Sample records for chemometrical near-infrared spectroscopy

  1. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    PubMed

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques

    NASA Astrophysics Data System (ADS)

    Li, Shuailing; Shao, Qingsong; Lu, Zhonghua; Duan, Chengli; Yi, Haojun; Su, Liyang

    2018-02-01

    Saffron is an expensive spice. Its primary effective constituents are crocin I and II, and the contents of these compounds directly affect the quality and commercial value of saffron. In this study, near-infrared spectroscopy was combined with chemometric techniques for the determination of crocin I and II in saffron. Partial least squares regression models were built for the quantification of crocin I and II. By comparing different spectral ranges and spectral pretreatment methods (no pretreatment, vector normalization, subtract a straight line, multiplicative scatter correction, minimum-maximum normalization, eliminate the constant offset, first derivative, and second derivative), optimum models were developed. The root mean square error of cross-validation values of the best partial least squares models for crocin I and II were 1.40 and 0.30, respectively. The coefficients of determination for crocin I and II were 93.40 and 96.30, respectively. These results show that near-infrared spectroscopy can be combined with chemometric techniques to determine the contents of crocin I and II in saffron quickly and efficiently.

  3. Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen

    2017-01-01

    Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der

  4. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wu, Yongjiang; Li, Weili; Liu, Xuesong; Zheng, Jiyu; Zhang, Wentao; Chen, Yong

    2018-02-01

    Near infrared (NIR) spectroscopy coupled with chemometrics was used to discriminate the geographical origin of Herba Epimedii in this work. Four different classification models, namely discriminant analysis (DA), back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector machine (SVM), were constructed, and their performances in terms of recognition accuracy were compared. The results indicated that the SVM model was superior over the other models in the geographical origin identification of Herba Epimedii. The recognition rates of the optimum SVM model were up to 100% for the calibration set and 94.44% for the prediction set, respectively. In addition, the feasibility of NIR spectroscopy with the CARS-PLSR calibration model in prediction of icariin content of Herba Epimedii was also investigated. The determination coefficient (RP2) and root-mean-square error (RMSEP) for prediction set were 0.9269 and 0.0480, respectively. It can be concluded that the NIR spectroscopy technique in combination with chemometrics has great potential in determination of geographical origin and icariin content of Herba Epimedii. This study can provide a valuable reference for rapid quality control of food products.

  6. Non-destructive Measurement of Total Carotenoid Content in Processed Tomato Products: Infrared Lock-In Thermography, Near-Infrared Spectroscopy/Chemometrics, and Condensed Phase Laser-Based Photoacoustics—Pilot Study

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.

    2015-09-01

    Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.

  7. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review.

    PubMed

    Wang, Pei; Yu, Zhiguo

    2015-10-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination.

  8. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics.

    PubMed

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2012-01-11

    In this study, the suitability of mid-infrared (MIR) spectroscopy, combined with principal component analysis (PCA) and linear discriminant analysis (LDA), was evaluated as a rapid analytical technique to identify smoke tainted wines. Control (i.e., unsmoked) and smoke-affected wines (260 in total) from experimental and commercial sources were analyzed by MIR spectroscopy and chemometrics. The concentrations of guaiacol and 4-methylguaiacol were also determined using gas chromatography-mass spectrometry (GC-MS), as markers of smoke taint. LDA models correctly classified 61% of control wines and 70% of smoke-affected wines. Classification rates were found to be influenced by the extent of smoke taint (based on GC-MS and informal sensory assessment), as well as qualitative differences in wine composition due to grape variety and oak maturation. Overall, the potential application of MIR spectroscopy combined with chemometrics as a rapid analytical technique for screening smoke-affected wines was demonstrated.

  9. Authentication of the botanical origin of honey by near-infrared spectroscopy.

    PubMed

    Ruoff, Kaspar; Luginbühl, Werner; Bogdanov, Stefan; Bosset, Jacques Olivier; Estermann, Barbara; Ziolko, Thomas; Amado, Renato

    2006-09-06

    Fourier transform near-infrared spectroscopy (FT-NIR) was evaluated for the authentication of eight unifloral and polyfloral honey types (n = 364 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis. The corresponding error rates were calculated according to Bayes' theorem. NIR spectroscopy enabled a reliable discrimination of acacia, chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types studied. The error rates ranged from <0.1 to 6.3% depending on the honey type. NIR proved also to be useful for the classification of blossom and honeydew honeys. The results demonstrate that near-infrared spectrometry is a valuable, rapid, and nondestructive tool for the authentication of the above-mentioned honeys, but not for all varieties studied.

  10. Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics

    NASA Astrophysics Data System (ADS)

    Yi, Weisong; Zhang, Jian; Jiang, Houmin; Zhang, Niya

    2014-09-01

    Gastric cancer is one of the leading causes of cancer death in the world due to its high morbidity and mortality. Hyperspectral imaging (HSI) is an emerging, non-destructive, cutting edge analytical technology that combines conventional imaging and spectroscopy in one single system. The manuscript has investigated the application of near-infrared hyperspectral imaging (900-1700 nm) (NIR-HSI) for gastric cancer detection with algorithms. Major spectral differences were observed in three regions (950-1050, 1150-1250, and 1400-1500 nm). By inspecting cancerous mean spectrum three major absorption bands were observed around 975, 1215 and 1450 nm. Furthermore, the cancer target detection results are consistent and conformed with histopathological examination results. These results suggest that NIR-HSI is a simple, feasible and sensitive optical diagnostic technology for gastric cancer target detection with chemometrics.

  11. Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves.

    PubMed

    Zhang, Chu; Feng, Xuping; Wang, Jian; Liu, Fei; He, Yong; Zhou, Weijun

    2017-01-01

    Detection of plant diseases in a fast and simple way is crucial for timely disease control. Conventionally, plant diseases are accurately identified by DNA, RNA or serology based methods which are time consuming, complex and expensive. Mid-infrared spectroscopy is a promising technique that simplifies the detection procedure for the disease. Mid-infrared spectroscopy was used to identify the spectral differences between healthy and infected oilseed rape leaves. Two different sample sets from two experiments were used to explore and validate the feasibility of using mid-infrared spectroscopy in detecting Sclerotinia stem rot (SSR) on oilseed rape leaves. The average mid-infrared spectra showed differences between healthy and infected leaves, and the differences varied among different sample sets. Optimal wavenumbers for the 2 sample sets selected by the second derivative spectra were similar, indicating the efficacy of selecting optimal wavenumbers. Chemometric methods were further used to quantitatively detect the oilseed rape leaves infected by SSR, including the partial least squares-discriminant analysis, support vector machine and extreme learning machine. The discriminant models using the full spectra and the optimal wavenumbers of the 2 sample sets were effective for classification accuracies over 80%. The discriminant results for the 2 sample sets varied due to variations in the samples. The use of two sample sets proved and validated the feasibility of using mid-infrared spectroscopy and chemometric methods for detecting SSR on oilseed rape leaves. The similarities among the selected optimal wavenumbers in different sample sets made it feasible to simplify the models and build practical models. Mid-infrared spectroscopy is a reliable and promising technique for SSR control. This study helps in developing practical application of using mid-infrared spectroscopy combined with chemometrics to detect plant disease.

  12. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics.

    PubMed

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-05

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  13. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  14. Varietal discrimination of hop pellets by near and mid infrared spectroscopy.

    PubMed

    Machado, Julio C; Faria, Miguel A; Ferreira, Isabel M P L V O; Páscoa, Ricardo N M J; Lopes, João A

    2018-04-01

    Hop is one of the most important ingredients of beer production and several varieties are commercialized. Therefore, it is important to find an eco-real-time-friendly-low-cost technique to distinguish and discriminate hop varieties. This paper describes the development of a method based on vibrational spectroscopy techniques, namely near- and mid-infrared spectroscopy, for the discrimination of 33 commercial hop varieties. A total of 165 samples (five for each hop variety) were analysed by both techniques. Principal component analysis, hierarchical cluster analysis and partial least squares discrimination analysis were the chemometric tools used to discriminate positively the hop varieties. After optimizing the spectral regions and pre-processing methods a total of 94.2% and 96.6% correct hop varieties discrimination were obtained for near- and mid-infrared spectroscopy, respectively. The results obtained demonstrate the suitability of these vibrational spectroscopy techniques to discriminate different hop varieties and consequently their potential to be used as an authenticity tool. Compared with the reference procedures normally used for hops variety discrimination these techniques are quicker, cost-effective, non-destructive and eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods

    PubMed Central

    Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795

  16. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    PubMed

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  17. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).

    PubMed

    Genisheva, Z; Quintelas, C; Mesquita, D P; Ferreira, E C; Oliveira, J M; Amaral, A L

    2018-04-25

    This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of 5435 cm -1 to 6357 cm -1 . Boxplot and principal components analysis (PCA) were performed for clusters identification and outliers removal. A partial least square (PLS) regression was then applied to develop the calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered as quite good with coefficients of determination (R 2 ) varying from 0.94 to 0.97. The current methodology, using NIR spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho Verde wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  19. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  20. Screening soy hydrolysates for the production of a recombinant therapeutic protein in commercial cell line by combined approach of near-infrared spectroscopy and chemometrics.

    PubMed

    Li, Guiyang; Wen, Zai-Qing

    2013-03-01

    Soy hydrolysates are widely used as the major nutrient sources for cell culture processes for industrial manufacturing of therapeutic recombinant proteins. The primary goal of this study was to develop a spectroscopy based chemometric method, a partial least squares (PLS), to screen soy hydrolysates for better yield of protein production (titers) in cell culture medium. Harvest titer values of 29 soy hydrolysate lots with production yield between 490 and 1,350 mg/L were obtained from shake flask models or from manufacture engineering runs. The soy hydrolysate samples were measured by near-infrared (NIR) in reflectance mode using an infrared fiber optic probe. The fiber optic probe could easily enable in situ measurement of the soy hydrolysates for convenient raw material screening. The best PLS calibration has a determination coefficient of R (2) = 0.887 utilizing no spectral preprocessing, the two spectral ranges of 10,000-5,376 cm(-1) and 4,980-4,484 cm(-1), and a rank of 6 factors. The cross-validation of the model resulted in a determination coefficient of R (2) = 0.741 between the predicted and actual titer values with an average standard deviation of 72 mg/L. Compared with the resource demanding shake flask model, the combination of NIR and chemometric modeling provides a convenient method for soy hydrolysate screening with the advantage of fast speed, low cost and non-destructive.

  1. Rapid classification of heavy metal-exposed freshwater bacteria by infrared spectroscopy coupled with chemometrics using supervised method

    NASA Astrophysics Data System (ADS)

    Gurbanov, Rafig; Gozen, Ayse Gul; Severcan, Feride

    2018-01-01

    Rapid, cost-effective, sensitive and accurate methodologies to classify bacteria are still in the process of development. The major drawbacks of standard microbiological, molecular and immunological techniques call for the possible usage of infrared (IR) spectroscopy based supervised chemometric techniques. Previous applications of IR based chemometric methods have demonstrated outstanding findings in the classification of bacteria. Therefore, we have exploited an IR spectroscopy based chemometrics using supervised method namely Soft Independent Modeling of Class Analogy (SIMCA) technique for the first time to classify heavy metal-exposed bacteria to be used in the selection of suitable bacteria to evaluate their potential for environmental cleanup applications. Herein, we present the powerful differentiation and classification of laboratory strains (Escherichia coli and Staphylococcus aureus) and environmental isolates (Gordonia sp. and Microbacterium oxydans) of bacteria exposed to growth inhibitory concentrations of silver (Ag), cadmium (Cd) and lead (Pb). Our results demonstrated that SIMCA was able to differentiate all heavy metal-exposed and control groups from each other with 95% confidence level. Correct identification of randomly chosen test samples in their corresponding groups and high model distances between the classes were also achieved. We report, for the first time, the success of IR spectroscopy coupled with supervised chemometric technique SIMCA in classification of different bacteria under a given treatment.

  2. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis.

    PubMed

    Li, Tao; Su, Chen

    2018-06-02

    Rhodiola is an increasingly widely used traditional Tibetan medicine and traditional Chinese medicine in China. The composition profiles of bioactive compounds are somewhat jagged according to different species, which makes it crucial to identify authentic Rhodiola species accurately so as to ensure clinical application of Rhodiola. In this paper, a nondestructive, rapid, and efficient method in classification of Rhodiola was developed by Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics analysis. A total of 160 batches of raw spectra were obtained from four different species of Rhodiola by FT-NIR, such as Rhodiola crenulata, Rhodiola fastigiata, Rhodiola kirilowii, and Rhodiola brevipetiolata. After excluding the outliers, different performances of 3 sample dividing methods, 12 spectral preprocessing methods, 2 wavelength selection methods, and 2 modeling evaluation methods were compared. The results indicated that this combination was superior than others in the authenticity identification analysis, which was FT-NIR combined with sample set partitioning based on joint x-y distances (SPXY), standard normal variate transformation (SNV) + Norris-Williams (NW) + 2nd derivative, competitive adaptive reweighted sampling (CARS), and kernel extreme learning machine (KELM). The accuracy (ACCU), sensitivity (SENS), and specificity (SPEC) of the optimal model were all 1, which showed that this combination of FT-NIR and chemometrics methods had the optimal authenticity identification performance. The classification performance of the partial least squares discriminant analysis (PLS-DA) model was slightly lower than KELM model, and PLS-DA model results were ACCU = 0.97, SENS = 0.93, and SPEC = 0.98, respectively. It can be concluded that FT-NIR combined with chemometrics analysis has great potential in authenticity identification and classification of Rhodiola, which can provide a valuable reference for the safety and

  3. Determining particle size and water content by near-infrared spectroscopy in the granulation of naproxen sodium.

    PubMed

    Bär, David; Debus, Heiko; Brzenczek, Sina; Fischer, Wolfgang; Imming, Peter

    2018-03-20

    Near-infrared spectroscopy is frequently used by the pharmaceutical industry to monitor and optimize several production processes. In combination with chemometrics, a mathematical-statistical technique, the following advantages of near-infrared spectroscopy can be applied: It is a fast, non-destructive, non-invasive, and economical analytical method. One of the most advanced and popular chemometric technique is the partial least square algorithm with its best applicability in routine and its results. The required reference analytic enables the analysis of various parameters of interest, for example, moisture content, particle size, and many others. Parameters like the correlation coefficient, root mean square error of prediction, root mean square error of calibration, and root mean square error of validation have been used for evaluating the applicability and robustness of these analytical methods developed. This study deals with investigating a Naproxen Sodium granulation process using near-infrared spectroscopy and the development of water content and particle-size methods. For the water content method, one should consider a maximum water content of about 21% in the granulation process, which must be confirmed by the loss on drying. Further influences to be considered are the constantly changing product temperature, rising to about 54 °C, the creation of hydrated states of Naproxen Sodium when using a maximum of about 21% water content, and the large quantity of about 87% Naproxen Sodium in the formulation. It was considered to use a combination of these influences in developing the near-infrared spectroscopy method for the water content of Naproxen Sodium granules. The "Root Mean Square Error" was 0.25% for calibration dataset and 0.30% for the validation dataset, which was obtained after different stages of optimization by multiplicative scatter correction and the first derivative. Using laser diffraction, the granules have been analyzed for particle sizes

  4. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    PubMed

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  5. At-line determination of pharmaceuticals small molecule's blending end point using chemometric modeling combined with Fourier transform near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tewari, Jagdish; Strong, Richard; Boulas, Pierre

    2017-02-01

    This article summarizes the development and validation of a Fourier transform near infrared spectroscopy (FT-NIR) method for the rapid at-line prediction of active pharmaceutical ingredient (API) in a powder blend to optimize small molecule formulations. The method was used to determine the blend uniformity end-point for a pharmaceutical solid dosage formulation containing a range of API concentrations. A set of calibration spectra from samples with concentrations ranging from 1% to 15% of API (w/w) were collected at-line from 4000 to 12,500 cm- 1. The ability of the FT-NIR method to predict API concentration in the blend samples was validated against a reference high performance liquid chromatography (HPLC) method. The prediction efficiency of four different types of multivariate data modeling methods such as partial least-squares 1 (PLS1), partial least-squares 2 (PLS2), principal component regression (PCR) and artificial neural network (ANN), were compared using relevant multivariate figures of merit. The prediction ability of the regression models were cross validated against results generated with the reference HPLC method. PLS1 and ANN showed excellent and superior prediction abilities when compared to PLS2 and PCR. Based upon these results and because of its decreased complexity compared to ANN, PLS1 was selected as the best chemometric method to predict blend uniformity at-line. The FT-NIR measurement and the associated chemometric analysis were implemented in the production environment for rapid at-line determination of the end-point of the small molecule blending operation. FIGURE 1: Correlation coefficient vs Rank plot FIGURE 2: FT-NIR spectra of different steps of Blend and final blend FIGURE 3: Predictions ability of PCR FIGURE 4: Blend uniformity predication ability of PLS2 FIGURE 5: Prediction efficiency of blend uniformity using ANN FIGURE 6: Comparison of prediction efficiency of chemometric models TABLE 1: Order of Addition for Blending Steps

  6. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics

    PubMed Central

    Retnaningtyas, Yuni; Nuri; Lukman, Hilmia

    2016-01-01

    Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R 2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R 2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051

  7. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  8. Rapid discrimination and determination of antibiotics drugs in plastic syringes using near infrared spectroscopy with chemometric analysis: Application to amoxicillin and penicillin.

    PubMed

    Lê, Laetitia Minh Mai; Eveleigh, Luc; Hasnaoui, Ikram; Prognon, Patrice; Baillet-Guffroy, Arlette; Caudron, Eric

    2017-05-10

    The aim of this study was to investigate near infrared spectroscopy (NIRS) combined to chemometric analysis to discriminate and quantify three antibiotics by direct measurement in plastic syringes.Solutions of benzylpenicillin (PENI), amoxicillin (AMOX) and amoxicillin/clavulanic acid (AMOX/CLAV) were analyzed at therapeutic concentrations in glass vials and plastic syringes with NIR spectrometer by direct measurement. Chemometric analysis using partial least squares regression and discriminative analysis was conducted to develop qualitative and quantitative calibration models. Discrimination of the three antibiotics was optimal for concentrated solutions with 100% of accuracy. For quantitative analysis, the three antibiotics furnished a linear response (R²>0.9994) for concentrations ranging from 0.05 to 0.2 g/mL for AMOX, 0.1 to 1.0 MUI/mL for PENI and 0.005 to 0.05 g/mL for AMOX/CLAV with excellent repeatability (maximum 1.3%) and intermediate precision (maximum of 3.2%). Based on proposed models, 94.4% of analyzed AMOX syringes, 80.0% of AMOX/CLAV syringes and 85.7% of PENI syringes were compliant with a relative error including the limit of ± 15%.NIRS as rapid, non-invasive and non-destructive analytical method represents a potentially powerful tool to further develop for securing the drug administration circuit of healthcare institutions to ensure that patients receive the correct product at the right dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui

    2016-01-01

    A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.

  10. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.

    PubMed

    Dong, D; Zheng, W; Jiao, L; Lang, Y; Zhao, X

    2016-03-01

    Different brands of Chinese vinegar are similar in appearance, color and aroma, making their discrimination difficult. The compositions and concentrations of the volatiles released from different vinegars vary by raw material and brewing process and thus offer a means to discriminate vinegars. In this study, we enhanced the detection sensitivity of the infrared spectrometer by extending its optical path. We measured the infrared spectra of the volatiles from 5 brands of Chinese vinegar and observed the spectral characteristics corresponding to alcohols, esters, acids, furfural, etc. Different brands of Chinese vinegar had obviously different infrared spectra and could be classified through chemometrics analysis. Furthermore, we established classification models and demonstrated their effectiveness for classifying different brands of vinegar. This study demonstrates that long-optical-path infrared spectroscopy has the ability to discriminate Chinese vinegars with the advantages that it is fast and non-destructive and eliminates the need for sampling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Variables selection methods in near-infrared spectroscopy.

    PubMed

    Xiaobo, Zou; Jiewen, Zhao; Povey, Malcolm J W; Holmes, Mel; Hanpin, Mao

    2010-05-14

    Near-infrared (NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields, such as the petrochemical, pharmaceutical, environmental, clinical, agricultural, food and biomedical sectors during the past 15 years. A NIR spectrum of a sample is typically measured by modern scanning instruments at hundreds of equally spaced wavelengths. The large number of spectral variables in most data sets encountered in NIR spectral chemometrics often renders the prediction of a dependent variable unreliable. Recently, considerable effort has been directed towards developing and evaluating different procedures that objectively identify variables which contribute useful information and/or eliminate variables containing mostly noise. This review focuses on the variable selection methods in NIR spectroscopy. Selection methods include some classical approaches, such as manual approach (knowledge based selection), "Univariate" and "Sequential" selection methods; sophisticated methods such as successive projections algorithm (SPA) and uninformative variable elimination (UVE), elaborate search-based strategies such as simulated annealing (SA), artificial neural networks (ANN) and genetic algorithms (GAs) and interval base algorithms such as interval partial least squares (iPLS), windows PLS and iterative PLS. Wavelength selection with B-spline, Kalman filtering, Fisher's weights and Bayesian are also mentioned. Finally, the websites of some variable selection software and toolboxes for non-commercial use are given. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE PAGES

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane; ...

    2017-02-07

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  13. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  14. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC.

    PubMed

    Alves, Julio Cesar L; Henriques, Claudete B; Poppi, Ronei J

    2014-01-03

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Thermal infrared near-field spectroscopy.

    PubMed

    Jones, Andrew C; Raschke, Markus B

    2012-03-14

    Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society

  16. Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.

    PubMed

    Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud

    2015-09-03

    Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream

    NASA Astrophysics Data System (ADS)

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-01

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45 °C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  18. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    PubMed

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  19. Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, Ronghua; Sun, Qiaofeng; Hu, Tian; Li, Lian; Nie, Lei; Wang, Jiayue; Zhou, Wanhui; Zang, Hengchang

    2018-03-01

    As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.

  20. Combination of near infrared spectroscopy and chemometrics for authentication of taro flour from wheat and sago flour

    NASA Astrophysics Data System (ADS)

    Rachmawati; Rohaeti, E.; Rafi, M.

    2017-05-01

    Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.

  1. Development of a neurofeedback protocol targeting the frontal pole using near-infrared spectroscopy.

    PubMed

    Kinoshita, Akihide; Takizawa, Ryu; Yahata, Noriaki; Homae, Fumitaka; Hashimoto, Ryuichiro; Sakakibara, Eisuke; Kawasaki, Shingo; Nishimura, Yukika; Koike, Shinsuke; Kasai, Kiyoto

    2016-11-01

    Neurofeedback has been studied with the aim of controlling cerebral activity. Near-infrared spectroscopy is a non-invasive neuroimaging technique used for measuring hemoglobin concentration changes in cortical surface areas with high temporal resolution. Thus, near-infrared spectroscopy may be useful for neurofeedback, which requires real-time feedback of repeated brain activation measurements. However, no study has specifically targeted neurofeedback, using near-infrared spectroscopy, in the frontal pole cortex. We developed an original near-infrared spectroscopy neurofeedback system targeting the frontal pole cortex. Over a single day of testing, each healthy participant (n = 24) received either correct or incorrect (Sham) feedback from near-infrared spectroscopy signals, based on a crossover design. Under correct feedback conditions, significant activation was observed in the frontal pole cortex (P = 0.000073). Additionally, self-evaluation of control and metacognitive beliefs were associated with near-infrared spectroscopy signals (P = 0.006). The neurofeedback system developed in this study might be useful for developing control of frontal pole cortex activation. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  2. Transmission near-infrared (NIR) and photon time-of-flight (PTOF) spectroscopy in a comparative analysis of pharmaceuticals.

    PubMed

    Kamran, Faisal; Abildgaard, Otto H A; Sparén, Anders; Svensson, Olof; Johansson, Jonas; Andersson-Engels, Stefan; Andersen, Peter E; Khoptyar, Dmitry

    2015-03-01

    We present a comprehensive study of the application of photon time-of-flight spectroscopy (PTOFS) in the wavelength range 1050-1350 nm as a spectroscopic technique for the evaluation of the chemical composition and structural properties of pharmaceutical tablets. PTOFS is compared to transmission near-infrared spectroscopy (NIRS). In contrast to transmission NIRS, PTOFS is capable of directly and independently determining the absorption and reduced scattering coefficients of the medium. Chemometric models were built on the evaluated absorption spectra for predicting tablet drug concentration. Results are compared to corresponding predictions built on transmission NIRS measurements. The predictive ability of PTOFS and transmission NIRS is comparable when models are based on uniformly distributed tablet sets. For non-uniform distribution of tablets based on particle sizes, the prediction ability of PTOFS is better than that of transmission NIRS. Analysis of reduced scattering spectra shows that PTOFS is able to characterize tablet microstructure and manufacturing process parameters. In contrast to the chemometric pseudo-variables provided by transmission NIRS, PTOFS provides physically meaningful quantities such as scattering strength and slope of particle size. The ability of PTOFS to quantify the reduced scattering spectra, together with its robustness in predicting drug content, makes it suitable for such evaluations in the pharmaceutical industry.

  3. Application of a novel combination of near-infrared spectroscopy and a humidity-controlled 96-well plate to the characterization of the polymorphism of imidafenacin.

    PubMed

    Uchida, Hiroshi; Yoshinaga, Tokuji; Mori, Hirotoshi; Otsuka, Makoto

    2010-11-01

    This study aimed to apply a currently available chemometric near-infrared spectroscopy technique to the characterization of the polymorphic properties of drug candidates. The technique requires only small quantities of samples and is therefore applicable to drugs in the early stages of development. The combination of near-infrared spectroscopy and a patented 96-well plate divided into 32 individual, humidity-controlled, three-well compartments was used in the characterization of a hygroscopic drug, imidafenacin, which has two polymorphs and one pseudo-polymorph. Characterization was also conducted with powder X-ray diffraction and thermal analysis. The results were compared with those from routinely used conventional analyses. Both the microanalysis and conventional analysis successfully characterised the substance (transformation and relative stability among the two polymorphs and a pseudo-polymorph) depending on the storage conditions. Near-infrared spectroscopic analyses utilizing a humidity-controlled 96-well plate required only small amounts of the sample for characterization under the various conditions of relative humidity. Near-infrared microanalysis can be applied to polymorphic studies of small quantities of a drug candidate. The results also suggest that the method will predict the behaviors of a hygroscopic candidate in solid pharmaceutical preparations at the early stages of drug development. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  4. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea.

    PubMed

    Liu, Ze; Xie, Hua-Lin; Chen, Lin; Huang, Jian-Hua

    2018-05-02

    Background: Pu-erh tea is a unique microbially fermented tea, which distinctive chemical constituents and activities are worthy of systematic study. Near infrared spectroscopy (NIR) coupled with suitable chemometrics approaches can rapidly and accurately quantitatively analyze multiple compounds in samples. Methods: In this study, an improved weighted partial least squares (PLS) algorithm combined with near infrared spectroscopy (NIR) was used to construct a fast calibration model for determining four main components, i.e., tea polyphenols, tea polysaccharide, total flavonoids, theanine content, and further determine the total antioxidant capacity of pu-erh tea. Results: The final correlation coefficients R square for tea polyphenols, tea polysaccharide, total flavonoids content, theanine content, and total antioxidant capacity were 0.8288, 0.8403, 0.8415, 0.8537 and 0.8682, respectively. Conclusions : The current study provided a comprehensive study of four main ingredients and activity of pu-erh tea, and demonstrated that NIR spectroscopy technology coupled with multivariate calibration analysis could be successfully applied to pu-erh tea quality assessment.

  5. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  6. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    USDA-ARS?s Scientific Manuscript database

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  7. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal.

    PubMed

    Haughey, Simon A; Graham, Stewart F; Cancouët, Emmanuelle; Elliott, Christopher T

    2013-02-15

    Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of 2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients of determination (R(2)) were found to be 0.89-0.99 depending on the mathematical algorithm used, the data pre-processing applied and the sample type used. The corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.276% and 0.134-0.368%, respectively, again depending on the chemometric treatment applied to the data and sample type. In addition, adopting a qualitative approach with the spectral data and applying PCA, it was possible to discriminate between the four samples types and also, by generation of Cooman's plots, possible to distinguish between adulterated and non-adulterated samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of varying postmortem deboning time and sampling position on visible and near infrared spectra of broiler breast filets

    USDA-ARS?s Scientific Manuscript database

    Visible-Near Infrared spectroscopy (Vis-NIR) was used to characterize broiler breast filets with varied deboning times and identify how the side and position of the sampling affects the chemometric analysis and prediction capabilities. This study served to identify what differences, if any, exist wh...

  9. Quality-by-design III: application of near-infrared spectroscopy to monitor roller compaction in-process and product quality attributes of immediate release tablets.

    PubMed

    Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W

    2015-02-01

    The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.

  10. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.

    PubMed

    Kuriakose, Saji; Thankappan, Xavier; Joe, Hubert; Venkataraman, Venkateswaran

    2010-10-01

    The confirmation of authenticity of essential oils and the detection of adulteration are problems of increasing importance in the perfumes, pharmaceutical, flavor and fragrance industries. This is especially true for 'value added' products like sandalwood oil. A methodical study is conducted here to demonstrate the potential use of Near Infrared (NIR) spectroscopy along with multivariate calibration models like principal component regression (PCR) and partial least square regression (PLSR) as rapid analytical techniques for the qualitative and quantitative determination of adulterants in sandalwood oil. After suitable pre-processing of the NIR raw spectral data, the models are built-up by cross-validation. The lowest Root Mean Square Error of Cross-Validation and Calibration (RMSECV and RMSEC % v/v) are used as a decision supporting system to fix the optimal number of factors. The coefficient of determination (R(2)) and the Root Mean Square Error of Prediction (RMSEP % v/v) in the prediction sets are used as the evaluation parameters (R(2) = 0.9999 and RMSEP = 0.01355). The overall result leads to the conclusion that NIR spectroscopy with chemometric techniques could be successfully used as a rapid, simple, instant and non-destructive method for the detection of adulterants, even 1% of the low-grade oils, in the high quality form of sandalwood oil.

  11. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    PubMed

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  12. Reliability of Near-Infrared Spectroscopy for Determining Muscle Oxygen Saturation during Exercise

    ERIC Educational Resources Information Center

    Austin, Krista G.; Daigle, Karen A.; Patterson, Patricia; Cowman, Jason; Chelland, Sara; Haymes, Emily M.

    2005-01-01

    Near-infrared spectroscopy is currently used to assess changes in the oxygen saturation of the muscle during exercise. The primary purpose of this study was to assess the reliability of near-infrared spectroscopy in determining muscle oxygen saturation (StO[subscript 2]) in the vastus lateralis during cycling and the gastrocnemius during running…

  13. Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics

    PubMed Central

    Trunfio, Nicholas; Lee, Haewoo; Starkey, Jason; Agarabi, Cyrus; Liu, Jay

    2017-01-01

    Two of the primary issues with characterizing the variability of raw materials used in mammalian cell culture, such as wheat hydrolysate, is that the analyses of these materials can be time consuming, and the results of the analyses are not straightforward to interpret. To solve these issues, spectroscopy can be combined with chemometrics to provide a quick, robust and easy to understand methodology for the characterization of raw materials; which will improve cell culture performance by providing an assessment of the impact that a given raw material will have on final product quality. In this study, four spectroscopic technologies: near infrared spectroscopy, middle infrared spectroscopy, Raman spectroscopy, and fluorescence spectroscopy were used in conjunction with principal component analysis to characterize the variability of wheat hydrolysates, and to provide evidence that the classification of good and bad lots of raw material is possible. Then, the same spectroscopic platforms are combined with partial least squares regressions to quantitatively predict two cell culture critical quality attributes (CQA): integrated viable cell density and IgG titer. The results showed that near infrared (NIR) spectroscopy and fluorescence spectroscopy are capable of characterizing the wheat hydrolysate's chemical structure, with NIR performing slightly better; and that they can be used to estimate the raw materials’ impact on the CQAs. These results were justified by demonstrating that of all the components present in the wheat hydrolysates, six amino acids: arginine, glycine, phenylalanine, tyrosine, isoleucine and threonine; and five trace elements: copper, phosphorus, molybdenum, arsenic and aluminum, had a large, statistically significant effect on the CQAs, and that NIR and fluorescence spectroscopy performed the best for characterizing the important amino acids. It was also found that the trace elements of interest were not characterized well by any of the spectral

  14. Broadband near-field infrared spectroscopy with a high temperature plasma light source.

    PubMed

    Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M

    2017-08-21

    Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .

  15. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Kurniawati, Endah; Rohman, Abdul; Triyana, Kuwat

    2014-01-01

    Meatball is one of the favorite foods in Indonesia. For the economic reason (due to the price difference), the substitution of beef meat with pork can occur. In this study, FTIR spectroscopy in combination with chemometrics of partial least square (PLS) and principal component analysis (PCA) was used for analysis of pork fat (lard) in meatball broth. Lard in meatball broth was quantitatively determined at wavenumber region of 1018-1284 cm(-1). The coefficient of determination (R(2)) and root mean square error of calibration (RMSEC) values obtained were 0.9975 and 1.34% (v/v), respectively. Furthermore, the classification of lard and beef fat in meatball broth as well as in commercial samples was performed at wavenumber region of 1200-1000 cm(-1). The results showed that FTIR spectroscopy coupled with chemometrics can be used for quantitative analysis and classification of lard in meatball broth for Halal verification studies. The developed method is simple in operation, rapid and not involving extensive sample preparation. © 2013.

