186 spectra were collected and then underwent the preprocessing of standard normalize variate (SNV) for removing unwanted background variances. All the specimen and spots used for spectral collection were confirmed staining and examination by an experienced pathologist so as to ensure the representative of the pathology. Principal component analysis (PCA) was used to uncover the possible clustering. Several methods including random forest (RF), partial least squares-discriminant analysis (PLSDA), K-nearest neighbor and classification and regression tree (CART) were used to extract spectral features and to construct the diagnostic models. By comparison, it reveals that, even if no obvious difference of misclassified ratio (MCR) was observed between these models, RF is preferable since it is quicker, more convenient and insensitive to over-fitting. The results indicate that NIR spectroscopy coupled with RF model can serve as a potential tool for discriminating the colorectal cancer tissues from normal ones.

  10. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds.

    PubMed

    Holt, David; Parthasarathy, Ashwin B; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16 . Ten animals showed no residual tumor cells in the wound bed (mean SBR<2 , P<0.001 ). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15 , and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  11. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Sun, Chanjun; Zhou, Binxiong; He, Yong

    2015-11-01

    The contents of hemicellulose, cellulose and lignin are important for moso bamboo processing in biomass energy industry. The feasibility of using near infrared (NIR) spectroscopy for rapid determination of hemicellulose, cellulose and lignin was investigated in this study. Initially, the linear relationship between bamboo components and their NIR spectroscopy was established. Subsequently, successive projections algorithm (SPA) was used to detect characteristic wavelengths for establishing the convenient models. For hemicellulose, cellulose and lignin, 22, 22 and 20 characteristic wavelengths were obtained, respectively. Nonlinear determination models were subsequently built by an artificial neural network (ANN) and a least-squares support vector machine (LS-SVM) based on characteristic wavelengths. The LS-SVM models for predicting hemicellulose, cellulose and lignin all obtained excellent results with high determination coefficients of 0.921, 0.909 and 0.892 respectively. These results demonstrated that NIR spectroscopy combined with SPA-LS-SVM is a useful, nondestructive tool for the determinations of hemicellulose, cellulose and lignin in moso bamboo.

  12. Detection and characterization of human tissue lesions with near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Feld, Michael S.; Manoharan, Ramasamy; Salenius, Juha; Orenstein-Carndona, Jacobo; Roemer, Tjeerd J.; Brennan, James F., III; Dasari, Ramachandra R.; Wang, Yang

    1995-05-01

    Near infrared (NIR) Raman spectroscopy provides a powerful method for quantitative histochemistry of human tissue and disease diagnosis. The feasibility and potential of this technique for in situ histochemical analysis of human coronary artery has been demonstrated and presented in other reports from our laboratory. In this work, we review recent results obtained with the NIR Raman spectroscopy on a variety of tissue types studied at the MIT Laser Biomedical Research Center. We have collected NIR Raman spectra from colon, bladder, breast, and carotid artery. For colon, bladder and breast, consistent differences between carcinoma and normal tissue spectra were observed. For colon and bladder, the spectral differences appear to be due to an increased content of nucleic acid in carcinomas, while the spectral changes in malignant breast tissue are associated with an increase of protein content. Spectra from carotid artery have similar features as those from aorta and coronary arteries. We also show some preliminary results obtained with a NIR Raman microspectroscopy setup with 20 micron lateral resolution. The biochemical distributions for normal and diseased regions on the same tissue samples are observed. The potential of using this NIR Raman spectroscopy for detection and characterization of carcinoma and atherosclerosis, is discussed.

  13. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  14. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy

    PubMed Central

    Li, Xiaoli; Sun, Chanjun; Zhou, Binxiong; He, Yong

    2015-01-01

    The contents of hemicellulose, cellulose and lignin are important for moso bamboo processing in biomass energy industry. The feasibility of using near infrared (NIR) spectroscopy for rapid determination of hemicellulose, cellulose and lignin was investigated in this study. Initially, the linear relationship between bamboo components and their NIR spectroscopy was established. Subsequently, successive projections algorithm (SPA) was used to detect characteristic wavelengths for establishing the convenient models. For hemicellulose, cellulose and lignin, 22, 22 and 20 characteristic wavelengths were obtained, respectively. Nonlinear determination models were subsequently built by an artificial neural network (ANN) and a least-squares support vector machine (LS-SVM) based on characteristic wavelengths. The LS-SVM models for predicting hemicellulose, cellulose and lignin all obtained excellent results with high determination coefficients of 0.921, 0.909 and 0.892 respectively. These results demonstrated that NIR spectroscopy combined with SPA-LS-SVM is a useful, nondestructive tool for the determinations of hemicellulose, cellulose and lignin in moso bamboo. PMID:26601657

  15. Investigation of the composition of anabolic tablets using near infrared spectroscopy and Raman chemical imaging.

    PubMed

    Rebiere, Hervé; Ghyselinck, Céline; Lempereur, Laurent; Brenier, Charlotte

    2016-01-01

    The use of performance enhancing drugs is a widespread phenomenon in professional and leisure sports. A spectroscopic study was carried out on anabolic tablets labelled as 5 mg methandienone tablets provided by police departments. The analytical approach was based on a two-step methodology: a fast analysis of tablets using near infrared (NIR) spectroscopy to assess sample homogeneity based on their global composition, followed by Raman chemical imaging of one sample per NIR profile to obtain information on sample formulation. NIR spectroscopy assisted by a principal components analysis (PCA) enabled fast discrimination of different profiles based on the excipient formulation. Raman hyperspectral imaging and multivariate curve resolution - alternating least square (MCR-ALS) provided chemical images of the distribution of the active substance and excipients within tablets and facilitated identification of the active compounds. The combination of NIR spectroscopy and Raman chemical imaging highlighted dose-to-dose variations and succeeded in the discrimination of four different formulations out of eight similar samples of anabolic tablets. Some samples contained either methandienone or methyltestosterone whereas one sample did not contain an active substance. Other ingredients were sucrose, lactose, starch or talc. Both techniques were fast and non-destructive and therefore can be carried out as exploratory methods prior to destructive screening methods. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  17. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.

    2014-11-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.

  18. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  19. Near-infrared (NIR) Raman spectroscopy of Precambrian carbonate stromatolites with post-depositional organic inclusions.

    PubMed

    Tanaka, Zuki; Perry, Meredith; Cooper, George; Tang, Suning; McKay, Christopher P; Chen, Bin

    2012-08-01

    Raman spectroscopy has promising potential for future Mars missions as a non-contact detection technique for characterizing organic material and mineralogy. Such a capability will be useful for selecting samples for detailed analysis on a rover and for selecting samples for return to Earth. Stromatolites are important evidence for the earliest life on Earth and are promising targets for Mars investigations. Although constructed by microorganisms, stromatolites are organo-sedimentary structures that can be large enough to be discovered and investigated by a Mars rover. In this paper, we report the Raman spectroscopic investigations of the carbonate mineralogy and organic layering in a Precambrian (~1.5 Gyr old) stromatolite from the Crystal Spring Formation of Southern California. Ultraviolet (UV: 266 nm), visible (514 nm, 633 nm), and near-infrared (NIR: 785 nm, 1064 nm) Raman spectra are presented. We conclude that 1064 nm excitation is the optimal excitation wavelength for avoiding intrinsic fluorescence and detecting organic carbon within the carbonate matrix. Our results confirm that NIR Raman spectroscopy has important applications for future Mars missions.

  20. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  1. [Study of rapid prediction of wood surface glossiness by near infrared spectroscopy].

    PubMed

    Liu, Ya-Na; Yang, Zhong; Lü, Bin; Zhang, Mao-Mao; Wang, Xing-Hua

    2014-03-01

    Surface glossiness is one of the important visual appearance parameters of natural polymer material (wood) and its related products. To realize the fast measurement of natural polymer material surface glossiness is of great significance to the online quality control and assessment of its surface. In order to broaden the application of near infrared (NIR) spectroscopy in the field of polymer material surface quality control and realize the feasibility of NIR as a fast measurement of surface glossiness, the NIR combined with partial least squares (PLS) analysis were used to analyse the correlations of natural polymer material wood surface glossiness between the NIR predicted and lab measured, and then to investigate the feasibility of NIR to rapidly predict the surface glossiness of natural polymer material wood. The results showed that the wood NIR diffuse reflectance spectroscopy regularly varied with the different wood surface glossiness, from which we can concluded that the NIR spectrums reflected the information of wood surface glossiness. The correlation coefficients of surface glossiness between the PLS models predicted and lab measured were up to 0.90. Additionally, by changing the degree between the fiber and sample surface, we collected the different wood NIR spectrums, the accuracy of NIR surface glossiness models based on these NIR spectrums had not significantly improved, and models based on the NIR spectrums collected by the 90 degree between the fiber and sample surface performed better.

  2. Classification of structurally related commercial contrast media by near infrared spectroscopy.

    PubMed

    Yip, Wai Lam; Soosainather, Tom Collin; Dyrstad, Knut; Sande, Sverre Arne

    2014-03-01

    Near infrared spectroscopy (NIRS) is a non-destructive measurement technique with broad application in pharmaceutical industry. Correct identification of pharmaceutical ingredients is an important task for quality control. Failure in this step can result in several adverse consequences, varied from economic loss to negative impact on patient safety. We have compared different methods in classification of a set of commercially available structurally related contrast media, Iodixanol (Visipaque(®)), Iohexol (Omnipaque(®)), Caldiamide Sodium and Gadodiamide (Omniscan(®)), by using NIR spectroscopy. The performance of classification models developed by soft independent modelling of class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA) and Main and Interactions of Individual Principal Components Regression (MIPCR) were compared. Different variable selection methods were applied to optimize the classification models. Models developed by backward variable elimination partial least squares regression (BVE-PLS) and MIPCR were found to be most effective for classification of the set of contrast media. Below 1.5% of samples from the independent test set were not recognized by the BVE-PLS and MIPCR models, compared to up to 15% when models developed by other techniques were applied. PMID:24374816

  3. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

  4. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Chu, Laurie; Egami, Eiichi; Hodapp, Klaus W.; Kelly, Douglas M.; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-07-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.02 x 2.02 fields of view that are capable of either imaging or spectroscopic observations. Either of two R ~ 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over λ = 2.4 - 5.0 μm in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 - 2.3 μm) imaging observations of the 2.4 - 5.0 μm spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 - 2.0 μm spectroscopy (simultaneously with 2.4 - 5.0 μm) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.

  5. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review.

    PubMed

    Prieto, N; Roehe, R; Lavín, P; Batten, G; Andrés, S

    2009-10-01

    Over the past three decades, near infrared reflectance (NIR) spectroscopy has been proved to be one of the most efficient and advanced tools for the estimation of quality attributes in meat and meat products. This review focuses on the use of NIR spectroscopy to predict different meat properties, considering the literature published mainly in the last decade. Firstly, the potential of NIR to predict chemical composition (crude protein, intramuscular fat, moisture/dry matter, ash, gross energy, myoglobin and collagen), technological parameters (pH value; L*, a*, b* colour values; water holding capacity; Warner-Bratzler and slice shear force) and sensory attributes (colour, shape, marbling, odour, flavour, juiciness, tenderness or firmness) are reviewed. Secondly, the usefulness of NIR for classification into meat quality grades is presented and thirdly its potential application in the industry is shown. The review indicates that NIR showed high potential to predict chemical meat properties and to categorize meat into quality classes. In contrast, NIR showed limited ability for estimating technological and sensory attributes, which may be mainly due to the heterogeneity of the meat samples and their preparation, the low precision of the reference methods and the subjectivity of assessors in taste panels. Hence, future work to standardize sample preparation and increase the accuracy of reference methods is recommended to improve NIR ability to predict those technological and sensory characteristics. In conclusion, the review shows that NIR has a considerable potential to predict simultaneously numerous meat quality criteria. PMID:20416766

  6. Quality Evaluation of Shelled and Unshelled Macadamia Nuts by Means of Near-Infrared Spectroscopy (NIR).

    PubMed

    Canneddu, Giovanna; Júnior, Luis Carlos Cunha; de Almeida Teixeira, Gustavo Henrique

    2016-07-01

    The quality of shelled and unshelled macadamia nuts was assessed by means of Fourier transformed near-infrared (FT-NIR) spectroscopy. Shelled macadamia nuts were sorted as sound nuts; nuts infected by Ecdytolopha aurantiana and Leucopteara coffeella; and cracked nuts caused by germination. Unshelled nuts were sorted as intact nuts (<10% half nuts, 2014); half nuts (March, 2013; November, 2013); and crushed nuts (2014). Peroxide value (PV) and acidity index (AI) were determined according to AOAC. PCA-LDA shelled macadamia nuts classification resulted in 93.2% accurate classification. PLS PV prediction model resulted in a square error of prediction (SEP) of 3.45 meq/kg, and a prediction coefficient determination value (Rp (2) ) of 0.72. The AI PLS prediction model was better (SEP = 0.14%, Rp (2) = 0.80). Although adequate classification was possible (93.2%), shelled nuts must not contain live insects, therefore the classification accuracy was not satisfactory. FT-NIR spectroscopy can be successfully used to predict PV and AI in unshelled macadamia nuts, though.

  7. Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools.

    PubMed

    Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen

    2016-02-01

    The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp=0.9180 and RMSEP=2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine.

  8. Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools

    NASA Astrophysics Data System (ADS)

    Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen

    2016-02-01

    The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp = 0.9180 and RMSEP = 2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine.

  9. Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy.

    PubMed

    Elwell, Clare E; Henty, Julian R; Leung, Terence S; Austin, Topun; Meek, Judith H; Delpy, David T; Wyatt, John S

    2005-01-01

    Greater understanding of the rate of oxygen delivery and uptake in sick preterm and term infants undergoing intensive care is an important aim of brain-orientated neonatal medicine. Near infrared spectroscopy (NIRS) is a continuous, non-invasive and portable technique which can be used to measure cerebral blood flow (CBF) in infants. It is also possible to use spatially resolved spectroscopy to measure absolute mean cerebral oxygen saturation (SmcO2). The aim of this study was to investigate the derivation of cerebral metabolic rate for oxygen (CMRO2) from these two measurements. Nine preterm infants were studied, of median (range) gestational age 25 (23-37) weeks. A NIRO300 was used to measure CBF and SmcO2 simultaneously over the right and left hemisphere. Median (range) left and right cerebral hemisphere values for CMRO2 were 0.95 (0.79-1.53) ml 100g(-1) x min(-1) and 0.88 (0.69-1.46) ml 100g(-1) x min(-1), respectively. No significant difference was seen between the left- and right-sided values. These values are similar to median (range) values previously reported in infants using positron emission tomography or more invasive NIRS methods. Further work is necessary to define limits on the use of this technique, particularly in the assumption of the venous:arterial compartment volume ratio across different infants. PMID:16594161

  10. Combined optimal-pathlengths method for near-infrared spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Xu, Kexin; Lu, Yanhui; Sun, Huili

    2004-04-01

    Near-infrared (NIR) spectroscopy is a rapid, reagent-less and nondestructive analytical technique, which is being increasingly employed for quantitative application in chemistry, pharmaceutics and food industry, and for the optical analysis of biological tissue. The performance of NIR technology greatly depends on the abilities to control and acquire data from the instrument and to calibrate and analyse data. Optical pathlength is a key parameter of the NIR instrument, which has been thoroughly discussed in univariate quantitative analysis in the presence of photometric errors. Although multiple wavelengths can provide more chemical information, it is difficult to determine a single pathlength that is suitable for each wavelength region. A theoretical investigation of a selection procedure for multiple pathlengths, called the combined optimal-pathlengths (COP) method, is identified in this paper and an extensive comparison with the single pathlength method is also performed on simulated and experimental NIR spectral data sets. The results obtained show that the COP method can greatly improve the prediction accuracy in NIR spectroscopy quantitative analysis.

  11. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel.

    PubMed

    Baptista, Patrícia; Felizardo, Pedro; Menezes, José C; Correia, M Joana Neiva

    2008-01-28

    Biodiesel is the main alternative to fossil diesel. The key advantages of its use are the fact that it is a non-toxic renewable resource, which leads to lower emissions of polluting gases. European governments are targeting the incorporation of 20% of biofuels in the general fuels until 2020. Chemically, biodiesel is a mixture of fatty acid methyl esters, derived from vegetable oils or animal fats, which is usually produced by a transesterification reaction, where the oils/fats react with an alcohol, in the presence of a catalyst. The European Standard (EN 14214) establishes 25 parameters that have to be analysed to certify biodiesel quality and the analytical methods that should be used to determine those properties. This work reports the use of near infrared (NIR) spectroscopy to determine the esters content in biodiesel as well as the content in linolenic acid methyl esters (C18:3) in industrial and laboratory-scale biodiesel samples. Furthermore, calibration models for myristic (C14:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) acid methyl esters were also obtained. Principal component analysis was used for the qualitative analysis of the spectra, while partial least squares regression was used to develop the calibration models between analytical and spectral data. The results confirm that NIR spectroscopy, in combination with multivariate calibration, is a promising technique to assess the biodiesel quality control in both laboratory-scale and industrial scale samples.

  12. Activation detection in functional near-infrared spectroscopy by wavelet coherence.

    PubMed

    Zhang, Xin; Yu, Jian; Zhao, Ruirui; Xu, Wenting; Niu, Haijing; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a task is a challenge when analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal obtained while either performing or not performing a task. We convolved the signal with the canonical hemodynamic response function to predict a possible response. The wavelet coherence was used to investigate the relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coherence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each channel. Experiments on both simulated and experimental data demonstrated that the method was effective for detecting activated channels hidden in fNIRS data. PMID:25562502

  13. Near-infrared (NIR) Raman spectroscopy of Precambrian carbonate stromatolites with post-depositional organic inclusions.

    PubMed

    Tanaka, Zuki; Perry, Meredith; Cooper, George; Tang, Suning; McKay, Christopher P; Chen, Bin

    2012-08-01

    Raman spectroscopy has promising potential for future Mars missions as a non-contact detection technique for characterizing organic material and mineralogy. Such a capability will be useful for selecting samples for detailed analysis on a rover and for selecting samples for return to Earth. Stromatolites are important evidence for the earliest life on Earth and are promising targets for Mars investigations. Although constructed by microorganisms, stromatolites are organo-sedimentary structures that can be large enough to be discovered and investigated by a Mars rover. In this paper, we report the Raman spectroscopic investigations of the carbonate mineralogy and organic layering in a Precambrian (~1.5 Gyr old) stromatolite from the Crystal Spring Formation of Southern California. Ultraviolet (UV: 266 nm), visible (514 nm, 633 nm), and near-infrared (NIR: 785 nm, 1064 nm) Raman spectra are presented. We conclude that 1064 nm excitation is the optimal excitation wavelength for avoiding intrinsic fluorescence and detecting organic carbon within the carbonate matrix. Our results confirm that NIR Raman spectroscopy has important applications for future Mars missions. PMID:22800768

  14. Arc welding quality monitoring by means of near infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. B.; Mirapeix, J.; Cobo, A.; Conde, O. M.; Lopez-Higuera, J. M.

    2008-03-01

    The search for an efficient on-line monitoring system focused on the real-time analysis of the welding quality is an active area of research, mainly due to the widespread use of both arc and laser welding processes in relevant industrial scenarios such as aeronautics or nuclear. In this work, an improvement in the performance of a previously designed monitor system is presented. This improvement is accomplished by the employment of a dual spatial-spectral technique, namely imaging spectroscopy. This technique allows the simultaneous determination of the optical spectrum components and the spatial location of an object in a surface. In this way, the spatially characterization of the plasma emitted during a tungsten inert gas (TIG) welding is performed. The main advantage of this technique is that the spectra of all the points in the line of vision are measured at the same time. Not only are all the spectra captured simultaneously, but they are also processed as a batch, allowing the investigation of the welding quality. Moreover, imaging spectroscopy provides the desired real-time operation. To simultaneously acquire the information of both domains, spectral and spatial, a passive Prism-Grating-Prism (PGP) device can be used. In this paper the plasma spectra is captured during the welding test by means of a near infrared imaging spectroscopic system which consists of input optics, an imaging spectrograph and a monochrome camera. Technique features regarding on-line welding quality monitoring are discussed by means of several experimental welding tests.

  15. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Li, Gang; Yan, Wen-Juan; Lin, Ling

    2014-11-01

    Developing noninvasive blood glucose monitoring method is an to immense need to alleviate the pain and suffering of diabetics associated with the frequent pricking of skin for taking blood sample. A hybrid algorithm for multivariate calibration is proposed to improve the prediction performance of classification of diabetes and measurement of blood glucose concentration by near infrared (NIR) spectroscopy noninvasively. The algorithm is based on wavelet prism modified uninformative variable elimination approach (WP-mUVE) combined with least squares support vector machine (LSSVM), named as WP-mUVE-LSSVM. The method is successfully applied to diabetic classification experiment (in vivo) and blood glucose concentration measurement experiment (in vivo) respectively. Human tongue is selected as the measuring site in this study. To evaluate effectiveness of pretreatment method and quality of calibration models, several usually used pretreatment methods and kernel functions of LSSVM are introduced comparing with our method. Higher quality data is obtained by our pretreatment method owing to the elimination of varying background and noise of spectra data simultaneously. Better prediction accuracy and adaptability are obtained by LSSVM model with radial basis kernel function. The results indicate that WP-mUVE-LSSVM holds promise for the classification of diabetes and measurement of blood glucose concentration noninvasively based on human tongue using NIR spectroscopy.

  16. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review.

    PubMed

    Prieto, N; Roehe, R; Lavín, P; Batten, G; Andrés, S

    2009-10-01

    Over the past three decades, near infrared reflectance (NIR) spectroscopy has been proved to be one of the most efficient and advanced tools for the estimation of quality attributes in meat and meat products. This review focuses on the use of NIR spectroscopy to predict different meat properties, considering the literature published mainly in the last decade. Firstly, the potential of NIR to predict chemical composition (crude protein, intramuscular fat, moisture/dry matter, ash, gross energy, myoglobin and collagen), technological parameters (pH value; L*, a*, b* colour values; water holding capacity; Warner-Bratzler and slice shear force) and sensory attributes (colour, shape, marbling, odour, flavour, juiciness, tenderness or firmness) are reviewed. Secondly, the usefulness of NIR for classification into meat quality grades is presented and thirdly its potential application in the industry is shown. The review indicates that NIR showed high potential to predict chemical meat properties and to categorize meat into quality classes. In contrast, NIR showed limited ability for estimating technological and sensory attributes, which may be mainly due to the heterogeneity of the meat samples and their preparation, the low precision of the reference methods and the subjectivity of assessors in taste panels. Hence, future work to standardize sample preparation and increase the accuracy of reference methods is recommended to improve NIR ability to predict those technological and sensory characteristics. In conclusion, the review shows that NIR has a considerable potential to predict simultaneously numerous meat quality criteria.

  17. Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy.

    PubMed

    Cruz, Madalena V; Sarraguça, Mafalda Cruz; Freitas, Filomena; Lopes, João Almeida; Reis, Maria A M

    2015-01-20

    Online monitoring process for the production of polyhydroxyalkanoates (PHA), using cooking oil (UCO) as the sole carbon source and Cupriavidus necator, was developed. A batch reactor was operated and hydroxybutyrate homopolymer was obtained. The biomass reached a maximum concentration of 11.6±1.7gL(-1) with a polymer content of 63±10.7% (w/w). The yield of product on substrate was 0.77±0.04gg(-1). Near-infrared (NIR) spectroscopy was used for online monitoring of the fermentation, using a transflectance probe. Partial least squares regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18, 2.37 and 1.58gL(-1) for biomass, UCO and PHA, respectively, which indicate the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control.

  18. Quality Evaluation of Shelled and Unshelled Macadamia Nuts by Means of Near-Infrared Spectroscopy (NIR).

    PubMed

    Canneddu, Giovanna; Júnior, Luis Carlos Cunha; de Almeida Teixeira, Gustavo Henrique

    2016-07-01

    The quality of shelled and unshelled macadamia nuts was assessed by means of Fourier transformed near-infrared (FT-NIR) spectroscopy. Shelled macadamia nuts were sorted as sound nuts; nuts infected by Ecdytolopha aurantiana and Leucopteara coffeella; and cracked nuts caused by germination. Unshelled nuts were sorted as intact nuts (<10% half nuts, 2014); half nuts (March, 2013; November, 2013); and crushed nuts (2014). Peroxide value (PV) and acidity index (AI) were determined according to AOAC. PCA-LDA shelled macadamia nuts classification resulted in 93.2% accurate classification. PLS PV prediction model resulted in a square error of prediction (SEP) of 3.45 meq/kg, and a prediction coefficient determination value (Rp (2) ) of 0.72. The AI PLS prediction model was better (SEP = 0.14%, Rp (2) = 0.80). Although adequate classification was possible (93.2%), shelled nuts must not contain live insects, therefore the classification accuracy was not satisfactory. FT-NIR spectroscopy can be successfully used to predict PV and AI in unshelled macadamia nuts, though. PMID:27228399

  19. Quantitative determination and classification of energy drinks using near-infrared spectroscopy.

    PubMed

    Rácz, Anita; Héberger, Károly; Fodor, Marietta

    2016-09-01

    Almost a hundred commercially available energy drink samples from Hungary, Slovakia, and Greece were collected for the quantitative determination of their caffeine and sugar content with FT-NIR spectroscopy and high-performance liquid chromatography (HPLC). Calibration models were built with partial least-squares regression (PLSR). An HPLC-UV method was used to measure the reference values for caffeine content, while sugar contents were measured with the Schoorl method. Both the nominal sugar content (as indicated on the cans) and the measured sugar concentration were used as references. Although the Schoorl method has larger error and bias, appropriate models could be developed using both references. The validation of the models was based on sevenfold cross-validation and external validation. FT-NIR analysis is a good candidate to replace the HPLC-UV method, because it is much cheaper than any chromatographic method, while it is also more time-efficient. The combination of FT-NIR with multidimensional chemometric techniques like PLSR can be a good option for the detection of low caffeine concentrations in energy drinks. Moreover, three types of energy drinks that contain (i) taurine, (ii) arginine, and (iii) none of these two components were classified correctly using principal component analysis and linear discriminant analysis. Such classifications are important for the detection of adulterated samples and for quality control, as well. In this case, more than a hundred samples were used for the evaluation. The classification was validated with cross-validation and several randomization tests (X-scrambling). Graphical Abstract The way of energy drinks from cans to appropriate chemometric models.

  20. Quantitative determination and classification of energy drinks using near-infrared spectroscopy.

    PubMed

    Rácz, Anita; Héberger, Károly; Fodor, Marietta

    2016-09-01

    Almost a hundred commercially available energy drink samples from Hungary, Slovakia, and Greece were collected for the quantitative determination of their caffeine and sugar content with FT-NIR spectroscopy and high-performance liquid chromatography (HPLC). Calibration models were built with partial least-squares regression (PLSR). An HPLC-UV method was used to measure the reference values for caffeine content, while sugar contents were measured with the Schoorl method. Both the nominal sugar content (as indicated on the cans) and the measured sugar concentration were used as references. Although the Schoorl method has larger error and bias, appropriate models could be developed using both references. The validation of the models was based on sevenfold cross-validation and external validation. FT-NIR analysis is a good candidate to replace the HPLC-UV method, because it is much cheaper than any chromatographic method, while it is also more time-efficient. The combination of FT-NIR with multidimensional chemometric techniques like PLSR can be a good option for the detection of low caffeine concentrations in energy drinks. Moreover, three types of energy drinks that contain (i) taurine, (ii) arginine, and (iii) none of these two components were classified correctly using principal component analysis and linear discriminant analysis. Such classifications are important for the detection of adulterated samples and for quality control, as well. In this case, more than a hundred samples were used for the evaluation. The classification was validated with cross-validation and several randomization tests (X-scrambling). Graphical Abstract The way of energy drinks from cans to appropriate chemometric models. PMID:27531031

  1. Advances in R&D in near-infrared spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Kawano, Sumio; Iwamoto, Mutsuo

    1991-02-01

    More than 20 years ago when Mr. K. H. Norris firstly introduced the near infrared spectroscopy (NIRS) as a powerful technology in the field of composition analysis of cereals those who were interested in the area of classical spectroscopy would not like to recognize its potential. This tendency still remains at present however it leaves no room for doubt that from viewpoints of applied spectroscopy the NIRS has consolidated its position. From a viewpoint of NIRS application in the field of nondestructive or non invasive measuring techniques history of this technology is only the last decade in Japan. However since the technology was firstly introduced to composition analysis of agricultural commodities in the same manner as in other countries R and D have been growing more actively in diversified fields such as agriculture and industry as well as medical science. In addition the NIRS technology are becoming of general interest by combining other techniques to create various hyphenated instrumentations such as FTNIR MCFTNIR NIRCT and NIR-NMR. In this paper new trends of R D on NIR spectroscopy which are being conducted in Japan will be reviewed. 2. S1JMMARY OF PRESENT R D ON NIRS IN JAPAN NIRS applications reported in the last 3 years are summarized in Table 1. Table 1 Applications of NIRS in Japan Application for Agriculture Taste evaluation of rice and coffee Determination of chemical compositions rice for breeding Determination of chemical compositions in tea Determination of sugar contents in intact peaches Japanese pears Satsuma oranges and apples Determination of sugars and acids in intact tomatoes Determination of forage composition Application for Industry Analysis of state of water in foods Application of analyzing Maillard Reaction''s Process Pattern recognition of NIR spectra as related to process control of roasting coffee beans Quality control of tea processing Determination of moisture content of Surimi products 2 / SPIE Vol. 1379 Optics in Agriculture

  2. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  3. Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strain.

    PubMed

    Hernandez, Eduardo; Pawar, Pallavi; Keyvan, Golshid; Wang, Yifan; Velez, Natasha; Callegari, Gerardo; Cuitino, Alberto; Michniak-Kohn, Bozena; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-01-01

    This study describes how the strain on formulation components affects dissolution and how near infrared spectroscopy can be used to predict dissolution. Strain (exposure to shear stress) applied during powder mixing affects the interaction between formulation components. Particles experience shear strain when they move relative to each other in a process affecting the properties of the final product. This stress affects the dissolution of oral solid dosages forms. However, dissolution testing destroys the entire tablet, making it impossible to further evaluate tablet properties when an out of specification result is obtained. Thus, a nondestructive technique such as near infrared spectroscopy is desirable to predict dissolution. The aim of this study was to predict dissolution on tablets with different levels of strain (shear) using near infrared spectroscopy in combination with multivariate data analysis. Shear was induced using a modified Couette cell on the powder mixture and tablets from these mixtures were produced using a tablet press emulator. Tablets produced with different strain levels were measured using near infrared spectroscopy. Spectra were obtained in diffuse reflectance mode and pretreated with baseline correction to maintain the physical and chemical information of the tablets. Dissolution profiles were obtained using USP Apparatus 2 as a reference method. Principal component analysis was used to study the sources of variation in the spectra obtained. Partial least squares 2 was used to predict dissolution on tablets with different levels of strain.

  4. Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current US corn grading system accounts for the portion of damaged kernels, which is measured by time-consuming and inaccurate visual inspection. Near infrared spectroscopy (NIRS), a non-destructive and fast analytical method, was tested as a tool for discriminating corn kernels with heat and f...

  5. Enhanced single seed trait predictions in soybean (Glycine max) and robust calibration model transfer with near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single seed near infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait...

  6. Hemodynamic and Electrophysiological Connectivity in the Language System: Simultaneous Near-Infrared Spectroscopy and Electrocorticography Recordings during Cortical Stimulation

    ERIC Educational Resources Information Center

    Sato, Yosuke; Oishi, Makoto; Fukuda, Masafumi; Fujii, Yukihiko

    2012-01-01

    We applied near-infrared spectroscopy (NIRS) and electrocorticography (ECoG) recordings during cortical stimulation to a temporal lobe epilepsy patient who underwent subdural electrode implantation. Using NIRS, changes in blood concentrations of oxyhemoglobin (HbO[subscript 2]) and deoxyhemoglobin (HbR) during cortical stimulation of the left…

  7. Co-Speech Gesture Production in an Animation-Narration Task by Bilinguals: A Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Oi, Misato; Saito, Hirofumi; Li, Zongfeng; Zhao, Wenjun

    2013-01-01

    To examine the neural mechanism of co-speech gesture production, we measured brain activity of bilinguals during an animation-narration task using near-infrared spectroscopy. The task of the participants was to watch two stories via an animated cartoon, and then narrate the contents in their first language (Ll) and second language (L2),…

  8. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  9. Estimating and validating the interbeat intervals of the heart using near-infrared spectroscopy on the human forehead

    NASA Astrophysics Data System (ADS)

    Trajkovic, Ivo; Scholkmann, Felix; Wolf, Martin

    2011-08-01

    In studies with near-infrared spectroscopy, the recorded signals contain information on the temporal interbeat intervals of the heart. If this cardiac information is needed exclusively and could directly be extracted, an additional electrocardiography device would be unnecessary. The aim was to estimate these intervals from signals measured with near-infrared spectroscopy with two novel approaches. In one approach, we model the heartbeat oscillations in these signals with a Fourier series where the coefficients and the fundamental frequency can continuously change over time. The time-dependent model parameters are estimated and used to calculate the interbeat intervals. The second approach uses empirical mode decomposition. The signal measured with near-infrared spectroscopy is empirically decomposed into a set of oscillatory components. The sum of a specific subset of them is an estimate of the pure heartbeat signal in which the diastolic peaks and consequential interbeat intervals are detected. We show in simultaneous electrocardiography and near-infrared spectroscopy measurements on 11 subjects (8 men and 3 woman with mean age 32.8 +/- 8.1 yr), that the interbeat intervals (and the consequential pulse rate variability measures), estimated using the proposed approaches, are in high agreement with their correspondents from electrocardiography.

  10. Classification of the waxy condition of durum wheat by near infrared reflectance spectroscopy using wavelets and a genetic algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared (NIR) reflectance spectroscopy has been applied to the problem of differentiating four genotypes of durum wheat: ‘waxy’, wx-A1 null, wx-B1 null and wild type. The test data consisted of 95 NIR reflectance spectra of wheat samples obtained from a USDA-ARS wheat breeding program. A two...

  11. Rapid and non-destructive detection and identification two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the potential of using near-infrared spectroscopy (NIRS) to detect the presence of Wolbachia pipientis (wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. The release of Wolbachia transinfected mosquitoes is likely to form a key component of disease control strategi...

  12. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  13. A Quantitative Near-Infrared Spectroscopy Study: A Decrease in Cerebral Hemoglobin Oxygenation in Alzheimer's Disease and Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki

    2006-01-01

    A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…

  14. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  15. [Quality anlysis of the before redrying raw tobacco & after redrying sheet tobacco by using online near infrared spectroscopy].

    PubMed

    Tang, Zhao-qi; Liu, Ying; Shu, Ru-xin; Yang, Kai; Zhao, Long-lian; Zhang, Lu-da; Zhang Ye-hui; Li, Jun-hui

    2014-12-01

    In this paper, the 7 different origin before redrying raw tobacco & after redrying sheet tobacco's online near infrared spectroscopy were collected from sorting & redrying production line specifically for "ZHONGHUA" brand. By using the projection model bulit by different origin tobacco's online spectroscopy and the method of variance and correlation analysis, we studied the uniformity and similarity quality characteristics change before and after the redrying of tobacco, which can provide support for understanding the quality of the tobacco material and cigarette product formulations. This study show that selecting about 10,000 by equally spaced sampling time from a huge number of online near infrared spectroscopy, for modeling are feasible, and representative. After manual sorting, threshing, and redrying, the uiformity of each origin tobacco near-infrared spectroscopy can be increased by 10%~35%, homogeneity of the tobacco leaf has been significantly improved. After redrying, the similar relationship embodied in the origin also have significant changes, overall it reduce significantly, that shows the quality differences embodied by origin significantly improve, which can provide greater space for formulations, it shows the need for high-quality Chinese cigarette production requires large amounts of financial and human resources to implement cured tobacco processing. The traditional means of chemical analysis, it takes a lot of time and effort, it is difficult to control the entire processing chain, Near Infrared Spectroscopy with its rapid, non-destructive advantage, not only can achieve real-time detection and quality control, but also can take full advantage of near-infrared spectroscopy information created in the production process, which is a very promising online analytical detection technology in many industries especially in the agricultural and food processing industries.

  16. Chemometrics and vibrational spectroscopy as green tools for mine phytoremediation strategies

    NASA Astrophysics Data System (ADS)

    Mokgalaka-Matlala, N. S.; Regnier, T.; Combrinck, S.; Kouekam, C. R.; Weiersbye, I. M.

    This study describes the use of near infrared (NIR) spectroscopy in combination with chemometrics to characterise Combretum erythrophyllum plant material to determine differences in the chemical profiles of samples harvested from mine contaminated areas and those of natural populations. The chemometric computation of near infrared vibrational spectra was used to generate principal component analysis and partial least squares models. These models were used to determine seasonal differences in the chemical matrices of samples harvested from the mine sites with different levels of contamination. Principal component analysis scatter plots illustrated clustering of phenolic profiles of samples depending on whether they originated from contaminated or uncontaminated soils. A partial least squares model was developed to link the variations in the chemical composition and levels of contamination in all samples collected in the same season (autumn). The levels of total soluble phenolic compounds in leaf extracts of C. erythrophyllum were measured using the Folin-Ciocalteau assay. Data analysis of the samples revealed that plants harvested from mine sites, particularly in summer, produced a higher level of phenolic compounds than those of the natural population, thereby displaying a good correlation with the chemometric models.

  17. Functional near-infrared spectroscopy for adaptive human-computer interfaces

    NASA Astrophysics Data System (ADS)

    Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.

    2015-03-01

    We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.

  18. Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon.

    PubMed

    Tito, N B; Rodemann, T; Powell, S M

    2012-12-01

    The potential of a near infrared spectroscopy (NIR) method to detect as well as predict microbial spoilage on Atlantic salmon (Salmo salar) was investigated. Principal component analysis (PCA) of the NIR spectra showed clear separation between the fresh salmon fillets and those stored for nine days at 4°C indicating that NIR could detect spoilage. A partial least squares regression (PLS) prediction model for total aerobic plate counts after nine days was established using the NIR spectra collected when the fish was fresh to predict the number of bacteria that would be present nine days later. The calibration equation was good (R(2) = 0.95 and RMSE = 0.12 log cfu/g) although the error of the validation curve was larger (R(2) = 0.64 and RMSE = 0.32 log cfu/g). These results indicate that with further model development, it may be possible to use NIR to predict bacterial numbers, and hence shelf-life, in Atlantic salmon and other seafood.

  19. Reliability of telemetric electromyography and near-infrared spectroscopy during high-intensity resistance exercise.

    PubMed

    Scott, Brendan R; Slattery, Katie M; Sculley, Dean V; Lockie, Robert G; Dascombe, Ben J

    2014-10-01

    This study quantified the inter- and intra-test reliability of telemetric surface electromyography (EMG) and near infrared spectroscopy (NIRS) during resistance exercise. Twelve well-trained young men performed high-intensity back squat exercise (12 sets at 70-90% 1-repetition maximum) on two occasions, during which EMG and NIRS continuously monitored muscle activation and oxygenation of the thigh muscles. Intra-test reliability for EMG and NIRS variables was generally higher than inter-test reliability. EMG median frequency variables were generally more reliable than amplitude-based variables. The reliability of EMG measures was not related to the intensity or number of repetitions performed during the set. No notable differences were evident in the reliability of EMG between different agonist muscles. NIRS-derived measures of oxyhaemoglobin, deoxyhaemoglobin and tissue saturation index were generally more reliable during single-repetition sets than multiple-repetition sets at the same intensity. Tissue saturation index was the most reliable NIRS variable. Although the reliability of the EMG and NIRS measures varied across the exercise protocol, the precise causes of this variability are not yet understood. However, it is likely that biological variation during multi-joint isotonic resistance exercise may account for some of the variation in the observed results.

  20. Correction of motion artifacts and serial correlations for real-time functional near-infrared spectroscopy.

    PubMed

    Barker, Jeffrey W; Rosso, Andrea L; Sparto, Patrick J; Huppert, Theodore J

    2016-07-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively low-cost, portable, noninvasive neuroimaging technique for measuring task-evoked hemodynamic changes in the brain. Because fNIRS can be applied to a wide range of populations, such as children or infants, and under a variety of study conditions, including those involving physical movement, gait, or balance, fNIRS data are often confounded by motion artifacts. Furthermore, the high sampling rate of fNIRS leads to high temporal autocorrelation due to systemic physiology. These two factors can reduce the sensitivity and specificity of detecting hemodynamic changes. In a previous work, we showed that these factors could be mitigated by autoregressive-based prewhitening followed by the application of an iterative reweighted least squares algorithm offline. This current work extends these same ideas to real-time analysis of brain signals by modifying the linear Kalman filter, resulting in an algorithm for online estimation that is robust to systemic physiology and motion artifacts. We evaluated the performance of the proposed method via simulations of evoked hemodynamics that were added to experimental resting-state data, which provided realistic fNIRS noise. Last, we applied the method post hoc to data from a standing balance task. Overall, the new method showed good agreement with the analogous offline algorithm, in which both methods outperformed ordinary least squares methods.

  1. Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy.

    PubMed

    Doublet, J; Boulanger, A; Ponthieux, A; Laroche, C; Poitrenaud, M; Cacho Rivero, J A

    2013-01-01

    The use of near infrared spectroscopy (NIRS) as an alternative method to predict the biochemical methane potential (BMP) of a broad range of organic substrates was investigated. A total of 296 samples including most of the substrates treated by anaerobic co-digestion were used for NIRS calibration and validation. The NIRS predictions of the BMP values were satisfactory (Root Mean Square Error = 40 ml CH(4) g(-1) VS(fed); r(2) = 0.85). The integration of the entire substrate diversity in the model remained nevertheless difficult due to the specific organic matter properties of stabilised substrates and the high level of uncertainty of the BMP values. The elaboration of a model restricted to "fresh" substrates allows the practical use of the NIR technique to design and operate anaerobic co-digestion plants. The addition of more samples in the dataset in order to perform local calibrations would probably make the elaboration of a global NIR-model possible. PMID:23196247

  2. Effect of valsalva maneuver-induced hemodynamic changes on brain near-infrared spectroscopy measurements.

    PubMed

    Tsubaki, Atsuhiro; Kojima, Sho; Furusawa, Adriane Akemi; Onishi, Hideaki

    2013-01-01

    Near-infrared spectroscopy (NIRS) is widely used to measure human brain activation on the basis of cerebral hemodynamic response. However, a limitation of NIRS is that systemic changes influence the measured signals. The purpose of this study was to clarify the relationship between NIRS signals and blood pressure during the Valsalva maneuver. Nine healthy volunteers performed a 20-s Valsalva maneuver to change their blood pressure. Changes in oxyhemoglobin (O2Hb) concentration were measured with 34 channels with an inter-optode distance of 30 mm for deep-penetration measurements (deepO2Hb) and 9 channels with an inter-optode distance of 15 mm for shallow-penetration measurements (shallowO2Hb). The difference value (diffO2Hb) between deepO2Hb and shallowO2Hb was calculated. Mean arterial pressure (MAP) was recorded by volume clamping the finger pulse, and skin blood flow changes were measured at the forehead. Pearson's correlation coefficients between deepO2Hb and MAP, shallowO2Hb and MAP, and diffO2Hb and MAP were 0.893 (P < 0.01), 0.963 (P < 0.01), and 0.831 (P < 0.01), respectively. The results suggest that regional and systemic changes in the cardiovascular state strongly influence NIRS signals. PMID:23852482

  3. Near-infrared spectroscopy measurement of blood oxygenation content and its application in sports practice

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Gong, Hui; Ge, Xinfa; Luo, Qingming

    2003-12-01

    To research the change characteristics of blood oxygenation content in skeletal muscle, the change regularity between blood oxygenation content and exercise intensity as well as HbO2 and blood lactate acid while taking incremental exercises, we took an in vivo, real-time and continuous measurement on the blood oxygenation content of eight sportsmen when they did incremental exercises of five degrees on a power bicycle using a portable tissue oximeter which is based on the principle of near-infrared spectroscopy(NIRS), simultaneously, we detected the blood lactate acid of subjects after each degree of incremental physical load instantly using a blood lactate analysis equipment. The results showed that the content of HbO2 descended regularly while that of Hb ascended; blood volume decreased; and the density of lactate increased as the intensity of exercises was heightened. The statistics analyses showed that the relationship between HbO2 and blood lactate is rather close (correlation coefficient r=-0.918). With this discovery, a theoretical basis in measuring the relative change of blood oxygenation content non-invasively was evidenced, and a novel technology for assessing the physical situation of sportsman, grasping sports density and evaluating the training effect could be imported.