  16. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    PubMed

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  18. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  20. Determination of benzo[a]pyrene in cigarette mainstream smoke by using mid-infrared spectroscopy associated with a novel chemometric algorithm.

    PubMed

    Zhang, Yan; Zou, Hong-Yan; Shi, Pei; Yang, Qin; Tang, Li-Juan; Jiang, Jian-Hui; Wu, Hai-Long; Yu, Ru-Qin

    2016-01-01

    Determination of benzo[a]pyrene (BaP) in cigarette smoke can be very important for the tobacco quality control and the assessment of its harm to human health. In this study, mid-infrared spectroscopy (MIR) coupled to chemometric algorithm (DPSO-WPT-PLS), which was based on the wavelet packet transform (WPT), discrete particle swarm optimization algorithm (DPSO) and partial least squares regression (PLS), was used to quantify harmful ingredient benzo[a]pyrene in the cigarette mainstream smoke with promising result. Furthermore, the proposed method provided better performance compared to several other chemometric models, i.e., PLS, radial basis function-based PLS (RBF-PLS), PLS with stepwise regression variable selection (Stepwise-PLS) as well as WPT-PLS with informative wavelet coefficients selected by correlation coefficient test (rtest-WPT-PLS). It can be expected that the proposed strategy could become a new effective, rapid quantitative analysis technique in analyzing the harmful ingredient BaP in cigarette mainstream smoke. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Multivariate Analysis of Combined Fourier Transform Near-Infrared Spectrometry (FT-NIR) and Raman Datasets for Improved Discrimination of Drying Oils.

    PubMed

    Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio

    2015-07-01

    This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results.

  2. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  3. [Study of near infrared spectral preprocessing and wavelength selection methods for endometrial cancer tissue].

    PubMed

    Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong

    2010-04-01

    Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.

  4. Near infrared spectroscopy combined with chemometrics for growth stage classification of cannabis cultivated in a greenhouse from seized seeds.

    PubMed

    Borille, Bruna Tassi; Marcelo, Marcelo Caetano Alexandre; Ortiz, Rafael Scorsatto; Mariotti, Kristiane de Cássia; Ferrão, Marco Flôres; Limberger, Renata Pereira

    2017-02-15

    Cannabis sativa L. (cannabis, Cannabaceae), popularly called marijuana, is one of the oldest plants known to man and it is the illicit drug most used worldwide. It also has been the subject of increasing discussions from the scientific and political points of view due to its medicinal properties. In recent years in Brazil, the form of cannabis drug trafficking has been changing and the Brazilian Federal Police has exponentially increased the number of seizures of cannabis seeds sent by the mail. This new form of trafficking encouraged the study of cannabis seeds seized germinated in a greenhouse through NIR spectroscopy combined with chemometrics. The plants were cultivated in a homemade greenhouse under controlled conditions. In three different growth periods (5.5weeks, 7.5weeks and 10weeks), they were harvested, dried, ground and directly analyzed. The iPCA was used to select the best NIR spectral range (4000-4375cm -1 ) in order to develop unsupervised and supervised methods. The PCA and HCA showed a good separation between the three groups of cannabis samples at different growth stages. The PLS-DA and SVM-DA classified the samples with good results in terms of sensitivity and specificity. The sensitivity and specificity for SVM-DA classification were equal to unity. This separation may be due to the correlation of cannabinoids and volatile compounds concentration during the growth of the cannabis plant. Therefore, the growth stage of cannabis can be predicted by NIR spectroscopy and chemometric tools in the early stages of indoor cannabis cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Near infrared spectroscopy combined with chemometrics for growth stage classification of cannabis cultivated in a greenhouse from seized seeds

    NASA Astrophysics Data System (ADS)

    Borille, Bruna Tassi; Marcelo, Marcelo Caetano Alexandre; Ortiz, Rafael Scorsatto; Mariotti, Kristiane de Cássia; Ferrão, Marco Flôres; Limberger, Renata Pereira

    2017-02-01

    Cannabis sativa L. (cannabis, Cannabaceae), popularly called marijuana, is one of the oldest plants known to man and it is the illicit drug most used worldwide. It also has been the subject of increasing discussions from the scientific and political points of view due to its medicinal properties. In recent years in Brazil, the form of cannabis drug trafficking has been changing and the Brazilian Federal Police has exponentially increased the number of seizures of cannabis seeds sent by the mail. This new form of trafficking encouraged the study of cannabis seeds seized germinated in a greenhouse through NIR spectroscopy combined with chemometrics. The plants were cultivated in a homemade greenhouse under controlled conditions. In three different growth periods (5.5 weeks, 7.5 weeks and 10 weeks), they were harvested, dried, ground and directly analyzed. The iPCA was used to select the best NIR spectral range (4000-4375 cm- 1) in order to develop unsupervised and supervised methods. The PCA and HCA showed a good separation between the three groups of cannabis samples at different growth stages. The PLS-DA and SVM-DA classified the samples with good results in terms of sensitivity and specificity. The sensitivity and specificity for SVM-DA classification were equal to unity. This separation may be due to the correlation of cannabinoids and volatile compounds concentration during the growth of the cannabis plant. Therefore, the growth stage of cannabis can be predicted by NIR spectroscopy and chemometric tools in the early stages of indoor cannabis cultivation.

  6. Evaluation of portable near-infrared spectroscopy for organic milk authentication.

    PubMed

    Liu, Ningjing; Parra, Hector Aya; Pustjens, Annemieke; Hettinga, Kasper; Mongondry, Philippe; van Ruth, Saskia M

    2018-07-01

    Organic products are vulnerable to fraud due to their premium price. Analytical methodology helps to manage the risk of fraud and due to the miniaturization of equipment, tests may nowadays even be rapidly applied on-site. The current study aimed to evaluate portable near infrared spectroscopy (NIRS) in combination with chemometrics to distinguish organic milk from other types of milk, and compare its performance with benchtop NIRS and fatty acid profiling by gas chromatography. The sample set included 37 organic retail milks and 50 non-organic retail milks (of which 36 conventional and 14 green 'pasture' milks). Partial least squares discriminant analysis was performed to build classification models and kernel density estimation (KDE) functions were calculated to generate non-parametric distributions for samples' class probabilities. These distributions showed that portable NIRS was successful to distinguish organic milks from conventional milks, and so were benchtop NIRS and fatty acid profiling procedures. However, it was less successful when 'pasture' milks were considered too, since their patterns occasionally resembled those of the organic milk group. Fatty acid profiling was capable of distinguishing organic milks from both non-organic milks though, including the 'pasture' milks. This comparative study revealed that the classification performance of the portable NIRS for this application was similar to that of the benchtop NIRS. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The...

  8. Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region

    NASA Astrophysics Data System (ADS)

    Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus

    2011-09-01

    In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.

  9. Characterization of the functional near-infrared spectroscopy response to nociception in a pediatric population.

    PubMed

    Olbrecht, Vanessa A; Jiang, Yifei; Viola, Luigi; Walter, Charlotte M; Liu, Hanli; Kurth, Charles D

    2018-02-01

    Near-infrared spectroscopy can interrogate functional optical signal changes in regional brain oxygenation and blood volume to nociception analogous to functional magnetic resonance imaging. This exploratory study aimed to characterize the near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin from the brain in response to nociceptive stimulation of varying intensity and duration, and after analgesic and neuromuscular paralytic in a pediatric population. We enrolled children 6 months-21 years during propofol sedation before surgery. The near-infrared spectroscopy sensor was placed on the forehead and nociception was produced from an electrical current applied to the wrist. We determined the near-infrared spectroscopy signal response to increasing current intensity and duration, and after fentanyl, sevoflurane, and neuromuscular paralytic. Heart rate and arm movement during electrical stimulation was also recorded. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin were calculated as optical density*time (area under curve). During electrical stimulation, nociception was evident: tachycardia and arm withdrawal was observed that disappeared after fentanyl and sevoflurane, whereas after paralytic, tachycardia persisted while arm withdrawal disappeared. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin increased during stimulation and decreased after stimulation; the areas under the curves were greater for stimulations 30 mA vs 15 mA (13.9 [5.6-22.2], P = .0021; 5.6 [0.8-10.5], P = .0254, and 19.8 [10.5-29.1], P = .0002 for HbO 2 , Hb, and Hb T , respectively), 50 Hz vs 1 Hz (17.2 [5.8-28.6], P = .0046; 7.5 [0.7-14.3], P = .0314, and 21.9 [4.2-39.6], P = .0177 for HbO 2 , Hb, and Hb T , respectively) and 45 seconds vs 15 seconds (16.3 [3.4-29.2], P = .0188 and 22.0 [7.5-36.5], P = .0075 for HbO 2 and Hb T , respectively); the areas under the curves were attenuated by

  10. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  11. Hyperspectral imaging using near infrared spectroscopy to monitor coat thickness uniformity in the manufacture of a transdermal drug delivery system.

    PubMed

    Pavurala, Naresh; Xu, Xiaoming; Krishnaiah, Yellela S R

    2017-05-15

    Hyperspectral imaging using near infrared spectroscopy (NIRS) integrates spectroscopy and conventional imaging to obtain both spectral and spatial information of materials. The non-invasive and rapid nature of hyperspectral imaging using NIRS makes it a valuable process analytical technology (PAT) tool for in-process monitoring and control of the manufacturing process for transdermal drug delivery systems (TDS). The focus of this investigation was to develop and validate the use of Near Infra-red (NIR) hyperspectral imaging to monitor coat thickness uniformity, a critical quality attribute (CQA) for TDS. Chemometric analysis was used to process the hyperspectral image and a partial least square (PLS) model was developed to predict the coat thickness of the TDS. The goodness of model fit and prediction were 0.9933 and 0.9933, respectively, indicating an excellent fit to the training data and also good predictability. The % Prediction Error (%PE) for internal and external validation samples was less than 5% confirming the accuracy of the PLS model developed in the present study. The feasibility of the hyperspectral imaging as a real-time process analytical tool for continuous processing was also investigated. When the PLS model was applied to detect deliberate variation in coating thickness, it was able to predict both the small and large variations as well as identify coating defects such as non-uniform regions and presence of air bubbles. Published by Elsevier B.V.

  12. Mesenteric near-infrared spectroscopy and risk of gastrointestinal complications in infants undergoing surgery for congenital heart disease.

    PubMed

    Iliopoulos, Ilias; Branco, Ricardo G; Brinkhuis, Nadine; Furck, Anke; LaRovere, Joan; Cooper, David S; Pathan, Nazima

    2016-04-01

    We hypothesised that lower mesenteric near-infrared spectroscopy values would be associated with a greater incidence of gastrointestinal complications in children weighing <10 kg who were recovering from cardiac surgery. We evaluated mesenteric near-infrared spectroscopy, central venous oxygen saturation, and arterial blood gases for 48 hours post-operatively. Enteral feeding intake, gastrointestinal complications, and markers of organ dysfunction were monitored for 7 days. A total of 50 children, with median age of 16.7 (3.2-31.6) weeks, were studied. On admission, the average mesenteric near-infrared spectroscopy value was 71±18%, and the systemic oxygen saturation was 93±7.5%. Lower admission mesenteric near-infrared spectroscopy correlated with longer time to establish enteral feeds (r=-0.58, p<0.01) and shorter duration of feeds at 7 days (r=0.48, p<0.01). Children with gastrointestinal complications had significantly lower admission mesenteric near-infrared spectroscopy (58±18% versus 73±17%, p=0.01) and higher mesenteric arteriovenous difference of oxygen at admission [39 (23-47) % versus 19 (4-27) %, p=0.02]. Based on multiple logistic regression, admission mesenteric near-infrared spectroscopy was independently associated with gastrointestinal complications (Odds ratio, 0.95; 95% confidence interval, 0.93-0.97; p=0.03). Admission mesenteric near-infrared spectroscopy showed an area under the receiver operating characteristic curve of 0.76 to identify children who developed gastrointestinal complications, with a suggested cut-off value of 72% (78% sensitivity, 68% specificity). In this pilot study, we conclude that admission mesenteric near-infrared spectroscopy is associated with gastrointestinal complications and enteral feeding tolerance in children after cardiac surgery.

  13. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    PubMed

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  14. Surface plasmon resonance near-infrared spectroscopy.

    PubMed

    Ikehata, Akifumi; Itoh, Tamitake; Ozaki, Yukihiro

    2004-11-01

    Near-infrared (NIR) spectroscopy is ill-suited to microanalysis because of its low absorptivity. We have developed a highly sensitive detection method for NIR spectroscopy based on absorption-sensitive surface plasmon resonance (SPR). The newly named SPR-NIR spectroscopy, which may open the way for NIR spectroscopy in microanalysis and surface science, is realized by an attachment of the Kretschmann configuration equipped with a mechanism for fine angular adjustment of incident light. The angular sweep of incident light enables us to make a tuning of a SPR peak for an absorption band of sample medium. From the dependences of wavelength, incident angle, and thickness of a gold film on the intensity of the SPR peak, it has been found that the absorbance can be enhanced by approximately 100 times compared with the absorbance obtained without the gold film under optimum conditions. This article reports the details of the experimental setup and the characteristics of absorption-sensitive SPR in the NIR region, together with some experimental results obtained by using it.

  15. Determination of Chinese rice wine from different wineries by near-infrared spectroscopy combined with chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoying; Ying, Yibin; Yu, Haiyan; Xie, Lijuan; Fu, Xiaping; Zhou, Ying; Jiang, Xuesong

    2007-09-01

    In this paper, 104 samples of Chinese rice wines of the same variety (Shaoxing rice wine), collected in three winery ("guyuelongshan", "pagoda" brand, "kuaijishan"), three brewed years (2002, 2004, 2004-2006) were analyzed by near-infrared transmission spectroscopy between 800 and 2500 nm. The spectral differences were studied by principal components analysis (PCA), and Classifications, according the brand, were carried out by discriminant analysis (DA) and partial least squares discriminant analysis (PLSDA). The DA model gained a total accuracy of 94.23% and when used to predict the brand of the validation set samples, a better result, correctly classified all of the three kinds of Chinese rice wine up to 100%, are obtained by PLSDA model. The work reported here is a feasibility study and requires further development with considerable samples of more different brands. Further studies are needed in order to improve the accuracy and robustness, and to extend the discrimination to other Chinese rice wine varieties or brands.

  16. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  17. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  18. [Gaussian process regression and its application in near-infrared spectroscopy analysis].

    PubMed

    Feng, Ai-Ming; Fang, Li-Min; Lin, Min

    2011-06-01

    Gaussian process (GP) is applied in the present paper as a chemometric method to explore the complicated relationship between the near infrared (NIR) spectra and ingredients. After the outliers were detected by Monte Carlo cross validation (MCCV) method and removed from dataset, different preprocessing methods, such as multiplicative scatter correction (MSC), smoothing and derivate, were tried for the best performance of the models. Furthermore, uninformative variable elimination (UVE) was introduced as a variable selection technique and the characteristic wavelengths obtained were further employed as input for modeling. A public dataset with 80 NIR spectra of corn was introduced as an example for evaluating the new algorithm. The optimal models for oil, starch and protein were obtained by the GP regression method. The performance of the final models were evaluated according to the root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (r). The models give good calibration ability with r values above 0.99 and the prediction ability is also satisfactory with r values higher than 0.96. The overall results demonstrate that GP algorithm is an effective chemometric method and is promising for the NIR analysis.

  19. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics.

    PubMed

    Cao, Zhen; Wang, Zhenjie; Shang, Zhonglin; Zhao, Jiancheng

    2017-01-01

    Fourier-transform infrared spectroscopy (FTIR) with the attenuated total reflectance technique was used to identify Rhodobryum roseum from its four adulterants. The FTIR spectra of six samples in the range from 4000 cm-1 to 600 cm-1 were obtained. The second-derivative transformation test was used to identify the small and nearby absorption peaks. A cluster analysis was performed to classify the spectra in a dendrogram based on the spectral similarity. Principal component analysis (PCA) was used to classify the species of six moss samples. A cluster analysis with PCA was used to identify different genera. However, some species of the same genus exhibited highly similar chemical components and FTIR spectra. Fourier self-deconvolution and discrete wavelet transform (DWT) were used to enhance the differences among the species with similar chemical components and FTIR spectra. Three scales were selected as the feature-extracting space in the DWT domain. The results show that FTIR spectroscopy with chemometrics is suitable for identifying Rhodobryum roseum and its adulterants.

  20. A Cross-Sectional Survey of Near-Infrared Spectroscopy Use in Pediatric Cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany.

    PubMed

    Hoskote, Aparna U; Tume, Lyvonne N; Trieschmann, Uwe; Menzel, Christoph; Cogo, Paola; Brown, Katherine L; Broadhead, Michael W

    2016-01-01

    Despite the increasing use of near-infrared spectroscopy across pediatric cardiac ICUs, there is significant variability and equipoise with no universally accepted management algorithms. We aimed to explore the use of near-infrared spectroscopy in pediatric cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany. A cross-sectional multicenter, multinational electronic survey of one consultant in each pediatric cardiac ICU. Pediatric cardiac ICUs in the United Kingdom and Ireland (n = 13), Italy (n = 12), and Germany (n = 33). Questionnaire targeted to establish use, targets, protocols/thresholds for intervention, and perceived usefulness of near-infrared spectroscopy monitoring. Overall, 42 of 58 pediatric cardiac ICUs (72%) responded: United Kingdom and Ireland, 11 of 13 (84.6%); Italy, 12 of 12 (100%); and Germany, 19 of 33 (57%, included all major centers). Near-infrared spectroscopy usage varied with 35% (15/42) reporting that near-infrared spectroscopy was not used at all (7/42) or occasionally (8/42); near-infrared spectroscopy use was much less common in the United Kingdom (46%) when compared with 78% in Germany and all (100%) in Italy. Only four units had a near-infrared spectroscopy protocol, and 18 specifically used near-infrared spectroscopy in high-risk patients; 37 respondents believed that near-infrared spectroscopy added value to standard monitoring and 23 believed that it gave an earlier indication of deterioration, but only 19 would respond based on near-infrared spectroscopy data alone. Targets for absolute values and critical thresholds for intervention varied widely between units. The reasons cited for not or occasionally using near-infrared spectroscopy were expense (n = 6), limited evidence and uncertainty on how it guides management (n = 4), difficulty in interpretation, and unreliability of data (n = 3). Amongst the regular or occasional near-infrared spectroscopy users (n = 35), 28 (66%) agreed that a multicenter study is warranted

  1. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    PubMed Central

    Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624

  2. [Applications of near-infrared spectroscopy to analysis of traditional Chinese herbal medicine].

    PubMed

    Li, Yan-Zhou; Min, Shun-Geng; Liu, Xia

    2008-07-01

    Analysis of traditional Chinese herbal medicine is of great importance to its quality control Conventional analysis methods can not meet the requirement of rapid and on-line analysis because of complex process more experiences or needed. In recent years, near-infrared spectroscopy technique has been used for rapid determination of active components, on-line quality control, identification of counterfeit and discrimination of geographical origins of herbal medicines and so on, due to its advantages of simple pretreatment, high efficiency, convenience to use solid diffuse reflection spectroscopy and fiber. In the present paper, the principles and methods of near-infrared spectroscopy technique are introduced concisely. Especially, the applications of this technique in quantitative analysis and qualitative analysis of traditional Chinese herbal medicine are reviewed.

  3. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.

    PubMed

    Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada

    2013-12-15

    The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    USDA-ARS?s Scientific Manuscript database

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  5. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  6. High-Throughput Metabolic Fingerprinting of Legume Silage Fermentations via Fourier Transform Infrared Spectroscopy and Chemometrics

    PubMed Central

    Johnson, Helen E.; Broadhurst, David; Kell, Douglas B.; Theodorou, Michael K.; Merry, Roger J.; Griffith, Gareth W.

    2004-01-01

    Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm−1) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins. PMID:15006782

  7. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    ERIC Educational Resources Information Center

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  8. A Decline in Intraoperative Renal Near-Infrared Spectroscopy Is Associated With Adverse Outcomes in Children Following Cardiac Surgery.

    PubMed

    Gist, Katja M; Kaufman, Jonathan; da Cruz, Eduardo M; Friesen, Robert H; Crumback, Sheri L; Linders, Megan; Edelstein, Charles; Altmann, Christopher; Palmer, Claire; Jalal, Diana; Faubel, Sarah

    2016-04-01

    Renal near-infrared spectroscopy is known to be predictive of acute kidney injury in children following cardiac surgery using a series of complex equations and area under the curve. This study was performed to determine if a greater than or equal to 20% reduction in renal near-infrared spectroscopy for 20 consecutive minutes intraoperatively or within the first 24 postoperative hours is associated with 1) acute kidney injury, 2) increased acute kidney injury biomarkers, or 3) other adverse clinical outcomes in children following cardiac surgery. Prospective single center observational study. Pediatric cardiac ICU. Children less than or equal to age 4 years who underwent cardiac surgery with the use of cardiopulmonary bypass during the study period (June 2011-July 2012). None. A reduction in near-infrared spectroscopy was not associated with acute kidney injury. Nine of 12 patients (75%) with a reduction in renal near-infrared spectroscopy did not develop acute kidney injury. The remaining three patients had mild acute kidney injury (pediatric Risk, Injury, Failure, Loss, End stage-Risk). A reduction in renal near-infrared spectroscopy was associated with the following adverse clinical outcomes: 1) a longer duration of mechanical ventilation (p = 0.05), 2) longer intensive care length of stay (p = 0.05), and 3) longer hospital length of stay (p < 0.01). A decline in renal near-infrared spectroscopy in combination with an increase in serum interleukin-6 and serum interleukin-8 was associated with a longer intensive care length of stay, and the addition of urine interleukin-18 to this was associated with a longer hospital length of stay. In this cohort, the rate of acute kidney injury was much lower than anticipated thereby limiting the evaluation of a reduction in renal near-infrared spectroscopy as a predictor of acute kidney injury. A greater than or equal to 20% reduction in renal near-infrared spectroscopy was significantly associated with adverse outcomes in

  9. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics.

    PubMed

    Kong, W W; Zhang, C; Liu, F; Gong, A P; He, Y

    2013-08-01

    The objective of this study was to examine the possibility of applying visible and near-infrared spectroscopy to the quantitative detection of irradiation dose of irradiated milk powder. A total of 150 samples were used: 100 for the calibration set and 50 for the validation set. The samples were irradiated at 5 different dose levels in the dose range 0 to 6.0 kGy. Six different pretreatment methods were compared. The prediction results of full spectra given by linear and nonlinear calibration methods suggested that Savitzky-Golay smoothing and first derivative were suitable pretreatment methods in this study. Regression coefficient analysis was applied to select effective wavelengths (EW). Less than 10 EW were selected and they were useful for portable detection instrument or sensor development. Partial least squares, extreme learning machine, and least squares support vector machine were used. The best prediction performance was achieved by the EW-extreme learning machine model with first-derivative spectra, and correlation coefficients=0.97 and root mean square error of prediction=0.844. This study provided a new approach for the fast detection of irradiation dose of milk powder. The results could be helpful for quality detection and safety monitoring of milk powder. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Application of near-infrared spectroscopy to preservative-treated wood

    Treesearch

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  11. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption. © 2011 American Chemical Society

  12. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  13. Citrus species and hybrids depicted by near- and mid-infrared spectroscopy.

    PubMed

    Páscoa, Ricardo Nmj; Moreira, Silvana; Lopes, João A; Sousa, Clara

    2018-01-31

    Citrus trees are among the most cultivated plants in the world, with a high economic impact. The wide sexual compatibility among relatives gave rise to a large number of hybrids that are difficult to discriminate. This work sought to explore the ability of infrared spectroscopy to discriminate among Citrus species and/or hybrids and to contribute to the elucidation of its relatedness. Adult leaves of 18 distinct Citrus plants were included in this work. Near- and mid-infrared (NIR and FTIR) spectra were acquired from leaves after harvesting and a drying period of 1 month. Spectra were modelled by principal component analysis and partial least squares discriminant analysis. Both techniques revealed a high discrimination potential (78.5-95.9%), being the best results achieved with NIR spectroscopy and air-dried leaves (95.9%). Infrared spectroscopy was able to successfully discriminate several Citrus species and/or hybrids. Our results contributed also to enhance insights regarding the studied Citrus species and/or hybrids. Despite the benefit of including additional samples, the results herein obtained clearly pointed infrared spectroscopy as a reliable technique for Citrus species and/or hybrid discrimination. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Fire impact on forest soils evaluated using near-infrared spectroscopy and multivariate calibration.

    PubMed

    Vergnoux, A; Dupuy, N; Guiliano, M; Vennetier, M; Théraulaz, F; Doumenq, P

    2009-11-15

    The assessment of physico-chemical properties in forest soils affected by fires was evaluated using near infrared reflectance (NIR) spectroscopy coupled with chemometric methods. In order to describe the soil properties, measurements were taken of the total organic carbon on solid phase, the total nitrogen content, the organic carbon and the specific absorbences at 254 and 280 nm of humic substances, organic carbon in humic and fulvic acids, concentrations of NH(4)(+), Ca(2+), Mg(2+), K(+) and phosphorus in addition to NIR spectra. Then, a fire recurrence index was defined and calculated according to the different fires extents affecting soils. This calculation includes the occurrence of fires as well as the time elapsed since the last fire. This study shows that NIR spectroscopy could be considered as a tool for soil monitoring, particularly for the quantitative prediction of the total organic carbon, total nitrogen content, organic carbon in humic substances, concentrations of phosphorus, Mg(2+), Ca(2+) and NH(4)(+) and humic substances UVSA(254). Further validation in this field is necessary however, to try and make successful predictions of K(+), organic carbon in humic and fulvic acids and the humic substances UVSA(280). Moreover, NIR coupled with PLS can also be useful to predict the fire recurrence index in order to determine the spatial variability. Also this method can be used to map more or less burned areas and possibly to apply adequate rehabilitation techniques, like soil litter reconstitution with organic enrichments (industrial composts) or reforestation. Finally, the proposed recurrence index can be considered representative of the state of the soils.

  15. [Application of near infrared spectroscopy technology (NIRS) in forage field].

    PubMed

    Yan, Xu; Bai, Shi-Qie; Yan, Jia-Jun; Gan, You-Min; Dao, Zhi-Xue

    2012-07-01

    The majority of nutrients in ruminants and other herbivores come from forages. Forage quality not only affects the growth and production efficiency of livestock, but also determines the final output and quality of livestock products. Forage quality mainly depends on nutrient concentrations and their digestibility, palatability and the level of presence of antiquality factors and mycotoxins in forage. Near infrared reflectance spectroscopy (NIRS) has been widely used in many research areas because it is a inexpensive, rapid, simple and nondestructive technique offering the potential for qualitative and quantitative analysis. The present paper briefly introduces the principle and characteristics of NIRS, detailedly expounds the application of NIRS in forage quality. In addition, other applications of near infrared spectroscopy technique in forage are also discussed, including forage breeding, identification of variety and classification by kind. This paper comprehensively reviews the status quo of application of NIRS in forage filed, in order to contribute to promoting development of NIRS in this field in China.

  16. Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques.

    PubMed

    Aleixandre-Tudo, Jose Luis; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2018-01-01

    The wine industry requires reliable methods for the quantification of phenolic compounds during the winemaking process. Infrared spectroscopy appears as a suitable technique for process control and monitoring. The ability of Fourier transform near infrared (FT-NIR), attenuated total reflectance mid infrared (ATR-MIR) and Fourier transform infrared (FT-IR) spectroscopies to predict compositional phenolic levels during red wine fermentation and aging was investigated. Prediction models containing a large number of samples collected over two vintages from several industrial fermenting tanks as well as wine samples covering a varying number of vintages were validated. FT-NIR appeared as the most accurate technique to predict the phenolic content. Although slightly less accurate models were observed, ATR-MIR and FT-IR can also be used for the prediction of the majority of phenolic measurements. Additionally, the slope and intercept test indicated a systematic error for the three spectroscopies which seems to be slightly more pronounced for HPLC generated phenolics data than for the spectrophotometric parameters. However, the results also showed that the predictions made with the three instruments are statistically comparable. The robustness of the prediction models was also investigated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Portable visible and near-infrared spectrophotometer for triglyceride measurements.

    PubMed

    Kobayashi, Takanori; Kato, Yukiko Hakariya; Tsukamoto, Megumi; Ikuta, Kazuyoshi; Sakudo, Akikazu

    2009-01-01

    An affordable and portable machine is required for the practical use of visible and near-infrared (Vis-NIR) spectroscopy. A portable fruit tester comprising a Vis-NIR spectrophotometer was modified for use in the transmittance mode and employed to quantify triglyceride levels in serum in combination with a chemometric analysis. Transmittance spectra collected in the 600- to 1100-nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop a chemometrics model for predicting triglyceride concentrations in serum. The model yielded a coefficient of determination in cross-validation (R2VAL) of 0.7831 with a standard error of cross-validation (SECV) of 43.68 mg/dl. The detection limit of the model was 148.79 mg/dl. Furthermore, masked samples predicted by the model yielded a coefficient of determination in prediction (R2PRED) of 0.6856 with a standard error of prediction (SEP) and detection limit of 61.54 and 159.38 mg/dl, respectively. The portable Vis-NIR spectrophotometer may prove convenient for the measurement of triglyceride concentrations in serum, although before practical use there remain obstacles, which are discussed.

  18. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection.

    PubMed

    Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang

    2015-01-01

    This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  19. Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances.

    PubMed

    Qu, Jia-Huan; Liu, Dan; Cheng, Jun-Hu; Sun, Da-Wen; Ma, Ji; Pu, Hongbin; Zeng, Xin-An

    2015-01-01

    Food safety is a critical public concern, and has drawn great attention in society. Consequently, developments of rapid, robust, and accurate methods and techniques for food safety evaluation and control are required. As a nondestructive and convenient tool, near-infrared spectroscopy (NIRS) has been widely shown to be a promising technique for food safety inspection and control due to its huge advantages of speed, noninvasive measurement, ease of use, and minimal sample preparation requirement. This review presents the fundamentals of NIRS and focuses on recent advances in its applications, during the last 10 years of food safety control, in meat, fish and fishery products, edible oils, milk and dairy products, grains and grain products, fruits and vegetables, and others. Based upon these applications, it can be demonstrated that NIRS, combined with chemometric methods, is a powerful tool for food safety surveillance and for the elimination of the occurrence of food safety problems. Some disadvantages that need to be solved or investigated with regard to the further development of NIRS are also discussed.

  20. Authentication of organic feed by near-infrared spectroscopy combined with chemometrics: a feasibility study.

    PubMed

    Tres, A; van der Veer, G; Perez-Marin, M D; van Ruth, S M; Garrido-Varo, A

    2012-08-22

    Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For this purpose a total of 36 organic and 60 conventional feed samples from The Netherlands were measured by NIRS. A binary classification model (organic vs conventional feed) was developed using partial least squares discriminant analysis. Models were developed using five different data preprocessing techniques, which were externally validated by a stratified random resampling strategy using 1000 realizations. Spectral regions related to the protein and fat content were among the most important ones for the classification model. The models based on data preprocessed using direct orthogonal signal correction (DOSC), standard normal variate (SNV), and first and second derivatives provided the most successful results in terms of median sensitivity (0.91 in external validation) and median specificity (1.00 for external validation of SNV models and 0.94 for DOSC and first and second derivative models). A previously developed model, which was based on fatty acid fingerprinting of the same set of feed samples, provided a higher sensitivity (1.00). This shows that the NIRS-based approach provides a rapid and low-cost screening tool, whereas the fatty acid fingerprinting model can be used for further confirmation of the organic identity of feed samples for laying hens. These methods provide additional assurance to the administrative controls currently conducted in the organic feed sector.

  1. Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine

    PubMed Central

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052

  2. Near-infrared spectroscopy used to predict soybean seed germination and vigor

    USDA-ARS?s Scientific Manuscript database

    The potential of using near-infrared (NIR) spectroscopy for differentiating levels in germination, vigor, and electrical conductivity of soybean seeds was investigated. For the 243 spectral data collected using the Perten DA7200, stratified sampling was used to obtain three calibration sets consisti...

  3. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    PubMed

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    PubMed

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  5. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    PubMed Central

    Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction. PMID:24883388

  6. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    PubMed

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  7. Application of Near Infrared Spectroscopy, Intravascular Ultrasound and the Coronary Calcium Score to Predict Adverse Coronary Events

    DTIC Science & Technology

    2015-10-01

    planned. 15. SUBJECT TERMS coronary artery disease , near infrared spectroscopy, calcium scoring, intravascular ultrasound 16. SECURIY CLASSIFICATION OF...Award Number: W81XWH-11-1-0831 TITLE: Application of Near Infrared Spectroscopy, Intravascular Ultrasound and the Coronary Calcium Score to...Predict Adverse Coronary Events PRINCIPAL INVESTIGATOR: Dr. Charles Lambert CONTRACTING ORGANIZATION: University Community Hospital Tampa, FL 33613

  8. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Influence of earlobe thickness on near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  10. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  11. Measurement of soy contents in ground beef using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100...

  12. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-07

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  13. Pulsed near-infrared photoacoustic spectroscopy of blood

    NASA Astrophysics Data System (ADS)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  14. Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.

    PubMed

    Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon

    2018-07-15

    Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  16. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  17. Near-Infrared Spectroscopy of Henan and Watsonia Family Asteroids

    NASA Astrophysics Data System (ADS)

    Bus, S. J.; Binzel, R. P.; Sunshine, J.; Burbine, T. H.; McCoy, T. J.