  4. Near-Infrared Spectroscopy: The New Must Have Tool in the Intensive Care Unit?

    PubMed

    Green, Michael Stuart; Sehgal, Sankalp; Tariq, Rayhan

    2016-09-01

    Standard hemodynamic monitoring such as blood pressure and pulse oximetry may only provide a crude estimation of organ perfusion in the critical care setting. Near-infrared spectroscopy (NIRS) is based on the same principle as a pulse oximeter and allows continuous noninvasive monitoring of hemoglobin oxygenation and deoxygenation and thus tissue saturation "StO2" This review aims to provide an overview of NIRS technology principles and discuss its current clinical use in the critical care setting. The study selection was performed using the PubMed database to find studies that investigated the use of NIRS in both the critical care setting and in the intensive care unit. Currently, NIRS in the critical care setting is predominantly being used for infants and neonates. A number of studies in the past decade have shown promising results for the use of NIRS in surgical/trauma intensive care units during shock management as a prognostic tool and in guiding resuscitation. It is evident that over the past 2 decades, NIRS has gone from being a laboratory fascination to an actively employed clinical tool. Even though the benefit of routine use of this technology to achieve better outcomes is still questionable, the fact that NIRS is a low-cost, noninvasive monitoring modality improves the attractiveness of the technology. However, more research may be warranted before recommending its routine use in the critical care setting. PMID:27206637

  5. Near infrared spectroscopy and multivariate analysis to evaluate wheat flour doughs leavening and bread properties.

    PubMed

    Li Vigni, Mario; Cocchi, Marina

    2013-02-18

    A mixture design of experiment approach was followed to explore formulation effects on the technological properties of wheat flours optimized for industrial bread-making purposes. Ten different flour mixtures were investigated by means of near infrared spectroscopy (NIRS) to obtain information on flour performance in a critical phase such as dough leavening. For each mixture, a laboratory-scale bread making experiment was carried out according to a standardized recipe and the leavening phase of each dough sample was monitored by means of NIRS at different times. Parallel factor analysis (PARAFAC) was used to highlight the existence of differences among the mixtures on the basis of NIR spectrum variability with respect to the leavening time. Additionally, the relationship among the 3-way NIR dataset and some parameters measured on the baked bread loaves (dimensions, volume, weight) was investigated by means of the n-way extension of partial least squares regression (nPLS), in order to evaluate product properties from its leavening step and mixture formulation. The results give better insight on the relationships among wheat flour formulation and its performance in the leavening phase and as far as some properties of the final product are concerned, thus offering a way to monitor the leavening phase and give information on its influence on the final product properties.

  6. Unleashing the future potential of functional near-infrared spectroscopy in brain sciences.

    PubMed

    Cutini, Simone; Brigadoi, Sabrina

    2014-07-30

    The wondrous innovations bound to the introduction of functional near-infrared spectroscopy in cognitive neuroscience are characterized by a multifaceted nature, ranging from technological improvements to sophisticated signal processing methods; the outstanding progress enabled scientists to investigate a variety of hard-to-test clinical populations and to successfully employ optical imaging in fields that were almost unimaginable twenty years ago. Here we illustrate how the emerging use of fNIRS methodologies might represent a drawing power in a variety of challenging experimental and medical contexts; we expect in the near future a wide increase of the use of wireless fNIRS, especially in children and in particular clinical populations, as well as a striking progress of fNIRS-BCI and hybrid BCI systems for neurofeedback and neurorehabilitation. These emerging trends might dramatically foster the future potential of fNIRS in brain sciences, provided that they are properly supported by a significant progress in signal processing and cognitive neuroscience. PMID:24880046

  7. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.

    PubMed

    Scholkmann, Felix; Kleiser, Stefan; Metz, Andreas Jaakko; Zimmermann, Raphael; Mata Pavia, Juan; Wolf, Ursula; Wolf, Martin

    2014-01-15

    This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.

  8. [Clustering analysis applied to near-infrared spectroscopy analysis of Chinese traditional medicine].

    PubMed

    Liu, Mu-qing; Zhou, De-cheng; Xu, Xin-yuan; Sun, Yao-jie; Zhou, Xiao-li; Han, Lei

    2007-10-01

    The present article discusses the clustering analysis used in the near-infrared (NIR) spectroscopy analysis of Chinese traditional medicines, which provides a new method for the classification of Chinese traditional medicines. Samples selected purposely in the authors' research to measure their absorption spectra in seconds by a multi-channel NIR spectrometer developed in the authors' lab were safrole, eucalypt oil, laurel oil, turpentine, clove oil and three samples of costmary oil from different suppliers. The spectra in the range of 0.70-1.7 microm were measured with air as background and the results indicated that they are quite distinct. Qualitative mathematical model was set up and cluster analysis based on the spectra was carried out through different clustering methods for optimization, and came out the cluster correlation coefficient of 0.9742 in the authors' research. This indicated that cluster analysis of the group of samples is practicable. Also it is reasonable to get the result that the calculated classification of 8 samples was quite accorded with their characteristics, especially the three samples of costmary oil were in the closest classification of the clustering analysis. PMID:18306778

  9. A functional near-infrared spectroscopy study of sustained attention to local and global target features.

    PubMed

    De Joux, Neil; Russell, Paul N; Helton, William S

    2013-04-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a quadratic trend over time-on-task with performance levels returning to initial levels late in the task. This trend did not occur in the global shape discrimination task. Functional near-infrared spectroscopy (fNIRS) was utilized in this study as an index of cerebral activation. In both tasks there was increased right hemisphere relative to left hemisphere oxygenation and right hemisphere oxygenation increased with time-on-task. Left hemisphere oxygenation, however, decreased slightly in the global task, but increased significantly in the local task as task duration increased. Indeed, total oxygenation, averaging both right and left, increased more with time-on-task in the local discrimination task. Both the performance and physiological results of this study indicate increased utilization of bilateral cerebral resources with time-on-task in the local, but not the global discrimination vigil.

  10. Continuous correction of differential path length factor in near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Talukdar, Tanveer; Moore, Jason H.; Diamond, Solomon G.

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method.

  11. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy.

    PubMed

    Revilla, I; González-Martín, M I; Vivar-Quintana, A M; Blanco-López, M A; Lobos-Ortega, I A; Hernández-Hierro, J M

    2016-07-01

    In this study, we analyzed antioxidant capacity of 224 cheese samples prepared using 16 varied mixtures of milk from cows, ewes, and goats, in 2 manufacturing seasons (winter and summer), and over 6mo of ripening. Antioxidant capacity was evaluated using the spectrophotometric 2,2-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) (ABTS) method. Total antioxidant capacity was significantly correlated with season of manufacturing and time of ripening but not with animal species providing the milk. Moreover, statistically significant correlations between the total antioxidant capacity and retinol (r=0.399), fat percentage (r=0.308), protein percentage (r=0.366), K (r=0.385), Mg (r=0.312), Na (r=0.432), and P (0.272) were observed. We evaluated the use of near infrared spectroscopy technology, together with the use of a remote reflectance fiber-optic probe, to predict the antioxidant capacity of cheese samples. The model generated allowed us to predict antioxidant capacity in unknown cheeses of different compositions and ripening times. PMID:27085414

  12. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Jayadev, C.; Glyn-Jones, S.; Carr, A. J.; Murray, D. W.; Price, A. J.; Gill, H. S.

    2011-04-01

    Interest in localized and early stage treatment technologies for joint conditions such as osteoarthritis is growing rapidly. It has therefore become important to develop objective measures capable of characterizing the earliest (non-visible) changes associated with degeneration to aid treatment procedures. In addition to assessing tissue before treatment, it is further important to develop an effective, non-destructive means of monitoring post-treatment tissue healing, and of providing the high-quality data needed for trials of developing treatment methods. To investigate its ability to detect the early stages of degeneration in cartilage-on-bone, diffuse reflectance near infrared spectroscopy was applied to normal and osteoarthritic joints. A discriminating function was developed to relate absorbance peaks of interest and track degradation around focal osteoarthritic defects. The function could distinguish between normal and degraded tissue (100% separation of normal tissue from that within 25 mm of a defect) and between different stages of osteoarthritic progression (p < 0.05). This technique allows simple, practical and non-destructive assessment of component-level properties over the full depth of the tissue. It has the potential to increase our understanding of the underlying etiologic and pathogenic processes in early stage degeneration, to assist classification and the development of new treatment methods.

  13. Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation

    NASA Astrophysics Data System (ADS)

    Orihuela-Espina, F.; Leff, D. R.; James, D. R. C.; Darzi, A. W.; Yang, G. Z.

    2010-07-01

    Functional near infrared spectroscopy (fNIRS) is a rapidly developing neuroimaging modality for exploring cortical brain behaviour. Despite recent advances, the quality of fNIRS experimentation may be compromised in several ways: firstly, by altering the optical properties of the tissues encountered in the path of light; secondly, through adulteration of the recovered biological signals (noise) and finally, by modulating neural activity. Currently, there is no systematic way to guide the researcher regarding these factors when planning fNIRS studies. Conclusions extracted from fNIRS data will only be robust if appropriate methodology and analysis in accordance with the research question under investigation are employed. In order to address these issues and facilitate the quality control process, a taxonomy of factors influencing fNIRS data have been established. For each factor, a detailed description is provided and previous solutions are reviewed. Finally, a series of evidence-based recommendations are made with the aim of improving consistency and quality of fNIRS research.

  14. Advancing energy cane cell wall digestibility screening by near-infrared spectroscopy.

    PubMed

    Chong, Barrie Fong; O'Shea, Michael G

    2013-10-01

    Breeding energy cane for cellulosic biofuel production involves manipulating various traits. An important trait to optimize is cell wall degradability as defined by enzymatic hydrolysis. We investigated the feasibility of using near-infrared spectroscopy (NIRS) combined with multivariate calibration to predict energy cane cell wall digestibility based upon fiber samples from a range of sugarcane genotypes and related species. These samples produced digestibility values ranging between 6 and 31%. To preserve the practicality of the technique, spectra obtained from crudely prepared samples were used. Various spectral pre-processing methods were tested, with the best NIRS calibration obtained from second derivative, orthogonal signal-corrected spectra. Model performance was evaluated by cross-validation and independent validation. Large differences between the performance results from the two validation approaches indicated that the model was sensitive to the choice of test data. This may be remedied by using a larger calibration training set containing diverse sample types. The best result was obtained through independent validation which produced a R(2) value of 0.86, a root mean squared error of prediction (RMSEP) of 1.59, and a ratio of prediction to deviation (RPD) of 2.7. This study has demonstrated that it is feasible and practical to use NIRS to predict energy cane cell wall digestibility.

  15. Continuous correction of differential path length factor in near-infrared spectroscopy

    PubMed Central

    Moore, Jason H.; Diamond, Solomon G.

    2013-01-01

    Abstract. In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027

  16. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    SciTech Connect

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  17. Characterizing and Authenticating Montilla-Moriles PDO Vinegars Using Near Infrared Reflectance Spectroscopy (NIRS) Technology

    PubMed Central

    De la Haba, María-José; Arias, Mar; Ramírez, Pilar; López, María-Isabel; Sánchez, María-Teresa

    2014-01-01

    This study assessed the potential of near infrared (NIR) spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO) “Vinagres de Montilla-Moriles” wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400–2,500 nm in both cases) and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380–1,700 nm). A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity), and alcohol content), and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars. PMID:24561402

  18. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.

    PubMed

    León, Lorenzo; Kelly, J Daniel; Downey, Gerard

    2005-05-01

    Near-infrared transflectance spectroscopy was used to detect adulteration of apple juice samples. A total of 150 apple samples from 19 different varieties were collected in two consecutive years from orchards throughout the main cultivation areas in Ireland. Adulterant samples at 10, 20, 30, and 40% w/w were prepared using two types of adulterants: a high fructose corn syrup (HFCS) with 45% fructose and 55% glucose, and a sugars solution (SUGARS) made with 60% fructose, 25% glucose, and 15% sucrose (the average content of these sugars in apple juice). The results show that NIR analysis can be used to predict adulteration of apple juices by added sugars with a detection limit of 9.5% for samples adulterated with HFCS, 18.5% for samples adulterated with SUGARS, and 17% for the combined (HFCS + SUGARS) adulterants. Discriminant partial least squares (PLS) regression can detect authentic apple juice with an accuracy of 86-100% and adulterant apple juice with an accuracy of 91-100% depending on the adulterant type and level of adulteration considered. This method could provide a rapid screening technique for the detection of this type of apple juice adulteration, although further work is required to demonstrate model robustness.

  19. Effect of Sampling Frequency for Real-Time Tablet Coating Monitoring Using Near Infrared Spectroscopy.

    PubMed

    Igne, Benoît; Arai, Hiroaki; Drennen, James K; Anderson, Carl A

    2016-09-01

    While the sampling of pharmaceutical products typically follows well-defined protocols, the parameterization of spectroscopic methods and their associated sampling frequency is not standard. Whereas, for blending, the sampling frequency is limited by the nature of the process, in other processes, such as tablet film coating, practitioners must determine the best approach to collecting spectral data. The present article studied how sampling practices affected the interpretation of the results provided by a near-infrared spectroscopy method for the monitoring of tablet moisture and coating weight gain during a pan-coating experiment. Several coating runs were monitored with different sampling frequencies (with or without co-adds (also known as sub-samples)) and with spectral averaging corresponding to processing cycles (1 to 15 pan rotations). Beyond integrating the sensor into the equipment, the present work demonstrated that it is necessary to have a good sense of the underlying phenomena that have the potential to affect the quality of the signal. The effects of co-adds and averaging was significant with respect to the quality of the spectral data. However, the type of output obtained from a sampling method dictated the type of information that one can gain on the dynamics of a process. Thus, different sampling frequencies may be needed at different stages of process development.

  20. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review.

    PubMed

    Kamran, Muhammad A; Mannan, Malik M Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  1. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.

    PubMed

    Scholkmann, Felix; Kleiser, Stefan; Metz, Andreas Jaakko; Zimmermann, Raphael; Mata Pavia, Juan; Wolf, Ursula; Wolf, Martin

    2014-01-15

    This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects. PMID:23684868

  2. Continuous correction of differential path length factor in near-infrared spectroscopy.

    PubMed

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p < 0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p < 0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027

  3. Influence of temperature on the precision of noninvasive glucose sensing by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Wenliang; Chen, Yun; Xu, Kexin

    2008-02-01

    The use of near-infrared spectroscopy for the monitoring of blood glucose concentration is limited by many ambiguous factors, which leads to the prediction precision is not satisfied. Due to the weak interested signal and the difficulty to quantify the physiological noise directly, the absorbance induced by glucose concentration and temperature was analyzed based on Beer-Lambert Law and displacement between glucose and water. Then the transmittance of glucose aqueous solution in different temperatures was measured by spectrometer to investigate the influence of glucose concentration and temperature. As it's difficult to distinguish the influence of temperature from the diffuse reflectance, the Monte Carlo simulation was used to compute the light intensity induced by the change in glucose concentration and physiological temperature. Finally, the influence of actual physiological temperature on the prediction model of glucose concentration was estimated based on the oral glucose tolerance tests of two diabetics. The result showed that, near the normal physiological temperature, the intensity of diffuse reflectance caused by -0.1 °C change in temperature was equivalent to that caused by 2.7 mmol/L change in glucose concentration. Moreover, the proportion of prediction error induced by temperature to the total error was more than 50%.

  4. Monitoring angiogenesis using a human compatible calibration for broadband near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Runze; Zhang, Qiong; Wu, Ying; Dunn, Jeff F.

    2013-01-01

    Angiogenesis is a hallmark of many conditions, including cancer, stroke, vascular disease, diabetes, and high-altitude exposure. We have previously shown that one can study angiogenesis in animal models by using total hemoglobin (tHb) as a marker of cerebral blood volume (CBV), measured using broadband near-infrared spectroscopy (bNIRS). However, the method was not suitable for patients as global anoxia was used for the calibration. Here we determine if angiogenesis could be detected using a calibration method that could be applied to patients. CBV, as a marker of angiogenesis, is quantified in a rat cortex before and after hypoxia acclimation. Rats are acclimated at 370-mmHg pressure for three weeks, while rats in the control group are housed under the same conditions, but under normal pressure. CBV increased in each animal in the acclimation group. The mean CBV (%volume/volume) is 3.49%±0.43% (mean±SD) before acclimation for the experimental group, and 4.76%±0.29% after acclimation. The CBV for the control group is 3.28%±0.75%, and 3.09%±0.48% for the two measurements. This demonstrates that angiogenesis can be monitored noninvasively over time using a bNIRS system with a calibration method that is compatible with human use and less stressful for studies using animals.

  5. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System

    PubMed Central

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  6. Application of near infrared spectroscopy (NIRS) to non-destructive internal quality inspection of tomatoes

    NASA Astrophysics Data System (ADS)

    Tao, Xuemei; He, Yong

    2006-09-01

    The internal quality of tomato such as acidity and sugar content is important to its taste thus influences the market. The objective of this paper was to demonstrate the feasibility of using a near-infrared spectroscopy (NIRS) to investigate the relationship between sugar content and acidity of tomato and absorption spectra. The N1RS reflectance of nondestructive tomatoes was measured with a Visible/NJR spectrophotometer in 325-1075 nm range. The sugar content and acidity of tomato were obtained with a handhold sugar content meter and a PH meter. The reflectance data set was recorded and analyzed with some mathematic methods. The PLS (Partial least squares) calibration method was developed for converting the NIRS reflectance of tomato into the data which determined the acidity value. BP (Back propagation) neural network was used to set up the relationship between the NIRS reflectance of tomato and sugar content. The acidity values were detected with an accuracy of 9O% and the sugar contents determined by the BP network were also very close to the measurements (coefficient of correlation r2=0.8764). NW spectra analysis would be very useful in the nondestructive internal quality inspecting of tomato.

  7. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension.

    PubMed

    Kerz, Thomas; Beyer, Christian; Huthmann, Alexandra; Kalasauskas, Darius; Amr, Amr Nimer; Boor, Stephan; Welschehold, Stefan

    2016-10-01

    Near-infrared spectroscopy (NIRS) has gained acceptance for cerebral monitoring, especially during cardiac surgery, though there are few data showing its validity. We therefore aimed to correlate invasive brain tissue oxygen measurements (PtiO2) with the corresponding NIRS-values (regional oxygen saturation, rSO2). We also studied whether NIRS was able to detect ischemic events, defined as a PtiO2-value of <15 mmHg. Eleven patients were studied with invasive brain tissue oxygen monitoring and continuous-wave NIRS. PtiO2-correlation with corresponding NIRS-values was calculated. We found no correlation between PtiO2- and NIRS-readings. Measurement of rSO2 was no better than flipping a coin in the detection of cerebral ischemia when a commonly agreed ischemic PtiO2 cut-off value of <15 mmHg was chosen. Continuous-wave-NIRS was unable to reliably detect ischemic cerebral episodes, defined as a PtiO2 value <15 mmHg. Displayed NIRS-values did not correlate with invasively measured PtiO2-values. CW-NIRS should not be used for the detection of cerebral ischemia. PMID:26289038

  8. Near-infrared spectroscopy of image clarity perception in the human brain

    NASA Astrophysics Data System (ADS)

    Lugo, J. E.; Habak, C.; Doti, Rafael; Faubert, Jocelyn

    2014-09-01

    The perception of blur in humans is intrinsic to our visual system, and dioptric power can improve clarity in many cases. This was evaluated experimentally to establish the best correction with dioptric power shifts. We used Near Infrared Spectroscopy (NIRS) to measure Oxy-, Deoxy- and Total-hemoglobin concentration changes in the brain while viewing images and reading a Snellen chart. Participants were tested with their usual correction (no diopter power shift (0 D)), with a 0.25 diopter power shift (0.25 D), and with a 0.5 diopter power shift (0.5 D). The concept of Approximate Entropy (AE) was applied to quantify the regularity of these hemoglobin time series of finite length. AE computations are based on the likelihood that similar templates in a time series remain similar on the next incremental comparison, so that time series with large AE have high irregular fluctuation. We found that the dioptric power shift eliciting the highest AE indicates the clearest visual condition for subjects. This technique may impact the current way in which ophthalmic lenses are prescribed.

  9. Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions

    NASA Astrophysics Data System (ADS)

    Lareau, Etienne; Lesage, Frederic; Pouliot, Philippe; Nguyen, Dang; Le Lan, Jerome; Sawan, Mohamad

    2011-09-01

    Functional neuroimaging is becoming a valuable tool in cognitive research and clinical applications. The clinical context brings specific constraints that include the requirement of a high channel count to cover the whole head, high sensitivity for single event detection, and portability for long-term bedside monitoring. For epilepsy and stroke monitoring, the combination of electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) is expected to provide useful clinical information, and efforts have been deployed to create prototypes able to simultaneously acquire both measurement modalities. However, to the best of our knowledge, existing systems lack portability, NIRS sensitivity, or have low channel count. We present a battery-powered, portable system with potentially up to 32 EEG channels, 32 NIRS light sources, and 32 detectors. Avalanche photodiodes allow for high NIRS sensitivity and the autonomy of the system is over 24 h. A reduced channel count prototype with 8 EEG channels, 8 sources, and 8 detectors was tested on phantoms. Further validation was done on five healthy adults using a visual stimulation protocol to detect local hemodynamic changes and visually evoked potentials. Results show good concordance with literature regarding functional activations and suggest sufficient performance for clinical use, provided some minor adjustments were made.

  10. Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants

    NASA Astrophysics Data System (ADS)

    Jenny, Carmen; Biallas, Martin; Trajkovic, Ivo; Fauchère, Jean-Claude; Bucher, Hans Ulrich; Wolf, Martin

    2011-09-01

    Early detection of cerebral hypoxemia is an important aim in neonatology. A relevant parameter to assess brain oxygenation may be the cerebral tissue oxygen saturation (StO2) measured by near-infrared spectroscopy (NIRS). So far the reproducibility of StO2 measurements was too low for clinical application, probably due to inhomogeneities. The aim of this study was to test a novel sensor geometry which reduces the influence of inhomogeneities. Thirty clinically stable newborn infants, with a gestational age of median 33.9 (range 26.9 to 41.9) weeks, birth weight of 2220 (820 to 4230) g, postnatal age of 5 (1 to 71) days were studied. At least four StO2 measurements of 1 min duration were carried out using NIRS on the lateral head. The sensor was repositioned between measurements. Reproducibility was calculated by a linear mixed effects model. The mean StO2 was 79.99 +/- 4.47% with a reproducibility of 2.76% and a between-infant variability of 4.20%. Thus, the error of measurement only accounts for 30.1% of the variability. The novel sensor geometry leads to considerably more precise measurements compared to previous studies with, e.g., ~5% reproducibility for the NIRO 300. The novel StO2 values hence have a higher clinical relevance.

  11. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial

    PubMed Central

    Aasted, Christopher M.; Yücel, Meryem A.; Cooper, Robert J.; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P.; Borsook, David; Dan, Ippeita; Boas, David A.

    2015-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software package we have developed that incorporates multiple spatial registration tools to enable structural guidance in the interpretation of fNIRS studies. We introduce the reader to the layout of the AtlasViewer graphical user interface, the folder structure, and user files required in the creation of fNIRS probes containing sources and detectors registered to desired locations on the head, evaluating probe fabrication error and intersubject probe placement variability, and different procedures for estimating measurement sensitivity to different brain regions as well as image reconstruction performance. Further, we detail how AtlasViewer provides a generic head atlas for guiding interpretation of fNIRS results, but also permits users to provide subject-specific head anatomies to interpret their results. We anticipate that AtlasViewer will be a valuable tool in improving the anatomical interpretation of fNIRS studies. PMID:26157991

  12. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  13. Valence processing of first impressions in the dorsomedial prefrontal cortex: a near-infrared spectroscopy study.

    PubMed

    Yu, Chi-Lin; Wang, Min-Ying; Hu, Jon-Fan

    2016-05-25

    Previous studies have suggested that the dorsomedial prefrontal cortex (dmPFC) plays a central role in processing first impressions; however, little is known about how dmPFC processes different valences of first impressions. Moreover, it is still unclear as to whether the dmPFC shows lateralization or only induces different levels of activation when processing positive and negative impressions. To address these questions in the present study, the brain activities for the impression judgments expressed by participants were measured with near-infrared spectroscopy. For each real facial picture, participants were asked to evaluate their first impressions on a scale from 'bad' to 'good' using a keyboard. The results showed that although the right dmPFC has a higher sensitivity in processing impressions, both the hemispheres of dmPFC showed a significant trend where the activation of positive impressions was higher than the negative ones. Accordingly, it is proposed that the dmPFC acts as a single mechanism responsible for delineating the processing of first impressions rather than two lateralized systems. Therefore, a 'positivity dominance hypothesis' is also proposed, which states that dmPFC in both hemispheres have a higher sensitivity and priority for positive impressions than negative ones. The present study provides valuable findings with respect to the role of the dmPFC in the processes of first impression formation. PMID:27035730

  14. Classification of change detection and change blindness from near-infrared spectroscopy signals.

    PubMed

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  15. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  16. Test–retest reliability of functional near infrared spectroscopy in infants

    PubMed Central

    Blasi, Anna; Lloyd-Fox, Sarah; Johnson, Mark. H.; Elwell, Clare

    2014-01-01

    Abstract. There has been a rapid rise in the number of publications using functional near infrared spectroscopy (fNIRS) for human developmental research over the past decade. However test–retest reliability of this measure of brain activation in infants remains unknown. To assess this, we utilized data from a longitudinal cohort who participated in an fNIRS study on social perception at two age points. Thirteen infants had valid data from two sessions held 8.5 months apart (4 to 8 months and 12 to 16 months). Inter- and intrasession fNIRS test–retest reliability was assessed at the individual and group levels using the oxyhemoglobin (HbO2) signal. Infant compliance with the study was similar in both sessions (assessed by the proportion of time infants looked to the stimuli), and there was minimal discrepancy in sensor placement over the targeted area between sessions. At the group level, good spatial overlap of significant responses and signal reliability was seen (spatial overlap was 0.941 and average signal change within an region of interest was r=0.896). At participant level, spatial overlap was acceptable (>0.5 on average across infants) although signal reliability varied between participants. This first study of test–retest reliability of fNIRS in infants shows encouraging results, particularly for group-based analysis. PMID:26157978

  17. Proposal of auxiliary diagnosis index for autism spectrum disorder using near-infrared spectroscopy.

    PubMed

    Yanagisawa, Kazuki; Nakamura, Nozomi; Tsunashima, Hitoshi; Narita, Naoko

    2016-07-01

    Lack of a diagnostic index is a problem that needs to be overcome in the diagnosis of autism spectrum disorder (ASD), because this problem prevents an objective assessment based on biomarkers. This paper describes the development of a diagnostic index for ASD using near-infrared spectroscopy (NIRS). We investigated continuous prefrontal hemodynamic changes depending on reciprocal disposition of working memory and nonworking memory tasks using two-channel NIRS. NIRS signals in the prefrontal cortex were compared between high-functioning ASD subjects ([Formula: see text]) and typically developed (TD) subjects ([Formula: see text]). The brain activities of the TD subjects were related to experimental design. These results were not confirmed in brain activities of ASD subjects, although the task performance rate was almost equivalent. The brain activities of TD subjects and ASD subjects were evaluated using a weighted separability (WS) index obtained from the feature phase of oxy-hemoglobin and its differential value. Calculation of the [Formula: see text]-test (TD subject versus ASD subject) confirmed that WS was significant. This result showed that the proposed index was useful for evaluation of the brain activity of ASD subjects. PMID:27335890

  18. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.

    2011-08-01

    Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight.

  19. Cortical response to categorical color perception in infants investigated by near-infrared spectroscopy.

    PubMed

    Yang, Jiale; Kanazawa, So; Yamaguchi, Masami K; Kuriki, Ichiro

    2016-03-01

    Perceptual color space is continuous; however, we tend to divide it into only a small number of categories. It is unclear whether categorical color perception is obtained solely through the development of the visual system or whether it is affected by language acquisition. To address this issue, we recruited prelinguistic infants (5- to 7-mo-olds) to measure changes in brain activity in relation to categorical color differences by using near-infrared spectroscopy (NIRS). We presented two sets of geometric figures to infants: One set altered in color between green and blue, and the other set altered between two different shades of green. We found a significant increase in hemodynamic responses during the between-category alternations, but not during the within-category alternations. These differences in hemodynamic response based on categorical relationship were observed only in the bilateral occipitotemporal regions, and not in the occipital region. We confirmed that categorical color differences yield behavioral differences in infants. We also observed comparable hemodynamic responses to categorical color differences in adults. The present study provided the first evidence, to our knowledge, that colors of different categories are represented differently in the visual cortex of prelinguistic infants, which implies that color categories may develop independently before language acquisition. PMID:26858441

  20. Using near infrared spectroscopy and heart rate variability to detect mental overload.

    PubMed

    Durantin, G; Gagnon, J-F; Tremblay, S; Dehais, F

    2014-02-01

    Mental workload is a key factor influencing the occurrence of human error, especially during piloting and remotely operated vehicle (ROV) operations, where safety depends on the ability of pilots to act appropriately. In particular, excessively high or low mental workload can lead operators to neglect critical information. The objective of the present study is to investigate the potential of functional near infrared spectroscopy (fNIRS) - a non-invasive method of measuring prefrontal cortex activity - in combination with measurements of heart rate variability (HRV), to predict mental workload during a simulated piloting task, with particular regard to task engagement and disengagement. Twelve volunteers performed a computer-based piloting task in which they were asked to follow a dynamic target with their aircraft, a task designed to replicate key cognitive demands associated with real life ROV operating tasks. In order to cover a wide range of mental workload levels, task difficulty was manipulated in terms of processing load and difficulty of control - two critical sources of workload associated with piloting and remotely operating a vehicle. Results show that both fNIRS and HRV are sensitive to different levels of mental workload; notably, lower prefrontal activation as well as a lower LF/HF ratio at the highest level of difficulty, suggest that these measures are suitable for mental overload detection. Moreover, these latter measurements point toward the existence of a quadratic model of mental workload. PMID:24184083

  1. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion.

    PubMed

    Sato, Hiroki; Obata, Akiko N; Moda, Ichiro; Ozaki, Kazutaka; Yasuhara, Takaomi; Yamamoto, Yukari; Kiguchi, Masashi; Maki, Atsushi; Kubota, Kisou; Koizumi, Hideaki

    2011-04-01

    We aim to test the feasibility of using near-infrared spectroscopy (NIRS) for indirect measurement of human saliva secretion in response to taste stimuli for potential application to organoleptic testing. We use an NIRS system to measure extracranial hemodynamics (Hb-signals around the temples) of healthy participants when taste stimuli are taken in their mouths. First, the Hb-signals and volume of expelled saliva (stimulated by distilled-water or sucrose-solution intake) are simultaneously measured and large Hb-signal changes in response to the taste stimuli (Hb-responses) are found. Statistical analysis show that both the Hb response and saliva volume are larger for the sucrose solution than for the distilled water with a significant correlation between them (r = 0.81). The effects of swallowing on the Hb-signals are investigated. Similar Hb responses, differing from the sucrose solution and distilled water, are obtained even though the participants swallow the mouth contents. Finally, functional magnetic resonance imaging is used to identify possible sources of the Hb signals corresponding to salivation. Statistical analysis indicates similar responses in the extracranial regions, mainly around the middle meningeal artery. In conclusion, the identified correlation between extracranial hemodynamics and the saliva volume suggests that NIRS is applicable to the measurement of hemodynamic signals accompanying stimulated saliva secretion.

  2. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy

    PubMed Central

    Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.

    2011-01-01

    Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight. PMID:21895335

  3. Near-infrared spectroscopy for the detection and quantification of bacterial contaminations in pharmaceutical products.

    PubMed

    Quintelas, Cristina; Mesquita, Daniela P; Lopes, João A; Ferreira, Eugénio C; Sousa, Clara

    2015-08-15

    Accurate detection and quantification of microbiological contaminations remains an issue mainly due the lack of rapid and precise analytical techniques. Standard methods are expensive and time-consuming being associated to high economic losses and public health threats. In the context of pharmaceutical industry, the development of fast analytical techniques able to overcome these limitations is crucial and spectroscopic techniques might constitute a reliable alternative. In this work we proved the ability of Fourier transform near infrared spectroscopy (FT-NIRS) to detect and quantify bacteria (Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Salmonella enterica, Staphylococcus epidermidis) from 10 to 10(8) CFUs/mL in sterile saline solutions (NaCl 0.9%). Partial least squares discriminant analysis (PLSDA) models showed that FT-NIRS was able to discriminate between sterile and contaminated solutions for all bacteria as well as to identify the contaminant bacteria. Partial least squares (PLS) models allowed bacterial quantification with limits of detection ranging from 5.1 to 9 CFU/mL for E. coli and B. subtilis, respectively. This methodology was successfully validated in three pharmaceutical preparations (contact lens solution, cough syrup and topic anti-inflammatory solution) proving that this technique possess a high potential to be routinely used for the detection and quantification of bacterial contaminations.

  4. Motor response investigation in individuals with cerebral palsy using near infrared spectroscopy: pilot study.

    PubMed

    Chaudhary, Ujwal; Hall, Michael; Gonzalez, Jean; Elbaum, Leonard; Bloyer, Martha; Godavarty, Anuradha

    2014-01-20

    Cerebral palsy (CP) describes a group of motor impairment syndromes secondary to genetic that may be due to acquired disorders of the developing brain. In this study, near infrared spectroscopy (NIRS) is used to investigate the prefrontal cortical activation and lateralization in response to the planning and execution of motor skills in controls and individuals with CP. The prefrontal cortex, which plays a dominant role in the planning and execution of motor skill stimulus, is noninvasively imaged using a continuous wave-based NIRS system. During the study, 7 controls (4 right-handed and 3 left-handed) and 2 individuals with CP (1 right-handed and 1 left-handed) over 18 years of age performed 30 s of a ball throwing task followed by 30 s rest in a 5-block paradigm. The optical signal acquired from the NIRS system was processed to elucidate the activation and lateralization in the prefrontal region of controls and individuals with CP. The preliminary result indicated a difference in activation between the task and rest conditions in all the participant types. Bilateral dominance was observed in the prefrontal cortex of controls in response to planning and execution of motor skill tasks, while an ipsilateral dominance was observed in individuals with CP. In conjunction, similar contralateral dominance was observed during rest periods, both in controls and individuals with CP.

  5. Study on memories of temporal lobes and the principles of lateralization using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamakura, Katsutoshi

    2007-01-01

    In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.

  6. Effects of Mandibular Retrusive Deviation on Prefrontal Cortex Activation: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Otsuka, Takero; Yamasaki, Ryuichi; Shimazaki, Tateshi; Sasaguri, Kenichi; Kawata, Toshitsugu

    2015-01-01

    The objective of this study was to evaluate occlusal condition by assessing brain activity in the prefrontal cortex, which is associated with emotion. Functional near-infrared spectroscopy (fNIRS) was used to detect changes in cerebral blood flow in the prefrontal cortex of 12 healthy volunteers. The malocclusion model was a custom-made splint that forced the mandible into retrusion. A splint with no modification was used as a control. The cortical activation during clenching was compared between the retrusive position condition and the control condition. A visual analog scale score for discomfort was also obtained during clenching and used to evaluate the interaction between fNIRS data and psychiatric changes. Activation of the prefrontal cortex was significantly greater during clenching in the mandibular retrusive condition than during clenching in the control condition. Furthermore, Spearman rank-correlation coefficient revealed a parallel relation between prefrontal cortex activation and visual analog scale score for discomfort. These results indicate that fNIRS can be used to objectively evaluate the occlusal condition by evaluating activity in the prefrontal cortex. PMID:26075235

  7. Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation

    PubMed Central

    Zama, Takuro; Shimada, Sotaro

    2015-01-01

    We investigated the relationship between electrophysiological activity and haemodynamic response during motor preparation by simultaneous recording of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). It is still unknown how exactly EEG signals correlate with the haemodynamic response, although the activation in the premotor area during motor preparation has been captured by EEG and haemodynamic approaches separately. We conducted EEG-NIRS simultaneous recordings over the sensorimotor area with a self-paced button press task. Participants were instructed to press a button at their own pace after a cue was shown. The result showed that the readiness potential (RP), a negative slow potential shift occurring during motor preparation, on C3 in the extended 10–20 system occurred about 1000 ms before the movement onset. An increase in concentration of oxyhaemoglobin (oxyHb) in the premotor cortex during motor preparation was also confirmed by NIRS, which resulted in a significant correlation between the amplitude of the RP and the change in oxyHb concentration (Pearson’s correlation r2 = 0.235, p = 0.03). We show that EEG-NIRS simultaneous recording can demonstrate the correlation between the RP and haemodynamic response in the premotor cortex contralateral to the performing hand. PMID:26574186

  8. Functional near-infrared spectroscopy reveals reduced interhemispheric cortical communication after pediatric concussion.

    PubMed

    Urban, Karolina J; Barlow, Karen M; Jimenez, Jon J; Goodyear, Bradley G; Dunn, Jeff F

    2015-06-01

    Concussion, or mild traumatic brain injury (mTBI), is a growing concern, especially among the pediatric population. By age 25, as many as 30% of the population are likely to have had a concussion. Many result in long-term disability, with some evolving to postconcussion syndrome. Treatments are being developed, but are difficult to assess given the lack of measures to quantitatively monitor concussion. There is no accepted quantitative imaging metric for monitoring concussion. We hypothesized that because cognitive function and fiber tracks are often impacted in concussion, interhemispheric brain communication may be impaired. We used functional near-infrared spectroscopy (fNIRS) to quantify functional coherence between the left and right motor cortex as a marker of interhemispheric communication. Studies were undertaken during the resting state and with a finger-tapping task to activate the motor cortex. Pediatric patients (ages 12-18) had symptoms for 31-473 days, compared to controls, who have not had reported a previous concussion. We detected differences between patients and controls in coherence between the contralateral motor cortices using measurements of total hemoglobin and oxy-hemoglobin with a p<0.01 (n=8, control; n=12 mTBI). Given the critical need for a quantitative biomarker for recovery after a concussion, we present these data to highlight the potential of fNIRS coupled with interhemispheric coherence analysis as a biomarker of concussion injury.

  9. Comparison of near-infrared spectroscopy with CT cerebral blood flow measurements in newborn piglets

    NASA Astrophysics Data System (ADS)

    Brown, Derek W.; Picot, Paul A.; Springett, Roger; Delpy, David T.; Lee, Ting-Yim

    2001-05-01

    Severely premature infants are often at high risk of cerebral hemorrhage or ischemic injury due to their inability to properly regulate blood flow to the brain. If blood flow is too high, the infant is at risk of cerebral hemorrhage, while too little blood flow can result in ischemic injury. The purpose of this research is to design and develop a means of non-invasively measuring cerebral blood flow (CBF) with near infrared spectroscopy (NIRS). Such a device would greatly aid the diagnosis and monitoring of afflicted infants. Previous attempts to measure CBF with NIRS have achieved limited success. In this study we acquired high signal-to-noise NIR spectrum from 600 to 980 nm with a cooled CCD spectrometer. This spectrometer enables the differential path length factor (DPF) to be estimated with accuracy using a second derivative technique described by Matcher et al. The validity of our new approach is determined via direct comparison with a previously validated computed tomography (CT) method. Three newborn piglets were studied. CBF measurements were performed at various partial arterial CO2 tensions (PaCO2) using both the NIRS and CT methods. The results of the two methods correlate well with a relationship of CBFCT equals -4.30 + 1.05 CBFNIRS (r2 equals 0.96).

  10. [Near-infrared reflectance spectroscopy analytic model established for the IVDMD of Cichorium intybus L].

    PubMed

    Hu, Chao; Bai, Shi-qie; Zhang, Yu; Yan, Jia-jun; You, Ming-hong; Li, Da-xu; Bai, Ling; Zhang Jin

    2014-08-01

    Chicory (Cichorium intybus L.) is a new type of forage grasses of high yield and quality with a great value of popularization and utilization. In vitro dry matter digestibility (IVDMD) is one of the important indicators of the nutritional value of forage evaluation. For the study of establishment of Chicory IVDMD NIRS quantitative analysis model, seventy-two species with different genotypes, different growth stages of 204 chicory samples of aboveground material were collected, and by Fourier transform near-infrared diffuse reflectance spectroscopy, through the use of different regression algorithms, can comparing different spectral ranges and spectral pretreatment methods, eight chicory IVDMD NIRS calibration models were established, and the best calibration model parameters were chosen. Its calibration coefficient of determination (Ri) and external validation coefficient of determination (Rval2) were 0.95317 and 0.90455, calibration standard deviation (RMSEC) and predictive standard deviation (RMSEP) was 1.977 99% and 2.008 82%, and the correlation coefficient (r) between predicted values and chemical values was 0.95108. The results show that using NIRS to determine chicory IVDMD is feasible, and provided a rapid analysis method for the determination IVDMD of chicory. PMID:25508718

  11. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    PubMed

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa. PMID:27400509

  12. [Rapid identification of microorganisms based on Fourier transform near infrared spectroscopy].

    PubMed

    Yue, Tian-li; Wang, Jun; Yuan, Ya-hong; Gao, Zhen-peng

    2010-11-01

    Fourier transform-near infrared (FT-NIR) spectra of microorganisms reflect the overall molecular composition of the sample. The spectra were specific and can serve as spectroscopic fingerprints that enable highly accurate identification of microorganisms. Bacterial powders of one yeast and five bacteria strains were prepared to collect FT-NIR spectra. FT-NIR measurements were done using a diffuse reflection-integrating sphere. Reduction of data was performed by principal component analysis (PCA) and two identification models based on linear discriminant analysis (LDA) and artificial neural network (ANN) were established to identify bacterial strains. The reproducibility of the method was proved to be excellent (D(yly2) : 1.61 +/- 1.05-10.97 +/- 6. 65) and high identification accuracy was achieved in both the LDA model (Accuracy rate: 100%) and the ANN model (Average relative error: 5.75%). FT-NIR spectroscopy combined with multivariate statistical analysis (MSA) may provide a novel answer to the fields which need for rapid microbial identification and it will have great prospect in industry.

  13. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  14. What we can and cannot (yet) do with functional near infrared spectroscopy

    PubMed Central

    Strait, Megan; Scheutz, Matthias

    2014-01-01

    Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human–computer interaction (HCI) applications. However, before NIRS-BCIs can be used reliably in realistic HCI settings, substantial challenges oncerning signal processing and modeling must be addressed. Although many of those challenges have been identified previously, the solutions to overcome them remain scant. In this paper, we first review what can be currently done with NIRS, specifically, NIRS-based approaches to measuring cognitive and affective user states as well as demonstrations of passive NIRS-BCIs. We then discuss some of the primary challenges these systems would face if deployed in more realistic settings, including detection latencies and motion artifacts. Lastly, we investigate the effects of some of these challenges on signal reliability via a quantitative comparison of three NIRS models. The hope is that this paper will actively engage researchers to acilitate the advancement of NIRS as a more robust and useful tool to the BCI community. PMID:24904261

  15. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.

    PubMed

    Mamani-Linares, L W; Gallo, C; Alomar, D

    2012-02-01

    Visible and near infrared reflectance spectroscopy (VIS-NIRS) was used to discriminate meat and meat juices from three livestock species. In a first trial, samples of Longissimus lumborum muscle, corresponding to beef (31) llamas (21) and horses (27), were homogenised and their spectra collected in reflectance (NIRSystems 6500 scanning monochromator, in the range of 400-2500 nm). In the second trial, samples of meat juice (same muscle) from the same species (20 beef, 19 llama and 19 horse) were scanned in folded transmission (transflectance). Discriminating models (PLS regression) were developed against "dummy" variables, testing different mathematical treatments of the spectra. Best models indentified the species of almost all samples by their meat (reflectance) or meat juice (transflectance) spectra. A few (three of beef and one of llama, for meat samples; one of beef and one of horse, for juice samples) were classified as uncertain. It is concluded that NIRS is an effective tool to recognise meat and meat juice from beef, llama and horses.

  16. Evaluation of cerebral ischemia using near-infrared spectroscopy with oxygen inhalation

    NASA Astrophysics Data System (ADS)

    Ebihara, Akira; Tanaka, Yuichi; Konno, Takehiko; Kawasaki, Shingo; Fujiwara, Michiyuki; Watanabe, Eiju

    2012-09-01

    Conventional methods presently used to evaluate cerebral hemodynamics are invasive, require physical restraint, and employ equipment that is not easily transportable. Therefore, it is difficult to take repeated measurements at the patient's bedside. An alternative method to evaluate cerebral hemodynamics was developed using near-infrared spectroscopy (NIRS) with oxygen inhalation. The bilateral fronto-temporal areas of 30 normal volunteers and 33 patients with cerebral ischemia were evaluated with the NIRS system. The subjects inhaled oxygen through a mask for 2 min at a flow rate of 8 L/min. Principal component analysis (PCA) was applied to the data, and a topogram was drawn using the calculated weights. NIRS findings were compared with those of single-photon-emission computed tomography (SPECT). In normal volunteers, no laterality of the PCA weights was observed in 25 of 30 cases (83%). In patients with cerebral ischemia, PCA weights in ischemic regions were lower than in normal regions. In 28 of 33 patients (85%) with cerebral ischemia, NIRS findings agreed with those of SPECT. The results suggest that transmission of the changes in systemic SpO2 were attenuated in ischemic regions. The method discussed here should be clinically useful because it can be used to measure cerebral ischemia easily, repeatedly, and noninvasively.