    2002-09-01

    We present visible and near-infrared spectra for members of both the Henan and Watsonia asteroid families. These two families are known to contain asteroids belonging to the taxonomic L class based on visible wavelength spectroscopy obtained during the second phase of the Small Main-belt Asteroid Spectroscopic Survey (SMASSII, Bus and Binzel 2002, Icarus in press). The L-type asteroids have visible-wavelength spectra similar to those of K-types but with steeper spectral slopes shortward of 0.75 micron, becoming relatively flat longward of 0.75 micron and showing little or no concave curvature related to a 1 micron silicon absorption band. Our current study of the Henan and Watsonia families uses data obtained with SpeX, a medium-resolution near-infrared spectrograph available at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. When combined with the SMASSII results, we find the near-infrared spectra of these asteroids contains very weak 1 micron bands but have moderately deep 2 micron bands. A possible interpretation of this anomalous spectral signature is the presence of spinel, suggested by Burbine et al. (1992, Meteoritics 27, 424) for the asteroids 387 Aquitania and 980 Anacostia, both likely members of the Watsonia family (Bus 1999, Ph.D. thesis). The work of Burbine et al. made use of combined ECAS and 52-color measurements covering the visible and near-IR wavelengths out to 2.5 microns. We can now use the high signal-to-noise data obtained with SpeX to more fully explore the mineralogy of the taxonomic L class and to search for evidence of mineralogical variations among the Henan and Watsonia asteroid family members.

  18. Transscrotal Near Infrared Spectroscopy as a Diagnostic Test for Testis Torsion in Pediatric Acute Scrotum: A Prospective Comparison to Gold Standard Diagnostic Test Study.

    PubMed

    Schlomer, Bruce J; Keays, Melise A; Grimsby, Gwen M; Granberg, Candace F; DaJusta, Daniel G; Menon, Vani S; Ostrov, Lauren; Sheth, Kunj R; Hill, Martinez; Sanchez, Emma J; Harrison, Clanton B; Jacobs, Micah A; Huang, Rong; Burgu, Berk; Hennes, Halim; Baker, Linda A

    2017-09-01

    A rapid test for testicular torsion in children may obviate the delay for testicular ultrasound. In this study we assessed testicular tissue percent oxygen saturation (%StO2) measured by transscrotal near infrared spectroscopy as a diagnostic test for pediatric testicular torsion. This was a prospective comparison to a gold standard diagnostic test study that evaluated near infrared spectroscopy %StO2 readings to diagnose testicular torsion. The gold standard for torsion diagnosis was standard clinical care. From 2013 to 2015 males with acute scrotum for more than 1 month and who were less than 18 years old were recruited. Near infrared spectroscopy %StO2 readings were obtained for affected and unaffected testes. Near infrared spectroscopy Δ%StO2 was calculated as unaffected minus affected reading. The utility of near infrared spectroscopy Δ%StO2 to diagnose testis torsion was described with ROC curves. Of 154 eligible patients 121 had near infrared spectroscopy readings. Median near infrared spectroscopy Δ%StO2 in the 36 patients with torsion was 2.0 (IQR -4.2 to 9.8) vs -1.7 (IQR -8.7 to 2.0) in the 85 without torsion (p=0.004). AUC for near infrared spectroscopy as a diagnostic test was 0.66 (95% CI 0.55-0.78). Near infrared spectroscopy Δ%StO2 of 20 or greater had a positive predictive value of 100% and a sensitivity of 22.2%. Tanner stage 3-5 cases without scrotal edema or with pain for 12 hours or less had an AUC of 0.91 (95% CI 0.86-1.0) and 0.80 (95% CI 0.62-0.99), respectively. In all children near infrared spectroscopy readings had limited utility in diagnosing torsion. However, in Tanner 3-5 cases without scrotal edema or with pain 12 hours or less, near infrared spectroscopy discriminated well between torsion and nontorsion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W

    2014-06-01

    The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic

  20. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    ERIC Educational Resources Information Center

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  1. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    USDA-ARS?s Scientific Manuscript database

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  2. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).

    PubMed

    Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E

    2016-07-27

    Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model.

  3. [Quality anlysis of the before redrying raw tobacco & after redrying sheet tobacco by using online near infrared spectroscopy].

    PubMed

    Tang, Zhao-qi; Liu, Ying; Shu, Ru-xin; Yang, Kai; Zhao, Long-lian; Zhang, Lu-da; Zhang Ye-hui; Li, Jun-hui

    2014-12-01

    In this paper, the 7 different origin before redrying raw tobacco & after redrying sheet tobacco's online near infrared spectroscopy were collected from sorting & redrying production line specifically for "ZHONGHUA" brand. By using the projection model bulit by different origin tobacco's online spectroscopy and the method of variance and correlation analysis, we studied the uniformity and similarity quality characteristics change before and after the redrying of tobacco, which can provide support for understanding the quality of the tobacco material and cigarette product formulations. This study show that selecting about 10,000 by equally spaced sampling time from a huge number of online near infrared spectroscopy, for modeling are feasible, and representative. After manual sorting, threshing, and redrying, the uiformity of each origin tobacco near-infrared spectroscopy can be increased by 10%~35%, homogeneity of the tobacco leaf has been significantly improved. After redrying, the similar relationship embodied in the origin also have significant changes, overall it reduce significantly, that shows the quality differences embodied by origin significantly improve, which can provide greater space for formulations, it shows the need for high-quality Chinese cigarette production requires large amounts of financial and human resources to implement cured tobacco processing. The traditional means of chemical analysis, it takes a lot of time and effort, it is difficult to control the entire processing chain, Near Infrared Spectroscopy with its rapid, non-destructive advantage, not only can achieve real-time detection and quality control, but also can take full advantage of near-infrared spectroscopy information created in the production process, which is a very promising online analytical detection technology in many industries especially in the agricultural and food processing industries.

  4. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  5. Recent advances in the use of NIR spectroscopy for qualitative control and protection of extra virgin olive oil

    USDA-ARS?s Scientific Manuscript database

    Recent studies on the use of near infrared (NIR) spectroscopy for the qualitative characterization of extra virgin olive oil, are reported and discussed in this paper. Research results confirms that NIR spectroscopy, combined with chemometric data analysis, allows to simultaneously evaluate all qual...

  6. A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine classification and untargeted authentication against multiple frauds for Chinese Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Fu, Haiyan; Yin, Qiaobo; Xu, Lu; Wang, Weizheng; Chen, Feng; Yang, Tianming

    2017-07-01

    The origins and authenticity against frauds are two essential aspects of food quality. In this work, a comprehensive quality evaluation method by FT-NIR spectroscopy and chemometrics were suggested to address the geographical origins and authentication of Chinese Ganoderma lucidum (GL). Classification for 25 groups of GL samples (7 common species from 15 producing areas) was performed using near-infrared spectroscopy and interval-combination One-Versus-One least squares support vector machine (IC-OVO-LS-SVM). Untargeted analysis of 4 adulterants of cheaper mushrooms was performed by one-class partial least squares (OCPLS) modeling for each of the 7 GL species. After outlier diagnosis and comparing the influences of different preprocessing methods and spectral intervals on classification, IC-OVO-LS-SVM with standard normal variate (SNV) spectra obtained a total classification accuracy of 0.9317, an average sensitivity and specificity of 0.9306 and 0.9971, respectively. With SNV or second-order derivative (D2) spectra, OCPLS could detect at least 2% or more doping levels of adulterants for 5 of the 7 GL species and 5% or more doping levels for the other 2 GL species. This study demonstrates the feasibility of using new chemometrics and NIR spectroscopy for fine classification of GL geographical origins and species as well as for untargeted analysis of multiple adulterants.

  7. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar

    NASA Astrophysics Data System (ADS)

    Rohaeti, Eti; Rafi, Mohamad; Syafitri, Utami Dyah; Heryanto, Rudi

    2015-02-01

    Turmeric (Curcuma longa), java turmeric (Curcuma xanthorrhiza) and cassumunar ginger (Zingiber cassumunar) are widely used in traditional Indonesian medicines (jamu). They have similar color for their rhizome and possess some similar uses, so it is possible to substitute one for the other. The identification and discrimination of these closely-related plants is a crucial task to ensure the quality of the raw materials. Therefore, an analytical method which is rapid, simple and accurate for discriminating these species using Fourier transform infrared spectroscopy (FTIR) combined with some chemometrics methods was developed. FTIR spectra were acquired in the mid-IR region (4000-400 cm-1). Standard normal variate, first and second order derivative spectra were compared for the spectral data. Principal component analysis (PCA) and canonical variate analysis (CVA) were used for the classification of the three species. Samples could be discriminated by visual analysis of the FTIR spectra by using their marker bands. Discrimination of the three species was also possible through the combination of the pre-processed FTIR spectra with PCA and CVA, in which CVA gave clearer discrimination. Subsequently, the developed method could be used for the identification and discrimination of the three closely-related plant species.

  8. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  9. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared (NIR) spectroscopy in the wavelength region from 900 nm to 2600 nm was evaluated as the basis for a rapid, non-destructive method for the detection of Zebra Chip disease in potatoes and the measurement of sugar concentrations in affected tubers. Using stepwise regression in conjunction...

  10. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  11. A preliminary study of preservative retention and penetration in ACQ-treated timbers using near infrared spectroscopy

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt; Stan T. Lebow; Leslie H. Groom

    2006-01-01

    Near infrared (NIR) spectroscopy has been previously used in our laboratory to predict copper, chromium, and arsenic levels in samples of chromated copper arsenate (CCA)-treated wood. In the present study, we utilized our custom-made NIR scanning system, NIRVANA (near infrared visual and automated numerical analysis), to scan cross sections of ACQ (alkaline copper quat...

  12. Soil texture and organic carbon fractions predicted from near-infrared spectroscopy and geostatistics

    USDA-ARS?s Scientific Manuscript database

    Field-specific management could help achieve agricultural sustainability by increasing production and decreasing environmental impacts. Near-infrared spectroscopy (NIRS) and geostatistics are relatively unexplored tools that could reduce time, labor, and costs of soil analysis. Our objective was to ...

  13. Near-infrared Raman spectroscopy of single optically trapped biological cells

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Dinno, Mumtaz A.; Li, Yong-Qing

    2002-02-01

    We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles. The design of the LTRS system provides high sensitivity and permits real-time spectroscopic measurements of the biological sample. The system was calibrated by use of polystyrene microbeads and tested on living blood cells and on both living and dead yeast cells. As expected, different images and Raman spectra were observed for the different cells. The LTRS system may provide a valuable tool for the study of fundamental cellular processes and the diagnosis of cellular disorders.

  14. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  15. Fiber-Content Measurement of Wool-Cashmere Blends Using Near-Infrared Spectroscopy.

    PubMed

    Zhou, Jinfeng; Wang, Rongwu; Wu, Xiongying; Xu, Bugao

    2017-10-01

    Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.

  16. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    PubMed

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  17. Near-infrared Spectroscopy in the Brewing Industry.

    PubMed

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  18. Feasibility of using near-infrared spectroscopy to diagnose testicular torsion: an experimental study in sheep.

    PubMed

    Capraro, Geoffrey A; Mader, Timothy J; Coughlin, Bret F; Lovewell, Carolanne; St Louis, Myron R L; Tirabassi, Michael; Wadie, George; Smithline, Howard A

    2007-04-01

    To assess whether near-infrared spectroscopy can detect testicular hypoxia in a sheep model of testicular torsion within 6 hours of experimental torsion. This was a randomized, controlled, nonblinded study. Trans-scrotal, near-infrared, spectroscopy-derived testicular tissue saturation of oxygen values were obtained from the posterior hemiscrota of 6 anesthetized sheep at baseline and every 15 minutes for 6 hours after either experimental-side, 720-degree, unilateral, medial testicular torsion and orchidopexy or control-side sham procedure with orchidopexy and then for 75 minutes after reduction of torsion and pexy. Color Doppler ultrasonography was performed every 30 minutes to confirm loss of vascular flow on the experimental side, return of flow after torsion reduction, and preserved flow on the control side. Near infrared spectroscopy detected a prompt, sustained reduction in testicular tissue saturation of oxygen after experimental torsion. Further, it documented a rapid return of these values to pretorsion levels after reduction of torsion. Experimental-side testicular tissue saturation of oxygen fell from a median value of 59% (interquartile range [IQR] 57% to 69%) at baseline to 14% (IQR 11% to 29%) at 2.5 hours of torsion, and postreduction values were approximately 70%. Control-side testicular tissue saturation of oxygen values increased from a median value of 67% (IQR 59% to 68%) at baseline to 77% (IQR 77% to 94%) at 2.5 hours and remained at approximately 80% for the entire protocol. The difference in median testicular tissue saturation of oxygen between experimental and control sides, using the Friedman test, was found to be significant (P=.017). This study demonstrates the feasibility, in a sheep model, of using near-infrared spectroscopy for the noninvasive diagnosis of testicular torsion and for quantification of reperfusion after torsion reduction. The applicability of these findings, from an animal model using complete torsion, to the clinical

  19. The application of near infrared (NIR) spectroscopy to inorganic preservative-treated wood

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Timothy G. Rials

    2004-01-01

    There is a growing need to find a rapid, inexpensive, and reliable method to distinguish between treated and untreated waste wood. This paper evaluates the ability of near infrared (NIR) spectroscopy with multivariate analysis (MVA) to distinguish preservative types and retentions. It is demonstrated that principal component analysis (PCA) can differentiate lumber...

  20. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  1. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    PubMed

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative

  2. The Detection and Quantification of Adulteration in Ground Roasted Asian Palm Civet Coffee Using Near-Infrared Spectroscopy in Tandem with Chemometrics

    NASA Astrophysics Data System (ADS)

    Suhandy, D.; Yulia, M.; Ogawa, Y.; Kondo, N.

    2018-05-01

    In the present research, an evaluation of using near infrared (NIR) spectroscopy in tandem with full spectrum partial least squares (FS-PLS) regression for quantification of degree of adulteration in civet coffee was conducted. A number of 126 ground roasted coffee samples with degree of adulteration 0-51% were prepared. Spectral data were acquired using a NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement in the range of 1300-2500 nm. The samples were divided into two groups calibration sample set (84 samples) and prediction sample set (42 samples). The calibration model was developed on original spectra using FS-PLS regression with full-cross validation method. The calibration model exhibited the determination coefficient R2=0.96 for calibration and R2=0.92 for validation. The prediction resulted in low root mean square error of prediction (RMSEP) (4.67%) and high ratio prediction to deviation (RPD) (3.75). In conclusion, the degree of adulteration in civet coffee have been quantified successfully by using NIR spectroscopy and FS-PLS regression in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation.

  3. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics

    PubMed Central

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-01-01

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701

  4. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    USDA-ARS?s Scientific Manuscript database

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  5. Prefrontal Dysfunction in Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Negoro, Hideki; Sawada, Masayuki; Iida, Junzo; Ota, Toyosaku; Tanaka, Shohei; Kishimoto, Toshifumi

    2010-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders with measurement of hemoglobin concentrations as cerebral blood volume. Twenty medication-naive children with attention-deficit/hyperactivity disorder (ADHD) and 20 age- and sex-matched healthy control…

  6. Application of Near Infrared Spectroscopy Coupled with Fluidized Bed Enrichment and Chemometrics to Detect Low Concentration of β-Naphthalenesulfonic Acid.

    PubMed

    Li, Wei; Zhang, Xuan; Zheng, Kaiyi; Du, Yiping; Cap, Peng; Sui, Tao; Geng, Jinpei

    2015-01-01

    A fluidized bed enrichment technique was developed to improve sensitivity of near infrared (NIR) spectroscopy with features of rapidness and large volume solution. D301 resin was used as an adsorption material to preconcentrate β-naphthalenesulfonic acid in solutions in a concentration range of 2.0-100.0 μg/mL, and NIR spectra were measured directly relative to the β-naphthalenesulfonic acid adsorbed on the material. An improved partial least squares (PLS) model was attained with the aid of multiplicative scatter correction pretreatment and stability competitive adaptive reweighted sampling wavenumber selection method. The root mean square error of cross validation was 1.87 μg/mL at PLS factor of 7. An independent test set was used to assess the model, with the relative error (RE) in an acceptable range of 0.46 to 10.03% and mean RE of 3.72%. This study confirmed the viability of the proposed method for the measurement of a low content of β-naphthalenesulfonic acid in water.

  7. A review on the applications of portable near-infrared spectrometers in the agro-food industry.

    PubMed

    dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A

    2013-11-01

    Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.

  8. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  9. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  10. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.

  11. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    PubMed

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2  = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  12. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    PubMed

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.

  13. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar.

    PubMed

    Rohaeti, Eti; Rafi, Mohamad; Syafitri, Utami Dyah; Heryanto, Rudi

    2015-02-25

    Turmeric (Curcuma longa), java turmeric (Curcuma xanthorrhiza) and cassumunar ginger (Zingiber cassumunar) are widely used in traditional Indonesian medicines (jamu). They have similar color for their rhizome and possess some similar uses, so it is possible to substitute one for the other. The identification and discrimination of these closely-related plants is a crucial task to ensure the quality of the raw materials. Therefore, an analytical method which is rapid, simple and accurate for discriminating these species using Fourier transform infrared spectroscopy (FTIR) combined with some chemometrics methods was developed. FTIR spectra were acquired in the mid-IR region (4000-400 cm(-1)). Standard normal variate, first and second order derivative spectra were compared for the spectral data. Principal component analysis (PCA) and canonical variate analysis (CVA) were used for the classification of the three species. Samples could be discriminated by visual analysis of the FTIR spectra by using their marker bands. Discrimination of the three species was also possible through the combination of the pre-processed FTIR spectra with PCA and CVA, in which CVA gave clearer discrimination. Subsequently, the developed method could be used for the identification and discrimination of the three closely-related plant species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    PubMed Central

    Faassen, Saskia M.; Hitzmann, Bernd

    2015-01-01

    On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644

  15. Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer.

    PubMed

    Ming, Lim Chwee; Gangodu, Nagaraja Rao; Loh, Thomas; Zheng, Wei; Wang, Jianfeng; Lin, Kan; Zhiwei, Huang

    2017-07-25

    Near-infrared (NIR) Raman spectroscopy has been investigated as a tool to differentiate nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue in an ex-vivo setting. Recently, we have miniaturized the fiber-optic Raman probe to investigate its utility in real time in-vivo surveillance of NPC patients. A posterior probability model using partial linear square (PLS) mathematical technique was constructed to verify the sensitivity and specificity of Raman spectroscopy in diagnosing NPC from post-irradiated and normal tissue using a diagnostic algorithm from three significant latent variables. NIR-Raman signals of 135 sites were measured from 79 patients with either newly diagnosed NPC (N = 12), post irradiated nasopharynx (N = 37) and normal nasopharynx (N = 30). The mean Raman spectra peaks identified differences at several Raman peaks at 853 cm-1, 940 cm-1, 1078 cm-1, 1335 cm-1, 1554 cm-1, 2885 cm-1 and 2940 cm-1 in the three different nasopharyngeal conditions. The sensitivity and specificity of distinguishing Raman signatures among normal nasopharynx versus NPC and post-irradiated nasopharynx versus NPC were 91% and 95%; and 77% and 96% respectively. Real time near-infrared Raman spectroscopy has a high specificity in distinguishing malignant from normal nasopharyngeal tissue in vivo, and may be investigated as a novel non-invasive surveillance tool in patients with nasopharyngeal cancer.

  16. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    USDA-ARS?s Scientific Manuscript database

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  17. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    USDA-ARS?s Scientific Manuscript database

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  18. Near infrared spectroscopy of human muscles

    NASA Astrophysics Data System (ADS)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  19. On short-term memory of prefrontal cortex using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Gan, Zhuo; Gong, Hui; Luo, Qingming; Zeng, Shaoqun

    2003-12-01

    For studying prefrontal cortical function in short-term memory two tasks were designed. In task one, a plus expression appears on screen for 300 milliseconds every other 2 seconds and the subject is required to give it"s answer but not to remember it. In task two, an Arabic numeral presents on screen as the same frequency as in task one. While a number is present, the subject need adding it to the sum he got last time. As subjects, 26 children participated in the work. Blood volume changes(BVCs) of right prefrontal cortex(PC) under two cognitive tasks were examined using functional near infrared imaging(fNIRI), a noninvasive technique for localizing regional BVCs which correlate with neural activities. The BVCs caused by short-term memory for numbers were retrieved from BVCs by task one and task two. Results revealed that short-term memory is related to PC and the near-infrared spectroscopy(NIRS) can be used to study prefrontal cortical function in short-term memory.

  20. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..._of_federal_regulations/ibr_locations.html. (b) Tolerances—(1) NIRS wheat protein analyzers. The... Method 992.23. (3) NIRS corn oil, protein, and starch analyzers. The maintenance tolerances for the NIRS... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The...

  1. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..._of_federal_regulations/ibr_locations.html. (b) Tolerances—(1) NIRS wheat protein analyzers. The... Method 992.23. (3) NIRS corn oil, protein, and starch analyzers. The maintenance tolerances for the NIRS... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The...

  2. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..._of_federal_regulations/ibr_locations.html. (b) Tolerances—(1) NIRS wheat protein analyzers. The... Method 992.23. (3) NIRS corn oil, protein, and starch analyzers. The maintenance tolerances for the NIRS... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The...

  3. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..._of_federal_regulations/ibr_locations.html. (b) Tolerances—(1) NIRS wheat protein analyzers. The... Method 992.23. (3) NIRS corn oil, protein, and starch analyzers. The maintenance tolerances for the NIRS... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The...

  4. Multimodality Intracoronary Imaging With Near-Infrared Spectroscopy and Intravascular Ultrasound in Asymptomatic Individuals With High Calcium Scores.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Klungle, David; Mulder, Abbey; Elmore, Matthew; Decker, Jeffrey M; Langholz, David; Boyden, Thomas F; Parker, Jessica; Muller, James E

    2017-10-01

    This study sought to determine the frequency of large lipid-rich plaques (LRP) in the coronary arteries of individuals with high coronary artery calcium scores (CACS) and to determine whether the CACS correlates with coronary lipid burden. Combined near-infrared spectroscopy and intravascular ultrasound was performed in 57 vessels in 20 asymptomatic individuals (90% on statins) with no prior history of coronary artery disease who had a screening CACS ≥300 Agatston units. Among 268 10-mm coronary segments, near-infrared spectroscopy images were analyzed for LRP, defined as a bright yellow block on the near-infrared spectroscopy block chemogram. Lipid burden was assessed as the lipid core burden index (LCBI), and large LRP were defined as a maximum LCBI in 4 mm ≥400. Vessel plaque volume was measured by quantitative intravascular ultrasound. Vessel-level CACS significantly correlated with plaque volume by intravascular ultrasound ( r =0.69; P <0.0001) but not with LCBI by near-infrared spectroscopy ( r =0.24; P =0.07). Despite a high CACS, no LRP was detected in 8 (40.0%) subjects. Large LRP having a maximum LCBI in 4 mm ≥400 were infrequent, found in only 5 (25.0%) of 20 subjects and in only 5 (1.9%) of 268 10-mm coronary segments analyzed. Among individuals with a CACS ≥300 Agatston units mostly on statins, CACS correlated with total plaque volume but not LCBI. This observation may have implications on coronary risk among individuals with a high CACS considering that it is coronary LRP, rather than calcification, that underlies the majority of acute coronary events. © 2017 American Heart Association, Inc.

  5. Near-infrared spectroscopy as an auxiliary tool in the study of child development

    PubMed Central

    de Oliveira, Suelen Rosa; Machado, Ana Carolina Cabral de Paula; de Miranda, Débora Marques; Campos, Flávio dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    OBJECTIVE: To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. DATA SOURCE: Search was conducted in the PubMed and Lilacs databases using the following keywords: ''psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared'' and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. DATA SYNTHESIS: Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. CONCLUSIONS: NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. PMID:25862295

  6. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    PubMed

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Multivariate figures of merit (FOM) investigation on the effect of instrument parameters on a Fourier transform-near infrared spectroscopy (FT-NIRS) based content uniformity method on core tablets.

    PubMed

    Doddridge, Greg D; Shi, Zhenqi

    2015-01-01

    Since near infrared spectroscopy (NIRS) was introduced to the pharmaceutical industry, efforts have been spent to leverage the power of chemometrics to extract out the best possible signal to correlate with the analyte of the interest. In contrast, only a few studies addressed the potential impact of instrument parameters, such as resolution and co-adds (i.e., the number of averaged replicate spectra), on the method performance of error statistics. In this study, a holistic approach was used to evaluate the effect of the instrument parameters of a FT-NIR spectrometer on the performance of a content uniformity method with respect to a list of figures of merit. The figures of merit included error statistics, signal-to-noise ratio (S/N), sensitivity, analytical sensitivity, effective resolution, selectivity, limit of detection (LOD), and noise. A Bruker MPA FT-NIR spectrometer was used for the investigation of an experimental design in terms of resolution (4 cm(-1) and 32 cm(-1)) and co-adds (256 and 16) plus a center point at 8 cm(-1) and 32 co-adds. Given the balance among underlying chemistry, instrument parameters, chemometrics, and measurement time, 8 cm(-1) and 32 co-adds in combination with appropriate 2nd derivative preprocessing was found to fit best for the intended purpose as a content uniformity method. The considerations for optimizing both instrument parameters and chemometrics were proposed and discussed in order to maximize the method performance for its intended purpose for future NIRS method development in R&D. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers

    PubMed Central

    Parry, Dave; Cooper, Chris E.

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis. uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming. PMID:29692951

  9. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers.

    PubMed

    Jones, Ben; Parry, Dave; Cooper, Chris E

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis . uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.

  10. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms.

    PubMed

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir; Howell, Kate; Dunshea, Frank R

    2018-01-01

    Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam. The ANN method was able to create more accurate models (R 2  = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type. The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.

    PubMed

    Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve

    2008-04-01

    A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.

  12. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Treesearch

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  13. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  14. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  15. Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Smarte, M. D.; Okumura, M.

    2016-12-01

    Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.

  16. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development

    PubMed Central

    2014-01-01

    Background In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). Results The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. Conclusion Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly

  17. Near-infrared transmittance spectroscopy for radiochemical ageing of EPDM.

    PubMed

    Lachenal, G; Stevenson, I; Celette, N

    2001-12-01

    The feasibility of using near-infrared spectroscopy as a sensitive technique to follow the influence of gamma-irradiation upon ageing of different EPDM (ethylene propylene diene monomer) elastomers has been evaluated. Although identification is difficult, differences can be observed between the non-irradiated and irradiated materials for total integrated doses from 50 to 450 kGy using a dose rate of 1 kGy h(-1) under an oxygen flow. The decrease in intensity of bands at 7040, 4610 and 4910 cm(-1) are linked to the disappearance of additives present in the elastomer such as excess of vulcanising or antioxidant agents and occur for the lowest irradiation dose. This disappearance is confirmed by TGA (thermogravimetric analysis). The increase in band intensities assigned to the formation of hydroxyl and carbonyl groups (5100, 4860 and 4670 cm(-1)) irradiation indicates an increase in oxidation with irradiation in the presence of oxygen. No bands linked to the presence of C=C from the diene have been detected, probably owing to the low concentration in the material and the weak intensity in near-infrared region. For strong irradiation doses (450 kGy), the three formulations studied show no difference in their NIR spectra, which is confirmed by the TGA of these irradiated materials. PCA performed at 5000-4600 cm(-1) or 7090-6980 cm(-1) shows efficient discrimination.

  18. Review of functional near-infrared spectroscopy in neurorehabilitation

    PubMed Central

    Mihara, Masahito; Miyai, Ichiro

    2016-01-01

    Abstract. We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain–computer interface and neurofeedback. PMID:27429995

  19. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    PubMed

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Near-infrared spectroscopy as an auxiliary tool in the study of child development].

    PubMed

    Oliveira, Suelen Rosa de; Machado, Ana Carolina Cabral de Paula; Miranda, Débora Marques de; Campos, Flávio Dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. Search was conducted in the PubMed and Lilacs databases using the following keywords: "psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared" and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

    PubMed

    Zhao, Xian-De; Dong, Da-Ming; Zheng, Wen-Gang; Jiao, Lei-Zi; Lang, Yun

    2014-10-01

    In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.

  2. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Lott, Carsten; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1998-01-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  3. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans J.; Lott, C.; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1997-12-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  4. [Application of near-infrared spectroscopy to agriculture and food analysis].

    PubMed

    Wang, Duo-jia; Zhou, Xiang-yang; Jin, Tong-ming; Hu, Xiang-na; Zhong, Jiao-e; Wu, Qi-tang

    2004-04-01

    Near-Infrared Spectroscopy (NIRS) is the most rapidly developing and the most noticeable spectrographic technique in the 90's (the last century). Its principle and characteristics were explained in this paper, and the development of NIRS instrumentation, the methodology of spectrum pre-processing, as well as the chemical metrology were also introduced. The anthors mainly summarized the applications to agriculture and food, especially in-line analysis methods, which have been used in production procedure by fiber optics. The authors analyzed the NIRS application status in China, and made the first proposal to establish information sharing mode between central database and end-user by using network technology and concentrating valuable resources.

  5. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    NASA Astrophysics Data System (ADS)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  6. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    USDA-ARS?s Scientific Manuscript database

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  7. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Chi-Leung So; Alexander III Clark; Richard F. Daniels

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid method for the determination of wood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10 mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used...

  8. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  9. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  10. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

    DOE PAGES

    O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke; ...

    2015-12-03

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainablemore » near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.« less

  11. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainablemore » near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.« less

  12. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    PubMed

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  13. The estimation of recovery time of calf muscle oxygen saturation during exercise by using functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Shojaeifar, M.; Mohajerani, E.

    2014-08-01

    Several methods of near infrared spectroscopy such as functional near infrared spectroscopy (fNIRS) and pulse oximetry have been applied for monitoring of tissue oxygenation or arterial oxygen saturation. Some vascular diseases can be diagnosed through measurements of tissue oxygenation. In this study, the temporal variation of oxygenation of calf muscle after exercise is studied by fNIRS. First, the accuracy of a low-cost fNIRS system is studied by measuring the oxygenation of a lipid phantom. Moreover, in-vivo study is performed to evaluate the precision of this system. Then, the variation of muscle oxygenation of four persons during exercise is measured and also the recovery time after walking/running is measured by this fNIRS system.

  14. A Brief Review of OPT101 Sensor Application in Near-Infrared Spectroscopy Instrumentation for Intensive Care Unit Clinics

    PubMed Central

    Li, Ting; Zhong, Fulin; Pan, Boan; Li, Zebin; Huang, Chong; Deng, Zishan

    2017-01-01

    The optoelectronic sensor OPT101 have merits in advanced optoelectronic response characteristics at wavelength range for medical near-infrared spectroscopy and small-size chip design with build-in trans-impedance amplifier. Our lab is devoted to developing a series of portable near-infrared spectroscopy (NIRS) devices embedded with OPT101 for applications in intensive care unit clinics, based on NIRS principle. Here we review the characteristics and advantages of OPT101 relative to clinical NIRS instrumentation, and the most recent achievements, including early-diagnosis and therapeutic effect evaluation of thrombus, noninvasive monitoring of patients' shock severity, and fatigue evaluation. The future prospect on OPT101 improvements in noninvasive clinical applications is also discussed. PMID:28757564

  15. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  16. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  17. Increased prefrontal hemodynamic change after atomoxetine administration in pediatric attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy.

    PubMed

    Ota, Toyosaku; Iida, Junzo; Nakanishi, Yoko; Sawada, Satomi; Matsuura, Hiroki; Yamamuro, Kazuhiko; Ueda, Shotaro; Uratani, Mitsuhiro; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2015-03-01

    Atomoxetine, approved in Japan for the treatment of pediatric attention-deficit/hyperactivity disorder (ADHD) in April 2009, is a nonstimulant that is thought to act presynaptically via the inhibition of norepinephrine reuptake. Near-infrared spectroscopy is a non-invasive optical tool that can be used to study oxygenation and hemodynamic changes in the cerebral cortex. The present study examined the effects of a clinical dose of atomoxetine on changes in prefrontal hemodynamic activity in children with ADHD, as measured by near-infrared spectroscopy using the Stroop Color-Word Task. Ten children with ADHD participated in the present study. We used 24-channel near-infrared spectroscopy to measure the relative concentrations of oxyhemoglobin in the frontal lobes of participants in the drug-naïve condition and those who had received atomoxetine for 8 weeks. Measurements were conducted every 0.1 s during the Stroop Color-Word Task. We used the ADHD Rating Scale-IV-Japanese version (Home Version) to evaluate ADHD symptoms. We found a significant decrease in ADHD Rating Scale-IV-Japanese version scores, from 30.7 to 22.6 (P=0.003). During the Stroop Color-Word Task, we found significantly higher levels of oxyhemoglobin changes in the prefrontal cortex of participants in the atomoxetine condition compared with those in the drug-naïve condition. This increase in oxyhemoglobin changes might indicate an intensified prefrontal hemodynamic response induced by atomoxetine. Near-infrared spectroscopy is a sensitive tool for measuring the pharmacological effects of atomoxetine in children with ADHD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  18. Near infrared spectroscopy and aquaphotomics analysis of serum from mares exposed to the fungal mycotoxin zearalenone

    USDA-ARS?s Scientific Manuscript database

    Aquaphotomics is a branch of near infrared spectroscopy (NIR) in which bond vibrations from organic molecules and water create unique spectral absorbance patterns to profile complex aqueous mixtures. Aquaphotomics has been shown to detect virus infected soybean plants from extracts, classify probiot...

  19. Near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors

    USDA-ARS?s Scientific Manuscript database

    Near-infrared spectroscopy (NIRS) was recently applied to age-grade and differentiate laboratory reared Anopheles gambiae sensu strico and Anopheles arabiensis sibling species of Anopheles gambiae sensu lato. In this study, we report further on the accuracy of this tool in simultaneously estimating ...