  17. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram

    NASA Astrophysics Data System (ADS)

    Shang, Yu; Cheng, Ran; Dong, Lixin; Ryan, Stephen J.; Saha, Sibu P.; Yu, Guoqiang

    2011-05-01

    Intraoperative monitoring of cerebral hemodynamics during carotid endarterectomy (CEA) provides essential information for detecting cerebral hypoperfusion induced by temporary internal carotid artery (ICA) clamping and post-CEA hyperperfusion syndrome. This study tests the feasibility and sensitivity of a novel dual-wavelength near-infrared diffuse correlation spectroscopy technique in detecting cerebral blood flow (CBF) and cerebral oxygenation in patients undergoing CEA. Two fiber-optic probes were taped on both sides of the forehead for cerebral hemodynamic measurements, and the instantaneous decreases in CBF and electroencephalogram (EEG) alpha-band power during ICA clamping were compared to test the measurement sensitivities of the two techniques. The ICA clamps resulted in significant CBF decreases (-24.7 ± 7.3%) accompanied with cerebral deoxygenation at the surgical sides (n = 12). The post-CEA CBF were significantly higher (+43.2 ± 16.9%) than the pre-CEA CBF. The CBF responses to ICA clamping were significantly faster, larger and more sensitive than EEG responses. Simultaneous monitoring of CBF, cerebral oxygenation and EEG power provides a comprehensive evaluation of cerebral physiological status, thus showing potential for the adoption of acute interventions (e.g., shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and cerebral hyperperfusion syndrome.

  18. Quantitative Determination of Fluorine Content in Blends of Polylactide (PLA)-Talc Using Near Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Tagliati, Chiara; Bonato, Tiziano; Costa, Stefania; Scapoli, Chiara; Pedrini, Paola

    2016-08-02

    Near-infrared spectroscopy (NIRS) has been widely used for quantitative and/or qualitative determination of a wide range of matrices. The objective of this study was to develop a NIRS method for the quantitative determination of fluorine content in polylactide (PLA)-talc blends. A blending profile was obtained by mixing different amounts of PLA granules and talc powder. The calibration model was built correlating wet chemical data (alkali digestion method) and NIR spectra. Using FT (Fourier Transform)-NIR technique, a Partial Least Squares (PLS) regression model was set-up, in a concentration interval of 0 ppm of pure PLA to 800 ppm of pure talc. Fluorine content prediction (R²cal = 0.9498; standard error of calibration, SEC = 34.77; standard error of cross-validation, SECV = 46.94) was then externally validated by means of a further 15 independent samples (R²EX.V = 0.8955; root mean standard error of prediction, RMSEP = 61.08). A positive relationship between an inorganic component as fluorine and NIR signal has been evidenced, and used to obtain quantitative analytical information from the spectra.

  19. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy.

    PubMed

    Sillrén, P; Matic, A; Karlsson, M; Koza, M; Maccarini, M; Fouquet, P; Götz, M; Bauer, Th; Gulich, R; Lunkenheimer, P; Loidl, A; Mattsson, J; Gainaru, C; Vynokur, E; Schildmann, S; Bauer, S; Böhmer, R

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  20. Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Lin, Pei-Yi; Borsook, David; Becerra, Lino; Boas, David A.

    2016-01-01

    Analysis of cerebral hemodynamics reveals a wide spectrum of oscillations ranging from 0.0095 to 2 Hz. While most of these oscillations can be filtered out during analysis of functional near-infrared spectroscopy (fNIRS) signals when estimating stimulus evoked hemodynamic responses, oscillations around 0.1 Hz are an exception. This is due to the fact that they share a common spectral range with typical stimulus evoked hemodynamic responses from the brain. Here we investigate the effect of hemodynamic oscillations around 0.1 Hz on the estimation of hemodynamic response functions from fNIRS data. Our results show that for an expected response of ~1 µM in oxygenated hemoglobin concentration (HbO), Mayer wave oscillations with an amplitude > ~1 µM at 0.1 Hz reduce the accuracy of the estimated response as quantified by a 3 fold increase in the mean squared error and decrease in correlation (R2 below 0.78) when compared to the true HRF. These results indicate that the amplitude of oscillations at 0.1 Hz can serve as an objective metric of the expected HRF estimation accuracy. In addition, we investigated the effect of short separation regression on the recovered HRF, and found that this improves the recovered HRF when large amplitude 0.1 Hz oscillations are present in fNIRS data. We suspect that the development of other filtering strategies may provide even further improvement. PMID:27570699

  1. Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics.

    PubMed

    Goto, Noriko; Bazar, Gyorgy; Kovacs, Zoltan; Kunisada, Makoto; Morita, Hiroyuki; Kizaki, Seiichiro; Sugiyama, Hiroshi; Tsenkova, Roumiana; Nishigori, Chikako

    2015-07-02

    Ultraviolet (UV) radiation causes cellular DNA damage, among which cyclobutane pyrimidine dimers (CPDs) are responsible for a variety of genetic mutations. Although several approaches have been developed for detection of CPDs, conventional methods require time-consuming steps. Aquaphotomics, a new approach based on near-infrared spectroscopy (NIRS) and multivariate analysis that determines interactions between water and other components of the solution, has become an effective method for qualitative and quantitative parameters measurement in the solutions. NIR spectral patterns of UVC-irradiated and nonirradiated DNA solutions were evaluated using aquaphotomics for detection of UV-induced CPDs. Groups of UV-irradiated and nonirradiated DNA samples were classified (87.5% accuracy) by soft independent modeling of class analogy (SIMCA). A precise regression model calculated from NIR water spectral patterns based on UVC doses (r Val = 0.9457) and the concentration of cis-syn cyclobutane thymine dimers (cis-syn T<>Ts; r Val = 0.9993) was developed using partial least squares regression (PLSR), while taking advantage of water spectral patterns, particularly around 1400-1500 nm. Our results suggested that, in contrast to DNA, the formation of cis-syn T<>Ts increased the strongly hydrogen bonded water. Additionally, NIRS could qualitatively and quantitatively detect cis-syn T<>Ts in isolated DNA aqueous solutions upon UVC exposure.

  2. Relationship between blood oxygenation and lactate in human skeletal muscle revealed by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Luo, Qingming; Ge, Xinfa; Gong, Hui; Zeng, Shaoqun

    2002-04-01

    Near-infrared spectroscopy (NIRS) is a focus of attention in the research field of biomedical photonics. The concentration of HbO2 in human skeletal muscle has been measured noninvasive NIRS using a portable tissue oximeter continuously when the subjects did incremental exercises on a power bicycle. Blood lactate is one of traditional physical research subjects which is applied most widely. We study blood volume in the tissue of sportsmen when they are subjected by the incremental physical load, simultaneously detecting some parameters such as the heart rate, maximal oxygen absorption and the concentration of blood lactate. As the intensity of exercises was heightened, the concentration of blood lactate and blood volume in tissue increased, while the concentration of HbO2 decreased. Thus the rudimental characteristics of energy consumption and supply during hypoxia and aerobic exercises are investigated. By discovering the relationship between blood lactate in human skeletal muscle and blood oxygenation, a novel approach for measuring blood lactate noninvasively and assessing the sports ability could be provided. Furthermore, it is possible to assess the fatigue state with tissue oximeter to monitor the human sports intensity noninvasively and dynamically.

  3. Fecal near infrared spectroscopy to discriminate physiological status in giant pandas.

    PubMed

    Wiedower, Erin E; Kouba, Andrew J; Vance, Carrie K; Hansen, Rachel L; Stuth, Jerry W; Tolleson, Douglas R

    2012-01-01

    Giant panda (Ailuropoda melanoleuca) monitoring and research often require accurate estimates of population size and density. However, obtaining these estimates has been challenging. Innovative technologies, such as fecal near infrared reflectance spectroscopy (FNIRS), may be used to differentiate between sex, age class, and reproductive status as has been shown for several other species. The objective of this study was to determine if FNIRS could be similarly used for giant panda physiological discriminations. Based on samples from captive animals in four U.S. zoos, FNIRS calibrations correctly identified 78% of samples from adult males, 81% from adult females, 85% from adults, 89% from juveniles, 75% from pregnant and 70% from non-pregnant females. However, diet had an impact on the success of the calibrations. When diet was controlled for plant part such that "leaf only" feces were evaluated, FNIRS calibrations correctly identified 93% of samples from adult males and 95% from adult females. These data show that FNIRS has the potential to differentiate between the sex, age class, and reproductive status in the giant panda and may be applicable for surveying wild populations. PMID:22719982

  4. Noise reduction in functional near-infrared spectroscopy signals by independent component analysis

    NASA Astrophysics Data System (ADS)

    Santosa, Hendrik; Jiyoun Hong, Melissa; Kim, Sung-Phil; Hong, Keum-Shik

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is used to detect concentration changes of oxy-hemoglobin and deoxy-hemoglobin in the human brain. The main difficulty entailed in the analysis of fNIRS signals is the fact that the hemodynamic response to a specific neuronal activation is contaminated by physiological and instrument noises, motion artifacts, and other interferences. This paper proposes independent component analysis (ICA) as a means of identifying the original hemodynamic response in the presence of noises. The original hemodynamic response was reconstructed using the primary independent component (IC) and other, less-weighting-coefficient ICs. In order to generate experimental brain stimuli, arithmetic tasks were administered to eight volunteer subjects. The t-value of the reconstructed hemodynamic response was improved by using the ICs found in the measured data. The best t-value out of 16 low-pass-filtered signals was 37, and that of the reconstructed one was 51. Also, the average t-value of the eight subjects' reconstructed signals was 40, whereas that of all of their low-pass-filtered signals was only 20. Overall, the results showed the applicability of the ICA-based method to noise-contamination reduction in brain mapping.

  5. Rapid quantification of stabilizing agents in single-base propellants using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Wang, Zhiqiang; Lu, Leiming; Yin, Qiushi; Yu, Liuhua; Deng, Guodong

    2016-07-01

    The standard analytical method (gas chromatography, GC) applied for determination of stabilizing agents including diphenylamine (DPA) and N,N‧-Dimethyl carbanilide (C2) in single-base propellants always costs too much time and toxic regents, and forms harmful wastes. This study investigated the feasibility of using near infrared (NIR) spectroscopy as a fast and green substitute. The samples were partitioned into calibration and validation subsets using the joint x-y distance (SPXY) algorithm. The backward interval partial least squares (biPLS) algorithm was used for wavenumber region selection during the model development. The correlation coefficient of validation (Rval), the root mean square error of prediction (RMSEP) and the ratio of standard deviation of the validation set to standard error of prediction (RPD) of the developed models were 0.987, 0.201 and 5.29 for DPA, and 0.976, 0.227 and 6.12 for C2, separately. The repeatability of the NIR methods satisfied the requirement of the standard method. The results showed that the developed NIR models exhibited good predictive performance and repeatability, and would have a promising future in predicting stabilizing agents content of single-base propellants due to high speed, convenience and no pretreatment.

  6. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    PubMed Central

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G.; Gimeno, Vicente; Navarro, Josefa M.; Moral, Raul; Martínez-Nicolás, Juan J.; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  7. Measurement of oxidative metabolism of the working human muscles by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yücetaş, Akin; Şayli, Ömer; Karahan, Mustafa; Akin, Ata

    2006-02-01

    Monitoring the oxygenation of skeletal muscle tissues during rest to work transient provides valuable information about the performance of a particular tissue in adapting to aerobic glycolysis. In this paper we analyze the temporal relation of O II consumption with deoxy-hemoglobin (Hb) signals measured by functional Near Infrared Spectroscopy (fNIRS) technique during moderate isotonic forearm finger joint flexion exercise under ischemic conditions and model it with a mono exponential equation with delay. The time constants of fitting equation are questioned under two different work loads and among subjects differing in gender. Ten (6 men and 4 women) subjects performed isotonic forearm finger joint flexion exercise with two different loads. It is shown that under the same load, men and women subjects generate similar time constants and time delays. However, apparent change in time constants and time delays were observed when exercise was performed under different loads. When t-test is applied to compare the outputs for time constants between 0.41202 Watts and 0.90252 Watts, P value of 9.3445x10 -4 < 0.05 is observed which implies that the differences between the time constants are statistically significant. When the same procedure is applied for the time delay comparison, P value of 0.027<0.05 is observed which implies that also the differences between the time delays are statistically significant.

  8. [Rapid prediction of annual ring density of Paulownia elongate standing tress using near infrared spectroscopy].

    PubMed

    Jiang, Ze-Hui; Wang, Yu-Rong; Fei, Ben-Hua; Fu, Feng; Hse, Chung-Yun

    2007-06-01

    Rapid prediction of annual ring density of Paulownia elongate standing trees using near infrared spectroscopy was studied. It was non-destructive to collect the samples for trees, that is, the wood cores 5 mm in diameter were unthreaded at the breast height of standing trees instead of fallen trees. Then the spectra data were collected by autoscan method of NIR. The annual ring density was determined by mercury immersion. And the models were made and analyzed by the partial least square (PLS) and full cross validation in the 350-2 500 nm wavelength range. The results showed that high coefficients were obtained between the annual ring and the NIR fitted data. The correlation coefficient of prediction model was 0.88 and 0.91 in the middle diameter and bigger diameter, respectively. Moreover, high coefficients of correlation were also obtained between annual ring density laboratory-determined and the NIR fitted data in the middle diameter of Paulownia elongate standing trees, the correlation coefficient of calibration model and prediction model were 0.90 and 0.83, and the standard errors of calibration (SEC) and standard errors of prediction(SEP) were 0.012 and 0.016, respectively. The method can simply, rapidly and non-destructively estimate the annual ring density of the Paulownia elongate standing trees close to the cutting age.

  9. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach.

    PubMed

    Santos, João Rodrigo; Sarraguça, Mafalda C; Rangel, António O S S; Lopes, João A

    2012-12-01

    Characterisation of coffee quality based on bean quality assessment is associated with the relative amount of defective beans among non-defective beans. It is therefore important to develop a methodology capable of identifying the presence of defective beans that enables a fast assessment of coffee grade and that can become an analytical tool to standardise coffee quality. In this work, a methodology for quality assessment of green coffee based on near infrared spectroscopy (NIRS) is proposed. NIRS is a green chemistry, low cost, fast response technique without the need of sample processing. The applicability of NIRS was evaluated for Arabica and Robusta varieties from different geographical locations. Partial least squares regression was used to relate the NIR spectrum to the mass fraction of defective and non-defective beans. Relative errors around 5% show that NIRS can be a valuable analytical tool to be used by coffee roasters, enabling a simple and quantitative evaluation of green coffee quality in a fast way. PMID:22953929

  10. Rapid discrimination of enhanced quality pork by visible and near infrared spectroscopy.

    PubMed

    Prieto, N; Juárez, M; Larsen, I L; López-Campos, Ó; Zijlstra, R T; Aalhus, J L

    2015-12-01

    This study tested the ability of visible and near infrared spectroscopy (Vis-NIRS) to discriminate enhanced quality pork. Vis-NIR spectra were collected on intact chops from 148 pork carcasses using a portable LabSpec®4 spectrometer (350-2500 nm). Partial least squares discriminant analyses based on Vis-NIR spectra correctly classified 94, 95 and 100% of the 2d, and 95, 98 and 100% of the 14 d aged pork samples within Lacombe, Duroc and Iberian pig breeds, respectively. Moreover, Vis-NIRS correctly classified 97 and 99% of the moisture enhanced (ME) and Non-ME pork samples aged for 2d, and 94 and 95% of those aged for 14 d, as well as 94 and 97% of the 2 and 14 d aged pork samples, respectively. Conversely, Vis-NIRS technology could not differentiate pork samples based on pre-slaughter diet or post-slaughter carcass chilling process. Vis-NIRS can segregate enhanced quality pork according to production factors and post-mortem strategies such as pig breed, moisture enhancing and ageing period. PMID:26188360

  11. Artifact reduction in long-term monitoring of cerebral hemodynamics using near-infrared spectroscopy

    PubMed Central

    Vinette, Sarah A.; Dunn, Jeff F.; Slone, Edward; Federico, Paolo

    2015-01-01

    Abstract. Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging technique used to assess cerebral hemodynamics. Its portability, ease of use, and relatively low operational cost lend itself well to the long-term monitoring of hemodynamic changes, such as those in epilepsy, where events are unpredictable. Long-term monitoring is associated with challenges including alterations in behaviors and motion that can result in artifacts. Five patients with epilepsy were assessed for interictal hemodynamic changes and alterations in behavior or motion. Based on this work, visual inspection was used to identify NIRS artifacts during a period of interest, specifically prior to seizures, in four patients. A motion artifact reduction algorithm (MARA, also known as the spline interpolation method) was tested on these data. Alterations in the NIRS measurements often occurred simultaneously with changes in motion and behavior. Occasionally, sharp shift artifacts were observed in the data. When artifacts appeared as sustained baseline shifts in the data, MARA reduced the standard deviation of the data and the appearance improved. We discussed motion and artifacts as challenges associated with long-term monitoring of cerebral hemodynamics in patients with epilepsy and our group’s approach to circumvent these challenges and improve the quality of the data collected. PMID:26158008

  12. Brain correlates of verbal fluency in subthreshold psychosis assessed by functional near-infrared spectroscopy.

    PubMed

    Holper, L; Aleksandrowicz, A; Müller, M; Ajdacic-Gross, V; Haker, H; Fallgatter, A J; Hagenmuller, F; Rössler, W; Kawohl, W

    2015-10-01

    The prevalence of subthreshold psychotic symptoms in the general population has gained increasing interest as a possible precursor of psychotic disorders. The goal of the present study was to evaluate whether neurobiological features of subthreshold psychotic symptoms can be detected using verbal fluency tasks and functional near-infrared spectroscopy (fNIRS). A large data set was obtained from the Zurich Program for Sustainable Development of Mental Health Services (ZInEP). Based on the SCL-90-R subscales 'Paranoid Ideation' and 'Psychoticism' a total sample of 188 subjects was assigned to four groups with different levels of subthreshold psychotic symptoms. All subjects completed a phonemic and semantic verbal fluency task while fNIRS was recorded over the prefrontal and temporal cortices. Results revealed larger hemodynamic (oxy-hemoglobin) responses to the phonemic and semantic conditions compared to the control condition over prefrontal and temporal cortices. Subjects with high subthreshold psychotic symptoms exhibited significantly reduced hemodynamic responses in both conditions compared to the control group. Further, connectivity between prefrontal and temporal cortices revealed significantly weaker patterns in subjects with high subthreshold psychotic symptoms compared to the control group, possibly indicating less incisive network connections associated with subthreshold psychotic symptoms. The present findings provide evidence that subthreshold forms of psychotic symptoms are associated with reduced hemodynamic responses and connectivity in prefrontal and temporal cortices during verbal fluency that can be identified using fNIRS. PMID:26277535

  13. Characterizing and authenticating Montilla-Moriles PDO vinegars using near infrared reflectance spectroscopy (NIRS) technology.

    PubMed

    De la Haba, María-José; Arias, Mar; Ramírez, Pilar; López, María-Isabel; Sánchez, María-Teresa

    2014-02-20

    This study assessed the potential of near infrared (NIR) spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO) "Vinagres de Montilla-Moriles" wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400-2,500 nm in both cases) and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380-1,700 nm). A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity), and alcohol content), and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars.

  14. Quantitative analysis and detection of adulteration in pork using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Yuxia; Cheng, Fang; Xie, Lijuan

    2010-04-01

    Authenticity is an important food quality criterion. Rapid methods for confirming authenticity or detecting adulteration are increasingly demanded by food processors and consumers. Near infrared (NIR) spectroscopy has been used to detect economic adulteration in pork . Pork samples were adulterated with liver and chicken in 10% increments. Prediction and quantitative analysis were done using raw data and pretreatment spectra. The optimal prediction result was achieved by partial least aquares(PLS) regression with standard normal variate(SNV) pretreatment for pork adulterated with liver samples, and the correlation coefficient(R value), the root mean square error of calibration(RMSEC) and the root mean square error of prediction (RMSEP) were 0.97706, 0.0673 and 0.0732, respectively. The best model for pork meat adulterated with chicken samples was obtained by PLS with the raw spectra, and the correlation coefficient(R value), RMSEP and RMSEC were 0.98614, 0.0525, and 0.122, respectively. The result shows that NIR technology can be successfully used to detect adulteration in pork meat adulterated with liver and chicken.

  15. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy.

    PubMed

    González-Martín, M Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M; Coello, M Carmen; Riocerezo, Carlos Palacios; Moncada, Guillermo Wells

    2015-11-03

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption.

  16. Rapid analysis of methanol in grape-derived distillation products using near-infrared transmission spectroscopy.

    PubMed

    Dambergs, Robert G; Kambouris, Ambrosias; Francis, I Leigh; Gishen, Mark

    2002-05-22

    Samples of distillates derived from the production of wine-fortifying spirit were analyzed for methanol by gas chromatography (GC) and near-infrared spectroscopy (NIRS). NIRS calibration models were developed which could accurately predict methanol concentrations in samples of fortifying spirit that had been produced over a period of three years from four different commercial distillation facilities. The best accuracy of the predictive models, as measured by the standard error of prediction value, was 0.06 g/L methanol. Other distillation fractions, produced during preparation of commercial fortifying spirit, were also examined. The most useful NIRS calibration models used partial least squares regression on continuous spectra from a scanning instrument, but it was demonstrated that calibrations could also be developed with a smaller number of fixed wavelengths, using multiple linear regression models. NIRS offers the advantages of rapid analysis, with simple routine operation, and may offer the potential for in-line process control in the operation of a commercial distillation facility.

  17. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System.

    PubMed

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  18. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  19. Brain-computer interface using a simplified functional near-infrared spectroscopy system.