  20. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  1. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  2. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  3. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    USGS Publications Warehouse

    Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.

    2011-01-01

    In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.

  4. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    USGS Publications Warehouse

    Clark, Roger N.; Pieters, Carle M.; Green, Robert O.; Boardman, J.W.; Petro, Noah E.

    2011-01-01

    In the near-infrared from about 2 μm to beyond 3 μm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 μm pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon.

  5. Near-infrared Spectroscopy Of Outer Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, J.

    2009-09-01

    We have recently begun a spectral survey of the outer Main Belt population (3.2 AU < a < 4.6 AU), using near-infrared spectroscopy (0.8-2.5 μm). The objective of this survey is to search for signatures of H2O, organics, hydrated silicates, and/or anhydrous silicates on this group of asteroids. Studying the outer Main Belt asteroids will allow us to better understand the dynamical evolution of the Solar System and provide crucial constrains on nebular composition. Our first observing run, using the SpeX spectrograph/imager at the NASA IRTF, took place remotely form the University of Tennessee Knoxville on the nights of April 15, 16, and 17, 2009 (UT). More observing runs will be conducted this year and the beginning of next year. The initial data reduction process reveals that some of these asteroids exhibit weak and strong absorption features. We will present some of these initial spectra and results.

  6. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  7. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Treesearch

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  8. Noninvasive near-infrared topography of human brain activity using intensity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Yuichi; Maki, Atsushi; Ito, Yoshitoshi; Watanabe, Eiju; Mayanagi, Yoshiaki; Koizumi, Hideaki

    1996-04-01

    We describe the functional topography of human brain activity due to motor stimulation by using near-infrared spectroscopy. Finger motion by each hand was used as the motor stimulation, and activity in the left fronto-central region of the brain was measured. A greater change in oxyhemoglobin concentration due to brain activity during the stimulation was obtained for the right hand than for the left hand. Localization of the activity was obtained by topographically mapping the measured changes for ten positions within the region.

  9. Rapid determination of acetic acid, furfural and 5-hydroxymethylfurfural in biomass hydrolysate using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Near infrared spectroscopy (NIR) is a rapid detection technique that has been used to characterize biomass. The objective of this study was to develop suitable NIR models to predict the acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) contents in biomass hydrolysates. Using a uniform distrib...

  10. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils.

    PubMed

    Wójcicki, Krzysztof; Khmelinskii, Igor; Sikorski, Marek; Sikorska, Ewa

    2015-11-15

    Infrared spectroscopic techniques and chemometric methods were used to study oxidation of olive, sunflower and rapeseed oils. Accelerated oxidative degradation of oils at 60°C was monitored using peroxide values and FT-MIR ATR and FT-NIR transmittance spectroscopy. Principal component analysis (PCA) facilitated visualization and interpretation of spectral changes occurring during oxidation. Multivariate curve resolution (MCR) method found three spectral components in the NIR and MIR spectral matrix, corresponding to the oxidation products, and saturated and unsaturated structures. Good quantitative relation was found between peroxide value and contribution of oxidation products evaluated using MCR--based on NIR (R(2) = 0.890), MIR (R(2) = 0.707) and combined NIR and MIR (R(2) = 0.747) data. Calibration models for prediction peroxide value established using partial least squares (PLS) regression were characterized for MIR (R(2) = 0.701, RPD = 1.7), NIR (R(2) = 0.970, RPD = 5.3), and combined NIR and MIR data (R(2) = 0.954, RPD = 3.1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A review: Functional near infrared spectroscopy evaluation in muscle tissues using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.

  12. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  13. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  14. Rapid determination of sugar level in snack products using infrared spectroscopy.

    PubMed

    Wang, Ting; Rodriguez-Saona, Luis E

    2012-08-01

    Real-time spectroscopic methods can provide a valuable window into food manufacturing to permit optimization of production rate, quality and safety. There is a need for cutting edge sensor technology directed at improving efficiency, throughput and reliability of critical processes. The aim of the research was to evaluate the feasibility of infrared systems combined with chemometric analysis to develop rapid methods for determination of sugars in cereal products. Samples were ground and spectra were collected using a mid-infrared (MIR) spectrometer equipped with a triple-bounce ZnSe MIRacle attenuated total reflectance accessory or Fourier transform near infrared (NIR) system equipped with a diffuse reflection-integrating sphere. Sugar contents were determined using a reference HPLC method. Partial least squares regression (PLSR) was used to create cross-validated calibration models. The predictability of the models was evaluated on an independent set of samples and compared with reference techniques. MIR and NIR spectra showed characteristic absorption bands for sugars, and generated excellent PLSR models (sucrose: SEP < 1.7% and r > 0.96). Multivariate models accurately and precisely predicted sugar level in snacks allowing for rapid analysis. This simple technique allows for reliable prediction of quality parameters, and automation enabling food manufacturers for early corrective actions that will ultimately save time and money while establishing a uniform quality. The U.S. snack food industry generates billions of dollars in revenue each year and vibrational spectroscopic methods combined with pattern recognition analysis could permit optimization of production rate, quality, and safety of many food products. This research showed that infrared spectroscopy is a powerful technique for near real-time (approximately 1 min) assessment of sugar content in various cereal products. © 2012 Institute of Food Technologists®

  15. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    USDA-ARS?s Scientific Manuscript database

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  16. The influence of physiological status on age prediction of Anopheles arabiensis using near infra-red spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to deter...

  17. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  18. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors

  19. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  20. A catheter-based near-infrared scanning spectroscopy system for imaging lipid-rich plaques in human coronary arteries in vivo

    NASA Astrophysics Data System (ADS)

    Gardner, Craig M.; Lisauskas, Jennifer; Hull, Edward L.; Tan, Huwei; Sum, Stephen; Meese, Thomas; Jiang, Chunsheng; Madden, Sean; Caplan, Jay; Muller, James E.

    2007-09-01

    Although heart disease remains the leading cause of death in the industrialized world, there is still no method, even under cardiac catheterization, to reliably identify those atherosclerotic lesions most likely to lead to heart attack and death. These lesions, which are often non-stenotic, are frequently comprised of a necrotic, lipid-rich core overlaid with a thin fibrous cap infiltrated with inflammatory cells. InfraReDx has developed a scanning, near-infrared, optical-fiber-based, spectroscopic cardiac catheter system capable of acquiring NIR reflectance spectra from coronary arteries through flowing blood under automated pullback and rotation in order to identify lipid-rich plaques (LRP). The scanning laser source and associated detection electronics produce a spectrum in 5 ms at a collection rate of 40 Hz, yielding thousands of spectra in a single pullback. The system console analyzes the spectral data with a chemometric model, producing a hyperspectral image (a Chemogram, see figure below) that identifies LRP encountered in the region interrogated by the system. We describe the system architecture and components, explain the experimental procedure by which the chemometric model was constructed from spectral data and histology-based reference information collected from autopsy hearts, and provide representative data from ongoing ex vivo and clinical studies.

  1. Capturing Pain in the Cortex during General Anesthesia: Near Infrared Spectroscopy Measures in Patients Undergoing Catheter Ablation of Arrhythmias

    PubMed Central

    Yücel, Meryem A.; Steele, Sarah C.; Alexander, Mark E.; Boas, David A.; Borsook, David; Becerra, Lino

    2016-01-01

    The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia. PMID:27415436

  2. Capturing Pain in the Cortex during General Anesthesia: Near Infrared Spectroscopy Measures in Patients Undergoing Catheter Ablation of Arrhythmias.

    PubMed

    Kussman, Barry D; Aasted, Christopher M; Yücel, Meryem A; Steele, Sarah C; Alexander, Mark E; Boas, David A; Borsook, David; Becerra, Lino

    2016-01-01

    The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia.

  3. Rapid screening astaxanthin-hyperproducing Haematococcus pluvialis mutants through near-infrared spectroscopy.

    PubMed

    Liu, J H; Song, L; Huang, Q

    2016-02-01

    The unicellular freshwater green microalga Haematococcus pluvialis is the richest source of natural astaxanthin. Since accumulation of astaxanthin differs significantly among various algal strains at different stages, it is therefore critical to develop an effective high-throughput assay for rapid screening astaxanthin-hyperproducing strains. In the present study, near-infrared spectroscopy (NIRS) in combination with biochemical assay was employed for evaluation of the wide-type H. Pluvialis strains. The partial least squares (PLS) models of total biomass, astaxanthin content and astaxanthin expressed as a percentage of dry weight (DW) were developed with the R(2) values as 0·959, 0·982 and 0·952, the prediction correlation factor (r) values as 0·979, 0·988 and 0·966, and the residual predictive deviation (RPD) values as 4·88, 6·22 and 3·86, respectively. Furthermore, the PLS models were employed to evaluate H. pluvialis mutants, with the r values as 0·973, 0·983 and 0·976, and the RPD values as 3·45, 7·59 and 4·07, respectively. This work thus demonstrates that NIRS is an easy, fast and non-invasive approach that can be applied in high-throughput screening of astaxanthin-hyperproducing algal mutants. Haematococcus pluvialis has potential application for its ability to accumulate natural antioxidant astaxanthin. In this study, we initiated the application of near-infrared spectroscopy (NIRS) in the analysis of total biomass and astaxanthin content of different mutant strains, demonstrating that NIRS can be very useful in the screening of axataxanthin-hyperproducing mutant strains. © 2015 The Society for Applied Microbiology.

  4. Nondestructive estimation of tracheid length from sections of radial wood strips by near infrared spectroscopy

    Treesearch

    Laurence R. Schimleck; P. David Jones; Gary F. Peter; F. Daniels; Alexander Clarklll

    2004-01-01

    The use of calibrated near infrared (NIR) spectroscopy for predicting tracheid length of Pinus taeda L. (loblolly pine) wood samples is described. Ten-mm sections of 14 P. taeda radial strips were selected and NIR spectra obtained from the radial longitudinal face of each section. The fibers in these sections were characterized in terms of arithmetic and length-...

  5. Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Michael Stine; Leslie H. Groom

    2005-01-01

    Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills that need to maximize pulp yield without compromising paper strength properties. If models developed from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply personnel could monitor chip density variation as the chips enter the...

  6. Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes.

    PubMed

    Rohe, T; Becker, W; Kölle, S; Eisenreich, N; Eyerer, P

    1999-09-13

    In recent years, near infrared (NIR) spectroscopy has become an analytical tool frequently used in many chemical production processes. In particular, on-line measurements are of interest to increase process stability and to document constant product quality. Application to polymer processing e.g. polymer extrusion, could even increase product quality. Interesting parameters are composition of the processed polymer, moisture, or reaction status in reactive extrusion. For this issue a transmission sensor was developed for application of NIR spectroscopy to extrusion processes. This sensor includes fibre optic probes and a measuring cell to be adapted to various extruders for in-line measurements. In contrast to infrared sensors, it only uses optical quartz components. Extrusion processes at temperatures up to 300 degrees C and pressures up to 37 MPa have been investigated. Application of multivariate data analysis (e.g. partial least squares, PLS) demonstrated the performance of the system with respect to process monitoring: in the case of polymer blending, deviations between predicted and actual polymer composition were quite low (in the range of +/-0.25%). So the complete system is suitable for harsh industrial environments and could lead to improved polymer extrusion processes.

  7. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  8. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia.

    PubMed

    Samsir, Sri A'jilah; Bunawan, Hamidun; Yen, Choong Chee; Noor, Normah Mohd

    2016-09-01

    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.

  9. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  10. Frontal lobe activation during object permanence: data from near-infrared spectroscopy.

    PubMed

    Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A

    2002-08-01

    The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.

  11. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.

    PubMed

    Kolmas, Joanna; Marek, Dariusz; Kolodziejski, Waclaw

    2015-08-01

    Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites.

  12. Estimation of regional cerebral blood flow distribution in infants by multichannel near-infrared spectroscopy with indocyanine green

    NASA Astrophysics Data System (ADS)

    Kusaka, Takashi; Isobe, Kenichi; Nagano, Keiko; Okubo, Kensuke; Yasuda, Saneyuki; Kawada, Kou; Itoh, Susumu; Onishi, Shoju; Oda, Ichiro; Wada, Yukihisa; Konishi, Ikuo; Tsunazawa, Yoshio

    2001-06-01

    This is the report on the use of multichannel near-infrared spectroscopy (MNIRS) with indocyanine green (ICG) to determine regional cerebral blood flow (rCBF) distribution disturbance in infants. We measured rCBF in an infant with subdural hemorrhage after surgical removal of a subdural hematoma. A probe consisting of 12 optical fibers, 6 for transmission and 6 for detection, was set on the right and then left temporal regions of the head of the infant, and 16 measuring points were determined. Changes in ICG concentration were recorded using MNIRS (near infrared optical imaging system, OMM-2000, Shimadzu Corp., Japan).

  13. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.

    PubMed

    Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo

    2015-01-01

    Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine. © 2014 American Academy of Forensic Sciences.

  14. Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements.

    PubMed

    Bai, Wenming; Yoshimura, Norio; Takayanagi, Masao; Che, Jingai; Horiuchi, Naomi; Ogiwara, Isao

    2016-06-28

    Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.

  15. Electric field detection of phase-locked near-infrared pulses using photoconductive antenna.

    PubMed

    Katayama, I; Akai, R; Bito, M; Matsubara, E; Ashida, M

    2013-07-15

    We have demonstrated that a photoconductive antenna gated with 5-fs ultrashort laser pulses can detect electric field transients of near-infrared pulses at least up to 180 THz. Measured sensitivity spectrum of the antenna shows a good agreement with a simple calculation, demonstrating the promising capability of the antenna to near infrared spectroscopy. Using this setup, near-infrared time-domain spectroscopy and characterization of phase controlled near-infrared pulses are demonstrated. Observed absorption spectrum of a polystyrene film and complex refractive index dispersion of a fused silica plate both agree well with those obtained by the conventional methods.

  16. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm

    NASA Astrophysics Data System (ADS)

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.

  17. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  18. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour.

    PubMed

    Santos, João Rodrigo; Viegas, Olga; Páscoa, Ricardo N M J; Ferreira, Isabel M P L V O; Rangel, António O S S; Lopes, João Almeida

    2016-10-01

    In this work, a real-time and in-situ analytical tool based on near infrared spectroscopy is proposed to predict two of the most relevant coffee parameters during the roasting process, sucrose and colour. The methodology was developed taking in consideration different coffee varieties (Arabica and Robusta), coffee origins (Brazil, East-Timor, India and Uganda) and roasting process procedures (slow and fast). All near infrared spectroscopy-based calibrations were developed resorting to partial least squares regression. The results proved the suitability of this methodology as demonstrated by range-error-ratio and coefficient of determination higher than 10 and 0.85 respectively, for all modelled parameters. The relationship between sucrose and colour development during the roasting process is further discussed, in light of designing in real-time coffee products with similar visual appearance and distinct organoleptic profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NIRS-SPM: statistical parametric mapping for near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tak, Sungho; Jang, Kwang Eun; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2008-02-01

    Even though there exists a powerful statistical parametric mapping (SPM) tool for fMRI, similar public domain tools are not available for near infrared spectroscopy (NIRS). In this paper, we describe a new public domain statistical toolbox called NIRS-SPM for quantitative analysis of NIRS signals. Specifically, NIRS-SPM statistically analyzes the NIRS data using GLM and makes inference as the excursion probability which comes from the random field that are interpolated from the sparse measurement. In order to obtain correct inference, NIRS-SPM offers the pre-coloring and pre-whitening method for temporal correlation estimation. For simultaneous recording NIRS signal with fMRI, the spatial mapping between fMRI image and real coordinate in 3-D digitizer is estimated using Horn's algorithm. These powerful tools allows us the super-resolution localization of the brain activation which is not possible using the conventional NIRS analysis tools.

  20. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.

    PubMed

    Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S

    2011-10-26

    Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.

  1. Cerebral oxygenation and hemodynamic changes during infant cardiac surgery: measurements by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    du Plessis, Adre J.; Volpe, Joseph J.

    1996-10-01

    Despite dramatic advances in the survival rate among infants undergoing cardiac surgery for congenital heart disease, the incidence of brain injury suffered by survivors remains unacceptably high. This is largely due to our limited understanding of the complex changes in cerebral oxygen utilization and supply occurring during the intraoperative period as a result of hypothermia, neuroactive drugs, and profound circulatory changes. Current techniques for monitoring the adequacy of cerebral oxygen supply and utilization during hypothermic cardiac surgery are inadequate to address this complex problem and consequently to identify the infant at risk for such brain injury. Furthermore, this inability to detect imminent hypoxic- ischemic brain injury is likely to become all the more conspicuous as new neuroprotective strategies, capable of salvaging 'insulated' neuronal tissue form cell death, enter the clinical arena. Near infrared spectroscopy is a relatively new, noninvasive, and portable technique capable of interrogating the oxygenation and hemodynamics of tissue in vivo. These characteristics of the technique have generated enormous interest among clinicians in the ability of near infrared spectroscopy to elucidate the mechanisms of intraoperative brain injury and ultimately to identify infants oat risk for such injury. This paper reviews the experience with this technique to date during infant cardiac surgery.

  2. [Research on human movement with noninvasive tissue oximeter using near infrared spectroscopy].

    PubMed

    Lin, Hong; Xi, Yu-bao; Yu, Hui

    2014-06-01

    The present paper discusses how to monitor and analyze the relative change in muscle oxygen content in quadriceps tissue, and measures and records the change in blood lactate acid concentration, blood volume and heart rate when eight players who are good at middle-distance races perform grade incremental intensity exercise on cycle ergometer by using noninvasive tissue oximeter with near infrared spectroscopy produced by China independently. The results show that muscle oxygen content has a close relationship (p < 0.01)with exercise load, blood lactic acid, blood volume and heart rate. When determined muscle oxygen content and blood lactate acid concentration was determined for many times to the same person, the test proved regular falling and rising. There was no significant changes when analyzed each set of the data was analyzed through horizontal comparison. It verifies we can judge the subjects's endurable exercise intensity and the upward inflection point of blood lactic acid corresponding to the decreasing inflection point of blood lactate acid concentration & muscle oxygen content according to the muscle oxygen content change of skeletal muscle while exercising. This paper shows NIRS research status and present situation in sports field through investigation, and analyzes the main trouble and research tendency in the future. By understanding NIRS technology gradually, the authors can realize that the muscle oxygen content which measured by noninvasive tissue oximeter using near infrared spectroscopy produced by China independently is a sensitive, nondestructive, up-to-date and reliable index, it has irreplaceable advantages when compared with traditional invasive, excised and fussy test methods.

  3. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide.

    PubMed

    Ventura, M; Silva, J R; Andrade, L H C; Scorza Júnior, R P; Lima, S M

    2018-01-05

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations (~2ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH)+1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH)+1δ(CH) combination band at 960nm can be used as a marker for SFZ in methanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A rapid quantification method for the screening indicator for β-thalassemia with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiemei; Peng, Lijun; Han, Yun; Yao, Lijun; Zhang, Jing; Pan, Tao

    2018-03-01

    Near-infrared (NIR) spectroscopy combined with chemometrics was applied to rapidly analyse haemoglobin A2 (HbA2) for β-thalassemia screening in human haemolysate samples. The relative content indicator HbA2 was indirectly quantified by simultaneous analysis of two absolute content indicators (Hb and Hb • HbA2). According to the comprehensive prediction effect of the multiple partitioning of calibration and prediction sets, the parameters were optimized to achieve modelling stability, and the preferred models were validated using the samples not involved in modelling. Savitzky-Golay smoothing was firstly used for the spectral pretreatment. The absorbance optimization partial least squares (AO-PLS) was used to eliminate high-absorption wave-bands appropriately. The equidistant combination PLS (EC-PLS) was further used to optimize wavelength models. The selected optimal models were I = 856 nm, N = 16, G = 1 and F = 6 for Hb and I = 988 nm, N = 12, G = 2 and F = 5 for Hb • HbA2. Through independent validation, the root-mean-square errors and correlation coefficients for prediction (RMSEP, RP) were 3.50 g L- 1 and 0.977 for Hb and 0.38 g L- 1 and 0.917 for Hb • HbA2, respectively. The predicted values of relative percentage HbA2 were further calculated, and the calculated RMSEP and RP were 0.31% and 0.965, respectively. The sensitivity and specificity for β-thalassemia both reached 100%. Therefore, the prediction of HbA2 achieved high accuracy for distinguishing β-thalassemia. The local optimal models for single parameter and the optimal equivalent model sets were proposed, providing more models to match possible constraints in practical applications. The NIR analysis method for the screening indicator of β-thalassemia was successfully established. The proposed method was rapid, simple and promising for thalassemia screening in a large population.

  5. [Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].

    PubMed

    Liu, Hui-jun; Ying, Yi-bin

    2015-11-01

    A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.

  6. Identification of Medicinal Mugua Origin by Near Infrared Spectroscopy Combined with Partial Least-squares Discriminant Analysis.

    PubMed

    Han, Bangxing; Peng, Huasheng; Yan, Hui

    2016-01-01

    Mugua is a common Chinese herbal medicine. There are three main medicinal origin places in China, Xuancheng City Anhui Province, Qijiang District Chongqing City, Yichang City, Hubei Province, and suitable for food origin places Linyi City Shandong Province. To construct a qualitative analytical method to identify the origin of medicinal Mugua by near infrared spectroscopy (NIRS). Partial least squares discriminant analysis (PLSDA) model was established after the Mugua derived from five different origins were preprocessed by the original spectrum. Moreover, the hierarchical cluster analysis was performed. The result showed that PLSDA model was established. According to the relationship of the origins-related important score and wavenumber, and K-mean cluster analysis, the Muguas derived from different origins were effectively identified. NIRS technology can quickly and accurately identify the origin of Mugua, provide a new method and technology for the identification of Chinese medicinal materials. After preprocessed by D1+autoscale, more peaks were increased in the preprocessed Mugua in the near infrared spectrumFive latent variable scores could reflect the information related to the origin place of MuguaOrigins of Mugua were well-distinguished according to K. mean value clustering analysis. Abbreviations used: TCM: Traditional Chinese Medicine, NIRS: Near infrared spectroscopy, SG: Savitzky-Golay smoothness, D1: First derivative, D2: Second derivative, SNV: Standard normal variable transformation, MSC: Multiplicative scatter correction, PLSDA: Partial least squares discriminant analysis, LV: Latent variable, VIP scores: Important score.

  7. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  8. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  9. [Current progress in food geographical origin traceability by near infrared spectroscopy technology].

    PubMed

    Ma, Dong-Hong; Wang, Xi-Chang; Liu, Li-Ping; Liu, Yuan

    2011-04-01

    The geographical origin traceability of food, an important part of traceability system, is effective in protecting the quality and safety of foodstuffs. Near-infrared spectroscopy (NIR), which is a powerful technique for geographical origin traceability, has attracted extensive attention by scientists due to its speediness, non-pollution and simple operation. This paper presents the advantages and disadvantages of techniques that have been used for food geographical origin traceability. The basic principles of NIR and its applications in different food geographical origin traceability are presented too. Furthermore, problems in applications are analyzed and the future development trends are discussed.

  10. Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry

    Treesearch

    Stephen S. Kelley; Roger M. Rowell; Mark Davis; Cheryl K. Jurich; Rebecca Ibach

    2004-01-01

    The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical...

  11. Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products.

    PubMed

    Boiret, Mathieu; Chauchard, Fabien

    2017-01-01

    Near-infrared (NIR) spectroscopy is a non-destructive analytical technique that enables better-understanding and optimization of pharmaceutical processes and final drug products. The use in line is often limited by acquisition speed and sampling area. This work focuses on performing a multipoint measurement at high acquisition speed at the end of the manufacturing process on a conveyor belt system to control both the distribution and the content of active pharmaceutical ingredient within final drug products, i.e., tablets. A specially designed probe with several collection fibers was developed for this study. By measuring spectral and spatial information, it provides physical and chemical knowledge on the final drug product. The NIR probe was installed on a conveyor belt system that enables the analysis of a lot of tablets. The use of these NIR multipoint measurement probes on a conveyor belt system provided an innovative method that has the potential to be used as a new paradigm to ensure the drug product quality at the end of the manufacturing process and as a new analytical method for the real-time release control strategy. Graphical abstract Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products.

  12. Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer.

    PubMed

    Yoshizawa, Nobuko; Ueda, Yukio; Nasu, Hatsuko; Ogura, Hiroyuki; Ohmae, Etsuko; Yoshimoto, Kenji; Takehara, Yasuo; Yamashita, Yutaka; Sakahara, Harumi

    2016-11-01

    Optical imaging and spectroscopy using near-infrared light have great potential in the assessment of tumor vasculature. We previously measured hemoglobin concentrations in breast cancer using a near-infrared time-resolved spectroscopy system. The purpose of the present study was to evaluate the effect of the chest wall on the measurement of hemoglobin concentrations in normal breast tissue and cancer. We measured total hemoglobin (tHb) concentration in both cancer and contralateral normal breast using a near-infrared time-resolved spectroscopy system in 24 female patients with breast cancer. Patients were divided into two groups based on menopausal state. The skin-to-chest wall distance was determined using ultrasound images obtained with an ultrasound probe attached to the spectroscopy probe. The apparent tHb concentration of normal breast increased when the skin-to-chest wall distance was less than 20 mm. The tHb concentration in pre-menopausal patients was higher than that in post-menopausal patients. Although the concentration of tHb in cancer tissue was statistically higher than that in normal breast, the contralateral normal breast showed higher tHb concentration than cancer in 9 of 46 datasets. When the curves of tHb concentrations as a function of the skin-to-chest wall distance in normal breast were applied for pre- and post-menopausal patients separately, all the cancer lesions plotted above the curves. The skin-to-chest wall distance affected the measurement of tHb concentration of breast tissue by near-infrared time-resolved spectroscopy. The tHb concentration of breast cancer tissue was more precisely evaluated by considering the skin-to-chest wall distance.

  13. Co-Speech Gesture Production in an Animation-Narration Task by Bilinguals: A Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Oi, Misato; Saito, Hirofumi; Li, Zongfeng; Zhao, Wenjun

    2013-01-01

    To examine the neural mechanism of co-speech gesture production, we measured brain activity of bilinguals during an animation-narration task using near-infrared spectroscopy. The task of the participants was to watch two stories via an animated cartoon, and then narrate the contents in their first language (Ll) and second language (L2),…

  14. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study.

    PubMed

    Sano, Masahiro; Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-12-04

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient's habitual breathing route than a patient interview.

  15. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study

    PubMed Central

    Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-01-01

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient’s habitual breathing route than a patient interview. PMID:24169579

  16. Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics.

    PubMed

    da Silva Oliveira, Vanessa; Honorato, Ricardo Saldanha; Honorato, Fernanda Araújo; Pereira, Claudete Fernandes

    2018-05-01

    Spectra recorded using a portable near infrared (NIR) spectrometer, Soft Independent Modeling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) models were applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 and R$100) banknotes, enabling a simple field analysis. NIR spectra (950-1650nm) were recorded from seven different areas of the banknotes (two with fluorescent ink, one over watermark, three with intaglio printing process and one over the serial numbers with typography printing). SIMCA and SPA-LDA models were built using 1st derivative preprocessed spectral data from one of the intaglio areas. For the SIMCA models, all authentic (300) banknotes were correctly classified and the counterfeits (227) were not classified. For the two classes SPA-LDA models (authentic and counterfeit currencies), all the test samples were correctly classified into their respective class. The number of selected variables by SPA varied from two to nineteen for R$20, R$50 and R$100 currencies. These results show that the use of the portable near-infrared with SIMCA or SPA-LDA models can be a completely effective, fast, and non-destructive way to identify authenticity of banknotes as well as permitting field analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Near-infrared confocal micro-Raman spectroscopy combined with PCA-LDA multivariate analysis for detection of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan

    2013-06-01

    The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.

  18. Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species

    USDA-ARS?s Scientific Manuscript database

    Mosquito age and species identification is a crucial determinant of the efficacy of vector control programs. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African mala...

  19. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  20. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    PubMed

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  1. Functional near-infrared spectroscopy for adaptive human-computer interfaces

    NASA Astrophysics Data System (ADS)

    Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.

    2015-03-01

    We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.

  2. Thermally induced conformational changes in polyethylene studied by two-dimensional near-infrared infrared hetero-spectral correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro

    2008-07-01

    The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.

  3. Determining weight and moisture properties of sound and fusarium-damaged single wheat kernels by near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Single kernel moisture content (MC) is important in the measurement of other quality traits in single kernels since many traits are expressed on a dry weight basis, and MC affects viability, storage quality, and price. Also, if near-infrared (NIR) spectroscopy is used to measure grain traits, the in...

  4. Near infrared spectroscopy for high-throughput characterization of Shea tree (Vitellaria paradoxa) nut fat profiles.

    PubMed

    Davrieux, Fabrice; Allal, François; Piombo, Georges; Kelly, Bokary; Okulo, John B; Thiam, Massamba; Diallo, Ousmane B; Bouvet, Jean-Marc

    2010-07-14

    The Shea tree (Vitellaria paradoxa) is a major tree species in African agroforestry systems. Butter extracted from its nuts offers an opportunity for sustainable development in Sudanian countries and an attractive potential for the food and cosmetics industries. The purpose of this study was to develop near-infrared spectroscopy (NIRS) calibrations to characterize Shea nut fat profiles. Powders prepared from nuts collected from 624 trees in five African countries (Senegal, Mali, Burkina Faso, Ghana and Uganda) were analyzed for moisture content, fat content using solvent extraction, and fatty acid profiles using gas chromatography. Results confirmed the differences between East and West African Shea nut fat composition: eastern nuts had significantly higher fat and oleic acid contents. Near infrared reflectance spectra were recorded for each sample. Ten percent of the samples were randomly selected for validation and the remaining samples used for calibration. For each constituent, calibration equations were developed using modified partial least squares (MPLS) regression. The equation performances were evaluated using the ratio performance to deviation (RPD(p)) and R(p)(2) parameters, obtained by comparison of the validation set NIR predictions and corresponding laboratory values. Moisture (RPD(p) = 4.45; R(p)(2) = 0.95) and fat (RPD(p) = 5.6; R(p)(2) = 0.97) calibrations enabled accurate determination of these traits. NIR models for stearic (RPD(p) = 6.26; R(p)(2) = 0.98) and oleic (RPD(p) = 7.91; R(p)(2) = 0.99) acids were highly efficient and enabled sharp characterization of these two major Shea butter fatty acids. This study demonstrated the ability of near-infrared spectroscopy for high-throughput phenotyping of Shea nuts.

  5. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy.

    PubMed

    Ribeiro, J S; Ferreira, M M C; Salva, T J G

    2011-02-15

    Mathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness, flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PLS) were used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the wavelengths for the regression model of each sensory attribute in order to take only significant regions into account. The regions of the spectrum defined as important for sensory quality were closely related to the NIR spectra of pure caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein. The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and the chemical composition of the roasted grain were as listed below: 1 - the lipids and proteins were closely related to the attribute body; 2 - the caffeine and chlorogenic acids were related to bitterness; 3 - the chlorogenic acids were related to acidity and flavour; 4 - the cleanliness and overall quality were related to caffeine, trigonelline, chlorogenic acid, polysaccharides, sucrose and protein. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation.

    PubMed

    Sato, Hiroki; Fuchino, Yutaka; Kiguchi, Masashi; Katura, Takusige; Maki, Atsushi; Yoro, Takeshi; Koizumi, Hideaki

    2005-01-01

    We investigate the intersubject signal variability of near-infrared spectroscopy (NIRS), which is commonly used for noninvasive measurement of the product of the optical path length and the concentration change in oxygenated hemoglobin (DeltaC'oxy) and deoxygenated hemoglobin (DeltaC'deoxy) and their sum (DeltaC'total) related to human cortical activation. We do this by measuring sensorimotor cortex activation in 31 healthy adults using 24-measurement-position near-infrared (NIR) topography. A finger-tapping task is used to activate the sensorimotor cortex, and significant changes in the hemisphere contralateral to the tapping hand are assessed as being due to the activation. Of the possible patterns of signal changes, 90% include a positive DeltaC'oxy, 76% included a negative DeltaC'deoxy, and 73% included a positive DeltaC'total. The DeltaC'deoxy and DeltaC'total are less consistent because of a large intersubject variability in DeltaC'deoxy; in some cases there is a positive DeltaC'deoxy. In the cases with no positive DeltaC'oxy in the contralateral hemisphere, there are cases of other possible changes for either or both hemispheres and no cases of no change in any hemoglobin species in either hemisphere. These results suggest that NIR topography is useful for observing brain activity in most cases, although intersubject signal variability still needs to be resolved.

  7. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types.

    PubMed

    Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida

    2010-06-01

    Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.

  8. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  9. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy

    PubMed Central

    Li, Xiaoli; Sun, Chanjun; Zhou, Binxiong; He, Yong

    2015-01-01

    The contents of hemicellulose, cellulose and lignin are important for moso bamboo processing in biomass energy industry. The feasibility of using near infrared (NIR) spectroscopy for rapid determination of hemicellulose, cellulose and lignin was investigated in this study. Initially, the linear relationship between bamboo components and their NIR spectroscopy was established. Subsequently, successive projections algorithm (SPA) was used to detect characteristic wavelengths for establishing the convenient models. For hemicellulose, cellulose and lignin, 22, 22 and 20 characteristic wavelengths were obtained, respectively. Nonlinear determination models were subsequently built by an artificial neural network (ANN) and a least-squares support vector machine (LS-SVM) based on characteristic wavelengths. The LS-SVM models for predicting hemicellulose, cellulose and lignin all obtained excellent results with high determination coefficients of 0.921, 0.909 and 0.892 respectively. These results demonstrated that NIR spectroscopy combined with SPA-LS-SVM is a useful, nondestructive tool for the determinations of hemicellulose, cellulose and lignin in moso bamboo. PMID:26601657

  10. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  11. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  12. Near-infrared spectroscopy of newly developed PEGylated lipids.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F

    2008-11-15

    Near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids (1-3) trademarked as QuSomes. The three amphiphiles used in this study, differ in their hydrophobic chain length and contain various units of polyethylene glycol (PEG) head groups. Whilst the spectra of QuSomes show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm(-1) (approximately 2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. Three NIR spectral regions are identified, (a) the high wavenumber region between 6500 and 9000 cm(-1) attributed to the first overtone of the hydroxyl stretching and second overtone of the C-H stretching mode; (b) the 5350-5900 cm(-1) region attributed to first overtone of the C-H stretching mode; and (c) the 4800-5300 cm(-1) region attributed to the combination O-H stretching and second overtone of the C=O stretching mode. For each of these regions, the lipids show distinctive spectra which allow their identification and characterization. NIR spectroscopy is a less used technique which does have great potential for the study of lipids, particularly to examine the behaviour of nanovesicles (liposomes) formed from lipids in aqueous suspensions. The study of such lipids is important since they are used as membrane models and prominent candidate for substance and drug delivery systems.

  13. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Pogue, Brian W.; Poplack, Steven P.; Karellas, Andrew; Paulsen, Keith D.

    2016-01-01

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different (p=0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with (r =0.809, p<0.001), did not statistically differ from (p>0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for

  14. Rapid and non-destructive detection and identification two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    We investigated the potential of using near-infrared spectroscopy (NIRS) to detect the presence of Wolbachia pipientis (wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. The release of Wolbachia transinfected mosquitoes is likely to form a key component of disease control strategi...

  15. Decreased leftward bias of prefrontal activity in autism spectrum disorder revealed by functional near-infrared spectroscopy.

    PubMed

    Tamura, Ryu; Kitamura, Hideaki; Endo, Taro; Abe, Ryo; Someya, Toshiyuki

    2012-01-01

    Hemodynamic responses in rostral prefrontal cortex (RoPFC) were measured by functional near-infrared spectroscopy. Although performance level was equal, autistic patients showed a decrease in leftward bias of the balance between right and left RoPFC activity when compared with typically developing children when anatomical imitation was contrasted with mirror-image imitation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Early pregnancy diagnosis in sheep using near-infrared spectroscopy on blood plasma.

    PubMed

    Andueza, Donato; Alabart, José L; Lahoz, Belén; Muñoz, Fernando; Folch, José

    2014-02-01

    The objective of this study was to evaluate the ability of near-infrared reflectance spectroscopy (NIRS) to discriminate between pregnant and nonpregnant ewes in early stages of pregnancy after artificial insemination (AI) from blood plasma. Samples were collected using jugular puncture at 18 and 25 days after AI from 188 Rasa Aragonesa and Ansotana ewes. Plasma samples were analyzed for pregnancy-associated glycoprotein (PAG) and progesterone (P4) using ELISA commercial kits. The spectra of plasma samples were recorded in the visible and near-infrared ranges. The performance of these tests were compared, using as criterion standard the pregnancy status determined using transabdominal ultrasonography at 45 days after AI. Pregnancy rate was 47.9% (90/188). At Day 18, sensitivity was similar in NIRS and P4 tests (98.9% vs. 100%; not significant) and greater than PAG (32.2%; both P < 0.001). Specificity was similar in NIRS and PAG tests (both 100%) and greater than that of P4 (84.7%; P < 0.001). At Day 25, sensitivity and specificity of NIRS and PAG were both 100%. It can be concluded that NIRS was an accurate method of diagnosis of pregnancy at Days 18 and 25 after AI in ewes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A rapid identification of four medicinal chrysanthemum varieties with near infrared spectroscopy.

    PubMed

    Han, Bangxing; Yan, Hui; Chen, Cunwu; Yao, Houjun; Dai, Jun; Chen, Naifu

    2014-07-01

    For genuine medicinal material in Chinese herbs; the efficient, rapid, and precise identification is the focus and difficulty in the filed studying Chinese herbal medicines. Chrysanthemum morifolium as herbs has a long planting history in China, culturing high quality ones and different varieties. Different chrysanthemum varieties differ in quality, chemical composition, functions, and application. Therefore, chrysanthemum varieties in the market demands precise identification to provide reference for reasonable and correct application as genuine medicinal material. A total of 244 batches of chrysanthemum samples were randomly divided into calibration set (160 batches) and prediction set (84 batches). The near infrared diffuses reflectance spectra of chrysanthemum varieties were preprocessed by first order derivative (D1) and autoscaling and was built model with partial least squares (PLS). In this study of four chrysanthemum varieties identification, the accuracy rates in calibration sets of Boju, Chuju, Hangju, and Gongju are respectively 100, 100, 98.65, and 96.67%; while the accuracy rates in prediction sets are 100% except for 99.1% of Hangju. The research results demonstrate that the qualitative analysis can be conducted by machine learning combined with near infrared spectroscopy (NIR), which provides a new method for rapid and noninvasive identification of chrysanthemum varieties.

  18. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  19. Quantitative determination and classification of energy drinks using near-infrared spectroscopy.

    PubMed

    Rácz, Anita; Héberger, Károly; Fodor, Marietta

    2016-09-01

    Almost a hundred commercially available energy drink samples from Hungary, Slovakia, and Greece were collected for the quantitative determination of their caffeine and sugar content with FT-NIR spectroscopy and high-performance liquid chromatography (HPLC). Calibration models were built with partial least-squares regression (PLSR). An HPLC-UV method was used to measure the reference values for caffeine content, while sugar contents were measured with the Schoorl method. Both the nominal sugar content (as indicated on the cans) and the measured sugar concentration were used as references. Although the Schoorl method has larger error and bias, appropriate models could be developed using both references. The validation of the models was based on sevenfold cross-validation and external validation. FT-NIR analysis is a good candidate to replace the HPLC-UV method, because it is much cheaper than any chromatographic method, while it is also more time-efficient. The combination of FT-NIR with multidimensional chemometric techniques like PLSR can be a good option for the detection of low caffeine concentrations in energy drinks. Moreover, three types of energy drinks that contain (i) taurine, (ii) arginine, and (iii) none of these two components were classified correctly using principal component analysis and linear discriminant analysis. Such classifications are important for the detection of adulterated samples and for quality control, as well. In this case, more than a hundred samples were used for the evaluation. The classification was validated with cross-validation and several randomization tests (X-scrambling). Graphical Abstract The way of energy drinks from cans to appropriate chemometric models.

  20. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  1. A novel approach to comparing reproductive stage serum profiles in mares using near infrared spectroscopy (NIR) and aquaphotomics

    USDA-ARS?s Scientific Manuscript database

    The capability of near infrared spectroscopy (NIR) to detect biomolecules in aqueous solutions, a sub-field of NIR called Aquaphotomics, has yet to be fully explored. Aquaphotomics references water absorbance patterns and wavelength shifts in the 1st overtone of the water spectrum as they change pat...

  2. Hemodynamic and Electrophysiological Connectivity in the Language System: Simultaneous Near-Infrared Spectroscopy and Electrocorticography Recordings during Cortical Stimulation

    ERIC Educational Resources Information Center

    Sato, Yosuke; Oishi, Makoto; Fukuda, Masafumi; Fujii, Yukihiko

    2012-01-01

    We applied near-infrared spectroscopy (NIRS) and electrocorticography (ECoG) recordings during cortical stimulation to a temporal lobe epilepsy patient who underwent subdural electrode implantation. Using NIRS, changes in blood concentrations of oxyhemoglobin (HbO[subscript 2]) and deoxyhemoglobin (HbR) during cortical stimulation of the left…

  3. Classification of java tea (Orthosiphon aristatus) quality using FTIR spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Heryanto, R.; Pradono, D. I.; Marlina, E.; Darusman, L. K.

    2017-05-01

    Java tea (Orthosiphon aristatus) is a plant that widely used as a medicinal herb in Indonesia. Its quality is varying depends on various factors, such as cultivating area, climate and harvesting time. This study aimed to investigate the effectiveness of FTIR spectroscopy coupled with chemometrics for discriminating the quality of java tea from different cultivating area. FTIR spectra of ethanolic extracts were collected from five different regions of origin of java tea. Prior to chemometrics evaluation, spectra were pre-processed by using baselining, normalization and derivatization. Principal Components Analysis (PCA) was used to reduce the spectra to two PCs, which explained 73% of the total variance. Score plot of two PCs showed groupings of the samples according to their regions of origin. Furthermore, Partial Least Squares-Discriminant Analysis (PLSDA) was applied to the pre-processed data. The approach produced an external validation success rate of 100%. This study shows that FTIR analysis and chemometrics has discriminatory power to classify java tea based on its quality related to the region of origin.

  4. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples. © 2015 American Academy of Forensic Sciences.

  5. Use of near infrared spectroscopy for the clinical monitoring of adult brain

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Peter J.; Smielewski, P.; Lam, J. M.; Al-Rawi, P.

    1996-10-01

    Adult near infrared spectroscopy (NIRS) is a potential method for noninvasively assessing changes in cerebral oxygenation. Unlike neonatal NIRS, access of light to the adult rain requires penetration through thick extracranial tissues, and hence detection of changed in cerebral chromophore concentration can only be achieved by using NIRS in the reflectance mode. This adds variables that are difficult to control. They include the effects of a different intraoptode distance, intersubject anatomical variation, and the influence of a pathological extra- to intracranial collateral blood supply. Although studies showing movements of oxyhemoglobin concentration following specific cerebral stimuli have been published, the separation of changes occurring in the extracranial and intracranial compartments remains a challenge. Experience with NIRS in the three adult clinical scenarios of carotid endarterectomy, head injury, and carbon dioxide stress testing is presented. The influence of extracranial contamination is demonstrated, as are the methods adopted to help control for extracranial blood flow changes. Provisional experience with spatially responded spectroscopy technology is also discussed.

  6. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants

    PubMed Central

    Nie, Pengcheng; Wu, Di; Sun, Da-Wen; Cao, Fang; Bao, Yidan; He, Yong

    2013-01-01

    Notoginseng is a classical traditional Chinese medical herb, which is of high economic and medical value. Notoginseng powder (NP) could be easily adulterated with Sophora flavescens powder (SFP) or corn flour (CF), because of their similar tastes and appearances and much lower cost for these adulterants. The objective of this study is to quantify the NP content in adulterated NP by using a rapid and non-destructive visible and near infrared (Vis-NIR) spectroscopy method. Three wavelength ranges of visible spectra, short-wave near infrared spectra (SNIR) and long-wave near infrared spectra (LNIR) were separately used to establish the model based on two calibration methods of partial least square regression (PLSR) and least-squares support vector machines (LS-SVM), respectively. Competitive adaptive reweighted sampling (CARS) was conducted to identify the most important wavelengths/variables that had the greatest influence on the adulterant quantification throughout the whole wavelength range. The CARS-PLSR models based on LNIR were determined as the best models for the quantification of NP adulterated with SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the three models respectively. The research demonstrated the potential of the Vis-NIR spectroscopy technique for the rapid and non-destructive quantification of NP containing adulterants. PMID:24129019

  7. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    PubMed Central

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-01-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC. PMID:26875544

  8. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  9. Near-infrared spectroscopy of candidate red supergiant stars in clusters

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Zhu, Qingfeng; Ivanov, Valentin D.; Figer, Donald F.; Davies, Ben; Menten, Karl M.; Kudritzki, Rolf P.; Chen, C.-H. Rosie

    2014-11-01

    Context. Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. Aims: We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. Methods: We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks< 7 mag) in GLIMPSE and 2MASS images. Results: A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 M⊙ to 15 M⊙. Two red supergiants are located at Galactic coordinates (l,b) = (16.°7, -0.°63) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b) = (49.°3, + 0.°72) and at a distance of ~7.0 kpc. Conclusions: Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps. Based on observations collected at the European Southern Observatory (ESO Programme 60.A-9700(E), and 089.D-0876), and on observations collected at the UKIRT telescope (programme ID H243NS).MM is currently employed by the MPIfR. Part of this work was performed at RIT (2009), at ESA (2010), and at the MPIfR.Tables 3, 4, and 6 are available in electronic form at http://www.aanda.org

  10. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria-Angela; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo

    1998-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).

  11. Application of the near-infrared spectroscopy in the pharmaceutical technology.

    PubMed

    Jamrógiewicz, Marzena

    2012-07-01

    Near-infrared (NIR) spectroscopy is currently the fastest-growing and the most versatile analytical method not only in the pharmaceutical sciences but also in the industry. This review focuses on recent NIR applications in the pharmaceutical technology. This article covers monitoring, by NIR, of many manufacturing processes, such as granulation, mixing or drying, in order to determine the end-point of these processes. In this paper, apart from basic theoretical information concerning the NIR spectra, there are included determinations of the quality and quantity of pharmaceutical compounds. Some examples of measurements and control of physicochemical parameters of the final medicinal products, such as hardness, porosity, thickness size, compression strength, disintegration time and potential counterfeit are included. Biotechnology and plant drug analysis using NIR is also described. Moreover, some disadvantages of this method are stressed and future perspectives are anticipated. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Alternative method to trace sediment sources in a subtropical rural catchment of southern Brazil by using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tiecher, Tales; Caner, Laurent; Gomes Minella, Jean Paolo; Henrique Ciotti, Lucas; Antônio Bender, Marcos; dos Santos Rheinheimer, Danilo

    2014-05-01

    Conventional fingerprinting methods based on geochemical composition still require a time-consuming and critical preliminary sample preparation. Thus, fingerprinting characteristics that can be measured in a rapid and cheap way requiring a minimal sample preparation, such as spectroscopy methods, should be used. The present study aimed to evaluate the sediment sources contribution in a rural catchment by using conventional method based on geochemical composition and on an alternative method based on near-infrared spectroscopy. This study was carried out in a rural catchment with an area of 1,19 km2 located in southern Brazil. The sediment sources evaluated were crop fields (n=20), unpaved roads (n=10) and stream channels (n=10). Thirty suspended sediment samples were collected from eight significant storm runoff events between 2009 and 2011. Sources and sediment samples were dried at 50oC and sieved at 63 µm. The total concentration of Ag, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, Tl, V and Zn were estimated by ICP-OES after microwave assisted digestion with concentrated HNO3 and HCl. Total organic carbon (TOC) was estimated by wet oxidation with K2Cr2O7 and H2SO4. The near-infrared spectra scan range was 4000 to 10000 cm-1 at a resolution of 2 cm-1, with 100 co added scans per spectrum. The steps used in the conventional method were: i) tracer selection based on Kruskal-Wallis test, ii) selection of the best set of tracers using discriminant analyses and finally iii) the use of a mixed linear model to calculate the sediment sources contribution. The steps used in the alternative method were i) principal component analyses to reduce the number of variables, ii) discriminant analyses to determine the tracer potential of the near-infrared spectroscopy, and finally iii) the use of past least square based on 48 mixtures of the sediment sources in various weight proportions to calculate the sediment sources

  13. Development of a near-infrared spectroscopy instrument for applications in urology.

    PubMed

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  14. An evaluation of the use of near infrared (NIR) spectroscopy to identify water and oil-borne preservatives

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Todd F. Shupe

    2003-01-01

    In this research we experimented with a new and rapid way of analyzing wood. Near Infrared (NIR)spectroscopy together with multivariate analysis is becoming a widely used technique in the field of forest products especially for property determination and is already firmly established in the pulp and paper industry. This method is ideal for the chemical analysis of wood...

  15. Prediction of brain tissue temperature using near-infrared spectroscopy.

    PubMed

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-04-01

    Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications.

  16. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  17. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  18. Auditory symptom provocation in dental phobia: a near-infrared spectroscopy study.

    PubMed

    Köchel, Angelika; Plichta, Michael M; Schäfer, Axel; Schöngassner, Florian; Fallgatter, Andreas J; Schienle, Anne

    2011-09-26

    The act of drilling a tooth belongs to the most feared situations of patients suffering from dental phobia. We presented 25 female patients and 24 nonphobic women with the sound of a dental drill, pleasant and neutral sounds. Brain activation was recorded via near infrared spectroscopy in fronto-parietal and premotor areas. The groups differed in supplementary motor area (SMA) recruitment. Relative to controls, the phobics displayed increased oxy hemoglobin while presented with the phobia-relevant sound, but showed comparable activation in the other conditions. As the SMA is engaged in the preparation of motor actions, the increased response in patients might mirror the priming of flight behavior during exposure. We found no indication of an emotional modulation of parietal and dorsomedial prefrontal cortex activation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Bilateral connectivity in the somatosensory region using near-infrared spectroscopy (NIRS) by wavelet coherence

    NASA Astrophysics Data System (ADS)

    Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang

    2016-12-01

    Near-infrared spectroscopy (NIRS) has been used in medical imaging to obtain oxygenation and hemodynamic response in the cerebral cortex. This technique has been applied in cortical activation detection and functional connectivity in brain research. Despite some advances in functional connectivity, most of the studies have focused on the prefrontal cortex and little has been done to study the somatosensory region (S1). For that reason, the aim of our present study is to assess bilateral connectivity in the somatosensory region by using NIRS and noxious stimulation. Eleven healthy subjects were investigated using near-infrared spectroscopy during an acupuncture stimulation procedure to safely induce pain in subjects. A multiscale analysis based on wavelet transform coherence (WTC) was designed to assess the functional connectivity of corresponding channel pairs within the left and right s1 region. The cortical activation in the somatosensory region was higher after the acupuncture stimulation, which was consistent with similar studies. The coherence in time-frequency domain between homologous signals generated by contralateral channel pairs revealed two main periods (3.2 s and 12.8 s) with high coherence. Based on the WTC analysis, it was also found that the coherence increase in these periods was task-related. This study contributes to the research field to investigate cerebral hemodynamic response of pain perception using NIRS and demonstrates the use of wavelet transform as a method to investigate functional lateralization in the cerebral cortex.

  20. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Gary F. Peter; Richard F. Daniels; Alexander Clark

    2006-01-01

    The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pirus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NlR spectra were obtained from the radial longitudinal face of each strip. The spectra...

  1. Non-invasive in situ identification and band assignments of diazepam, flunitrazepam and methadone hydrochloride with FT-near-infrared spectroscopy.

    PubMed

    Ali, Hassan Refat H

    2011-03-20

    Near-infrared spectroscopy (NIR) has evolved into an important rapid, direct and non-invasive technique in drugs analysis. In this study, the suitability of NIR spectroscopy to identify two benzodiazepine derivatives, diazepam and flunitrazepam, and a synthetic opiate, methadone hydrochloride, inside USP vials and probe the solid-state form of diazepam presents in tablets has been explored. The results show the potential of NIR spectroscopy for rapid, in situ and non-destructive identification of drugs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Whole oat has been described as an important healthy food for humans due to its beneficial nutritional components. Near infrared reflectance spectroscopy (NIRS) is a powerful, fast, accurate and non-destructive analytical tool that can be substituted for some traditional chemical analysis. A total o...

  3. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic

  4. Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics.

    PubMed

    Kucuk Baloglu, Fatma; Baloglu, Onur; Heise, Sebastian; Brockmann, Gudrun; Severcan, Feride

    2017-10-01

    The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm -1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pocket-size near-infrared spectrometer for narcotic materials identification

    NASA Astrophysics Data System (ADS)

    Pederson, Christopher G.; Friedrich, Donald M.; Hsiung, Chang; von Gunten, Marc; O'Brien, Nada A.; Ramaker, Henk-Jan; van Sprang, Eric; Dreischor, Menno

    2014-05-01

    While significant progress has been made towards the miniaturization of Raman, mid-infrared (IR), and near-infrared (NIR) spectrometers for homeland security and law enforcement applications, there remains continued interest in pushing the technology envelope for smaller, lower cost, and easier to use analyzers. In this paper, we report on the use of the MicroNIR Spectrometer, an ultra-compact, handheld near infrared (NIR) spectrometer, the, that weighs less than 60 grams and measures < 50mm in diameter for the classification of 140 different substances most of which are controlled substances (such as cocaine, heroin, oxycodone, diazepam), as well as synthetic cathinones (also known as bath salts), and synthetic cannabinoids. A library of the materials was created from a master MicroNIR spectrometer. A set of 25 unknown samples were then identified with three other MicroNIRs showing: 1) the ability to correctly identify the unknown with a very low rate of misidentification, and 2) the ability to use the same library with multiple instruments. In addition, we have shown that through the use of innovative chemometric algorithms, we were able to identify the individual compounds that make up an unknown mixture based on the spectral library of the individual compounds only. The small size of the spectrometer is enabled through the use of high-performance linear variable filter (LVF) technology.

  6. Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas

    PubMed Central

    Nguyen, John Quan; Gowani, Zain; O'Connor, Maggie; Pence, Isaac; Nguyen, The-Quyen; Holt, Ginger; Mahadevan-Jansen, Anita

    2016-01-01

    Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated via surgical resection. Inadequate resection can lead to local recurrence and decreased survival rates. In this study, we investigate the hypothesis that near-infrared (NIR) autofluorescence can be utilized for tumor margin analysis by differentiating STS from the surrounding normal tissue. Intraoperative in vivo measurements were acquired from 30 patients undergoing STS resection and were characterized to differentiate between normal tissue and STS. Overall, normal muscle and fat were observed to have the highest and lowest autofluorescence intensities, respectively, with STS falling in between. With the exclusion of well-differentiated liposarcomas, the algorithm's accuracy for classifying muscle, fat, and STS was 93%, 92%, and 88%, respectively. These findings suggest that NIR autofluorescence spectroscopy has potential as a rapid and nondestructive surgical guidance tool that can inform surgeons of suspicious margins in need of immediate re-excision. PMID:26625035

  7. Hyperspectral near infrared spectroscopy assessment of the brain during hypoperfusion

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu N.; Wu, Wen; Woldemichael, Ermias; Toronov, Vladislav; Lin, Steve

    2018-02-01

    Two-thirds of out-of-hospital cardiac arrest patients, who survive to hospital admission, die in the hospital from neurological injuries related to cerebral hypoperfusion. Hyperspectral near infrared spectroscopy (hNIRS) is a noninvasive technique that measures the major chromophores in the brain, such as oxygenated hemoglobin, deoxygenated hemoglobin and cytochrome C oxidase ([CCO]), an intracellular marker of oxygen consumption. We have demonstrated that hNIRS is feasible and can detect changes in cerebral oxygenation and metabolism in patients undergoing transcatheter aortic valve insertion (TAVI) - a procedure that temporarily induces sudden hypotension and hypoperfusion that mimics cardiac arrest. Using multi-distance hNIRS, we found that while measured regional oxygen saturation (rSO2) changes resulted mainly from the extra-cerebral tissues, [CCO] changes during cardiac arrests occurred mainly in the brains of patients. We also applied the hNIRS algorithm based on the "2-layer model" to the data to measure cerebral oxygen saturation and [CCO] in patients during the procedure.

  8. Near-Infrared Spectroscopy: A Promising Prehospital Tool for Management of Traumatic Brain Injury.

    PubMed

    Peters, Joost; Van Wageningen, Bas; Hoogerwerf, Nico; Tan, Edward

    2017-08-01

    Introduction Early identification of traumatic brain injury (TBI) is essential. Near-infrared spectroscopy (NIRS) can be used in prehospital settings for non-invasive monitoring and the diagnosis of patients who may require surgical intervention. The handheld NIRS Infrascanner (InfraScan Inc.; Philadelphia, Pennsylvania USA) uses eight symmetrical scan points to detect intracranial bleeding. A scanner was tested in a physician-staffed helicopter Emergency Medical Service (HEMS). The results were compared with those obtained using in-hospital computed tomography (CT) scans. Scan time, ease-of-use, and change in treatment were scored. A total of 25 patients were included. Complete scans were performed in 60% of patients. In 15 patients, the scan was abnormal, and in one patient, the scan resulted in a treatment change. Compared with the results of CT scanning, the Infrascanner obtained a sensitivity of 93.3% and a specificity of 78.6%. Most patients had severe TBI with indication for transport to a trauma center prior to scanning. In one patient, the scan resulted in a treatment change. Evaluation of patients with less severe TBI is needed to support the usefulness of the Infrascanner as a prehospital triage tool. Promising results were obtained using the InfraScan NIRS device in prehospital screening for intracranial hematomas in TBI patients. High sensitivity and good specificity were found. Further research is necessary to determine the beneficial effects of enhanced prehospital screening on triage, survival, and quality of life in TBI patients. Peters J , Van Wageningen B , Hoogerwerf N , Tan E . Near-infrared spectroscopy: a promising prehospital tool for management of traumatic brain injury. Prehosp Disaster Med. 2017;32(4):414-418.

  9. Development and validation of a near-infrared spectroscopy method for the prediction of acrylamide content in French-fried potato

    USDA-ARS?s Scientific Manuscript database

    This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 µg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various ...

  10. Near infrared spectroscopy is suitable for the classification of hazelnuts according to Protected Designation of Origin.

    PubMed

    Moscetti, Roberto; Radicetti, Emanuele; Monarca, Danilo; Cecchini, Massimo; Massantini, Riccardo

    2015-10-01

    This study investigates the possibility of using near infrared spectroscopy for the authentication of the 'Nocciola Romana' hazelnut (Corylus avellana L. cvs Tonda Gentile Romana and Nocchione) as a Protected Designation of Origin (PDO) hazelnut from central Italy. Algorithms for the selection of the optimal pretreatments were tested in combination with the following discriminant routines: k-nearest neighbour, soft independent modelling of class analogy, partial least squares discriminant analysis and support vector machine discriminant analysis. The best results were obtained using a support vector machine discriminant analysis routine. Thus, classification performance rates with specificities, sensitivities and accuracies as high as 96.0%, 95.0% and 95.5%, respectively, were achieved. Various pretreatments, such as standard normal variate, mean centring and a Savitzky-Golay filter with seven smoothing points, were used. The optimal wavelengths for classification were mainly correlated with lipids, although some contribution from minor constituents, such as proteins and carbohydrates, was also observed. Near infrared spectroscopy could classify hazelnut according to the PDO 'Nocciola Romana' designation. Thus, the experimentation lays the foundations for a rapid, online, authentication system for hazelnut. However, model robustness should be improved taking into account agro-pedo-climatic growing conditions. © 2014 Society of Chemical Industry.

  11. Classification of broiler breast fillets according to storage and to freeze-thaw treatment using near infrared spectroscopy and multivariate analysis

    USDA-ARS?s Scientific Manuscript database

    Visible/near-infrared (NIR) spectroscopy has shown potential for successfully classifying broiler breast fillets according to their texture properties. Freshness and shelf life are also important quality characteristics of boneless skinless chicken breast products in the marketplace. This study deal...

  12. Mid-infrared and near-infrared spectroscopy for rapid detection of Gardeniae Fructus by a liquid-liquid extraction process.

    PubMed

    Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong

    2017-10-25

    Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R 2 ) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.

    PubMed

    Govyadinov, Alexander A; Amenabar, Iban; Huth, Florian; Carney, P Scott; Hillenbrand, Rainer

    2013-05-02

    Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.

  14. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    PubMed

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  15. Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.

    PubMed

    Charin, R M; Nele, M; Tavares, F W

    2013-05-21

    Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III.

  16. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

  17. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using visible/near-infrared spectroscopy (vis/NIR) to segregate broiler breast fillets by water-holding capacity (WHC) was determined. Broiler breast fillets (n = 72) were selected from a commercial deboning line based on visual color assessment. Meat color (L*a*b*), pH (2 and 2...

  18. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  19. Brain measures of nociception using near-infrared spectroscopy in patients undergoing routine screening colonoscopy.

    PubMed

    Becerra, Lino; Aasted, Christopher M; Boas, David A; George, Edward; Yücel, Meryem A; Kussman, Barry D; Kelsey, Peter; Borsook, David

    2016-04-01

    Colonoscopy is an invaluable tool for the screening and diagnosis of many colonic diseases. For most colonoscopies, moderate sedation is used during the procedure. However, insufflation of the colon produces a nociceptive stimulus that is usually accompanied by facial grimacing/groaning while under sedation. The objective of this study was to evaluate whether a nociceptive signal elicited by colonic insufflation could be measured from the brain. Seventeen otherwise healthy patients (age 54.8 ± 9.1; 6 female) undergoing routine colonoscopy (ie, no history of significant medical conditions) were monitored using near-infrared spectroscopy (NIRS). Moderate sedation was produced using standard clinical protocols for midazolam and meperidine, titrated to effect. Near-infrared spectroscopy data captured during the procedure was analyzed offline to evaluate the brains' responses to nociceptive stimuli evoked by the insufflation events (defined by physician or observing patients' facial responses). Analysis of NIRS data revealed a specific, reproducible prefrontal cortex activity corresponding to times when patients grimaced. The pattern of the activation is similar to that previously observed during nociceptive stimuli in awake healthy individuals, suggesting that this approach may be used to evaluate brain activity evoked by nociceptive stimuli under sedation, when there is incomplete analgesia. Although some patients report recollection of procedural pain after the procedure, the effects of repeated nociceptive stimuli in surgical patients may contribute to postoperative changes including chronic pain. The results from this study indicate that NIRS may be a suitable technology for continuous nociceptive afferent monitoring in patients undergoing sedation and could have applications under sedation or anesthesia.

  20. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis.

    PubMed

    Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric

    2016-05-01

    Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.

  1. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  2. A Quantitative Near-Infrared Spectroscopy Study: A Decrease in Cerebral Hemoglobin Oxygenation in Alzheimer's Disease and Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Arai, Heii; Takano, Maki; Miyakawa, Koichi; Ota, Tsuneyoshi; Takahashi, Tadashi; Asaka, Hirokazu; Kawaguchi, Tsuneaki

    2006-01-01

    A newly developed quantitative near-infrared spectroscopy (NIRS) system was used to measure changes in cortical hemoglobin oxygenation during the Verbal Fluency Task in 32 healthy controls, 15 subjects with mild cognitive impairment (MCI), and 15 patients with Alzheimer's disease (AD). The amplitude of changes in the waveform, which was…

  3. Decorin content and near infrared spectroscopy analysis of dried collagenous biomaterial samples.

    PubMed

    Aldema-Ramos, Mila L; Castell, Joan Carles; Muir, Zerlina E; Adzet, Jose Maria; Sabe, Rosa; Schreyer, Suzanne

    2012-12-14

    The efficient removal of proteoglycans, such as decorin, from the hide when processing it to leather by traditional means is generally acceptable and beneficial for leather quality, especially for softness and flexibility. A patented waterless or acetone dehydration method that can generate a product similar to leather called Dried Collagenous Biomaterial (known as BCD) was developed but has no effect on decorin removal efficiency. The Alcian Blue colorimetric technique was used to assay the sulfated glycosaminoglycan (sGAG) portion of decorin. The corresponding residual decorin content was correlated to the mechanical properties of the BCD samples and was comparable to the control leather made traditionally. The waterless dehydration and instantaneous chrome tanning process is a good eco-friendly alternative to transforming hides to leather because no additional effects were observed after examination using NIR spectroscopy and additional chemometric analysis.

  4. Decorin Content and Near Infrared Spectroscopy Analysis of Dried Collagenous Biomaterial Samples

    PubMed Central

    Aldema-Ramos, Mila L.; Castell, Joan Carles; Muir, Zerlina E.; Adzet, Jose Maria; Sabe, Rosa; Schreyer, Suzanne

    2012-01-01

    The efficient removal of proteoglycans, such as decorin, from the hide when processing it to leather by traditional means is generally acceptable and beneficial for leather quality, especially for softness and flexibility. A patented waterless or acetone dehydration method that can generate a product similar to leather called Dried Collagenous Biomaterial (known as BCD) was developed but has no effect on decorin removal efficiency. The Alcian Blue colorimetric technique was used to assay the sulfated glycosaminoglycan (sGAG) portion of decorin. The corresponding residual decorin content was correlated to the mechanical properties of the BCD samples and was comparable to the control leather made traditionally. The waterless dehydration and instantaneous chrome tanning process is a good eco-friendly alternative to transforming hides to leather because no additional effects were observed after examination using NIR spectroscopy and additional chemometric analysis. PMID:24970152

  5. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich

    2018-03-01

    In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in

  6. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

    PubMed Central

    Kim, Hak Yeong; Seo, Kain; Jeon, Hong Jin; Lee, Unjoo; Lee, Hyosang

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies. PMID:28835022

  7. Using near-infrared spectroscopy to resolve the species, gender, age, and the presence of Wolbachia infection in laboratory-reared Drosophila

    USDA-ARS?s Scientific Manuscript database

    The aim of the study was to determine the accuracy of near-infrared spectroscopy (NIRS) in determining species, gender, age and the presence of the common endosymbiont Wolbachia in laboratory reared Drosophila. NIRS measures absorption of light by organic molecules. Initially, a calibration model wa...

  8. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  9. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    PubMed Central

    Accardo, Grazia; Cioffi, Raffaeke; Colangelo, Francesco; d’Angelo, Raffaele; De Stefano, Luca; Paglietti, Fderica

    2014-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1). PMID:28788467

  10. Near infrared diffuse reflection and laser-induced fluorescence spectroscopy for myocardial tissue characterisation

    NASA Astrophysics Data System (ADS)

    Nilsson, A. M. K.; Heinrich, D.; Olajos, J.; Andersson-Engels, S.