    PubMed

    Coyle, Shirley M; Ward, Tomás E; Markham, Charles M

    2007-09-01

    A brain-computer interface (BCI) is a device that allows a user to communicate with external devices through thought processes alone. A novel signal acquisition tool for BCIs is near-infrared spectroscopy (NIRS), an optical technique to measure localized cortical brain activity. The benefits of using this non-invasive modality are safety, portability and accessibility. A number of commercial multi-channel NIRS system are available; however we have developed a straightforward custom-built system to investigate the functionality of a fNIRS-BCI system. This work describes the construction of the device, the principles of operation and the implementation of a fNIRS-BCI application, 'Mindswitch' that harnesses motor imagery for control. Analysis is performed online and feedback of performance is presented to the user. Mindswitch presents a basic 'on/off' switching option to the user, where selection of either state takes 1 min. Initial results show that fNIRS can support simple BCI functionality and shows much potential. Although performance may be currently inferior to many EEG systems, there is much scope for development particularly with more sophisticated signal processing and classification techniques. We hope that by presenting fNIRS as an accessible and affordable option, a new avenue of exploration will open within the BCI research community and stimulate further research in fNIRS-BCIs. PMID:17873424

  20. Quantitative Determination of Fusarium proliferatum Concentration in Intact Garlic Cloves Using Near-Infrared Spectroscopy

    PubMed Central

    Tamburini, Elena; Mamolini, Elisabetta; De Bastiani, Morena; Marchetti, Maria Gabriella

    2016-01-01

    Fusarium proliferatum is considered to be a pathogen of many economically important plants, including garlic. The objective of this research was to apply near-infrared spectroscopy (NIRS) to rapidly determine fungal concentration in intact garlic cloves, avoiding the laborious and time-consuming procedures of traditional assays. Preventive detection of infection before seeding is of great interest for farmers, because it could avoid serious losses of yield during harvesting and storage. Spectra were collected on 95 garlic cloves, divided in five classes of infection (from 1-healthy to 5-very highly infected) in the range of fungal concentration 0.34–7231.15 ppb. Calibration and cross validation models were developed with partial least squares regression (PLSR) on pretreated spectra (standard normal variate, SNV, and derivatives), providing good accuracy in prediction, with a coefficient of determination (R2) of 0.829 and 0.774, respectively, a standard error of calibration (SEC) of 615.17 ppb, and a standard error of cross validation (SECV) of 717.41 ppb. The calibration model was then used to predict fungal concentration in unknown samples, peeled and unpeeled. The results showed that NIRS could be used as a reliable tool to directly detect and quantify F. proliferatum infection in peeled intact garlic cloves, but the presence of the external peel strongly affected the prediction reliability. PMID:27428978

  1. [Effect of Optical Length on Detection Accuracy of Camellia Oil Adulteration by Near Infrared Spectroscopy].

    PubMed

    Sun, Tong; Wu, Yi-qing; Xu, Peng; Wen, Zhen-cai; Hu, Tian; Liu, Mu-hua

    2015-07-01

    In this research, near infrared spectroscopy was used to detect adulterated percent of camellia oil adulterated with soybean oil quantificationally at different optical lengths, and the effect of optical length on detection accuracy of adulterated percent was investigated. Soybean oil was put into camellia oil according to different mass fraction, the adulterated mass fraction was ranged from 1% to 50%. Transmission spectra of samples were acquired by a Quality Specspectrometer at different optical lengths (1, 2, 4, 10 mm), and effect of optical length on detection accuracy of adulterated percent was analyzed by comparing quantitative prediction models that developed at different calibration methods, pretreatment methods and wavelength range. The results indicate that the performance of quantitative prediction model of adulterated percent is improved as the optical length is increasing from 1 to 4 mm, while the performance of quantitative prediction model of adulterated percent is deteriorated as the optical length is increasing from 4 to 10 mm. 4 mm is a better optical length for camellia oil adulteration. The coefficients of determination of prediction (R2(P)) and root mean square error of prediction (RMSEP) in quantitative prediction models of adulterated percent for optical lengths of 1, 2, 4, 10 mm are 0.923, 0.977, 0.989, 0.962 and 4.58%, 2.54%, 1.72%, 3.20%, respectively. PMID:26717747

  2. The utility of near infrared spectroscopy for age estimation of deepwater sharks

    NASA Astrophysics Data System (ADS)

    Rigby, Cassandra L.; Wedding, Brett B.; Grauf, Steve; Simpfendorfer, Colin A.

    2014-12-01

    Reliable age information is vital for effective fisheries management, yet age determinations are absent for many deepwater sharks as they cannot be aged using traditional methods of growth bands counts. An alternative approach to ageing using near infrared spectroscopy (NIRS) was investigated using dorsal fin spines, vertebrae and fin clips of three species of deepwater sharks. Ages were successfully estimated for the two dogfish, Squalus megalops and Squalus montalbani, and NIRS spectra were correlated with body size in the catshark, Asymbolus pallidus. Correlations between estimated-ages of the dogfish dorsal fin spines and their NIRS spectra were good, with S. megalops R2=0.82 and S. montalbani R2=0.73. NIRS spectra from S. megalops vertebrae and fin clips that have no visible growth bands were correlated with estimated-ages, with R2=0.89 and 0.76, respectively. NIRS has the capacity to non-lethally estimate ages from fin spines and fin clips, and thus could significantly reduce the numbers of sharks that need to be lethally sampled for ageing studies. The detection of ageing materials by NIRS in poorly calcified deepwater shark vertebrae could potentially enable ageing of this group of sharks that are vulnerable to exploitation.

  3. Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS).

    PubMed

    de Paz, José Miguel; Visconti, Fernando; Chiaravalle, Mara; Quiñones, Ana

    2016-05-01

    Early diagnosis of specific chloride toxicity in persimmon trees requires the reliable and fast determination of the leaf chloride content, which is usually performed by means of a cumbersome, expensive and time-consuming wet analysis. A methodology has been developed in this study as an alternative to determine chloride in persimmon leaves using near-infrared spectroscopy (NIRS) in combination with multivariate calibration techniques. Based on a training dataset of 134 samples, a predictive model was developed from their NIR spectral data. For modelling, the partial least squares regression (PLSR) method was used. The best model was obtained with the first derivative of the apparent absorbance and using just 10 latent components. In the subsequent external validation carried out with 35 external data this model reached r(2) = 0.93, RMSE = 0.16% and RPD = 3.6, with standard error of 0.026% and bias of -0.05%. From these results, the model based on NIR spectral readings can be used for speeding up the laboratory determination of chloride in persimmon leaves with only a modest loss of precision. The intermolecular interaction between chloride ions and the peptide bonds in leaf proteins through hydrogen bonding, i.e. N-H···Cl, explains the ability for chloride determinations on the basis of NIR spectra.

  4. Shed a light in fatigue detection with near-infrared spectroscopy during long-lasting driving

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Pan, Boan; Li, Kai; Li, Ting

    2016-03-01

    Fatigue driving is one of the leading roles to induce traffic accident and injury, which urgently desires a novel technique to monitor the fatigue level at driving. Functional near infrared spectroscopy (fNIRS) is capable of noninvasive monitoring brain-activities-related hemodynamic responses. Here, we developed a fINRS imager and setup a classic psychological experiment to trigger visual divided attention which varied responding to driving fatigue, and attempted to record the drive-fatigue-level correlated hemodynamic response in the prefrontal cortex. 7 volunteers were recruited to take 7 hours driving and the experimental test was repeated every 1 hour and 8 times in total. The hemodynamic response were extracted and graphed with pseudo image. The analysis on the relationship between the fNIRS-measured hemodynamic response and fatigue level finally displayed that the oxyhemoglobin concentration in one channel of left prefrontal lobe increased with driving duration in significant correlation. And the spatial pattern of hemodynamic response in the prefrontal lobe varied with driving duration as well. The findings indicated the potential of fNIRSmeasured hemodynamic index in some sensitive spot of prefrontal lobe as a driving fatigue indicator and the promising use of fNIRS in traffic safety field.

  5. Investigation of photoplethysmography and near infrared spectroscopy for the assessment of tissue blood perfusion.

    PubMed

    Abay, T Y; Kyriacou, P A

    2014-01-01

    Pulse Oximetry (PO) and Near Infrared Spectroscopy (NIRS) are among the most widely adopted optical techniques for the assessment of tissue perfusion. PO estimates arterial oxygen saturation (SpO2) by exploiting light attenuations due to pulsatile arterial blood (AC) and constant absorbers (DC) at two different wavelengths. NIRS processes the attenuations of at least two wavelengths to calculate concentrations of Deoxygenated ([HHb]), Oxygenated ([HbO2]), Total Haemoglobin ([tHb]) and Tissue Oxygenation Index (TOI). In this work we present the development and evaluation of a reflectance PPG probe and processing system for the assessment of tissue perfusion. The system adopts both Pulse Oximetry and NIRS principles to calculate SpO2, [HHb], and [HbO2] and [tHb]. The system has been evaluated on the forearm of 10 healthy volunteers during cuff-induced vascular occlusions. The presented system was able to estimate SpO2, [HHb], [HbO2] and [tHb], showing good agreement with state-of-the-art NIRS and conventional PO. PMID:25571205

  6. Correction of motion artifacts and serial correlations for real-time functional near-infrared spectroscopy.

    PubMed

    Barker, Jeffrey W; Rosso, Andrea L; Sparto, Patrick J; Huppert, Theodore J

    2016-07-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively low-cost, portable, noninvasive neuroimaging technique for measuring task-evoked hemodynamic changes in the brain. Because fNIRS can be applied to a wide range of populations, such as children or infants, and under a variety of study conditions, including those involving physical movement, gait, or balance, fNIRS data are often confounded by motion artifacts. Furthermore, the high sampling rate of fNIRS leads to high temporal autocorrelation due to systemic physiology. These two factors can reduce the sensitivity and specificity of detecting hemodynamic changes. In a previous work, we showed that these factors could be mitigated by autoregressive-based prewhitening followed by the application of an iterative reweighted least squares algorithm offline. This current work extends these same ideas to real-time analysis of brain signals by modifying the linear Kalman filter, resulting in an algorithm for online estimation that is robust to systemic physiology and motion artifacts. We evaluated the performance of the proposed method via simulations of evoked hemodynamics that were added to experimental resting-state data, which provided realistic fNIRS noise. Last, we applied the method post hoc to data from a standing balance task. Overall, the new method showed good agreement with the analogous offline algorithm, in which both methods outperformed ordinary least squares methods. PMID:27226974

  7. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    NASA Astrophysics Data System (ADS)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  8. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy.

    PubMed

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    2014-05-01

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  9. Quantitative Determination of Fluorine Content in Blends of Polylactide (PLA)-Talc Using Near Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Tagliati, Chiara; Bonato, Tiziano; Costa, Stefania; Scapoli, Chiara; Pedrini, Paola

    2016-01-01

    Near-infrared spectroscopy (NIRS) has been widely used for quantitative and/or qualitative determination of a wide range of matrices. The objective of this study was to develop a NIRS method for the quantitative determination of fluorine content in polylactide (PLA)-talc blends. A blending profile was obtained by mixing different amounts of PLA granules and talc powder. The calibration model was built correlating wet chemical data (alkali digestion method) and NIR spectra. Using FT (Fourier Transform)-NIR technique, a Partial Least Squares (PLS) regression model was set-up, in a concentration interval of 0 ppm of pure PLA to 800 ppm of pure talc. Fluorine content prediction (R²cal = 0.9498; standard error of calibration, SEC = 34.77; standard error of cross-validation, SECV = 46.94) was then externally validated by means of a further 15 independent samples (R²EX.V = 0.8955; root mean standard error of prediction, RMSEP = 61.08). A positive relationship between an inorganic component as fluorine and NIR signal has been evidenced, and used to obtain quantitative analytical information from the spectra. PMID:27490548

  10. Effect of valsalva maneuver-induced hemodynamic changes on brain near-infrared spectroscopy measurements.

    PubMed

    Tsubaki, Atsuhiro; Kojima, Sho; Furusawa, Adriane Akemi; Onishi, Hideaki

    2013-01-01

    Near-infrared spectroscopy (NIRS) is widely used to measure human brain activation on the basis of cerebral hemodynamic response. However, a limitation of NIRS is that systemic changes influence the measured signals. The purpose of this study was to clarify the relationship between NIRS signals and blood pressure during the Valsalva maneuver. Nine healthy volunteers performed a 20-s Valsalva maneuver to change their blood pressure. Changes in oxyhemoglobin (O2Hb) concentration were measured with 34 channels with an inter-optode distance of 30 mm for deep-penetration measurements (deepO2Hb) and 9 channels with an inter-optode distance of 15 mm for shallow-penetration measurements (shallowO2Hb). The difference value (diffO2Hb) between deepO2Hb and shallowO2Hb was calculated. Mean arterial pressure (MAP) was recorded by volume clamping the finger pulse, and skin blood flow changes were measured at the forehead. Pearson's correlation coefficients between deepO2Hb and MAP, shallowO2Hb and MAP, and diffO2Hb and MAP were 0.893 (P < 0.01), 0.963 (P < 0.01), and 0.831 (P < 0.01), respectively. The results suggest that regional and systemic changes in the cardiovascular state strongly influence NIRS signals.

  11. Improved depth resolution in near-infrared diffuse reflectance spectroscopy using obliquely oriented fibers

    NASA Astrophysics Data System (ADS)

    Thilwind, Rachel Estelle; 't Hooft, Gert; Uzunbajakava, Natallia E.

    2009-03-01

    We demonstrate a significant improvement of depth selectivity when using obliquely oriented fibers for near-infrared (NIR) diffuse reflectance spectroscopy. This is confirmed by diffuse reflectance measurements of a two-layer tissue-mimicking phantom across the spectral range from 1000 to 1940 nm. The experimental proof is supported by Monte Carlo simulations. The results reveal up to fourfold reduction in the mean optical penetration depth, twofold reduction in its variation, and a decrease in the number of scattering events when a single fiber is oriented at an angle of 60 deg. The effect of reducing the mean optical penetration depth is enhanced by orienting both fibers inwardly. Using outwardly oriented fibers enables more selective probing of deeper layers, while reducing the contribution from surface layers. We further demonstrate that the effect of an inward oblique arrangement can be approximated to a decrease in fiber-to-fiber separation in the case of a perpendicular fiber arrangement. This approximation is valid in the weak- or absorption-free regime. Our results assert the advantages of using obliquely oriented fibers when attempting to specifically address superficial tissue layers, for example, for skin cancer detection, or in noninvasive glucose monitoring. Such flexibility could be further advantageous in a range of minimally invasive applications, including catheter-based interventions.

  12. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared

    SciTech Connect

    Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2014-07-28

    We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750 nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ∼12 cm{sup −1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627 cm{sup −1} mode is increased by over 15 times.

  13. [Application of DPLS-based LDA in corn qualitative near infrared spectroscopy analysis].

    PubMed

    Qin, Hong; Wang, Hui-rong; Li, Wei-jun; Jin, Xiao-xian

    2011-07-01

    NIR technology is a rapid, nondestructive and user-friendly method ideally suited for Qualitative analysis. In this paper the authors present the use of discriminant partial least Squares (DPLS)-based linear discriminant analysis (LDA) in corn qualitative near infrared spectroscopy analysis. Firstly, a training set including 30 corn varieties (each variety has 20 samples) was used to build the DPLS regression model, and 28 principal components (DPLS-PCs) were obtained from original spectrum. Secondly, the DPLS-PCs scores of the training set were extracted as DPLS features. Thirdly, LDA was applied to the DPLS features, determining 26 principal components (LDA-PCs). A test sample was first projected onto the DPLS-PCs and then onto the LDA-PCs, and finally 26 DPLS+LDA features were obtained. The recognition results were obtained by minimum distance classifier. DPLS+LDA method achieved 96.18% recognition rate, while traditional DPLS regression method and DPLS feature extraction method only achieved 85.38% and 95.76% recognition rate respectively. The experiment results indicated that DPLS +LDA method is with better generalization ability compared with traditional DPLS regression method and NIRS analysis by DPLS+LDA method is an efficient way to discriminate corn species.

  14. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  15. Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics

    PubMed Central

    Goto, Noriko; Bazar, Gyorgy; Kovacs, Zoltan; Kunisada, Makoto; Morita, Hiroyuki; Kizaki, Seiichiro; Sugiyama, Hiroshi; Tsenkova, Roumiana; Nishigori, Chikako

    2015-01-01

    Ultraviolet (UV) radiation causes cellular DNA damage, among which cyclobutane pyrimidine dimers (CPDs) are responsible for a variety of genetic mutations. Although several approaches have been developed for detection of CPDs, conventional methods require time-consuming steps. Aquaphotomics, a new approach based on near-infrared spectroscopy (NIRS) and multivariate analysis that determines interactions between water and other components of the solution, has become an effective method for qualitative and quantitative parameters measurement in the solutions. NIR spectral patterns of UVC-irradiated and nonirradiated DNA solutions were evaluated using aquaphotomics for detection of UV-induced CPDs. Groups of UV-irradiated and nonirradiated DNA samples were classified (87.5% accuracy) by soft independent modeling of class analogy (SIMCA). A precise regression model calculated from NIR water spectral patterns based on UVC doses (r Val = 0.9457) and the concentration of cis-syn cyclobutane thymine dimers (cis-syn T<>Ts; r Val = 0.9993) was developed using partial least squares regression (PLSR), while taking advantage of water spectral patterns, particularly around 1400–1500 nm. Our results suggested that, in contrast to DNA, the formation of cis-syn T<>Ts increased the strongly hydrogen bonded water. Additionally, NIRS could qualitatively and quantitatively detect cis-syn T<>Ts in isolated DNA aqueous solutions upon UVC exposure. PMID:26133899

  16. A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing

    NASA Astrophysics Data System (ADS)

    Re, Rebecca; Contini, Davide; Caffini, Matteo; Cubeddu, Rinaldo; Spinelli, Lorenzo; Torricelli, Alessandro

    2010-11-01

    We designed and developed a compact dual-wavelength and dual-channel time-resolved system for near-infrared spectroscopy studies of muscle and brain. The system employs pulsed diode lasers as sources, compact photomultipliers, and time-correlated single photon counting boards for detection. To exploit the full temporal and dynamic range of the acquisition technique, we implemented an approach based on wavelength space multiplexing: laser pulses at the two wavelengths are alternatively injected into the two channels by means of an optical 2×2 switch. In each detection line (i.e., in each temporal window), the distribution of photon time-of-flights at one wavelength is acquired. The proposed approach increases the signal-to-noise ratio and avoids wavelength cross-talk with respect to the typical approach based on time multiplexing. The instrument was characterized on tissue phantoms to assess its properties in terms of linearity, stability, noise, and reproducibility. Finally, it was successfully tested in preliminary in vivo measurements on muscle during standard cuff occlusion and on the brain during a motor cortex response due to hand movements.

  17. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    PubMed

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  18. Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, Toru; Umeyama, Shinji; Matsuda, Keiji

    2009-11-01

    Functional near-infrared spectroscopy has the potential to easily detect cerebral functional hemodynamics. However, in practical fNIRS measurements, a subject's physical or systemic physiological activities often cause undesirable artifacts. Such activities can be evoked even by task execution. In this case, observed artifacts may correlate strongly with the task sequence, and it is difficult to eliminate them by conventional signal filtering techniques. We present a theoretical analysis and Monte Carlo simulations of layered media in which both scattering and absorption changes occur, and show that a multidistance probe arrangement is effective in removing artifacts and extracting functional hemodynamics. The probe arrangement is determined based on simulation results. Artifacts induced by nonfunctional tasks (body tilting, head nodding, and breath holding) are clearly observed when a conventional method is used; such artifacts are appreciably reduced by the proposed method. Signals evoked by single-sided finger movements are observed at both hemispheres when we use a conventional method. On the other hand, localized signals at the primary motor area are observed by the proposed method. A statistically significant increase in oxygenated hemoglobin and decrease in deoxygenated hemoglobin are simultaneously observed at the contralateral primary motor area.

  19. Similarity analysis of functional connectivity with functional near-infrared spectroscopy.

    PubMed

    Dalmis, Mehmet Ufuk; Akin, Ata

    2015-08-01

    One of the remaining challenges in functional connectivity (FC) studies is investigation of the temporal variability of FC networks. Recent studies focusing on the dynamic FC mostly use functional magnetic resonance imaging as an imaging tool to investigate the temporal variability of FC. We attempted to quantify this variability via analyzing the functional near-infrared spectroscopy (fNIRS) signals, which were recorded from the prefrontal cortex (PFC) of 12 healthy subjects during a Stroop test. Mutual information was used as a metric to determine functional connectivity between PFC regions. Two-dimensional correlation based similarity measure was used as a method to analyze within-subject and intersubject consistency of FC maps and how they change in time. We found that within-subject consistency (0.61±0.09 ) is higher than intersubject consistency (0.28±0.13 ). Within-subject consistency was not found to be task-specific. Results also revealed that there is a gradual change in FC patterns during a Stroop session for congruent and neutral conditions, where there is no such trend in the presence of an interference effect. In conclusion, we have demonstrated the between-subject, within-subject, and temporal variability of FC and the feasibility of using fNIRS for studying dynamic FC. PMID:26296233

  20. Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe

    2010-07-01

    Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.

  1. Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy.

    PubMed

    Yücel, Meryem A; Selb, Juliette; Aasted, Christopher M; Lin, Pei-Yi; Borsook, David; Becerra, Lino; Boas, David A

    2016-08-01

    Analysis of cerebral hemodynamics reveals a wide spectrum of oscillations ranging from 0.0095 to 2 Hz. While most of these oscillations can be filtered out during analysis of functional near-infrared spectroscopy (fNIRS) signals when estimating stimulus evoked hemodynamic responses, oscillations around 0.1 Hz are an exception. This is due to the fact that they share a common spectral range with typical stimulus evoked hemodynamic responses from the brain. Here we investigate the effect of hemodynamic oscillations around 0.1 Hz on the estimation of hemodynamic response functions from fNIRS data. Our results show that for an expected response of ~1 µM in oxygenated hemoglobin concentration (HbO), Mayer wave oscillations with an amplitude > ~1 µM at 0.1 Hz reduce the accuracy of the estimated response as quantified by a 3 fold increase in the mean squared error and decrease in correlation (R(2) below 0.78) when compared to the true HRF. These results indicate that the amplitude of oscillations at 0.1 Hz can serve as an objective metric of the expected HRF estimation accuracy. In addition, we investigated the effect of short separation regression on the recovered HRF, and found that this improves the recovered HRF when large amplitude 0.1 Hz oscillations are present in fNIRS data. We suspect that the development of other filtering strategies may provide even further improvement. PMID:27570699

  2. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  3. Simultaneous measurement of neuronal activity and cortical hemodynamics by unshielded magnetoencephalography and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Miyashita, Tsuyoshi; Kandori, Akihiko; Maki, Atsushi; Koizumi, Hideaki

    2012-10-01

    The correlation between neuronal activity and cortical hemodynamics, namely, neurovascular coupling (NVC), is important to shed light on the mechanism of a variety of brain functions or neuronal diseases. NVC can be studied by simultaneously measuring neuronal activity and cortical hemodynamics. Consequently, noninvasive measurements of the NVC have been widely studied using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). However, electromagnetic interference between EEG and fMRI is still a major problem. On the other hand, near-infrared spectroscopy (NIRS) is another promising tool for detecting cortical hemodynamics because it can be combined with EEG or magnetoencephalography (MEG) without any electromagnetic interference. Accordingly, in the present study, a simultaneous measurement system-combining an unshielded MEG using a two-dimensional gradiometer based on a low-T superconducting quantum interference device (SQUID) and an NIRS using nonmagnetic thin probes-was developed. This combined system was used to simultaneously measure both an auditory-evoked magnetic field and blood flow change in the auditory cortex. It was experimentally demonstrated that the combined unshielded MEG/NIRS system can simultaneously measure neuronal activity and cortical hemodynamics.