    1997-10-01

    In order to evaluate the potential of cardiovascular tissue characterisation using near-infrared (NIR) spectroscopy, spectra in a previously unexplored wavelength region 0.8-2.3 μm were recorded from various pig heart tissue samples in vitro: normal myocardium (with and without endo/epicardium), aorta, fatty and fibrous heart tissue. The spectra were analysed with principal component analysis (PCA), revealing several spectroscopically characteristic features enabling tissue classification. Several of the identified spectral features could be attributed to specific tissue constituents by comparing the tissue signals with spectra obtained from water, elastin, collagen and cholesterol as well as with published data. The results obtained with the NIR spectroscopy technique in terms of its potential to classify different tissue types were compared with those from laser-induced fluorescence (LIF) using 337 nm excitation. LIF and NIR spectroscopy can in combination with PCA be used to discriminate between all previously mentioned tissue groups, apart from fatty versus fibrous tissue (LIF) and aorta versus fibrous tissue (NIR), respectively. The NIR analysis was improved by focusing the PCA to the wavelength segment 2.0-2.3 μm, resulting in successful spectral characterisation of all cardiovascular tissue groups.

  11. Near-infrared spectroscopy of renal tissue in vivo

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann

    2013-03-01

    We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.

  12. Near-infrared spectroscopy as a predictor of clinical deterioration: a case report of two infants with duct-dependent congenital heart disease.

    PubMed

    Mebius, Mirthe J; du Marchie Sarvaas, Gideon J; Wolthuis, Diana W; Bartelds, Beatrijs; Kneyber, Martin C J; Bos, Arend F; Kooi, Elisabeth M W

    2017-03-16

    Some infants with congenital heart disease are at risk of in-hospital cardiac arrest. To better foresee cardiac arrest in infants with congenital heart disease, it might be useful to continuously assess end-organ perfusion. Near-infrared spectroscopy is a non-invasive method to continuously assess multisite regional tissue oxygen saturation. We report on two infants with duct-dependent congenital heart disease who demonstrated a gradual change in cerebral and/or renal tissue oxygen saturation before cardiopulmonary resuscitation was required. In both cases, other clinical parameters such as heart rate, arterial oxygen saturation and blood pressure did not indicate that deterioration was imminent. These two cases demonstrate that near-infrared spectroscopy might contribute to detecting a deteriorating clinical condition and might therefore be helpful in averting cardiopulmonary collapse and need for resuscitation in infants with congenital heart disease.

  13. Charactering baseline shift with 4th polynomial function for portable biomedical near-infrared spectroscopy device

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Ji, Yaoyao; Pan, Boan; Li, Ting

    2018-02-01

    The continuous-wave Near-infrared spectroscopy (NIRS) devices have been highlighted for its clinical and health care applications in noninvasive hemodynamic measurements. The baseline shift of the deviation measurement attracts lots of attentions for its clinical importance. Nonetheless current published methods have low reliability or high variability. In this study, we found a perfect polynomial fitting function for baseline removal, using NIRS. Unlike previous studies on baseline correction for near-infrared spectroscopy evaluation of non-hemodynamic particles, we focused on baseline fitting and corresponding correction method for NIRS and found that the polynomial fitting function at 4th order is greater than the function at 2nd order reported in previous research. Through experimental tests of hemodynamic parameters of the solid phantom, we compared the fitting effect between the 4th order polynomial and the 2nd order polynomial, by recording and analyzing the R values and the SSE (the sum of squares due to error) values. The R values of the 4th order polynomial function fitting are all higher than 0.99, which are significantly higher than the corresponding ones of 2nd order, while the SSE values of the 4th order are significantly smaller than the corresponding ones of the 2nd order. By using the high-reliable and low-variable 4th order polynomial fitting function, we are able to remove the baseline online to obtain more accurate NIRS measurements.

  14. Near-infrared spectroscopy of the visual cortex in unilateral optic neuritis.

    PubMed

    Miki, Atsushi; Nakajima, Takashi; Takagi, Mineo; Usui, Tomoaki; Abe, Haruki; Liu, Chia-Shang J; Liu, Grant T

    2005-02-01

    To examine the occipital-lobe activation of patients with optic neuritis using near-infrared spectroscopy. Experimental study. NIRS was performed on five patients with acute unilateral optic neuritis during monocular visual stimulation. As controls, six normal subjects were also tested in the same manner. In the patients with optic neuritis, the changes in the hemoglobin concentrations (oxyhemoglobin, deoxyhemoglobin, and total hemoglobin) in the occipital lobe were found to be markedly reduced when the clinically affected eyes were stimulated compared with the fellow eyes. The response induced by the stimulation of the affected eye was decreased, even when the patient's visual acuity improved to 20/20 in the recovery phase. There was no difference in the concentration changes between the two eyes in the control subjects. NIRS may be useful in detecting visual dysfunction objectively and noninvasively in patients with visual disturbance, especially when used at the bedside.

  15. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  16. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  17. Melamine detection in infant formula powder using near- and mid-infrared spectroscopy.

    PubMed

    Mauer, Lisa J; Chernyshova, Alona A; Hiatt, Ashley; Deering, Amanda; Davis, Reeta

    2009-05-27

    Near- and mid-infrared spectroscopy methods (NIR, FTIR-ATR, FTIR-DRIFT) were evaluated for the detection and quantification of melamine in infant formula powder. Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration: R(2) > 0.99, RMSECV ≤ 0.9, and RPD ≥ 12. Factorization analysis of spectra was able to differentiate unadulterated infant formula powder from samples containing 1 ppm melamine with no misclassifications, a confidence level of 99.99%, and selectivity > 2. These nondestructive methods require little or no sample preparation. The NIR method has an assay time of 1 min, and a 2 min total time to detection. The FTIR methods require up to 5 min for melamine detection. Therefore, NIR and FTIR methods enable rapid detection of 1 ppm melamine in infant formula powder.

  18. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  19. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-05

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  20. [Research on outlier detection methods for determination of oil yield in oil shales using near-infrared spectroscopy].

    PubMed

    Zhang, Huai-zhu; Lin, Jun; Zhang, Huai-Zhu

    2014-06-01

    In the present paper, the outlier detection methods for determination of oil yield in oil shale using near-infrared (NIR) diffuse reflection spectroscopy was studied. During the quantitative analysis with near-infrared spectroscopy, environmental change and operator error will both produce outliers. The presence of outliers will affect the overall distribution trend of samples and lead to the decrease in predictive capability. Thus, the detection of outliers are important for the construction of high-quality calibration models. The methods including principal component analysis-Mahalanobis distance (PCA-MD) and resampling by half-means (RHM) were applied to the discrimination and elimination of outliers in this work. The thresholds and confidences for MD and RHM were optimized using the performance of partial least squares (PLS) models constructed after the elimination of outliers, respectively. Compared with the model constructed with the data of full spectrum, the values of RMSEP of the models constructed with the application of PCA-MD with a threshold of a value equal to the sum of average and standard deviation of MD, RHM with the confidence level of 85%, and the combination of PCA-MD and RHM, were reduced by 48.3%, 27.5% and 44.8%, respectively. The predictive ability of the calibration model has been improved effectively.

  1. Oxygenation dynamics of sepsis patients undergoing far-infrared intervention based on near-infrared spectroscopy.

    PubMed

    Chuang, Kuei-Hung; Chuang, Ming-Lung; Sia, Sung-Kien; Sun, Chia-Wei

    2017-03-01

    Near-infrared spectroscopy (NIRS; continuous wave type) is a noninvasive tool for detecting the relative change of oxyhemoglobin and deoxyhemoglobin. To make this change, intervention methods must be applied. This study determined the hemodynamics of 44 healthy participants and 35 patients with sepsis during exposure to FIR as a novel physical intervention approach. Local microcirculation of their brachioradialis was monitored during exposure and recovery through NIRS. The variations in blood flow and microvascular reaction were determined by conducting paired and unpaired t tests. The oxyhemoglobin levels of the healthy participants increased continuously, even during recovery. In contrast to expextations, the oxyhemoglobin levels of the patients plateaued after only 5 min of FIR illumination. The proposed method has potential applications for ensuring efficient treatment and facilitating doctors in diagnosing the functions of vessels in intensive care units. Mapping diagrams of HbO 2 in healthy males and males with sepsis illustrated unique scenarios during the process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Beyond Fourier Transform Infrared Spectroscopy: External Cavity Quantum Cascade Laser-Based Mid-infrared Transmission Spectroscopy of Proteins in the Amide I and Amide II Region.

    PubMed

    Schwaighofer, Andreas; Montemurro, Milagros; Freitag, Stephan; Kristament, Christian; Culzoni, María J; Lendl, Bernhard

    2018-05-24

    In this work, we present a setup for mid-IR measurements of the protein amide I and amide II bands in aqueous solution. Employing a latest generation external cavity-quantum cascade laser (EC-QCL) at room temperature in pulsed operation mode allowed implementing a high optical path length of 31 μm that ensures robust sample handling. By application of a data processing routine, which removes occasionally deviating EC-QCL scans, the noise level could be lowered by a factor of 4. The thereby accomplished signal-to-noise ratio is better by a factor of approximately 2 compared to research-grade Fourier transform infrared (FT-IR) spectrometers at equal acquisition times. Employing this setup, characteristic spectral features of three representative proteins with different secondary structures could be measured at concentrations as low as 1 mg mL -1 . Mathematical evaluation of the spectral overlap confirms excellent agreement of the quantum cascade laser infrared spectroscropy (QCL-IR) transmission measurements with protein spectra acquired by FT-IR spectroscopy. The presented setup combines performance surpassing FT-IR spectroscopy with large applicable optical paths and coverage of the relevant spectral range for protein analysis. This holds high potential for future EC-QCL-based protein studies, including the investigation of dynamic secondary structure changes and chemometrics-based protein quantification in complex matrices.

  3. A "NIRS" death experience: a reduction in cortical oxygenation by time-resolved near-infrared spectroscopy preceding cardiac arrest.

    PubMed

    Lanks, C; Kim, C B; Rossiter, H B

    2017-09-08

    Near-infrared spectroscopy (NIRS) has been used effectively post-cardiac-arrest to gauge adequacy of resuscitation and predict the likelihood of achieving a return of spontaneous circulation. However, preempting hemodynamic collapse is preferable to achieving ROSC through advanced cardiac life support. Minimizing "time down" without end-organ perfusion has always been a central pillar of ACLS. In many critically ill patients there is a prolonged phase of end-organ hypoperfusion preceding loss of palpable pulses and initiation of ACLS. Due to the relative infrequency of in-hospital cardiac arrest, NIRS has not previously evaluated the period immediately prior to hemodynamic collapse. Here we report a young man who suffered a pulseless electrical activity (PEA) arrest while cortical oxygenation was monitored using time-resolved near-infrared spectroscopy. The onset of cortical deoxygenation preceded the loss of palpable pulses by 15 min, suggesting that TRS-NIRS monitoring might provide a means of preempting PEA arrest. Our experience with this patient represents a promising new direction for continuous NIRS monitoring and has the potential to not only predict clinical outcomes, but affect them to the patient's benefit as well.

  4. Fast characterization of solid organic waste content with near infrared spectroscopy in anaerobic digestion.

    PubMed

    Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe

    2017-01-01

    The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  6. Measurement of moisture, soluble solids, and sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Visible and near-infrared spectroscopy, coupled with partial least squares regression, was used to predict the moisture, soluble solids and sucrose content and mechanical properties of sugar beet. Interactance spectra were acquired from both intact and sliced beets, using two portable spectrometers ...

  7. Advances in R&D in near-infrared spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Kawano, Sumio; Iwamoto, Mutsuo

    1991-02-01

    More than 20 years ago when Mr. K. H. Norris firstly introduced the near infrared spectroscopy (NIRS) as a powerful technology in the field of composition analysis of cereals those who were interested in the area of classical spectroscopy would not like to recognize its potential. This tendency still remains at present however it leaves no room for doubt that from viewpoints of applied spectroscopy the NIRS has consolidated its position. From a viewpoint of NIRS application in the field of nondestructive or non invasive measuring techniques history of this technology is only the last decade in Japan. However since the technology was firstly introduced to composition analysis of agricultural commodities in the same manner as in other countries R and D have been growing more actively in diversified fields such as agriculture and industry as well as medical science. In addition the NIRS technology are becoming of general interest by combining other techniques to create various hyphenated instrumentations such as FTNIR MCFTNIR NIRCT and NIR-NMR. In this paper new trends of R D on NIR spectroscopy which are being conducted in Japan will be reviewed. 2. S1JMMARY OF PRESENT R D ON NIRS IN JAPAN NIRS applications reported in the last 3 years are summarized in Table 1. Table 1 Applications of NIRS in Japan Application for Agriculture Taste evaluation of rice and coffee Determination of chemical compositions rice for breeding Determination of chemical compositions in tea Determination of sugar contents in intact peaches Japanese pears Satsuma oranges and apples Determination of sugars and acids in intact tomatoes Determination of forage composition Application for Industry Analysis of state of water in foods Application of analyzing Maillard Reaction''s Process Pattern recognition of NIR spectra as related to process control of roasting coffee beans Quality control of tea processing Determination of moisture content of Surimi products 2 / SPIE Vol. 1379 Optics in Agriculture

  8. Univariate and multivariate analysis of tannin-impregnated wood species using vibrational spectroscopy.

    PubMed

    Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca

    2014-01-01

    Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.

  9. Note: Three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water

    NASA Astrophysics Data System (ADS)

    Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  10. Note: three wavelengths near-infrared spectroscopy system for compensating the light absorbance by water.

    PubMed

    Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho

    2014-02-01

    Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.

  11. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn".

    PubMed

    Eisenstecken, Daniela; Panarese, Alessia; Robatscher, Peter; Huck, Christian W; Zanella, Angelo; Oberhuber, Michael

    2015-07-24

    The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.

  12. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    PubMed Central

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  13. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy.

    PubMed

    Paulite, Melissa; Fakhraai, Zahra; Li, Isaac T S; Gunari, Nikhil; Tanur, Adrienne E; Walker, Gilbert C

    2011-05-18

    Amyloid fibril diseases are characterized by the abnormal production of aggregated proteins and are associated with many types of neuro- and physically degenerative diseases. X-ray diffraction techniques, solid-state magic-angle spinning NMR spectroscopy, circular dichroism (CD) spectroscopy, and transmission electron microscopy studies have been utilized to detect and examine the chemical, electronic, material, and structural properties of amyloid fibrils at up to angstrom spatial resolution. However, X-ray diffraction studies require crystals of the fibril to be analyzed, while other techniques can only probe the bulk solution or solid samples. In the work reported here, apertureless near-field scanning infrared microscopy (ANSIM) was used to probe the secondary structure of individual amyloid fibrils made from an in vitro solution. Simultaneous topographic and infrared images of individual amyloid fibrils synthesized from the #21-31 peptide fragment of β(2)-microglobulin were acquired. Using this technique, IR spectra of the amyloid fibrils were obtained with a spatial resolution of less than 30 nm. It is observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum. The near-field images of the amyloid fibrils exhibit much lower scattering of the IR radiation at approximately 1630 cm(-1). In addition, the near-field images also indicate that composition and/or structural variations among individual amyloid fibrils were present. © 2011 American Chemical Society

  14. Firmness prediction in Prunus persica 'Calrico' peaches by visible/short-wave near infrared spectroscopy and acoustic measurements using optimised linear and non-linear chemometric models.

    PubMed

    Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio

    2015-08-15

    In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.

  15. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis.

    PubMed

    Wang, Junping; Xie, Xinfang; Feng, Jinsong; Chen, Jessica C; Du, Xin-jun; Luo, Jiangzhao; Lu, Xiaonan; Wang, Shuo

    2015-07-02

    Listeria monocytogenes is a facultatively anaerobic, Gram-positive, rod-shape foodborne bacterium causing invasive infection, listeriosis, in susceptible populations. Rapid and high-throughput detection of this pathogen in dairy products is critical as milk and other dairy products have been implicated as food vehicles in several outbreaks. Here we evaluated confocal micro-Raman spectroscopy (785 nm laser) coupled with chemometric analysis to distinguish six closely related Listeria species, including L. monocytogenes, in both liquid media and milk. Raman spectra of different Listeria species and other bacteria (i.e., Staphylococcus aureus, Salmonella enterica and Escherichia coli) were collected to create two independent databases for detection in media and milk, respectively. Unsupervised chemometric models including principal component analysis and hierarchical cluster analysis were applied to differentiate L. monocytogenes from Listeria and other bacteria. To further evaluate the performance and reliability of unsupervised chemometric analyses, supervised chemometrics were performed, including two discriminant analyses (DA) and soft independent modeling of class analogies (SIMCA). By analyzing Raman spectra via two DA-based chemometric models, average identification accuracies of 97.78% and 98.33% for L. monocytogenes in media, and 95.28% and 96.11% in milk were obtained, respectively. SIMCA analysis also resulted in satisfied average classification accuracies (over 93% in both media and milk). This Raman spectroscopic-based detection of L. monocytogenes in media and milk can be finished within a few hours and requires no extensive sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Near-infrared spectroscopy, a rapid method for predicting the age of male and female wild-type and Wolbachia infected Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of t...

  17. Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months

    NASA Astrophysics Data System (ADS)

    Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Fuchino, Yutaka; Obata, Akiko; Yoro, Takeshi; Koizumi, Hideaki

    2006-01-01

    Near-infrared spectroscopy (NIRS) can measure the product of the optical path length and the concentration change in oxygenated hemoglobin (ΔC‧oxy), deoxygenated hemoglobin (ΔC‧deoxy), and their sum (ΔC‧total) in the human cerebral cortex, and it has been used for noninvasive investigation of human brain functions. We evaluate the within-subject reproducibility of the NIRS signals by repeated measurement of the sensorimotor cortex in healthy adults taken over a period of about 6 months using near-infrared (NIR) topography. The maximum signal amplitudes and the location of activation centers are compared between two sessions for each subject. The signal amplitudes vary between sessions and no consistent tendency in the changes is found among subjects. However, the distance between the activation centers identified in two sessions is relatively small, within 20 mm on average across subjects, which is comparable to the smallest distance between measurement positions in the NIR topography (21 mm). Moreover, within-subject comparisons of signal time courses show high correlation coefficients (>0.8) between the two sessions. This result, demonstrating a high within-subject reproducibility of the temporal information in NIRS signals, particularly contributes to the development of a new application of NIRS.

  18. Prediction of brain tissue temperature using near-infrared spectroscopy

    PubMed Central

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-01-01

    Abstract. Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications. PMID:28630878

  19. Near-Infrared Spectroscopy Assay of Key Quality-Indicative Ingredients of Tongkang Tablets.

    PubMed

    Pan, Wenjie; Ma, Jinfang; Xiao, Xue; Huang, Zhengwei; Zhou, Huanbin; Ge, Fahuan; Pan, Xin

    2017-04-01

    The objective of this paper is to develop an easy and fast near-infrared spectroscopy (NIRS) assay for the four key quality-indicative active ingredients of Tongkang tablets by comparing the true content of the active ingredients measured by high performance liquid chromatography (HPLC) and the NIRS data. The HPLC values for the active ingredients content of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin in Tongkang tablets were set as reference values. The NIRS raw spectra of Tongkang tablets were processed using first-order convolution method. The iterative optimization method was chosen to optimize the band for Cimicifuga glycoside and 5-O-methylvisamminol, and correlation coefficient method was used to determine the optimal band of calycosin glucoside and hesperidin. A near-infrared quantitative calibration model was established for each quality-indicative ingredient by partial least-squares method on the basis of the contents detected by HPLC and the obtained NIRS spectra. The correlation coefficient R 2 values of the four models of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin were 0.9025, 0.8582, 0.9250, and 0.9325, respectively. It was demonstrated that the accuracy of the validation values was approximately 90% by comparison of the predicted results from NIRS models and the HPLC true values, which suggested that NIRS assay was successfully established and validated. It was expected that the quantitative analysis models of the four indicative ingredients could be used to rapidly perform quality control in industrial production of Tongkang tablets.

  20. [Applications of near infrared reflectance spectroscopy technique to determination of forage mycotoxins].

    PubMed

    Xu, Qing-Fang; Han, Jian-Guo; Yu, Zhu; Yue, Wen-Bin

    2010-05-01

    The near infrared reflectance spectroscopy technique (NIRS) has been explored at many fields such as agriculture, food, chemical, medicine, and so on, due to its rapid, effective, non-destructive, and on-line characteristics. Fungi invasion in forage materials during processing and storage would generate mycotoxins, which were harmful for people and animal through food chains. The determination of mycotoxins included the overelaborated pretreatments such as milling, extracting, chromatography and subsequent process such as enzyme linked immunosorbent assay, high performance liquid chromatography, and thin layer chromatography. The authors hope that high precision and low detection limit spectrum instrument, and software technology and calibration model of mycotoxins determination, will fast measure accurately the quality and quantity of mycotoxins, which will provide basis for reasonable process and utilization of forage and promote the application of NIRS in the safety livestock product.

  1. Clinical application of near-infrared spectroscopy in patients with traumatic brain injury: a review of the progress of the field.

    PubMed

    Sen, Anish N; Gopinath, Shankar P; Robertson, Claudia S

    2016-07-01

    Near-infrared spectroscopy (NIRS) is a technique by which the interaction between light in the near-infrared spectrum and matter can be quantitatively measured to provide information about the particular chromophore. Study into the clinical application of NIRS for traumatic brain injury (TBI) began in the 1990s with early reports of the ability to detect intracranial hematomas using NIRS. We highlight the advances in clinical applications of NIRS over the past two decades as they relate to TBI. We discuss recent studies evaluating NIRS techniques for intracranial hematoma detection, followed by the clinical application of NIRS in intracranial pressure and brain oxygenation measurement, and conclude with a summary of potential future uses of NIRS in TBI patient management.

  2. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r 2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  3. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins.

    PubMed

    Ricci, Arianna; Parpinello, Giuseppina P; Olejar, Kenneth J; Kilmartin, Paul A; Versari, Andrea

    2015-11-01

    Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.

  4. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.

    2014-11-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.

  5. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  6. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  7. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.

    PubMed

    Ferrari, Marco; Muthalib, Makii; Quaresima, Valentina

    2011-11-28

    This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.

  8. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy].

    PubMed

    Tang, Qi-Kun; Wang, Yul; Wu, Yue-Jin; Min, Di; Chen, Da-Wei; Hu, Tong-Hua

    2014-10-01

    The objective of the present study is to develop a method for rapid determination of the content of stevioside (ST) and rebaudioside A (RA) in Stevia Rebaudiana leaves. One hundred and five samples of stevia from different areas containing ST of 0.27%-1.40% and RA of 0.61%-3.98% were used. The 105 groups' NIRS diagram was processed by different methods including subtracting a straight line (SLS), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD) and so on, and then all data were analyzed by partial least square (PLS). The study showed that SLS can be used to extracted spectra information thoroughly to analyze the contents of ST, the correlation coefficients of calibration (Re), the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation (RPD) were 0.986, 0.341, 1.00 and 2.8, respectively. The correlation coefficients of RA was 0.967, RMSEC was 1.50, RMSEP was 1.98 and RPD was 4.17. The results indicated that near infrared spectroscopy (NIRS) technique offers effective quantitative capability for ST and RA in Stevia Rebaudiana leaves. Then the model of stevia dried leaves was used to compare with the stevia powder near infrared model whose correlation coefficients of ST was 0.986, RMSEC was 0.32, RMSEP was 0.601 and RPD was 2.86 and the correlation coefficients of RA was 0.968, RMSEC was 1.50, RMSEP was 1.48 and RPD was 4.2. The result showed that there was no significant difference between the model of dried leaves and that of the powders. However, the dried leaves NIR model reduces the unnecessary the steps of drying and grinding in the actual detection process, saving the time and reducing the workload.

  9. Functional Near-Infrared Spectroscopy Brain Imaging Investigation of Phonological Awareness and Passage Comprehension Abilities in Adult Recipients of Cochlear Implants

    ERIC Educational Resources Information Center

    Bisconti, Silvia; Shulkin, Masha; Hu, Xiaosu; Basura, Gregory J.; Kileny, Paul R.; Kovelman, Ioulia

    2016-01-01

    Purpose: The aim of this study was to examine how the brains of individuals with cochlear implants (CIs) respond to spoken language tasks that underlie successful language acquisition and processing. Method: During functional near-infrared spectroscopy imaging, CI recipients with hearing impairment (n = 10, mean age: 52.7 ± 17.3 years) and…

  10. Chemometric tool for identification of iron-gall inks by use of visible-near infrared fibre optic reflection spectroscopy.

    PubMed

    Gál, Lukáš; Čeppan, Michal; Reháková, Milena; Dvonka, Vladimír; Tarajčáková, Jarmila; Hanus, Jozef

    2013-11-01

    A method has been developed for identification of corrosive iron-gall inks in historical drawings and documents. The method is based on target-factor analysis of visible-near infrared fibre optic reflection spectra (VIS-NIR FORS). A set of reference spectra was obtained from model samples of laboratory-prepared inks covering a wide range of mixing ratios of basic ink components deposited on substrates and artificially aged. As criteria for correspondence of a studied spectrum with a reference spectrum, the apparent error in target (AET) and the empirical function SPOIL according to Malinowski were used. The capability of the proposed tool to distinguish corrosive iron-gall inks from bistre and sepia inks was evaluated by use of a set of control samples of bistre, sepia, and iron-gall inks. Examples are presented of analysis of historical drawings from the 15th and 16th centuries and written documents from the 19th century. The results of analysis based on the tool were confirmed by XRF analysis and colorimetric spot analysis.

  11. Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Fritzsche, J.; Tkatsch, H.; Waag, F.; Karch, K.; Henze, K.; Delbeck, S.; Budde, J.

    2013-11-01

    Mid- and near-infrared spectroscopy is introduced as a versatile analytical method for characterizing liquid and solid chemicals as obtained from petrochemistry and biotechnology processes. Besides normal transmission measurements, special equipment with silver halide fiber-optic probes allowing efficient analysis based on mid-infrared attenuated total reflection, and an accessory for near-infrared diffuse reflection measurements, are presented. The latter technique can be used advantageously for powdered samples such as microalgae biomass and polysaccharides, as well as for different tissues such as meat samples. The advantages and disadvantages of both methods, which can be used for industrial process monitoring and chemical quality control applications, are discussed, and have been used in several research projects of BSc students within their degree course of bio- and nano-technologies of our University of Applied Sciences.

  12. Variable-temperature Fourier transform near-infrared imaging spectroscopy of the deuterium/hydrogen exchange in liquid D₂O.

    PubMed

    Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W

    2014-01-01

    In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.

  13. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.

    PubMed

    Lucero, Adam A; Addae, Gifty; Lawrence, Wayne; Neway, Beemnet; Credeur, Daniel P; Faulkner, James; Rowlands, David; Stoner, Lee

    2018-01-01

    What is the central question of this study? Continuous-wave near-infrared spectroscopy, coupled with venous and arterial occlusions, offers an economical, non-invasive alternative to measuring skeletal muscle blood flow and oxygen consumption, but its reliability during exercise has not been established. What is the main finding and its importance? Continuous-wave near-infrared spectroscopy devices can reliably assess local skeletal muscle blood flow and oxygen consumption from the vastus lateralis in healthy, physically active adults. The patterns of response exhibited during exercise of varying intensity agree with other published results using similar methodologies, meriting potential applications in clinical diagnosis and therapeutic assessment. Near-infrared spectroscopy (NIRS), coupled with rapid venous and arterial occlusions, can be used for the non-invasive estimation of resting local skeletal muscle blood flow (mBF) and oxygen consumption (mV̇O2), respectively. However, the day-to-day reliability of mBF and mV̇O2 responses to stressors such as incremental dynamic exercise has not been established. The aim of this study was to determine the reliability of NIRS-derived mBF and mV̇O2 responses from incremental dynamic exercise. Measurements of mBF and mV̇O2 were collected in the vastus lateralis of 12 healthy, physically active adults [seven men and five women; 25 (SD 6) years old] during three non-consecutive visits within 10 days. After 10 min rest, participants performed 3 min of rhythmic isotonic knee extension (one extension every 4 s) at 5, 10, 15, 20, 25 and 30% of maximal voluntary contraction (MVC), before four venous occlusions and then two arterial occlusions. The mBF and mV̇O2 increased proportionally with intensity [from 0.55 to 7.68 ml min -1  (100 ml) -1 and from 0.05 to 1.86 ml O 2  min -1  (100 g) -1 , respectively] up to 25% MVC, where they began to plateau at 30% MVC. Moreover, an mBF/mV̇O2 muscle oxygen consumption

  14. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy.

    PubMed

    Betances-Salcedo, Eddy; Revilla, Isabel; Vivar-Quintana, Ana M; González-Martín, M Inmaculada

    2017-07-18

    The use of propolis as a dietary supplement or as an ingredient in different food products is increasing, due to its antioxidant and bactericidal properties. These nutritional properties directly depend on its phenolic composition. For this reason, this study analysed the total contents of flavones and flavonols, flavanones and dihydroflavonols, and the antioxidant capacity by using the methods of ABTS and linoleic acid/ β -carotene in 99 samples of propolis from Spain and Chile. A rapid method was developed for quantifying these parameters in raw propolis using near infrared (NIR) spectroscopy with a remote reflectance fibre-optic probe applied directly to the ground-up sample. The models developed allow for the determination of the total flavones and flavonols (0-183 mg quercetin/g propolis and 0-72 mg rutin/g propolis), of the total flavanones and dihydroflavonols (9-109 mg pinocembrin/g propolis extract), and of its antioxidant capacity by the ABTS method based on the reduction of the 2.2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation(0-3212.6 nmol Trolox/mg of propolis) and of linoleic acid/ β -carotene (22-86% inhibition). The NIR spectroscopy models were applied in external validation to different samples of the calibration group, which led to the conclusion that the methods developed provide significantly identical data to the initial chemical data of reference.

  15. Nonlinear photothermal mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  16. Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasa, Takeshi, E-mail: tiwasa@mail.sci.hokudai.ac.jp; Takenaka, Masato; Taketsugu, Tetsuya

    A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems.more » The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.« less

  17. Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy.

    PubMed

    Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya

    2016-03-28

    A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.

  18. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  19. Near infrared spectroscopy for the nondestructive estimation of clear wood properties of Pinus taeda L. from the southern United States

    Treesearch

    Laurence R. Schimleck; P. David Jones; Alexander Clark; Richard F. Daniels; Gary F. Peter

    2005-01-01

    The estimation of specific gravity (SG), modulus of elasticity (MOE), and modulus of rupture (MOR) of loblolly pine (Pinus taeda L.) clear wood samples from a diverse range of sites across the southern United States was investigated using near infrared (NIR) spectroscopy. NIR spectra were obtained from the radial and cross sectional (original, rough...

  20. Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets

    USDA-ARS?s Scientific Manuscript database

    A major objective of necrotizing enterocolitis (NEC)research is to devise a noninvasive method of early detection. We hypothesized that abdominal near-infrared spectroscopy (A-NIRS) readings will identify impending NEC in a large animal model. Piglets were prematurely delivered and received parenter...

  1. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.

    PubMed

    Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2013-02-19

    During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

  2. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  3. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  4. Near-infrared laboratory spectroscopy of mineral chemistry: A review

    NASA Astrophysics Data System (ADS)

    Meer, Freek van der

    2018-03-01

    Spectroscopy is the science concerned with the investigation and measurement of spectra produced when materials interacts with or emits electromagnetic radiation. Commercial infrared spectrometer were designed from the 1950's onward and found their way into the pharmaceutical and chemical industries. In the 1970's and 1980's also natural sciences notably mineralogy and vegetation science started systematically to measure optical properties of leaves and minerals/rocks with spectrometers. In the last decade spectroscopy has made the step from qualitative observations of mineral classes, soil type and vegetation biomass to quantitative estimates of mineral, soil and vegetation chemistry. This resulted in geothermometers used to characterize metamorphic and hydrothermal systems and to the advent of foliar biochemistry. More research is still needed to bridge the gap between laboratory spectroscopy and field spectroscopy. Empirical studies of minerals either as soil or rock constituents (and vegetation parameters) derived from regression analysis of spectra against chemistry is important in understanding the physics of the interaction of electromagnetic radiation and matter which in turn is important in the design of future satellite missions. Physics based models and retrievals are needed to operationalize these relationships and implement them in future earth observation missions as these are more robust and easy to transfer to other areas and data sets.

  5. Multicomponent blood lipid analysis by means of near infrared spectroscopy, in geese.

    PubMed

    Bazar, George; Eles, Viktoria; Kovacs, Zoltan; Romvari, Robert; Szabo, Andras

    2016-08-01

    This study provides accurate near infrared (NIR) spectroscopic models on some laboratory determined clinicochemical parameters (i.e. total lipid (5.57±1.95 g/l), triglyceride (2.59±1.36 mmol/l), total cholesterol (3.81±0.68 mmol/l), high density lipoprotein (HDL) cholesterol (2.45±0.58 mmol/l)) of blood serum samples of fattened geese. To increase the performance of multivariate chemometrics, samples significantly deviating from the regression models implying laboratory error were excluded from the final calibration datasets. Reference data of excluded samples having outlier spectra in principal component analysis were not marked as false. Samples deviating from the regression models but having non outlier spectra in PCA were identified as having false reference constituent values. Based on the NIR selection methods, 5% of the reference measurement data were rated as doubtful. The achieved models reached R(2) of 0.864, 0.966, 0.850, 0.793, and RMSE of 0.639 g/l, 0.232 mmol/l, 0.210 mmol/l, 0.241 mmol/l for total lipid, triglyceride, total cholesterol and HDL cholesterol, respectively, during independent validation. Classical analytical techniques focus on single constituents and often require chemicals, time-consuming measurements, and experienced technicians. NIR technique provides a quick, cost effective, non-hazardous alternative method for analysis of several constituents based on one single spectrum of each sample, and it also offers the possibility for looking at the laboratory reference data critically. Evaluation of reference data to identify and exclude falsely analyzed samples can provide warning feedback to the reference laboratory, especially in the case of analyses where laboratory methods are not perfectly suited to the subjected material and there is an increased chance of laboratory error. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Measuring speaker–listener neural coupling with functional near infrared spectroscopy

    PubMed Central

    Liu, Yichuan; Piazza, Elise A.; Simony, Erez; Shewokis, Patricia A.; Onaral, Banu; Hasson, Uri; Ayaz, Hasan

    2017-01-01

    The present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of 3 speakers telling stories and 15 listeners comprehending audio recordings of these stories. Listeners’ brain activity was significantly correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a significant relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS can be used for investigating brain-to-brain coupling during verbal communication in natural settings. PMID:28240295

  7. Screening experiments of ecstasy street samples using near infrared spectroscopy.

    PubMed

    Sondermann, N; Kovar, K A

    1999-12-20

    Twelve different sets of confiscated ecstasy samples were analysed applying both near infrared spectroscopy in reflectance mode (1100-2500 nm) and high-performance liquid chromatography (HPLC). The sets showed a large variance in composition. A calibration data set was generated based on the theory of factorial designs. It contained 221 N-methyl-3,4-methylenedioxyamphetamine (MDMA) samples, 167 N-ethyl-3,4-methylenedioxyamphetamine (MDE), 111 amphetamine and 106 samples without a controlled substance, which will be called placebo samples thereafter. From this data set, PLS-1 models were calculated and were successfully applied for validation of various external laboratory test sets. The transferability of these results to confiscated tablets is demonstrated here. It is shown that differentiation into placebo, amphetamine and ecstasy samples is possible. Analysis of intact tablets is practicable. However, more reliable results are obtained from pulverised samples. This is due to ill-defined production procedures. The use of mathematically pretreated spectra improves the prediction quality of all the PLS-1 models studied. It is possible to improve discrimination between MDE and MDMA with the help of a second model based on raw spectra. Alternative strategies are briefly discussed.

  8. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial

    PubMed Central

    Aasted, Christopher M.; Yücel, Meryem A.; Cooper, Robert J.; Dubb, Jay; Tsuzuki, Daisuke; Becerra, Lino; Petkov, Mike P.; Borsook, David; Dan, Ippeita; Boas, David A.

    2015-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software package we have developed that incorporates multiple spatial registration tools to enable structural guidance in the interpretation of fNIRS studies. We introduce the reader to the layout of the AtlasViewer graphical user interface, the folder structure, and user files required in the creation of fNIRS probes containing sources and detectors registered to desired locations on the head, evaluating probe fabrication error and intersubject probe placement variability, and different procedures for estimating measurement sensitivity to different brain regions as well as image reconstruction performance. Further, we detail how AtlasViewer provides a generic head atlas for guiding interpretation of fNIRS results, but also permits users to provide subject-specific head anatomies to interpret their results. We anticipate that AtlasViewer will be a valuable tool in improving the anatomical interpretation of fNIRS studies. PMID:26157991

  9. Mental fatigue detection based on the functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Xu, Fenggang; Yang, Hanjun; Jiang, Jin; Cao, Yong; Jiao, Xuejun

    2017-02-01

    Mental fatigue can be induced by long time mental work, mental fatigue caused worse performance and accidents. As a non-invasive technique, functional near-infrared spectroscopy (fNIRS) can measure blood oxygen activity in the cerebral cortex which reflect the cognitive function of brain indirectly. Aiming at investigating whether fNIRS can measure the mental fatigue and study the spatial pattern of hemodynamic response for mental fatigue, we used three sessions of verbal 2-back working memory task for a total of 120 minutes to induce mental fatigue, 15 healthy subjects were recruited and 30 channels including prefrontal cortex (PFC) and motor cortex (MC) were measured by fNIRS. The mean oxyhemoglobin feature for 20s was extracted as well as subjective fatigue level and performance. The results showed significant increase of subjected fatigue level as well as significant decrease performance from session one to three task. With the increased level of fatigue, oxyhemoglobin in PFC increase significantly and the spatial pattern of hemodynamic response in the all 30 channels varied with task duration as well. These findings indicated the potential of fNIRS measured hemodynamic as a mental fatigue indicator.

  10. Analysis of multiple soybean phytonutrients by near-infrared reflectance spectroscopy.

    PubMed

    Zhang, Gaoyang; Li, Penghui; Zhang, Wenfei; Zhao, Jian

    2017-05-01

    Improvement of the nutritional quality of soybean is usually facilitated by a vast range of soybean germplasm with enough information about their multiple phytonutrients. In order to acquire this essential information from a huge number of soybean samples, a rapid analytic method is urgently required. Here, a nondestructive near-infrared reflectance spectroscopy (NIRS) method was developed for rapid and accurate measurement of 25 nutritional components in soybean simultaneously, including fatty acids palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, vitamin E (VE), α-VE, γ-VE, δ-VE, saponins, isoflavonoids, and flavonoids. Modified partial least squares regression and first, second, third, and fourth derivative transformation was applied for the model development. The 1 minus variance ratio (1-VR) value of the optimal model can reach between the highest 0.95 and lowest 0.64. The predicted values of phytonutrients in soybean using NIRS technology are comparable to those obtained from using the traditional spectrum or chemical methods. A robust NIRS can be adopted as a reliable method to evaluate complex plant constituents for screening large-scale samples of soybean germplasm resources or genetic populations for improvement of nutritional qualities. Graphical Abstract ᅟ.

  11. Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Chanteau, B.; Lopez, O.; Zhang, W.; Nicolodi, D.; Argence, B.; Auguste, F.; Abgrall, M.; Chardonnet, C.; Santarelli, G.; Darquié, B.; Le Coq, Y.; Amy-Klein, A.

    2013-07-01

    We present a method for accurate mid-infrared frequency measurements and stabilization to a near-infrared ultra-stable frequency reference, transmitted with a long-distance fibre link and continuously monitored against state-of-the-art atomic fountain clocks. As a first application, we measure the frequency of an OsO4 rovibrational molecular line around 10 μm with an uncertainty of 8 × 10-13. We also demonstrate the frequency stabilization of a mid-infrared laser with fractional stability better than 4 × 10-14 at 1 s averaging time and a linewidth below 17 Hz. This new stabilization scheme gives us the ability to transfer frequency stability in the range of 10-15 or even better, currently accessible in the near infrared or in the visible, to mid-infrared lasers in a wide frequency range.

  12. Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics.

    PubMed

    Guo, Lili; Wu, Yajun; Liu, Mingchang; Ge, Yiqiang; Chen, Ying

    2018-06-01

    Edible bird's nests (EBNs) have been traditionally regarded as a kind of medicinal and healthy food in China. For economic reasons, they are frequently subjected to adulteration with some cheaper substitutes, such as Tremella fungus, agar, fried pigskin, and egg white. As a kind of precious and functional product, it is necessary to establish a robust method for the rapid authentication of EBNs with small amounts of samples by simple processes. In this study, the Fourier transform infrared spectroscopy (FTIR) system was utilized and its feasibility for identification of EBNs was verified. FTIR spectra data of authentic and adulterated EBNs were analyzed by chemometrics analyses including principal component analysis, linear discriminant analysis (LDA), support vector machine (SVM) and one-class partial least squares (OCPLS). The results showed that the established LDA and SVM models performed well and had satisfactory classification ability, with the former 94.12% and the latter 100%. The OCPLS model was developed with prediction sensitivity of 0.937 and specificity of 0.886. Further detection of commercial EBN samples confirmed these results. FTIR is applicable in the scene of rapid authentication of EBNs, especially for quality supervision departments, entry-exit inspection and quarantine, and customs administration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. [Application progress on near infrared spectroscopy in quality control and process monitoring of traditional Chinese medicine].

    PubMed

    Li, Wenlong; Qu, Haibin

    2017-01-25

    The industry of traditional Chinese medicine (TCM) encounters problems like quality fluctuation of raw materials and unstandardized production process. Near infrared (NIR) spectroscopy technology is widely used in quality control of TCM because of its abundant information, fast and nondestructive characters. The main applications include quantitative analysis of Chinese medicinal materials, intermediates and Chinese patent medicines; the authenticity of TCM, species, origins and manufacturers; monitoring and control of the extraction, alcohol precipitation, column chromatography and blending process. This article reviews the progress on the application of NIR spectroscopy technology in TCM field. In view of the problems existing in the application, the article proposes that the standardization of NIR analysis method should be developed according to specific characteristics of TCM, which will promote the application of NIR technology in the TCM industry.

  14. Partial correlation-based functional connectivity analysis for functional near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Akın, Ata

    2017-12-01

    A theoretical framework, a partial correlation-based functional connectivity (PC-FC) analysis to functional near-infrared spectroscopy (fNIRS) data, is proposed. This is based on generating a common background signal from a high passed version of fNIRS data averaged over all channels as the regressor in computing the PC between pairs of channels. This approach has been employed to real data collected during a Stroop task. The results show a strong significance in the global efficiency (GE) metric computed by the PC-FC analysis for neutral, congruent, and incongruent stimuli (NS, CS, IcS; GEN=0.10±0.009, GEC=0.11±0.01, GEIC=0.13±0.015, p=0.0073). A positive correlation (r=0.729 and p=0.0259) is observed between the interference of reaction times (incongruent-neutral) and interference of GE values (GEIC-GEN) computed from [HbO] signals.

  15. Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy.

    PubMed

    Ruoff, Kaspar; Luginbühl, Werner; Künzli, Raphael; Iglesias, María Teresa; Bogdanov, Stefan; Bosset, Jacques Olivier; von der Ohe, Katharina; von der Ohe, Werner; Amado, Renato

    2006-09-06

    The potential of Fourier transform mid-infrared spectroscopy (FT-MIR) using an attenuated total reflectance (ATR) cell was evaluated for the authentication of 11 unifloral (acacia, alpine rose, chestnut, dandelion, heather, lime, rape, fir honeydew, metcalfa honeydew, oak honeydew) and polyfloral honey types (n = 411 samples) previously classified with traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis, the error rates of the discriminant models being calculated by using Bayes' theorem. The error rates ranged from <0.1% (polyfloral and heather honeys as well as honeydew honeys from metcalfa, oak, and fir) to 8.3% (alpine rose honey) in both jackknife classification and validation, depending on the honey type considered. This study indicates that ATR-MIR spectroscopy is a valuable tool for the authentication of the botanical origin and quality control and may also be useful for the determination of the geographical origin of honey.

  16. The study on the near infrared spectrum technology of sauce component analysis

    NASA Astrophysics Data System (ADS)

    Li, Shangyu; Zhang, Jun; Chen, Xingdan; Liang, Jingqiu; Wang, Ce

    2006-01-01

    The author, Shangyu Li, engages in supervising and inspecting the quality of products. In soy sauce manufacturing, quality control of intermediate and final products by many components such as total nitrogen, saltless soluble solids, nitrogen of amino acids and total acid is demanded. Wet chemistry analytical methods need much labor and time for these analyses. In order to compensate for this problem, we used near infrared spectroscopy technology to measure the chemical-composition of soy sauce. In the course of the work, a certain amount of soy sauce was collected and was analyzed by wet chemistry analytical methods. The soy sauce was scanned by two kinds of the spectrometer, the Fourier Transform near infrared spectrometer (FT-NIR spectrometer) and the filter near infrared spectroscopy analyzer. The near infrared spectroscopy of soy sauce was calibrated with the components of wet chemistry methods by partial least squares regression and stepwise multiple linear regression. The contents of saltless soluble solids, total nitrogen, total acid and nitrogen of amino acids were predicted by cross validation. The results are compared with the wet chemistry analytical methods. The correlation coefficient and root-mean-square error of prediction (RMSEP) in the better prediction run were found to be 0.961 and 0.206 for total nitrogen, 0.913 and 1.215 for saltless soluble solids, 0.855 and 0.199 nitrogen of amino acids, 0.966 and 0.231 for total acid, respectively. The results presented here demonstrate that the NIR spectroscopy technology is promising for fast and reliable determination of major components of soy sauce.

  17. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy

    PubMed Central

    Nasseri, Nassim; Kleiser, Stefan; Ostojic, Daniel; Karen, Tanja; Wolf, Martin

    2016-01-01

    Change of muscle tissue oxygen saturation (StO2), due to exercise, measured by near infrared spectroscopy (NIRS) is known to be lower for subjects with higher adipose tissue thickness. This is most likely not physiological but caused by the superficial fat and adipose tissue. In this paper we assessed, in vitro, the influence of adipose tissue thickness on muscle StO2, measured by NIRS oximeters. We measured StO2 of a liquid phantom by 3 continuous wave (CW) oximeters (Sensmart Model X-100 Universal Oximetry System, INVOS 5100C, and OxyPrem v1.3), as well as a frequency-domain oximeter, OxiplexTS, through superficial layers with 4 different thicknesses. Later, we employed the results to calibrate OxyPrem v1.3 for adipose tissue thickness in-vivo. PMID:27895999

  18. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  19. Noninvasive in situ identification and band assignments of some pharmaceutical excipients inside USP vials with FT-near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ali, Hassan Refat H.; Edwards, Howell G. M.; Scowen, Ian J.

    2009-05-01

    For the manufacture of dosage forms all ingredients must be reliably identified. In this paper, the suitability of FT-NIR spectroscopy to identify potassium sorbate, sodium starch glycollate, calcium ascorbate, calcium carbonate, candelilla wax, maltosextrin, monohydrated and anhydrous lactose inside USP vials was investigated. Differentiation between the anhydrous and monohydrated forms of lactose was found to be possible by studying the regions of the near-infrared spectrum corresponding to the combination and first overtone stretching frequencies of water. The results show unequivocally the potential of FT-NIR spectroscopy for rapid, in situ and non-destructive identification of pharmaceutical excipients.

  20. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  1. Near-infrared and Mid-infrared Spectroscopic Techniques for a Fast and Nondestructive Quality Control of Thymi herba.

    PubMed

    Pezzei, Cornelia K; Schönbichler, Stefan A; Hussain, Shah; Kirchler, Christian G; Huck-Pezzei, Verena A; Popp, Michael; Krolitzek, Justine; Bonn, Günther K; Huck, Christian W

    2018-04-01

    In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated. Georg Thieme Verlag KG Stuttgart · New York.

  2. Diagnosis of colorectal cancer by near-infrared optical fiber spectroscopy and random forest

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Lin, Zan; Wu, Hegang; Wang, Li; Wu, Tong; Tan, Chao

    2015-01-01

    Near-infrared (NIR) spectroscopy has such advantages as being noninvasive, fast, relatively inexpensive, and no risk of ionizing radiation. Differences in the NIR signals can reflect many physiological changes, which are in turn associated with such factors as vascularization, cellularity, oxygen consumption, or remodeling. NIR spectral differences between colorectal cancer and healthy tissues were investigated. A Fourier transform NIR spectroscopy instrument equipped with a fiber-optic probe was used to mimic in situ clinical measurements. A total of 186 spectra were collected and then underwent the preprocessing of standard normalize variate (SNV) for removing unwanted background variances. All the specimen and spots used for spectral collection were confirmed staining and examination by an experienced pathologist so as to ensure the representative of the pathology. Principal component analysis (PCA) was used to uncover the possible clustering. Several methods including random forest (RF), partial least squares-discriminant analysis (PLSDA), K-nearest neighbor and classification and regression tree (CART) were used to extract spectral features and to construct the diagnostic models. By comparison, it reveals that, even if no obvious difference of misclassified ratio (MCR) was observed between these models, RF is preferable since it is quicker, more convenient and insensitive to over-fitting. The results indicate that NIR spectroscopy coupled with RF model can serve as a potential tool for discriminating the colorectal cancer tissues from normal ones.

  3. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments.

    PubMed

    Balardin, Joana B; Zimeo Morais, Guilherme A; Furucho, Rogério A; Trambaiolli, Lucas; Vanzella, Patricia; Biazoli, Claudinei; Sato, João R

    2017-01-01

    Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS) have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis), playing a musical instrument (i.e., piano and violin) alone or in duo and performing daily activities for many hours (i.e., continuous monitoring). Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  4. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    PubMed Central

    Balardin, Joana B.; Zimeo Morais, Guilherme A.; Furucho, Rogério A.; Trambaiolli, Lucas; Vanzella, Patricia; Biazoli, Claudinei; Sato, João R.

    2017-01-01

    Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS) have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis), playing a musical instrument (i.e., piano and violin) alone or in duo and performing daily activities for many hours (i.e., continuous monitoring). Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience. PMID:28567011

  5. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  6. Trainability of hemodynamic parameters: A near-infrared spectroscopy based neurofeedback study.

    PubMed

    Kober, Silvia Erika; Hinterleitner, Vanessa; Bauernfeind, Günther; Neuper, Christa; Wood, Guilherme

    2018-05-18

    We investigated the trainability of the hemodynamic response as assessed with near-infrared spectroscopy (NIRS) during one neurofeedback (NF) session. Forty-eight participants were randomly assigned to four different groups that tried to either increase or decrease oxygenated (oxy-Hb) or deoxygenated hemoglobin (deoxy-Hb) over the inferior frontal gyrus during imagery of swallowing movements. Deoxy-Hb could be successfully up-regulated while oxy-Hb could be successfully down-regulated during NF. Participants were not able to down-regulate deoxy-Hb or to up-regulate oxy-Hb. These results show that the natural course of oxy- and deoxy-Hb during movement imagery can be reinforced by providing real-time feedback of the corresponding NIRS parameter since deoxy-Hb generally increases and oxy-Hb decreases during imagery of swallowing. Furthermore, signal-to-noise ratio of deoxy-Hb but not of oxy-Hb improved during training. Our results provide new insights into the trainability of the hemodynamic response as assessed with NIRS and have an impact on the application of NIRS-based real-time feedback. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Potential of near-infrared spectroscopy for quality evaluation of cattle leather.

    PubMed

    Braz, Carlos Eduardo M; Jacinto, Manuel Antonio C; Pereira-Filho, Edenir R; Souza, Gilberto B; Nogueira, Ana Rita A

    2018-05-09

    Models using near-infrared spectroscopy (NIRS) were constructed based on physical-mechanical tests to determine the quality of cattle leather. The following official parameters were used, considering the industry requirements: tensile strength (TS), percentage elongation (%E), tear strength (TT), and double hole tear strength (DHS). Classification models were constructed with the use of k-nearest neighbor (kNN), soft independent modeling of class analogy (SIMCA), and partial least squares-discriminant analysis (PLS-DA). The evaluated figures of merit, accuracy, sensitivity, and specificity presented results between 85% and 93%, and the false alarm rates from 9% to 14%. The model with lowest validation percentage (92%) was kNN, and the highest was PLS-DA (100%). For TS, lower values were obtained, from 52% for kNN and 74% for SIMCA. The other parameters %E, TT, and DHS presented hit rates between 87 and 100%. The abilities of the models were similar, showing they can be used to predict the quality of cattle leather. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  9. Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain.

    PubMed

    Roche-Labarbe, Nadège; Fenoglio, Angela; Aggarwal, Alpna; Dehaes, Mathieu; Carp, Stefan A; Franceschini, Maria Angela; Grant, Patricia Ellen

    2012-03-01

    Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO(2)) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BF(ix)) to determine the relationship between these measures, gestational age at birth (GA), and chronological age. We followed 56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO(2) and CBV, relative values of BF(ix), and relative cerebral metabolic rate of oxygen (rCMRO(2)) as a function of postmenstrual age (PMA) and chronological age for four GA groups. SO(2) correlates with chronological age (r=-0.54, P value ≤0.001) but not with PMA (r=-0.07), whereas BF(ix) and rCMRO(2) correlate better with PMA (r=0.37 and 0.43, respectively, P value ≤0.001). Relative CMRO2 during the first month of life is lower when GA is lower. Blood flow index and rCMRO(2) are more accurate biomarkers of the brain development than SO(2) in the premature newborns.

  10. Detection of compatibility between baclofen and excipients with aid of infrared spectroscopy and chemometry

    NASA Astrophysics Data System (ADS)

    Rojek, Barbara; Wesolowski, Marek; Suchacz, Bogdan

    2013-12-01

    In the paper infrared (IR) spectroscopy and multivariate exploration techniques: principal component analysis (PCA) and cluster analysis (CA) were applied as supportive methods for the detection of physicochemical incompatibilities between baclofen and excipients. In the course of research, the most useful rotational strategy in PCA proved to be varimax normalized, while in CA Ward's hierarchical agglomeration with Euclidean distance measure enabled to yield the most interpretable results. Chemometrical calculations confirmed the suitability of PCA and CA as the auxiliary methods for interpretation of infrared spectra in order to recognize whether compatibilities or incompatibilities between active substance and excipients occur. On the basis of IR spectra and the results of PCA and CA it was possible to demonstrate that the presence of lactose, β-cyclodextrin and meglumine in binary mixtures produce interactions with baclofen. The results were verified using differential scanning calorimetry, differential thermal analysis, thermogravimetry/differential thermogravimetry and X-ray powder diffraction analyses.

  11. Application of near-infrared spectroscopy in the detection of fat-soluble vitamins in premix feed

    NASA Astrophysics Data System (ADS)

    Jia, Lian Ping; Tian, Shu Li; Zheng, Xue Cong; Jiao, Peng; Jiang, Xun Peng

    2018-02-01

    Vitamin is the organic compound and necessary for animal physiological maintenance. The rapid determination of the content of different vitamins in premix feed can help to achieve accurate diets and efficient feeding. Compared with high-performance liquid chromatography and other wet chemical methods, near-infrared spectroscopy is a fast, non-destructive, non-polluting method. 168 samples of premix feed were collected and the contents of vitamin A, vitamin E and vitamin D3 were detected by the standard method. The near-infrared spectra of samples ranging from 10 000 to 4 000 cm-1 were obtained. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were used to construct the quantitative model. The results showed that the RMSEP of PLSR model of vitamin A, vitamin E and vitamin D3 were 0.43×107 IU/kg, 0.09×105 IU/kg and 0.17×107 IU/kg, respectively. The RMSEP of SVMR model was 0.45×107 IU/kg, 0.11×105 IU/kg and 0.18×107 IU/kg. Compared with nonlinear regression method (SVMR), linear regression method (PLSR) is more suitable for the quantitative analysis of vitamins in premix feed.

  12. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods

    NASA Astrophysics Data System (ADS)

    Rios-Corripio, M. A.; Rios-Leal, E.; Rojas-López, M.; Delgado-Macuil, R.

    2011-01-01

    A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.

  13. The use of near-infrared spectroscopy in the study of typical and atypical development

    PubMed Central

    Vanderwert, Ross E.; Nelson, Charles A.

    2014-01-01

    The use of functional Near Infrared Spectroscopy (fNIRS) has grown exponentially over the past decade, particularly among investigators interested in early brain development. The use of this neuroimaging technique has begun to shed light on the development of a variety of sensory, perceptual, linguistic, and social-cognitive functions. Rather than cast a wide net, in this paper we first discuss typical development, focusing on joint attention, face processing, language, and sensorimotor development. We then turn our attention to infants and children whose development has been compromised or who are at risk for atypical development. We conclude our review by critiquing some of the methodological issues that have plagued the extant literature as well as offer suggestions for future research. PMID:24128733

  14. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

    PubMed

    Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C

    2015-06-01

    Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. Copyright © 2015 the American Physiological Society.

  15. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas.

    PubMed

    Alonso-González, P; Albella, P; Neubrech, F; Huck, C; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R

    2013-05-17

    Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.

  16. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    ERIC Educational Resources Information Center

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  18. Use of Vis/NIRS for the determination of sugar content of cola soft drinks based on chemometric methods

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong

    2008-03-01

    Three different chemometric methods were performed for the determination of sugar content of cola soft drinks using visible and near infrared spectroscopy (Vis/NIRS). Four varieties of colas were prepared and 180 samples (45 samples for each variety) were selected for the calibration set, while 60 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay, standard normal variate (SNV) and Savitzky-Golay first derivative transformation were applied for the pre-processing of spectral data. The first eleven principal components (PCs) extracted by partial least squares (PLS) analysis were employed as the inputs of BP neural network (BPNN) and least squares-support vector machine (LS-SVM) model. Then the BPNN model with the optimal structural parameters and LS-SVM model with radial basis function (RBF) kernel were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for prediction were 0.971, 1.259 and -0.335 for PLS, 0.986, 0.763, and -0.042 for BPNN, while 0.978, 0.995 and -0.227 for LS-SVM, respectively. All the three methods supplied a high and satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be utilized as a high precision way for the determination of sugar content of cola soft drinks.

  19. The Effect of Chain Length on Mid-Infrared and Near-Infrared Spectra of Aliphatic 1-Alcohols.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2018-02-01

    Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH 3 , CH 2 , and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.

  20. AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki

    2016-04-15

    Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission ofmore » PNe. In this paper, details of the observations and characteristics of the catalog are described.« less

  1. Near-infrared spectroscopy of primitive solar system objects

    NASA Technical Reports Server (NTRS)

    Luu, Jane; Jewitt, David; Cloutis, Edward

    1994-01-01

    We have obtained near-infrared (H and K band at lambda/Delta(lambda) is approximately 480 to 600) spectra of a sample of primitive objects including 2 Centaur objects (2060 Chiron and 5145 Pholus) and 16 P- and D-type asteroids. The spectra were obtained at the United Kingdom Infrared Telescope using the cooled grating spectrometer CGS4, and were used to search for chemically diagnostic vibrational features in these primitive objects. Pholus exhibits broad adsorption features at 2.07 and 2.27 micrometers, as well as a weak feature at 1.72 micrometers. The 1.72- and 2.27-micrometer features are similar to those seen in a laboratory tar sand sample. No distinct absorption features are found in other objects, including Chiron, which displays a spectrally neutral continuum. A comparison of the P- and D-type asteroid spectra with laboratory measurements of organic solids shows no compelling evidence for hydrocarbon overtones seen in terrestrial bituminous tar sands.

  2. Algorithm for removing scalp signals from functional near-infrared spectroscopy signals in real time using multidistance optodes.

    PubMed

    Kiguchi, Masashi; Funane, Tsukasa

    2014-11-01

    A real-time algorithm for removing scalp-blood signals from functional near-infrared spectroscopy signals is proposed. Scalp and deep signals have different dependencies on the source-detector distance. These signals were separated using this characteristic. The algorithm was validated through an experiment using a dynamic phantom in which shallow and deep absorptions were independently changed. The algorithm for measurement of oxygenated and deoxygenated hemoglobins using two wavelengths was explicitly obtained. This algorithm is potentially useful for real-time systems, e.g., brain-computer interfaces and neuro-feedback systems.

  3. Rapid monitoring of grape withering using visible near-infrared spectroscopy.

    PubMed

    Beghi, Roberto; Giovenzana, Valentina; Marai, Simone; Guidetti, Riccardo

    2015-12-01

    Wineries need new practical and quick instruments, non-destructive and able to quantitatively evaluate during withering the parameters that impact product quality. The aim of the work was to test an optical portable system (visible near-infrared (NIR) spectrophotometer) in a wavelength range of 400-1000 nm for the prediction of quality parameters of grape berries during withering. A total of 300 red grape samples (Vitis vinifera L., Corvina cultivar) harvested in vintage year 2012 from the Valpolicella area (Verona, Italy) were analyzed. Qualitative (principal component analysis, PCA) and quantitative (partial least squares regression algorithm, PLS) evaluations were performed on grape spectra. PCA showed a clear sample grouping for the different withering stages. PLS models gave encouraging predictive capabilities for soluble solids content (R(2) val  = 0.62 and ratio performance deviation, RPD = 1.87) and firmness (R(2) val  = 0.56 and RPD = 1.79). The work demonstrated the applicability of visible NIR spectroscopy as a rapid technique for the analysis of grape quality directly in barns, during withering. The sector could be provided with simple and inexpensive optical systems that could be used to monitor the withering degree of grape for better management of the wine production process. © 2014 Society of Chemical Industry.

  4. Hemispheric differences of motor execution: a near-infrared spectroscopy study.

    PubMed

    Helmich, Ingo; Rein, Robert; Niermann, Nico; Lausberg, Hedda

    2013-01-01

    Distal movements of the limbs are predominantly controlled by the contralateral hemisphere. However, functional neuroimaging studies do not unequivocally demonstrate a lateralization of the cerebral activation during hand movements. While some studies show a predominant activation of the contralateral hemisphere, other studies provide evidence for a symmetrically distributed bihemispheric activation. However, the divergent results may also be due to methodological shortcomings. Therefore, the present study using functional near-infrared spectroscopy examines cerebral activation in both hemispheres during motor actions of the right and left hands. Twenty participants performed a flexion/extension task with the right- or left-hand thumb. Cerebral oxygenation changes were recorded from 48 channels over the primary motor, pre-motor, supplementary motor, primary somatosensory cortex, subcentral area, and the supramarginal gyrus of each hemisphere. A consistent increase of cerebral oxygenation was found for oxygenated and for total hemoglobin in the hemisphere contralateral to the moving hand, regardless of the laterality. These findings are in line with previous data from localization [1-3] and brain imaging studies [4-6]. The present data support the proposition that there is no hemispheric specialization for simple distal motor tasks. Both hemispheres are equally activated during movement of the contralateral upper limb.

  5. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy

    PubMed Central

    Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.

    2011-01-01

    Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight. PMID:21895335

  6. Prediction of Cortisol and Progesterone Concentrations in Cow Hair Using Near-Infrared Reflectance Spectroscopy (NIRS).

    PubMed

    Tallo-Parra, Oriol; Albanell, Elena; Carbajal, Annais; Monclús, Laura; Manteca, Xavier; Lopez-Bejar, Manel

    2017-08-01

    Concentrations of different steroid hormones have been used in cows as a measure of adrenal or gonadal activity and, thus, as indicators of stress or reproductive state. Detecting cortisol and progesterone in cow hair provides a long-term integrative value of retrospective adrenal or gonadal/placental activity, respectively. Current techniques for steroid detection require a hormone-extraction procedure that involves time, several types of equipment, management of reagents, and some assay procedures (which can also be time-consuming and can destroy the samples). In contrast, near-infrared reflectance spectroscopy (NIRS) is a multi-component predictor technique, characterized as rapid, nondestructive for the sample, and reagent-free. However, as a predictor technique, NIRS needs to be calibrated and validated for each matrix, hormone, and species. The main objective of this study was to evaluate the predictive value of the NIRS technique for hair cortisol and progesterone quantification in cows by using specific enzyme immunoassay as a reference method. Hair samples from 52 adult Friesian lactating cows from a commercial dairy farm were used. Reflectance spectra of hair samples were determined with a NIR reflectance spectrophotometer before and after trimming them. Although similar results were obtained, a slightly better relationship between the reference data and NIRS predicted values was found using trimmed samples. Near infrared reflectance spectroscopy demonstrated its ability to predict cortisol and progesterone concentrations with certain accuracy (R 2  = 0.90 for cortisol and R 2  = 0.87 for progesterone). Although NIRS is far from being a complete alternative to current methodologies, the proposed equations can offer screening capability. Considering the advantages of both fields, our results open the possibility for future work on the combination of hair steroid measurement and NIRS methodology.

  7. Ultrafast and nonlinear spectroscopy of brilliant green-based nanoGUMBOS with enhanced near-infrared emission

    NASA Astrophysics Data System (ADS)

    Karam, Tony E.; Siraj, Noureen; Zhang, Zhenyu; Ezzir, Abdulrahman F.; Warner, Isiah M.; Haber, Louis H.

    2017-10-01

    The synthesis, characterization, ultrafast dynamics, and nonlinear spectroscopy of 30 nm nanospheres of brilliant green-bis(pentafluoroethylsulfonyl)imide ([BG][BETI]) in water are reported. These thermally stable nanoparticles are derived from a group of uniform materials based on organic salts (nanoGUMBOS) that exhibit enhanced near-infrared emission compared with the molecular dye in water. The examination of ultrafast transient absorption spectroscopy results reveals that the overall excited-state relaxation lifetimes of [BG][BETI] nanoGUMBOS are longer than the brilliant green molecular dye in water due to steric hindrance of the torsional degrees of freedom of the phenyl rings around the central carbon. Furthermore, the second harmonic generation signal of [BG][BETI] nanoGUMBOS is enhanced by approximately 7 times and 23 times as compared with colloidal gold nanoparticles of the same size and the brilliant green molecular dye in water, respectively. A very clear third harmonic generation signal is observed from the [BG][BETI] nanoGUMBOS but not from either the molecular dye or the gold nanoparticles. Overall, these results show that [BG][BETI] nanoGUMBOS exhibit altered ultrafast and nonlinear spectroscopy that is beneficial for various applications including nonlinear imaging probes, biomedical imaging, and molecular sensing.

  8. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  9. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards.

    PubMed

    Wang, Jie; Shen, Changwei; Liu, Na; Jin, Xin; Fan, Xueshan; Dong, Caixia; Xu, Yangchun

    2017-03-08

    Non-destructive and timely determination of leaf nitrogen (N) concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0), 165 (N1), 330 (N2), 660 (N3), and 990 (N4) kg·N·ha -1 . The mid-portion leaves on the year's shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB). Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe) were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN) and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index). Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets-both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration ( n = 1000) and validation ( n = 420) of this model resulted in high R² values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%). Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R² = 0.77) and 2014 (R² = 0.59). Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24-27 g/kg.