  4. Rapid Assessment of Mineral Concentration in Meadow Grasses by Near Infrared Reflectance Spectroscopy

    PubMed Central

    Ward, Alastair; Nielsen, Anne Lisbeth; Møller, Henrik

    2011-01-01

    A near infrared reflectance spectroscopy (NIRS) method for rapid determination of nitrogen, phosphorous and potassium in diverse meadow grasses was developed with a view towards utilizing this material for biogas production and organic fertilizer. NIRS spectra between 12,000 cm−1 and 4,000 cm−1 were used. When validated on samples from different years to those used for the calibration set, the NIRS prediction of nitrogen was considered moderately useful with R2 = 0.77, ratio of standard error of prediction to reference data range (RER) of 9.32 and ratio of standard error of prediction to standard deviation of reference data (RPD) of 2.33. Prediction of potassium was less accurate, with R2 = 0.77, RER of 6.56 and RPD of 1.45, whilst prediction of phosphorous was not considered accurate enough to be of any practical use. This work is of interest from the point of view of both the removal of excess nutrients from formerly intensively farmed areas and also for assessing the plant biomass suitability for conversion into carbon neutral energy through biogas production. PMID:22163878

  5. Near-infrared spectroscopy for the detection and quantification of bacterial contaminations in pharmaceutical products.

    PubMed

    Quintelas, Cristina; Mesquita, Daniela P; Lopes, João A; Ferreira, Eugénio C; Sousa, Clara

    2015-08-15

    Accurate detection and quantification of microbiological contaminations remains an issue mainly due the lack of rapid and precise analytical techniques. Standard methods are expensive and time-consuming being associated to high economic losses and public health threats. In the context of pharmaceutical industry, the development of fast analytical techniques able to overcome these limitations is crucial and spectroscopic techniques might constitute a reliable alternative. In this work we proved the ability of Fourier transform near infrared spectroscopy (FT-NIRS) to detect and quantify bacteria (Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Salmonella enterica, Staphylococcus epidermidis) from 10 to 10(8) CFUs/mL in sterile saline solutions (NaCl 0.9%). Partial least squares discriminant analysis (PLSDA) models showed that FT-NIRS was able to discriminate between sterile and contaminated solutions for all bacteria as well as to identify the contaminant bacteria. Partial least squares (PLS) models allowed bacterial quantification with limits of detection ranging from 5.1 to 9 CFU/mL for E. coli and B. subtilis, respectively. This methodology was successfully validated in three pharmaceutical preparations (contact lens solution, cough syrup and topic anti-inflammatory solution) proving that this technique possess a high potential to be routinely used for the detection and quantification of bacterial contaminations. PMID:26151105

  6. Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Shang, Yu; Zhao, Youquan; Cheng, Ran; Dong, Lixin; Saha, Sibu P.

    2011-02-01

    Arterial revascularization in patients with peripheral arterial disease (PAD) reestablishes large arterial blood supply to the ischemic muscles in lower extremities via bypass grafts or percutaneous transluminal angioplasty (PTA). Currently no gold standard is available for assessment of revascularization effects in lower extremity muscles. This study tests a novel near-infrared diffuse correlation spectroscopy flow-oximeter for monitoring of blood flow and oxygenation changes in medial gastrocnemius (calf) muscles during arterial revascularization. Twelve limbs with PAD undergoing revascularization were measured using a sterilized fiber-optic probe taped on top of the calf muscle. The optical measurement demonstrated sensitivity to dynamic physiological events, such as arterial clamping/releasing during bypass graft and balloon inflation/deflation during PTA. Significant elevations in calf muscle blood flow were observed after revascularization in patients with bypass graft (+48.1 +/- 17.5%) and patients with PTA (+43.2 +/- 11.0%), whereas acute post-revascularization effects in muscle oxygenation were not evident. The decoupling of flow and oxygenation after revascularization emphasizes the need for simultaneous measurement of both parameters. The acute elevations/improvements in calf muscle blood flow were associated with significant improvements in symptoms and functions. In total, the investigation corroborates potential of the optical methods for objectively assessing the success of arterial revascularization.

  7. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy.

    PubMed

    Revilla, I; González-Martín, M I; Vivar-Quintana, A M; Blanco-López, M A; Lobos-Ortega, I A; Hernández-Hierro, J M

    2016-07-01

    In this study, we analyzed antioxidant capacity of 224 cheese samples prepared using 16 varied mixtures of milk from cows, ewes, and goats, in 2 manufacturing seasons (winter and summer), and over 6mo of ripening. Antioxidant capacity was evaluated using the spectrophotometric 2,2-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) (ABTS) method. Total antioxidant capacity was significantly correlated with season of manufacturing and time of ripening but not with animal species providing the milk. Moreover, statistically significant correlations between the total antioxidant capacity and retinol (r=0.399), fat percentage (r=0.308), protein percentage (r=0.366), K (r=0.385), Mg (r=0.312), Na (r=0.432), and P (0.272) were observed. We evaluated the use of near infrared spectroscopy technology, together with the use of a remote reflectance fiber-optic probe, to predict the antioxidant capacity of cheese samples. The model generated allowed us to predict antioxidant capacity in unknown cheeses of different compositions and ripening times.

  8. Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS).

    PubMed

    de Paz, José Miguel; Visconti, Fernando; Chiaravalle, Mara; Quiñones, Ana

    2016-05-01

    Early diagnosis of specific chloride toxicity in persimmon trees requires the reliable and fast determination of the leaf chloride content, which is usually performed by means of a cumbersome, expensive and time-consuming wet analysis. A methodology has been developed in this study as an alternative to determine chloride in persimmon leaves using near-infrared spectroscopy (NIRS) in combination with multivariate calibration techniques. Based on a training dataset of 134 samples, a predictive model was developed from their NIR spectral data. For modelling, the partial least squares regression (PLSR) method was used. The best model was obtained with the first derivative of the apparent absorbance and using just 10 latent components. In the subsequent external validation carried out with 35 external data this model reached r(2) = 0.93, RMSE = 0.16% and RPD = 3.6, with standard error of 0.026% and bias of -0.05%. From these results, the model based on NIR spectral readings can be used for speeding up the laboratory determination of chloride in persimmon leaves with only a modest loss of precision. The intermolecular interaction between chloride ions and the peptide bonds in leaf proteins through hydrogen bonding, i.e. N-H···Cl, explains the ability for chloride determinations on the basis of NIR spectra. PMID:26935930

  9. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  10. Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy.

    PubMed

    Magaña, C; Núñez-Sánchez, N; Fernández-Cabanás, V M; García, P; Serrano, A; Pérez-Marín, D; Pemán, J M; Alcalde, E

    2011-10-01

    Sugar beets are a raw material for the production of sugar and ethanol. The decision on which end product to pursue could be facilitated by fast and reliable means of predicting the potential ethanol yield from the beets. A Near Infrared (NIR) Spectroscopy-based approach was tested for the direct prediction of the potential bioethanol production from sugar beets. A modified partial least squares (MPLS) regression model was applied to 125 samples, ranging from 21.9 to 31.0 gL(-1) of bioethanol in sugar beet brei. The samples were analyzed in reflectance mode in a Direct Contact Food Analyser (DCFA) FOSS-NIRSystems 6500 monochromator, with standard error of cross validation (SECV), standard error of prediction (SEP), coefficient of determination (r(2)) and coefficient of variation (CV) of 0.51, 0.49, 0.91 and 1.9 gL(-1), respectively. The NIR technique allowed direct prediction of the ethanol yield from sugar beet brei (i.e. the product obtained after sawing beets with a proper machine) in less than 3 min.

  11. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants

    PubMed Central

    Lloyd-Fox, Sarah; Richards, John E.; Blasi, Anna; Murphy, Declan G. M.; Elwell, Clare E.; Johnson, Mark H.

    2014-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering fNIRS and magnetic resonance imaging (MRI) data from 55 individuals. Our findings suggest that fNIRS channels can be reliably registered with regions in the frontal and temporal cortex of infants from 4 to 7 months of age. Although some macro-anatomical regions are difficult to consistently define, others are more stable and fNIRS channels on an age-appropriate MRI template are often consistent with individual infant MRIs. We have generated a standardized scalp surface map of fNIRS channel locators to reliably locate cortical regions for fNIRS developmental researchers. This new map can be used to identify the inferior frontal gyrus, superior temporal sulcus (STS) region [which includes the superior and middle temporal gyri (MTG) nearest to the STS], and MTG and temporal-parietal regions in 4- to 7-month-old infants. Future work will model data for the whole head, taking into account the properties of light transport in tissue, and expanding to different ages across development. PMID:25558463

  12. Biogas potential from forbs and grass-clover mixture with the application of near infrared spectroscopy.

    PubMed

    Wahid, Radziah; Ward, Alastair James; Møller, Henrik Bjarne; Søegaard, Karen; Eriksen, Jørgen

    2015-12-01

    This study investigated the potentials of forbs; caraway, chicory, red clover and ribwort plantain as substrates for biogas production. One-, two- and four-cut systems were implemented and the influence on dry matter yields, chemical compositions and methane yields were examined. The two- and four-cut systems resulted in higher dry matter yields (kg [total solid, TS] ha(-1)) compared to the one-cut system. The effect of plant compositions on biogas potentials was not evident. Cumulative methane yields (LCH4kg(-1) [volatile solid, VS]) were varied from 279 to 321 (chicory), 279 to 323 (caraway), 273 to 296 (ribwort plantain), 263 to 328 (red clover) and 320 to 352 (grass-clover mixture), respectively. Methane yield was modelled by modified Gompertz equation for comparison of methane production rate. Near infrared spectroscopy showed potential as a tool for biogas and chemical composition prediction. The best prediction models were obtained for methane yield at 29 days (99 samples), cellulose, acid detergent fibre, neutral detergent fibre and crude protein, (R(2)>0.9). PMID:26386414

  13. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    NASA Astrophysics Data System (ADS)

    Hahn, Gitte Holst; Christensen, Karl Bang; Leung, Terence S.; Greisen, Gorm

    2010-05-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants. We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GA<30) yielding 215 10-min measurements. Surprisingly, adjusting for variabilityABP within the power spectrum did not improve the precision. However, adjusting for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3-3.7 h. Coherence analysis in low frequencies (0.04-0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003-0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements.

  14. Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Arri, Sandra Jasminder; Muehlemann, Thomas; Biallas, Martin; Bucher, Hans Ulrich; Wolf, Martin

    2011-04-01

    Background and aim: One source of error with near-infrared spectroscopy (NIRS) is the assumption that the measured tissue is optically homogeneous. This is not always the case. Our aim is to assess the impact of tissue homogeneity (TH) on the precision of NIRS measurements in neonates. Methods: On 36 term and 27 preterm neonates at least five 1-min measurements are performed on each subject using the OxiplexTS. The sensor position is slightly changed before each measurement while assessing TH. The precision for cerebral tissue oxygenation saturation (StO2) and total hemoglobin concentration (tHb) are calculated by repeated measures analysis of variance. Results: The mean StO2 is not significantly different between term and preterm infants. The mean tHb is significantly lower in preterm infants (p < 0.01). With increasing TH, the precision of StO2 increase from 5.6 to 4.6% for preterm and from 11.0 to 2.0% for term infants; the precision of tHb increases from 10.1 to 7.5μM for preterm and from 16.4 to 3.5μM for term infants. The precision for StO2 is higher in term than in preterm infants. The precision for tHb shows no significant difference between the two groups. Conclusions: The precision of NIRS measurements correlates with tissue homogeneity.

  15. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods

    NASA Astrophysics Data System (ADS)

    Caicedo, Alexander; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Wolf, Martin; Van Huffel, Sabine

    2012-11-01

    Cerebral Autoregulation, in clinical practice, is assessed by means of correlation or coherence analysis between mean arterial blood pressure (MABP) and cerebral blood flow (CBF). However, even though there is evidence linking cerebral autoregulation assessment with clinical outcome in preterm infants, available methods lack precision for clinical use. Classical methods, used for cerebral autoregulation, are influenced by the choice of parameters such as the length of the epoch under analysis and the choice of suitable frequency bands. The influence of these parameters, in the derived measurements for cerebral autoregulation, has not yet been evaluated. In this study, cerebral autoregulation was assessed using correlation, coherence, a modified version of coherence and transfer function gain, and phase. The influence of the extra-parameters on the final scores was evaluated by means of sensitivity analysis. The methods were applied to a database of 18 neonates with measurements of MABP and tissue oxygenation index (TOI). TOI reflects changes in CBF and was measured by means of near-infrared spectroscopy.

  16. Somatic stimulation causes frontoparietal cortical changes in neonates: a functional near-infrared spectroscopy study.

    PubMed

    Kashou, Nasser H; Dar, Irfaan A; Hasenstab, Kathryn A; Nahhas, Ramzi W; Jadcherla, Sudarshan R

    2017-01-01

    Palmar and plantar grasp are the foremost primitive neonatal reflexes and functions. Persistence of these reflexes in infancy is a sign of evolving cerebral palsy. Our aims were to establish measurement feasibility in a clinical setting and to characterize changes in oxyhemoglobin (HbO) and deoxyhemoglobin (HbD) concentration in the bilateral frontoparietal cortex in unsedated neonates at the crib-side using functional near-infrared spectroscopy (fNIRS). We hypothesized that bilateral concentration changes will occur upon somatic central and peripheral somatic stimulation. Thirteen preterm neonates (five males) underwent time 1, and six (two males) returned for time 2 (mean [Formula: see text] and 47.0 weeks, respectively). Signals from a total of 162 somatic stimuli responses were measured. Response amplitude, duration, and latency were log-transformed and compared between palmar, plantar, and oromotor stimuli using linear mixed models, adjusted for cap, electroencephalogram abnormality, time (1 versus 2), and Sarnat score, if necessary. The oromotor stimulus resulted in a 50% greater response than the palmar or plantar stimuli for HbO left and right hemisphere duration ([Formula: see text]). There were no other statistically significant differences between stimuli for any other outcome ([Formula: see text]). Utilizing fNIRS in conjunction with occupational and physical therapy maneuvers is efficacious to study modifiable and restorative neurophysiological mechanisms. PMID:27570791

  17. Functional near-infrared spectroscopy: a continuous wave type based system for human frontal lobe studies

    PubMed Central

    Venclove, Sigita; Daktariunas, Algis; Ruksenas, Osvaldas

    2015-01-01

    Functional Near-Infrared Spectroscopy (fNIRS) is an optical non-invasive brain monitoring technology that registers changes in hemodynamic responses within the cortex of the human brain. Over the last decades fNIRS became a promising method in neurosciences: it is non-invasive, portable and can be used in long term studies. All these advantages make it suitable for educational purposes as well. This paper presents basic methodological concept of optical engineering principles and suitable applications of fNIRS. We represent a continuous wave (cw-fNIRS) system that could be used for frontal lobe studies in human adults or as demonstration equipment for physiological measurements. This system has been validated by comparing it with commercial device fNIR400 from Biopac. A comparison of geometry, data and statistical analyses suggests similar hemodynamic responses recorded by both devices. Our study suggests that this system can be used for further development and as a guideline for researchers to develop a specific tool for applications in human brain studies. PMID:26869869

  18. [Non-destructive brand identification of car wax using visible and near-infrared spectroscopy].

    PubMed

    Zhang, Yu; Tan, Li-Hong; He, Yong

    2014-02-01

    Visible and near-infrared (Vis-NIR) spectroscopy was applied to identify brands of car wax. A total of 104 samples were obtained for the analysis, in which 40 samples (calibration set) were used for model calibration, and the remaining 64 samples (prediction set) were used to validate the calibrated model independently. Linear discriminant analysis (LDA) and least square-support vector machine (LS-SVM) were respectively used to establish identification models for car wax with five brands based on their Vis-NIR spectra. Correct rates for prediction sample set were 84% and 97% for LDA and LS-SVM models, respectively. Spectral variable selection was further conducted by successive projections algorithm, (SPA), resulting in seven feature variables (351, 365, 401, 441, 605, 926, and 980 nm) selected from full range spectra that had 751 variables. The new LS-SVM model established using the feature variables selected by SPA also had the correct rate of 97%, showing that the selected variables had the most important information for brand identification, while other variables with no useful information were eliminated efficiently. The use of SPA and LS-SVM could not only obtain a high correct identification rate, but also simplify the model calibration and calculation. SPA-LS-SVM model could extract the useful information from the Vis-NIR spectra of car wax rapidly and accurately for the non-destructive brand identification of car wax.

  19. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    PubMed

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  20. Specificity of Hemodynamic Brain Responses to Painful Stimuli: A functional near-infrared spectroscopy study

    PubMed Central

    Yücel, Meryem A.; Aasted, Christopher M.; Petkov, Mihayl P.; Borsook, David; Boas, David A.; Becerra, Lino

    2015-01-01

    Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain. PMID:25820289

  1. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  2. Dynamic topographic mapping of the human bladder during voiding using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Stothers, Lynn; Shadgan, Babak

    2009-03-01

    Functional near-infrared spectroscopy (fNIRS) with multichannel instruments and grids of source-detector pairs can map regional change in oxygenation/hemodynamics. Developed for cortical brain mapping, fNIRS technology has relevance in other organs where pathology affects the microcirculation. We describe fNIRS of the human bladder for evaluation of hemodynamic change during voiding. A 5×5-cm grid with two source-detector pairs is placed on the abdomen suprapubically in an asymptomatic male. In four separate trials, after natural bladder filling NIRS-derived changes in oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), and total hemoglobin (tHb) concentration are recorded during voiding (measured via uroflow), using four channels of a four wavelength continuous wave instrument. Graphic and video images (topographic mapping software) are generated. Changes in tHb occur following permission to void that predominantly reflected variation in O2Hb; tHb peaks at maximum urine flow then falls to a nadir lasting to uroflow end. Change in fNIRS video color intensity correlates with graphic change in chromophore concentration. Color variations across the mapped area suggest regional hemodynamic variation. fNIRS bladder studies generate reproducible chromophore data consistent with single channel studies, but the dynamic color video and larger tissue area monitored potentially offer new methodology for investigating regional variations in bladder oxygenation and hemodynamics.

  3. Detection of cerebral oxyhaemoglobin changes during vestibular Coriolis cross-coupling stimulation using near infrared spectroscopy.

    PubMed

    Kobayashi, A; Cheung, B

    2006-02-13

    Near infrared spectroscopy (NIRS) has been successful in monitoring cerebral haemodynamics when the subject is immobilized during surgery, and when there is a drastic depletion of blood from the cerebral cortex during positive acceleration. In this study, we monitored subtle changes of cerebral oxygen level using NIRS during vestibular stimulation. For the control conditions, cerebral oxygen status was monitored in six stationary subjects sitting upright, and while they executed head movements in the pitch axis with eyes opened and eyes closed. The experimental conditions involved the subjects making a head movement which required a 45 degrees pitch-down followed by a return to upright head movements 12 s later during yaw rotation (Coriolis cross coupling) at 10 and 20 rotations per minute (rpm) in a random order. Oxyhaemoglobin (O(2)Hb), deoxyhaemoglobin (HHb) and total haemoglobin levels were recorded every 0.5 s from both the parietal and the occipital lobe simultaneously. A significant rotation effect was observed in total Hb level changes from baseline in both regions. Occipital O(2)Hb increased significantly after the head movement with eyes opened at 20 rpm. Our findings appear to be consistent with previous vestibular studies that significant changes in brain blood flow occur during caloric stimulation. NIRS can be used to monitor discrete cortical blood flow changes resulting from vestibular and other forms of stimulation.

  4. Combining near-infrared spectroscopy with electroencephalography and repetitive transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Näsi, Tiina; Kotilahti, Kalle; Mäki, Hanna; Nissilä, Ilkka; Meriläinen, Pekka

    2009-07-01

    The objective of the study was to assess the usability of a near-infrared spectroscopy (NIRS) device in multimodal measurements. We combined NIRS with electroencephalography (EEG) to record hemodynamic responses and evoked potentials simultaneously, and with transcranial magnetic stimulation (TMS) to investigate hemodynamic responses to repetitive TMS (rTMS). Hemodynamic responses and visual evoked potentials (VEPs) to 3, 6, and 12 s stimuli consisting of pattern-reversing checkerboards were successfully recorded in the NIRS/EEG measurement, and ipsi- and contralateral hemodynamic responses to 0.5, 1, and 2 Hz rTMS in the NIRS/TMS measurement. In the NIRS/EEG measurements, the amplitudes of the hemodynamic responses increased from 3- to 6-s stimulus, but not from 6- to 12-s stimulus, and the VEPs showed peaks N75, P100, and N135. In the NIRS/TMS measurements, the 2-Hz stimulus produced the strongest hemodynamic responses compared to the 0.5- and 1-Hz stimuli. In two subjects oxyhemoglobin concentration decreased and in one increased as a consequence of the 2-Hz rTMS. To locate the origin of the measured NIRS responses, methods have to be developed to investigate TMS-induced scalp muscle contractions. In the future, multimodal measurements may prove useful in monitoring or treating diseases such as stroke or Alzheimer's disease.

  5. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  6. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children.

    PubMed

    Hu, Xiao-Su; Arredondo, Maria M; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F; Johnson, Timothy D; Shalinsky, Mark; Kovelman, Ioulia

    2015-01-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  7. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    PubMed

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  8. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  9. Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy

    PubMed Central

    Nguyen, Hoang-Dung; Hong, Keum-Shik

    2016-01-01

    The paper presents a functional near-infrared spectroscopy (fNIRS)-based bundled-optode method for detection of the changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations. fNIRS with 32 optodes is utilized to measure five healthy male subjects’ brain-hemodynamic responses to arithmetic tasks. Specifically, the coordinates of 256 voxels in the three-dimensional (3D) volume are computed according to the known probe geometry. The mean path length factor in the Beer-Lambert equation is estimated as a function of the emitter-detector distance, which is utilized for computation of the absorption coefficient. The mean values of HbO and HbR obtained from the absorption coefficient are then applied for construction of a 3D fNIRS image. Our results show that the proposed method, as compared with the conventional approach, can detect brain activity with higher spatial resolution. This method can be extended for 3D fNIRS imaging in real-time applications.

  10. Compliant head probe for positioning electroencephalography electrodes and near-infrared spectroscopy optodes

    NASA Astrophysics Data System (ADS)

    Giacometti, Paolo; Diamond, Solomon G.

    2013-02-01

    A noninvasive head probe that combines near-infrared spectroscopy (NIRS) and electroencephalography (EEG) for simultaneous measurement of neural dynamics and hemodynamics in the brain is presented. It is composed of a compliant expandable mechanism that accommodates a wide range of head size variation and an elastomeric web that maintains uniform sensor contact pressure on the scalp as the mechanism expands and contracts. The design is intended to help maximize optical and electrical coupling and to maintain stability during head movement. Positioning electrodes at the inion, nasion, central, and preauricular fiducial locations mechanically shapes the probe to place 64 NIRS optodes and 65 EEG electrodes following the 10-5 scalp coordinates. The placement accuracy, precision, and scalp pressure uniformity of the sensors are evaluated. A root-mean-squared (RMS) positional precision of 0.89±0.23 mm, percent arc subdivision RMS accuracy of 0.19±0.15%, and mean normal force on the scalp of 2.28±0.88 N at 5 mm displacement were found. Geometric measurements indicate that the probe will accommodate the full range of adult head sizes. The placement accuracy, precision, and uniformity of sensor contact pressure of the proposed head probe are important determinants of data quality in noninvasive brain monitoring with simultaneous NIRS-EEG.

  11. Valence processing of first impressions in the dorsomedial prefrontal cortex: a near-infrared spectroscopy study.

    PubMed

    Yu, Chi-Lin; Wang, Min-Ying; Hu, Jon-Fan

    2016-05-25

    Previous studies have suggested that the dorsomedial prefrontal cortex (dmPFC) plays a central role in processing first impressions; however, little is known about how dmPFC processes different valences of first impressions. Moreover, it is still unclear as to whether the dmPFC shows lateralization or only induces different levels of activation when processing positive and negative impressions. To address these questions in the present study, the brain activities for the impression judgments expressed by participants were measured with near-infrared spectroscopy. For each real facial picture, participants were asked to evaluate their first impressions on a scale from 'bad' to 'good' using a keyboard. The results showed that although the right dmPFC has a higher sensitivity in processing impressions, both the hemispheres of dmPFC showed a significant trend where the activation of positive impressions was higher than the negative ones. Accordingly, it is proposed that the dmPFC acts as a single mechanism responsible for delineating the processing of first impressions rather than two lateralized systems. Therefore, a 'positivity dominance hypothesis' is also proposed, which states that dmPFC in both hemispheres have a higher sensitivity and priority for positive impressions than negative ones. The present study provides valuable findings with respect to the role of the dmPFC in the processes of first impression formation.

  12. Studying social cognition using near-infrared spectroscopy: the case of social Simon effect

    NASA Astrophysics Data System (ADS)

    Costantini, Marcello; Di Vacri, Assunta; Maria Chiarelli, Antonio; Ferri, Francesca; Luca Romani, Gian; Merla, Arcangelo

    2013-02-01

    In order to understand the so-called "social brain," we need to monitor social interactions in face-to-face paradigms. Near-infrared spectroscopy (NIRS) is a promising technique to achieve this goal. We investigate the neuronal underpinnings of sharing a task in a proper social context. We record cortical activity by means of NIRS, while participants perform a joint Simon task. Different from other hemodynamic techniques, NIRS allows us to have both participants sit comfortably close to each other in a realistic and ecological environment. We found higher activation in the sensorimotor cortex while processing compatible trials as compared to incompatible ones referring to one's own action alternative. Strikingly, when the participant was not responding because it was the turn of the other member of the pair, the inferior parietal was activated. This study provides twofold findings: first, they suggest that the joint Simon effect relies more on shared attentional mechanisms than a proper mapping of the other's motor response. Second, they highlight the invaluable contribution NIRS can afford to social neuroscience in order to preserve ecological and naturalistic settings.

  13. Quantitative Determination of Fusarium proliferatum Concentration in Intact Garlic Cloves Using Near-Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Mamolini, Elisabetta; De Bastiani, Morena; Marchetti, Maria Gabriella

    2016-01-01

    Fusarium proliferatum is considered to be a pathogen of many economically important plants, including garlic. The objective of this research was to apply near-infrared spectroscopy (NIRS) to rapidly determine fungal concentration in intact garlic cloves, avoiding the laborious and time-consuming procedures of traditional assays. Preventive detection of infection before seeding is of great interest for farmers, because it could avoid serious losses of yield during harvesting and storage. Spectra were collected on 95 garlic cloves, divided in five classes of infection (from 1-healthy to 5-very highly infected) in the range of fungal concentration 0.34-7231.15 ppb. Calibration and cross validation models were developed with partial least squares regression (PLSR) on pretreated spectra (standard normal variate, SNV, and derivatives), providing good accuracy in prediction, with a coefficient of determination (R²) of 0.829 and 0.774, respectively, a standard error of calibration (SEC) of 615.17 ppb, and a standard error of cross validation (SECV) of 717.41 ppb. The calibration model was then used to predict fungal concentration in unknown samples, peeled and unpeeled. The results showed that NIRS could be used as a reliable tool to directly detect and quantify F. proliferatum infection in peeled intact garlic cloves, but the presence of the external peel strongly affected the prediction reliability. PMID:27428978

  14. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    PubMed Central

    González-Martín, M. Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M.; Coello, M. Carmen; Palacios Riocerezo, Carlos; Wells Moncada, Guillermo

    2015-01-01

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption. PMID:26540058

  15. Measurement of oxygen consumption during muscle flaccidity exercise by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fukuda, K.; Fukawa, Y.

    2013-03-01

    Quantitative measurement oxygen consumption in the muscles is important to evaluate the effect of the exercise. Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring muscle oxygenation. However, measurement results are affected by blood volume change due to changes in the blood pressure. In order to evaluate changes in blood volume and to improve measurement accuracy, we proposed a calculation method of three-wavelength measurement with considering the scattering factor and the measurement with monitoring blood flow for measuring the temporal change of the oxygen concentration more precisely. We applied three-wavelength light source (680nm, 808nm and 830nm) for the continued wave measurement. Two detectors (targeted detector and the reference detector) were placed near the target muscle and apart from it. We measured the blood flow by controlling the intravascular pressure and the oxygen consumption with the handgrip exercise in the forearm. The measured results show that the scattering factor contains the artifact at the surface and the blood flow in the artery and the vein in the same phase. The artifact and the blood flow in the same phase are reduced from the oxygenated and the deoxygenated hemoglobin densities. Thus our proposed method is effective for reducing the influence of the artifact and the blood flow in the same phase from the oxygen consumption measurement. Further, it is shown that the oxygen consumption is measured more accurately by subtracting the blood flow measured by the reference detector.

  16. Prefrontal cerebral blood volume patterns while playing video games--a near-infrared spectroscopy study.

    PubMed

    Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro

    2006-06-01

    Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.

  17. Brain computer interface using a simplified functional near-infrared spectroscopy system

    NASA Astrophysics Data System (ADS)

    Coyle, Shirley M.; Ward, Tomás E.; Markham, Charles M.

    2007-09-01

    A brain-computer interface (BCI) is a device that allows a user to communicate with external devices through thought processes alone. A novel signal acquisition tool for BCIs is near-infrared spectroscopy (NIRS), an optical technique to measure localized cortical brain activity. The benefits of using this non-invasive modality are safety, portability and accessibility. A number of commercial multi-channel NIRS system are available; however we have developed a straightforward custom-built system to investigate the functionality of a fNIRS-BCI system. This work describes the construction of the device, the principles of operation and the implementation of a fNIRS-BCI application, 'Mindswitch' that harnesses motor imagery for control. Analysis is performed online and feedback of performance is presented to the user. Mindswitch presents a basic 'on/off' switching option to the user, where selection of either state takes 1 min. Initial results show that fNIRS can support simple BCI functionality and shows much potential. Although performance may be currently inferior to many EEG systems, there is much scope for development particularly with more sophisticated signal processing and classification techniques. We hope that by presenting fNIRS as an accessible and affordable option, a new avenue of exploration will open within the BCI research community and stimulate further research in fNIRS-BCIs.

  18. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  19. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments.

    PubMed

    Baum, Andreas; Agger, Jane; Meyer, Anne S; Egebo, Max; Mikkelsen, Jørn Dalgaard

    2012-02-15

    Efficient generation of a fermentable hydrolysate is a primary requirement in the utilization of fibrous plant biomass as feedstocks in bioethanol processes. The first biomass conversion step usually involves a hydrothermal pretreatment before enzymatic hydrolysis. The purpose of the pretreatment step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production or as a source of xylose for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects on destarched corn bran. NIR was used to achieve classification between 43 differently pretreated corn bran samples using principal component analysis (PCA) and hierarchal clustering algorithms. Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic release of different levels of arabinose, xylose and glucose from all the differently pretreated destarched corn bran samples. The present study also demonstrates a generic, non-destructive solution to determine the enzymatic monosaccharide release from polymers in biomass side-streams, thereby potentially replacing the cumbersome HPLC analysis.

  20. Near-infrared spectroscopy and polysomnography during all-night sleep in human subjects

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Aggarwal, Payal; Chen, Kathleen; Franceschini, Maria Angela; Ehrenberg, Bruce L.

    2003-10-01

    We have performed cerebral near-infrared spectroscopy (NIRS) and polysomnography (electro-encephalography, electro-oculography, electro-myography, pulse oximetry, and respiratory monitoring) during all-night sleep in five human subjects. Polysomnography data were used for sleep staging, while NIRS data were used to measure the concentration and the oxygen saturation of hemoglobin in the frontal brain region. Immediately after sleep onset we observed a decrease in the cerebral concentration of oxy-hemoglobin ([HbO2]) and an increase in the concentration of deoxy-hemoglobin ([Hb]), consistent with a decrease in the cerebral blood flow velocity or an increase in cerebral metabolic rate of oxygen. An opposite trend (increase in [HbO2] and decrease in [Hb]) was usually observed after transition to deep sleep (stages III and IV). During rapid eye movement (REM) sleep, we observed an increase in [HbO2] and decrease in [Hb], consistent with an increase in the cerebral blood flow that overcompensates the increase in the metabolic rate of oxygen associated with REM sleep.

  1. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  2. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System.

    PubMed

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information.

  3. Cerebral near-infrared spectroscopy as a measure of nociceptive evoked activity in critically ill infants.

    PubMed

    Ranger, Manon; Johnston, Celeste C; Limperopoulos, Catherine; Rennick, Janet E; du Plessis, Adre J

    2011-01-01

    Signs of pain may be subtle or absent in a critically ill infant. The complex nature of pain may further obscure its identification and measurement. Because the use of monitoring and neuroimaging techniques has become more common in pain research, an understanding of these specialized technologies is important. Near-infrared spectroscopy (NIRS) is a noninvasive technique for monitoring tissue hemodynamics and oxygenation. There are indications that NIRS is capable of detecting the cerebral hemodynamic changes associated with sensory stimuli, including pain, in infants. These developments suggest that NIRS may play an important role in research focusing on pain perception in critically ill infants. The present review briefly describes the cortical responses to noxious stimuli, which parallel cerebral hemodynamic responses to various stimuli. This is followed by an overview of NIRS technology including a summary of the literature on functional studies that have used NIRS in infants. Current NIRS techniques have well-recognized limitations that must be considered carefully during the measurement and interpretation of the signals. Nonetheless, until more advanced NIRS techniques emerge, the current devices have strengths that should be exploited. PMID:22059205

  4. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy.

    PubMed

    González-Martín, M Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M; Coello, M Carmen; Riocerezo, Carlos Palacios; Moncada, Guillermo Wells

    2015-01-01

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption. PMID:26540058

  5. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-03-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.

  6. Near-Infrared Spectroscopy for Objectifying Cerebral Effects of Laser Acupuncture in Term and Preterm Neonates

    PubMed Central

    Raith, Wolfgang; Avian, Alexander; Sommer, Constanze; Koestenberger, Martin; Schmölzer, Georg M.; Urlesberger, Berndt

    2013-01-01

    Laser acupuncture (LA) becomes more and more relevant in neonates and infants. With near-infrared spectroscopy (NIRS), a continuous and noninvasive measurement of tissue oxygenation is possible. Aim was to investigate, whether the application of LA was associated with any changes in regional cerebral oxygen saturation (rcSO2) in term and preterm neonates. The study included 20 neonates (12 males, 8 females). The Large Intestine 4 acupuncture point (LI 4, Hegu) was stimulated by a microlaser needle (10 mW, 685 nm laser needle EG GmbH, Germany) for 5 minutes, bilaterally. All neonates underwent polygraphic recording during undisturbed daytime sleep, including heart rate (HR), peripheral oxygen saturation (SpO2), and measurement of nasal flow. Using NIRS, rcSO2 was measured continuously. Cerebral fractional tissue oxygen extraction (cFTOE) was calculated. We did not observe any significant changes in SpO2 and HR values during the whole observation period. However, there was a significant decrease in rcSO2 (P = 0.003) within postintervention period, accompanied by a significant increase in cFTOE (P = 0.010) in postintervention period. PMID:23762122

  7. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia

    2015-12-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  8. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review

    PubMed Central

    Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  9. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Umeyama, Shinji; Yamada, Toru

    2009-11-01

    The performance of near-infrared spectroscopy is sometimes degraded by the systemic physiological interference in the extracerebral layer. There is some systemic interference, which is highly correlated with the functional response evoked by a task execution. This kind of interference is difficult to remove by using ordinary techniques. A multidistance measurement method is one of the possible solutions for this problem. The multidistance measurement method requires estimation parameters derived from partial pathlength values of tissue layers to calculate an absorption coefficient change from a temporal absorbance change. Because partial path lengths are difficult to obtain, experimentally, we estimated them by a Monte Carlo simulation based on a five-layered slab model of a human adult head. Model parameters such as thickness and the transport scattering coefficient of each layer depend on a subject and a measurement position; thus, we assumed that these parameters obey normal distributions around standard parameter values. We determined the estimation parameters that provide a good separation performance in average for the model parameter distribution. The obtained weighting is robust to model parameter deviation and provides smaller errors on average compared to the parameters, which are determined without considering parameter distribution.

  10. Fecal near infrared spectroscopy to discriminate physiological status in giant pandas.

    PubMed

    Wiedower, Erin E; Kouba, Andrew J; Vance, Carrie K; Hansen, Rachel L; Stuth, Jerry W; Tolleson, Douglas R

    2012-01-01

    Giant panda (Ailuropoda melanoleuca) monitoring and research often require accurate estimates of population size and density. However, obtaining these estimates has been challenging. Innovative technologies, such as fecal near infrared reflectance spectroscopy (FNIRS), may be used to differentiate between sex, age class, and reproductive status as has been shown for several other species. The objective of this study was to determine if FNIRS could be similarly used for giant panda physiological discriminations. Based on samples from captive animals in four U.S. zoos, FNIRS calibrations correctly identified 78% of samples from adult males, 81% from adult females, 85% from adults, 89% from juveniles, 75% from pregnant and 70% from non-pregnant females. However, diet had an impact on the success of the calibrations. When diet was controlled for plant part such that "leaf only" feces were evaluated, FNIRS calibrations correctly identified 93% of samples from adult males and 95% from adult females. These data show that FNIRS has the potential to differentiate between the sex, age class, and reproductive status in the giant panda and may be applicable for surveying wild populations.

  11. Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy

    PubMed Central

    Nguyen, Hoang-Dung; Hong, Keum-Shik

    2016-01-01

    The paper presents a functional near-infrared spectroscopy (fNIRS)-based bundled-optode method for detection of the changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations. fNIRS with 32 optodes is utilized to measure five healthy male subjects’ brain-hemodynamic responses to arithmetic tasks. Specifically, the coordinates of 256 voxels in the three-dimensional (3D) volume are computed according to the known probe geometry. The mean path length factor in the Beer-Lambert equation is estimated as a function of the emitter-detector distance, which is utilized for computation of the absorption coefficient. The mean values of HbO and HbR obtained from the absorption coefficient are then applied for construction of a 3D fNIRS image. Our results show that the proposed method, as compared with the conventional approach, can detect brain activity with higher spatial resolution. This method can be extended for 3D fNIRS imaging in real-time applications. PMID:27699115

  12. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  13. Near-infrared spectroscopy of asteroids in the Polana-family region: Where are the Eulalias?

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, N.; Campins, H.; Lorenzi, V.; de Leon, J.; Landsman, Z.; Licandro, J.; Ali-Lagoa, V.

    2014-07-01

    The inner asteroid belt is an important source of Near-Earth Objects (NEOs). This region is located between the ν_6 resonance near 2.15 au and the 3:1 mean-motion resonance with Jupiter at 2.5 au. The two current targets of sample-return missions are believed to originate in the inner belt (e.g., Campins et al. 2010, 2013). These are asteroid (101955) Bennu, target of NASA's OSIRIS-Rex and 1999 JU3, target of JAXA's Hayabusa-2. Both of these asteroids are unlikely to be primordial objects because their collisional lifetime is much shorter than the age of solar system (e.g., Bottke et al. 2005); thus, they are believed to be fragments of larger objects. In searching for their parent bodies, we have studied low-albedo asteroids in the inner belt and we have identified at least five distinct populations: four families (Clarissa, Erigone, Polana and Sulamitis) and the background of low-albedo asteroids outside these families. The background and the Polana family are the two largest populations (Campins et al. 2010; Delbo et al. 2011). In order to characterize this source of NEOs, we decided to carry out a spectroscopic study of the Polana family, which we started in 2010. For this study, we define the Polana family as the low-albedo component of the Nysa-Polana complex. Interestingly, a recent publication (Walsh et al. 2013) suggests that there are two families of primitive asteroids with low inclination in this region that can be distinguished using NIR spectroscopy and that would have (142) Polana and (495) Eulalia as their parents bodies. We present results of two different observational campaigns: Pinilla- Alonso et al. (2014) obtained near-infrared (0.8--2.5 μ m) spectra with NICS at the TNG telescope at the ''El Roque de los Muchachos'' observatory (La Palma, Spain) and with SpeX (Rayner et al. 2003) at NASA's IRTF on Mauna Kea, Hawaii. In de Leon et al. (2014), we present visible spectra of smaller members of this population (H>15), using the 10.4-m Gran

  14. Remote Identification of Pyroclastic Deposits on Mars and the Moon with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Horgan, B. H.; Chojnacki, M.; Lai, J. C.; Bennett, K. A.; Bell, J. F.

    2013-12-01

    A major challenge for interpreting the volcanic history of the terrestrial planets is differentiating effusive from explosive volcanic deposits, especially when these deposits are only exposed in cross section. One major difference between these deposits is the presence of glass. Pyroclastic flows and other explosive deposits can contain large quantities of glass, depending on factors including water content at the time of eruption, whereas glass is largely restricted to the fragile cooling rind in effusive deposits. Thus, the presence of significant glass in a deposit most likely indicates an explosive origin. Here we present a new method for discriminating lava flows from pyroclastic deposits using near-infrared spectroscopy. Iron-bearing glass exhibits a broad and shallow absorption band due to iron in the glass structure, centered between 1.10-1.18 μm. This band is longward of similar bands caused by other Fe-bearing phases (e.g., olivine and pyroxene), and therefore allows unique identification of glass where it is present at high abundances (>80 wt.% of Fe-bearing phases). Lower abundances of glass in a mixture with other Fe-bearing phases can still be detected based on the effects of the glass absorption band, which shifts the 1 μm band center and causes a high asymmetry in the shape of the band, both toward longer wavelengths. By analyzing near-infrared spectra from the Mars Express OMEGA imaging spectrometer for these 1 μm band characteristics consistent with Fe-bearing glass, we have mapped the distribution of glass-bearing deposits globally on Mars at 1 km resolution. Where available, we have confirmed our detections with high resolution observations from the MRO CRISM imaging spectrometer (18-36 m/pixel). Glass is a component of many dune fields, in sediments derived from local erosion of layered units, in the widespread dark sediments in the northern plains, and in deposits associated with linear features (possible fissures). These results suggest a

  15. Near-Infrared spectroscopy of the possible nova candidate PNV J17355050-2934240

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit; Joshi, Vishal; Banerjee, D. P. K.; Ashok, N. M.

    2016-03-01

    We report near-infrared observations of PNV J17355050-2934240 which has been reported as a possible nova candidate in the CBAT TOCP site (http://www.cbat.eps.harvard.edu/unconf/followups/J17355050-2934240.html).

  16. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    PubMed

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  17. Characterisation of epoxy systems by positron annihillation and near infrared spectroscopy

    SciTech Connect

    Simon, G.; Gonis, J.; Hill, A.

    1995-12-31

    In order to better understand highly crosslinked epoxy resins such as those used in the aerospace industry, it is necessary to use a wide range of characterisation techniques. In this study, a range of chemical, spectroscopic, mechanical and thermal techniques are used to monitor the polymerisation of a commercial tri-functional epoxy resin and the results compared. Thermal analysis is used to determine the kinetics of the cure, to mark the onset of vitrification and to determine the change in glass transition as a function of cure for this highly branched system. This is compared with torsion braid analysis, capable of determining the point of gelation and vitrification. In order to give a more quantitative understanding of the cure, near infrared spectroscopy (NIR) can be used to determine the concentration of various functional groups as a function of cure. This is easier than using the mid-IR region due to a {open_quotes}cleaner{close_quotes} region of the spectrum. Using this technique it is possible to observe when side reactions such as etherification occur (well into the glassy state), indicating that it will largely result in cyclisation. The effect of postcure on functional groups can also be determined. Positron annihilation lifetime spectroscopy (PALS), a non-destructive, molecular technique capable of measuring directly the {open_quotes}free{close_quotes} or excluded volume of the network is also used to follow the cure of the material from the gel point to vitrification. There is little change in the free volume parameters during this large part of the cure, indicating the free volumes that this technique measures (of the order of 0.5 to 1 nm) are smaller than the gross changes in free volume and mobility that occur during vitrification.

  18. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs.

    PubMed

    Huang, Y; Andueza, D; de Oliveira, L; Zawadzki, F; Prache, S

    2015-11-01

    Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding. We compared the ability of visible reflectance spectroscopy (Vis RS, wavelength range: 400 to 700 nm) with that of visible-near-infrared reflectance spectroscopy (Vis-NIR RS, wavelength range: 400 to 2500 nm) to differentiate between carcasses of lambs reared with three feeding regimes, using partial least square discriminant analysis (PLS-DA) as a classification method. The sample set comprised perirenal fat of Romane male lambs fattened at pasture (P, n = 69), stall-fattened indoors on commercial concentrate and straw (S, n = 55) and finished indoors with concentrate and straw for 28 days after pasture-feeding (PS, n = 65). The overall correct classification rate was better for Vis-NIR RS than for Vis RS (99.0% v. 95.1%, P < 0.05). Vis-NIR RS allowed a correct classification rate of 98.6%, 100.0% and 98.5% for P, S and PS lambs, respectively, whereas Vis RS allowed a correct classification rate of 98.6%, 94.5% and 92.3% for P, S and PS lambs, respectively. This study suggests the likely implication of molecules absorbing light in the non-visible part of the Vis-NIR spectra (possibly fatty acids), together with carotenoid and haem pigments, in the discrimination of the three feeding regimes.

  19. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils

    PubMed Central

    Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J.

    2012-01-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r2) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r2>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81spectroscopy could be used as a rapid, inexpensive and non-destructive technique to predict some physical, chemical and biochemical soil properties for

  20. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    SciTech Connect

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.