  10. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  11. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  12. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  13. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    O'Callahan, Brian T.; Raschke, Markus B.

    2017-02-01

    Spectroscopy and microscopy of the thermal near-field yield valuable insight into the mechanisms of resonant near-field heat transfer and Casimir and Casimir-Polder forces, as well as providing nanoscale spatial resolution for infrared vibrational spectroscopy. A heated scanning probe tip brought close to a sample surface can excite and probe the thermal near-field. Typically, tip temperature control is provided by resistive heating of the tip cantilever. However, this requires specialized tips with limited temperature range and temporal response. By focusing laser radiation onto AFM cantilevers, we achieve heating up to ˜1800 K, with millisecond thermal response time. We demonstrate application to thermal infrared near-field spectroscopy (TINS) by acquiring near-field spectra of the vibrational resonances of silicon carbide, hexagonal boron nitride, and polytetrafluoroethylene. We discuss the thermal response as a function of the incident excitation laser power and model the dominant cooling contributions. Our results provide a basis for laser heating as a viable approach for TINS, nanoscale thermal transport measurements, and thermal desorption nano-spectroscopy.

  14. Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Yongni; He Yong; Mao Jingyuan

    Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less

  15. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.

  16. Characterization of sildenafil citrate tablets of different sources by near infrared chemical imaging and chemometric tools.

    PubMed

    Sabin, Guilherme P; Lozano, Valeria A; Rocha, Werickson F C; Romão, Wanderson; Ortiz, Rafael S; Poppi, Ronei J

    2013-11-01

    The chemical imaging technique by near infrared spectroscopy was applied for characterization of formulations in tablets of sildenafil citrate of six different sources. Five formulations were provided by Brazilian Federal Police and correspond to several trademarks of prohibited marketing and one was an authentic sample of Viagra. In a first step of the study, multivariate curve resolution was properly chosen for the estimation of the distribution map of concentration of the active ingredient in tablets of different sources, where the chemical composition of all excipients constituents was not truly known. In such cases, it is very difficult to establish an appropriate calibration technique, so that only the information of sildenafil is considered independently of the excipients. This determination was possible only by reaching the second-order advantage, where the analyte quantification can be performed in the presence of unknown interferences. In a second step, the normalized histograms of images from active ingredient were grouped according to their similarities by hierarchical cluster analysis. Finally it was possible to recognize the patterns of distribution maps of concentration of sildenafil citrate, distinguishing the true formulation of Viagra. This concept can be used to improve the knowledge of industrial products and processes, as well as, for characterization of counterfeit drugs. Copyright © 2013. Published by Elsevier B.V.

  17. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We aremore » able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.« less

  18. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  19. Studies on proofing of yeasted bread dough using near- and mid-infrared spectroscopy.

    PubMed

    Sinelli, Nicoletta; Casiraghi, Ernestina; Downey, Gerard

    2008-02-13

    Dough proofing is the resting period after mixing during which fermentation commences. Optimum dough proofing is important for production of high quality bread. Near- and mid-infrared spectroscopies have been used with some success to investigate macromolecular changes during dough mixing. In this work, both techniques were applied to a preliminary study of flour doughs during proofing. Spectra were collected contemporaneously by NIR (750-1100 nm) and MIR (4000-600 cm(-1)) instruments using a fiberoptic surface interactance probe and horizontal ATR cell, respectively. Studies were performed on flours of differing baking quality; these included strong baker's flour, retail flour, and gluten-free flour. Following principal component analysis, changes in the recorded spectral signals could be followed over time. It is apparent from the results that both vibrational spectroscopic techniques can identify changes in flour doughs during proofing and that it is possible to suggest which macromolecular species are involved.

  20. Hemodynamic signal changes during saliva and water swallowing: a near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Kober, Silvia Erika; Wood, Guilherme

    2018-01-01

    Here, we compared the hemodynamic response observed during swallowing of water or saliva using near-infrared spectroscopy (NIRS). Sixteen healthy adults swallowed water or saliva in a randomized order. Relative concentration changes in oxygenated and deoxygenated hemoglobin during swallowing were assessed. Both swallowing tasks led to the strongest NIRS signal change over the bilateral inferior frontal gyrus. Water swallowing led to a stronger activation over the right hemisphere while the activation focus for saliva swallowing was stronger left lateralized. The NIRS time course also differed between both swallowing tasks especially at the beginning of the tasks, which might be a sign of differences in task effort. Our results show that NIRS is a sensitive measure to reveal differences in the topographical distribution and time course of the hemodynamic response between distinct swallowing tasks and might be therefore an adequate diagnostic and therapy tool for swallowing difficulties.

  1. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  2. Fecal Near Infrared Spectroscopy to Discriminate Physiological Status in Giant Pandas

    PubMed Central

    Wiedower, Erin E.; Kouba, Andrew J.; Vance, Carrie K.; Hansen, Rachel L.; Tolleson, Douglas R.

    2012-01-01

    Giant panda (Ailuropoda melanoleuca) monitoring and research often require accurate estimates of population size and density. However, obtaining these estimates has been challenging. Innovative technologies, such as fecal near infrared reflectance spectroscopy (FNIRS), may be used to differentiate between sex, age class, and reproductive status as has been shown for several other species. The objective of this study was to determine if FNIRS could be similarly used for giant panda physiological discriminations. Based on samples from captive animals in four U.S. zoos, FNIRS calibrations correctly identified 78% of samples from adult males, 81% from adult females, 85% from adults, 89% from juveniles, 75% from pregnant and 70% from non-pregnant females. However, diet had an impact on the success of the calibrations. When diet was controlled for plant part such that “leaf only” feces were evaluated, FNIRS calibrations correctly identified 93% of samples from adult males and 95% from adult females. These data show that FNIRS has the potential to differentiate between the sex, age class, and reproductive status in the giant panda and may be applicable for surveying wild populations. PMID:22719982

  3. Near-infrared spectroscopy can detect differences in vascular responsiveness to a hyperglycaemic challenge in individuals with obesity compared to normal-weight individuals.

    PubMed

    Soares, Rogério Nogueira; Reimer, Raylene A; Alenezi, Zaid; Doyle-Baker, Patricia K; Murias, Juan Manuel

    2018-01-01

    To examine whether the near-infrared spectroscopy combined with vascular occlusion test technique could detect differences in vascular responsiveness during hyperglycaemia between normal-weight individuals and individuals with obesity. A total of 16 normal-weight individuals (body mass index, 21.3 ± 1.7 kg/m 2 ) and 13 individuals with obesity (body mass index, 34.4 ± 2.0 kg/m 2 ) were submitted to five vascular occlusion tests (Pre, 30, 60, 90 and 120 min after glucose challenge). Vascular responsiveness was determined by the Slope 2 (Slope 2 StO 2 ) and the area under the curve (StO 2AUC ) of oxygen saturation derived from near-infrared spectroscopy-vascular occlusion test. The Slope 2 StO 2 increased from 1.07 ± 0.16%/s (Pre) to 1.53 ± 0.21%/s at 90 min ( p < 0.05) in the control group, while in obese it increased from 0.71 ± 0.09%/s (Pre) to 0.92 ± 0.14%/s at 60 min ( p < 0.05), and to 0.97 ± 0.10%/s ( p < 0.01) at 120 min after glucose ingestion. The StO 2AUC decreased from 1729 ± 214% . sec (Pre) to 1259 ± 232% . sec at 60 min ( p < 0.05) and to 1034 ± 172% . sec at 90 min ( p < 0.05) in the normal-weight group, whereas it decreased at 90 min (637 ± 98% . sec; p < 0.05) and at 120 min (590 ± 93% . sec; p < 0.01) compared to 30 min (1232 ± 197% . sec) after glucose ingestion in individuals with obesity. Near-infrared spectroscopy-vascular occlusion test technique was capable of detecting differences in vascular responsiveness during hyperglycaemia between normal-weight individuals and individuals with obesity.

  4. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-07-15

    Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular-for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76±0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm-partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)-are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. [Near infrared spectroscopy system structure with MOEMS scanning mirror array].

    PubMed

    Luo, Biao; Wen, Zhi-Yu; Wen, Zhong-Quan; Chen, Li; Qian, Rong-Rong

    2011-11-01

    A method which uses MOEMS mirror array optical structure to reduce the high cost of infrared spectrometer is given in the present paper. This method resolved the problem that MOEMS mirror array can not be used in simple infrared spectrometer because the problem of imaging irregularity in infrared spectroscopy and a new structure for spectral imaging was designed. According to the requirements of imaging spot, this method used optical design software ZEMAX and standard-specific aberrations of the optimization algorithm, designed and optimized the optical structure. It works from 900 to 1 400 nm. The results of design analysis showed that with the light source slit width of 50 microm, the spectrophotometric system is superior to the theoretical resolution of 6 nm, and the size of the available spot is 0.042 mm x 0.08 mm. Verification examples show that the design meets the requirements of the imaging regularity, and can be used for MOEMS mirror reflectance scan. And it was also verified that the use of a new MOEMS mirror array spectrometer model is feasible. Finally, analyze the relationship between the location of the detector and the maximum deflection angle of micro-mirror was analyzed.

  6. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Kim, Geonseob; Ham, Hyeonheui; Kim, Seongmin; Kim, Moon S.

    2018-01-01

    Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175–2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified. PMID:29301319

  7. Measurement of the local muscular metabolism by time-domain near infrared spectroscopy during knee flex-extension induced by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Contini, D.; Spinelli, L.; Torricelli, A.; Ferrante, S.; Pedrocchi, A.; Molteni, F.; Ferrigno, G.; Cubeddu, R.

    2009-02-01

    We present a preliminary study that combines functional electrical stimulation and time-domain near infrared spectroscopy for a quantitative measurement of the local muscular metabolism during rehabilitation of post-acute stroke patients. Seven healthy subjects and nine post-acute stroke patients underwent a protocol of knee flex-extension of the quadriceps induced by functional electrical stimulation. During the protocol time-domain near infrared spectroscopy measurement were performed on both left and right muscle. Hemodynamic parameters (concentration of oxy- and deoxy-genated hemoglobin) during baseline did not show any significant differences between healthy subject and patients, while functional performances (knee angle amplitude) were distinctly different. Nevertheless, even if their clinical histories were noticeably different, there was no differentiation among functional performances of patients. On the basis of the hemodynamic parameters measured during the recovery phase, instead, it was possible to identify two classes of patients showing a metabolic trend similar or very different to the one obtained by healthy subjects. The presented results suggest that the combination of functional and metabolic information can give an additional tool to the clinicians in the evaluation of the rehabilitation in post-acute stroke patients.

  8. Nondestructive determination of the modulus of elasticity of Fraxinus mandschurica using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Liang, Hao; Lin, Xue; Zhang, Yizhuo

    2018-04-01

    A nondestructive methodology is proposed to determine the modulus of elasticity (MOE) of Fraxinus mandschurica samples by using near-infrared (NIR) spectroscopy. The test data consisted of 150 NIR absorption spectra of the wood samples obtained using an NIR spectrometer, with the wavelength range of 900 to 1900 nm. To eliminate the high-frequency noise and the systematic variations on the baseline, Savitzky-Golay convolution combined with standard normal variate and detrending transformation was applied as data pretreated methods. The uninformative variable elimination (UVE), improved by the evolutionary Monte Carlo (EMC) algorithm and successive projections algorithm (SPA) selected three characteristic variables from full 117 variables. The predictive ability of the models was evaluated concerning the root-mean-square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set. In comparison with the predicted results of all the models established in the experiments, UVE-EMC-SPA-LS-SVM presented the best results with the smallest RMSEP of 0.652 and the highest Rp2 of 0.887. Thus, it is feasible to determine the MOE of F. mandschurica using NIR spectroscopy accurately.

  9. Cortical activation patterns to spatially presented pure tone stimuli with different intensities measured by functional near-infrared spectroscopy.

    PubMed

    Bauernfeind, Günther; Wriessnegger, Selina C; Haumann, Sabine; Lenarz, Thomas

    2018-03-08

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the assessment of functional activity of the cerebral cortex. Recently fNIRS was also envisaged as a novel neuroimaging approach for measuring the auditory cortex activity in the field of in auditory diagnostics. This study aimed to investigate differences in brain activity related to spatially presented sounds with different intensities in 10 subjects by means of functional near-infrared spectroscopy (fNIRS). We found pronounced cortical activation patterns in the temporal and frontal regions of both hemispheres. In contrast to these activation patterns, we found deactivation patterns in central and parietal regions of both hemispheres. Furthermore our results showed an influence of spatial presentation and intensity of the presented sounds on brain activity in related regions of interest. These findings are in line with previous fMRI studies which also reported systematic changes of activation in temporal and frontal areas with increasing sound intensity. Although clear evidence for contralaterality effects and hemispheric asymmetries were absent in the group data, these effects were partially visible on the single subject level. Concluding, fNIRS is sensitive enough to capture differences in brain responses during the spatial presentation of sounds with different intensities in several cortical regions. Our results may serve as a valuable contribution for further basic research and the future use of fNIRS in the area of central auditory diagnostics. © 2018 Wiley Periodicals, Inc.

  10. Does oral care contribute to brain activation?: One case of functional near-infrared spectroscopy study in patients with a persistent disturbance of consciousness.

    PubMed

    Fujii, Wataru; Kanamori, Daisuke; Nagata, Chisato; Sakaguchi, Kiyomi; Watanabe, Risa

    2014-08-01

    We used functional near-infrared spectroscopy (fNIRS) to measure cerebral blood flow during oral care in a patient with persistent disturbance of consciousness. We experienced that cerebral blood flow to frontal area increased during oral care, suggesting that oral care may have a potential role in rehabilitation for the brain.

  11. Near-infrared spectroscopy and polysomnography during all-night sleep in human subjects

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Aggarwal, Payal; Chen, Kathleen; Franceschini, Maria Angela; Ehrenberg, Bruce L.

    2003-10-01

    We have performed cerebral near-infrared spectroscopy (NIRS) and polysomnography (electro-encephalography, electro-oculography, electro-myography, pulse oximetry, and respiratory monitoring) during all-night sleep in five human subjects. Polysomnography data were used for sleep staging, while NIRS data were used to measure the concentration and the oxygen saturation of hemoglobin in the frontal brain region. Immediately after sleep onset we observed a decrease in the cerebral concentration of oxy-hemoglobin ([HbO2]) and an increase in the concentration of deoxy-hemoglobin ([Hb]), consistent with a decrease in the cerebral blood flow velocity or an increase in cerebral metabolic rate of oxygen. An opposite trend (increase in [HbO2] and decrease in [Hb]) was usually observed after transition to deep sleep (stages III and IV). During rapid eye movement (REM) sleep, we observed an increase in [HbO2] and decrease in [Hb], consistent with an increase in the cerebral blood flow that overcompensates the increase in the metabolic rate of oxygen associated with REM sleep.

  12. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    PubMed

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Near-field infrared vibrational dynamics and tip-enhanced decoherence.

    PubMed

    Xu, Xiaoji G; Raschke, Markus B

    2013-04-10

    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  14. Visible and near-infrared reflectance spectroscopy of planetary analog materials. Experimental facility at Laboratoire de Planetologie de Grenoble.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.

    2007-08-01

    We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and

  15. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR.

    PubMed

    Koyama, Yasuaki; Wada, Takafumi; Lohman, Brandon D; Takamatsu, Yuka; Matsumoto, Junichi; Fujitani, Shigeki; Taira, Yasuhiko

    2013-10-01

    The objective of the study is to demonstrate the utility of near-infrared spectroscopy (NIRS) in evaluating chest compression (CC) quality in cardiac arrest (CA) patients as well as determine its prognosis predictive value. We present a nonconsecutive case series of adult patients with CA whose cardiopulmonary resuscitation (CPR) was monitored with NIRS and collected the total hemoglobin concentration change (ΔcHb), the tissue oxygen index (TOI), and the ΔTOI to assess CC quality in a noninvasive fashion. During CPR, ΔcHb displayed waveforms monitor, which we regarded as a surrogate for CC quality. Total hemoglobin concentration change waveforms responded accurately to variations or cessations of CCs. In addition, a TOI greater than 40% measured upon admission appears to be significant in predicting patient's outcome. Of 15 patients, 6 had a TOI greater than 40% measured upon admission, and 67% of the latter were in return of spontaneous circulation after CPR and were found to be significantly different between return of spontaneous circulation and death (P = .047; P < .05). Near-infrared spectroscopy reliably assesses the quality of CCs in patients with CA demonstrated by synchronous waveforms during CPR and possible prognostic predictive value, although further investigation is warranted. © 2013 Elsevier Inc. All rights reserved.

  16. Quality Evaluation of Shelled and Unshelled Macadamia Nuts by Means of Near-Infrared Spectroscopy (NIR).

    PubMed

    Canneddu, Giovanna; Júnior, Luis Carlos Cunha; de Almeida Teixeira, Gustavo Henrique

    2016-07-01

    The quality of shelled and unshelled macadamia nuts was assessed by means of Fourier transformed near-infrared (FT-NIR) spectroscopy. Shelled macadamia nuts were sorted as sound nuts; nuts infected by Ecdytolopha aurantiana and Leucopteara coffeella; and cracked nuts caused by germination. Unshelled nuts were sorted as intact nuts (<10% half nuts, 2014); half nuts (March, 2013; November, 2013); and crushed nuts (2014). Peroxide value (PV) and acidity index (AI) were determined according to AOAC. PCA-LDA shelled macadamia nuts classification resulted in 93.2% accurate classification. PLS PV prediction model resulted in a square error of prediction (SEP) of 3.45 meq/kg, and a prediction coefficient determination value (Rp (2) ) of 0.72. The AI PLS prediction model was better (SEP = 0.14%, Rp (2) = 0.80). Although adequate classification was possible (93.2%), shelled nuts must not contain live insects, therefore the classification accuracy was not satisfactory. FT-NIR spectroscopy can be successfully used to predict PV and AI in unshelled macadamia nuts, though. © 2016 Institute of Food Technologists®

  17. Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy.

    PubMed

    Cruz, Madalena V; Sarraguça, Mafalda Cruz; Freitas, Filomena; Lopes, João Almeida; Reis, Maria A M

    2015-01-20

    Online monitoring process for the production of polyhydroxyalkanoates (PHA), using cooking oil (UCO) as the sole carbon source and Cupriavidus necator, was developed. A batch reactor was operated and hydroxybutyrate homopolymer was obtained. The biomass reached a maximum concentration of 11.6±1.7gL(-1) with a polymer content of 63±10.7% (w/w). The yield of product on substrate was 0.77±0.04gg(-1). Near-infrared (NIR) spectroscopy was used for online monitoring of the fermentation, using a transflectance probe. Partial least squares regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18, 2.37 and 1.58gL(-1) for biomass, UCO and PHA, respectively, which indicate the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quality assessment of pharmaceutical tablet samples using Fourier transform near infrared spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Kandpal, Lalit Mohan; Tewari, Jagdish; Gopinathan, Nishanth; Stolee, Jessica; Strong, Rick; Boulas, Pierre; Cho, Byoung-Kwan

    2017-09-01

    Determination of the content uniformity, assessed by the amount of an active pharmaceutical ingredient (API), and hardness of pharmaceutical materials is important for achieving a high-quality formulation and to ensure the intended therapeutic effects of the end-product. In this work, Fourier transform near infrared (FT-NIR) spectroscopy was used to determine the content uniformity and hardness of a pharmaceutical mini-tablet and standard tablet samples. Tablet samples were scanned using an FT-NIR instrument and tablet spectra were collected at wavelengths of 1000-2500 nm. Furthermore, multivariate analysis was applied to extract the relationship between the FT-NIR spectra and the measured parameters. The results of FT-NIR spectroscopy for API and hardness prediction were as precise as the reference high-performance liquid chromatography and mechanical hardness tests. For the prediction of mini-tablet API content, the highest coefficient of determination for the prediction (R2p) was found to be 0.99 with a standard error of prediction (SEP) of 0.72 mg. Moreover, the standard tablet hardness measurement had a R2p value of 0.91 with an SEP of 0.25 kg. These results suggest that FT-NIR spectroscopy is an alternative and accurate nondestructive measurement tool for the detection of the chemical and physical properties of pharmaceutical samples.

  19. Association among SNAP-25 Gene "Dd"eI and "Mnl"I Polymorphisms and Hemodynamic Changes during Methylphenidate Use: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Oner, Ozgur; Akin, Ata; Herken, Hasan; Erdal, Mehmet Emin; Ciftci, Koray; Ay, Mustafa Ertan; Bicer, Duygu; Oncu, Bedriye; Bozkurt, Ozlem Hekim; Munir, Kerim; Yazgan, Yanki

    2011-01-01

    Objective: To investigate the interaction of treatment-related hemodynamic changes with genotype status for Synaptosomal associated protein 25 (SNAP-25) gene in participants with attention deficit hyperactivity disorder (ADHD) on and off single dose short-acting methylphenidate treatment with functional near-infrared spectroscopy (fNIRS). Method:…

  20. Neural correlates of spontaneous deception: A functional near-infrared spectroscopy (fNIRS) study

    PubMed Central

    Ding, Xiao Pan; Gao, Xiaoqing; Fu, Genyue; Lee, Kang

    2013-01-01

    Deception is commonly seen in everyday social interactions. However, most of the knowledge about the underlying neural mechanism of deception comes from studies where participants were instructed when and how to lie. To study spontaneous deception, we designed a guessing game modeled after Greene and Paxton (2009), in which lying is the only way to achieve the performance level needed to end the game. We recorded neural responses during the game using near-infrared spectroscopy (NIRS). We found that when compared to truth-telling, spontaneous deception, like instructed deception, engenders greater involvement of such prefrontal regions as the left superior frontal gyrus. We also found that the correct-truth trials produced greater neural activities in the left middle frontal gyrus and right superior frontal gyrus than the incorrect-truth trials, suggesting the involvement of the reward system. Furthermore, the present study confirmed the feasibility of using NIRS to study spontaneous deception. PMID:23340482

  1. Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses

    PubMed Central

    Kashou, Nasser H.; Giacherio, Brenna M.; Nahhas, Ramzi W.; Jadcherla, Sudarshan R.

    2016-01-01

    Abstract. Despite promising advantages such as low cost and portability of functional near-infrared spectroscopy (fNIRS), it has yet to be widely implemented outside of basic research. Specifically, fNIRS has yet to be proven as a standalone tool within a clinical setting. The objective of this study was to assess hemodynamic concentration changes at the primary and premotor motor cortices as a result of simple whole-hand grasping and sequential finger-opposition (tapping) tasks. These tasks were repeated over 3 days in a randomized manner. Ten healthy young adults (23.8±4.8  years) participated in the study. Quantitatively, no statistically significant differences were discovered between the levels of activation for the two motor tasks (p>0.05). Overall, the signals were consistent across all 3 days. The findings show that both finger-opposition and hand grasping can be used interchangeably in fNIRS for assessment of motor function which would be useful in further advancing techniques for clinical implementation. PMID:27335888

  2. Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates.

    PubMed

    Gumulak, Rene; Lucanova, Lucia Casnocha; Zibolen, Mirko

    2017-06-01

    Near-infrared spectroscopy (NIRS) is a technology capable of non-invasive, continuous measuring of regional tissue oxygen saturation (StO 2 ). StO 2 represents a state of hemodynamic stability, which is influenced by many factors. Extensive research has been done in the field of measuring StO 2 of various organs. The current clinical availability of several NIRS-based devices reflects an important development in prevention, detection and correction of discrepancy in oxygen delivery to the brain and vital organs. Managing cerebral ischemia remains a significant issue in the neonatal intensive care units (NICU). Cerebral tissue oxygenation (cStO 2 ) and cerebral fractional tissue extraction (cFTOE) are reported in a large number of clinical studies. This review provides a summary of the concept of function, current variability of NIRS-based devices used in neonatology, clinical applications in continuous cStO 2 monitoring, limitations, disadvantages, and the potential of current technology.

  3. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia

    PubMed Central

    Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036

  4. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    PubMed

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  5. Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis.

    PubMed

    Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ozawa, Takeaki

    2018-05-31

    Body fluid (BF) identification is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identification, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specific BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efficiently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was significantly improved by using the discrimination scheme of a dichotomous classification tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identification.

  6. Subcutaneous and Intramuscular Hemodynamics and Oxygenation After Cold-Spray Application as Monitored by Near-Infrared Spectroscopy

    PubMed Central

    Shadgan, Babak; Pakravan, Amir H.; Hoens, Alison; Reid, W. Darlene

    2015-01-01

    Context Vapocoolant spray, commonly known as cold spray (CS), is a cryotherapy modality used in sports medicine, athletic training, and rehabilitation settings. Proposed physiologic effects of cryotherapy modalities include reductions in tissue blood flow, oxygenation, and cell metabolism in addition to attenuation of pain perception attributed to reduced superficial nerve conduction velocity. Objective To examine the effects of CS on subcutaneous and intramuscular blood flow and oxygenation on the thigh muscle using near-infrared spectroscopy, an optical method to monitor changes in tissue oxygenated (O2Hb), deoxygenated (HHb), and total (tHb) hemoglobin. Design Cross-sectional study. Setting Muscle Biophysics Laboratory. Patients or Other Participants Participants were 13 healthy adults (8 men, 5 women; age = 37.4 ± 6 years, body mass index = 27.4 ± 2.6, adipose tissue thickness = 7.2 ± 1.8 mm). Intervention(s) Conventional CS was applied to the vastus medialis muscles. Main Outcome Measure(s) Changes in chromophore concentrations of O2Hb, HHb, and tHb at superficial and deep layers were monitored for 5 minutes using a 2-channel near-infrared spectroscopy. Results Thirty seconds after CS application, we observed a decrease from baseline in O2Hb and tHb only in the superficial layer that was maintained for 3 minutes. Conclusions Application of CS induced a transient change in blood flow and oxygenation of the superficial tissues with no change in deeper tissues over the healthy vastus medialis muscle. The limited physiologic effect of CS on the superficial hemodynamics and oxygenation of limb muscles may limit the therapeutic benefit of this cryotherapy modality to a temporary analgesic effect, a hypothesis that warrants a clinical trial on traumatized muscles. PMID:26098273

  7. The Use of Skeletal Muscle Near Infrared Spectroscopy and a Vascular Occlusion Test at High Altitude

    PubMed Central

    Levett, Denny Z.H.; Bezemer, Rick; Montgomery, Hugh E.; Grocott, Mike P.W.

    2013-01-01

    Abstract Martin, Daniel, Denny Levett, Rick Bezemer, Hugh Montgomery, and Mike Grocott. The use of skeletal muscle near infrared spectroscopy and a vascular occlusion test at high altitude. High Alt Med Biol 14:256–262, 2013.—Microcirculatory function, central to tissue regulation of oxygen flux, may be altered by the chronic hypoxemia experienced at high altitude. We hypothesized that at high altitude, adaptations within skeletal muscle would result in reduced oxygen consumption and reduced microcirculatory responsiveness, detectable by near infrared spectroscopy (NIRS) during a vascular occlusion test (VOT). The VOT comprised 3 min of noninvasive arterial occlusion; thenar eminence tissue oxygenation (Sto2) was measured by NIRS during the VOT at sea level, 4900 m and 5600 m (after 7 and 17 days at altitude, respectively) in 12 healthy volunteers. Data were derived from Sto2 time-curves using specifically designed computer software. Mean (±SD) resting Sto2 was reduced at 4900 m and 5600 m (69.3 (±8.2)% (p=0.001) and 64.2 (±6.1)% (p<0.001) respectively) when compared to sea level (84.4 (±6.0)%. The rate of Sto2 recovery after vascular occlusion (Sto2 upslope) was significantly reduced at 4900 m (2.4 (±0.4)%/sec) and 5600 m (2.4 (±0.8)%/sec) compared to sea level (3.7 (±1.3)%/sec) (p=0.021 and p=0.032, respectively). There was no change from sea level in the rate of desaturation during occlusion (Sto2 downslope) at either altitude. The findings suggest that in resting skeletal muscle of acclimatizing healthy volunteers at high altitude, microvascular reactivity is reduced (Sto2 upslope after a short period of ischemia) but that oxygen consumption remains unchanged (Sto2 downslope). PMID:24067186

  8. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics.

    PubMed

    Xu, L; Cai, C B; Cui, H F; Ye, Z H; Yu, X P

    2012-12-01

    Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages was developed by Fourier transform infrared (FTIR) spectrometry combined with chemometrics. Transmittance spectra ranging from 400 to 4000 cm⁻¹ of 73 Halal and 78 non-Halal Chinese ham sausages were measured. Sample preparation involved finely grinding of samples and formation of KBr disks (under 10 MPa for 5 min). The influence of data preprocessing methods including smoothing, taking derivatives and standard normal variate (SNV) on partial least squares discriminant analysis (PLSDA) and least squares support vector machine (LS-SVM) was investigated. The results indicate removal of spectral background and baseline plays an important role in discrimination. Taking derivatives, SNV can improve classification accuracy and reduce the complexity of PLSDA. Possibly due to the loss of detailed high-frequency spectral information, smoothing degrades the model performance. For the best models, the sensitivity and specificity was 0.913 and 0.929 for PLSDA with SNV spectra, 0.957 and 0.929 for LS-SVM with second derivative spectra, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Correlation of the near-infrared spectroscopy signals with signal intensity in T(2)-weighted magnetic resonance imaging of the human masseter muscle.

    PubMed

    Kuboki, T; Suzuki, K; Maekawa, K; Inoue-Minakuchi, M; Acero, C O; Yanagi, Y; Wakasa, T; Kishi, K; Yatani, H; Clark, G T

    2001-08-01

    The purpose of this study was to compare and contrast blood volume changes transcutaneously measured using near-infrared (NIR) spectroscopy against water signal intensity changes taken from a transverse T(2)-weighted MR image of the masseter muscle in healthy human subjects before, during and after contraction. Eight healthy non-smoking males with no history of chronic muscle pain or vascular headaches participated (mean age: 23.9+/-0.6 years). The MRI data were gathered using a turbo spin echo sequence (TR: 2300 ms; TE: 90 ms; FOV: 188x300 mm; scanning time: 30 s; slice thickness: 10 mm) and the slice level was set at the mid-point between the origin and insertion of the masseter. Intramuscular haemoglobin (Hb) levels and water content of the right masseter muscle were continuously monitored for 2 min before, 30 s during and 15 min after a maximum voluntary clenching (MVC) task. Both the near-infrared and MRI data were baseline-corrected and normalized and mean levels were established and plotted. Plots of the data showed that both near-infrared-based total Hb and T(2)-weighted MRI-based signal-intensity levels clearly decreased during contraction and a clear post-contraction rebound response was evident after the contraction. The near-infrared data were found to be highly correlated with MRI-based signal-intensity data (Pearson's r=0.909, P<0.0001). In conclusion, these data provide powerful evidence that near-infrared data (total Hb), transcutaneously taken from the masseter muscle in humans, will reflect the intramuscular water signal intensity changes seen using a T(2)-weighted MRI imaging method.

  10. Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses

    DOE PAGES

    Hartig, K. C.; Colgan, J.; Kilcrease, D. P.; ...

    2015-07-30

    Here, we report on a laser-induced breakdown spectroscopy (LIBS) experiment driven by mid-infrared (2.05-μm) fs pulses, in which time-resolved emission spectra of copper were studied. Ab-initio modeling is consistent with the results of new fs measurements at 2.05 μm and traditional 800-nm fs-LIBS. Ablation by mid-infrared fs pulses results in a plasma with a lower plasma density and temperature compared to fs-LIBS performed at shorter laser wavelength. LIBS driven by mid-infrared fs pulses results in a signal-to-background ratio ~50% greater and a signal-to-noise ratio ~40% lower than fs-LIBS at near-infrared laser wavelength.

  11. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer.

    PubMed

    Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi

    2009-10-01

    After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.

  12. Cotton micronaire measurements by small portable near infrared (nir) analyzers

    USDA-ARS?s Scientific Manuscript database

    A key quality and processing parameter for cotton fiber is micronaire, which is a function of the fiber’s maturity and fineness. Near Infrared (NIR) spectroscopy has previously shown the ability to measure micronaire, primarily in the laboratory and using large, research-grade laboratory NIR instru...

  13. A systematic review of near-infrared spectroscopy in flap monitoring: Current basic and clinical evidence and prospects.

    PubMed

    Kagaya, Yu; Miyamoto, Shimpei

    2018-02-01

    Near-infrared spectroscopy (NIRS) has been reported to be a reliable non-invasive modality for free flap monitoring; however, the history of its application in flap monitoring is short, and there is no definite consensus regarding its use at present. The aim of this review is to clarify the evidence related to post-operative flap monitoring using NIRS and examine its appropriateness and usability. The PubMed and Web of Science databases were searched using the strings "flap monitoring AND near-infrared spectroscopy" and "flap monitoring AND tissue oxygen saturation," with a study period from inception to December 31, 2016. Two authors independently extracted articles and assessed the quality of the studies. Articles related to NIRS for flap perfusion monitoring were classified and selected regardless of study type. A total of 15 clinical studies and 8 animal studies were identified and reviewed. The evidence and information on various aspects of NIRS flap monitoring were summarized. The overall flap success rate was 99.5%, and the flap salvage rate was 91.1%, when measuring StO 2 at intervals of every 2 h or sooner. Single StO 2 monitoring was able to detect vascular compromise with 99.1% sensitivity and 99.9% specificity, and earlier than other monitoring methods, but additional Hb concentration monitoring was useful for avoiding false negatives and differentiating arterial and venous occlusion. NIRS can be used for flap monitoring and displays high accuracy in various situations; however, further studies are needed to take full advantage of the potential of NIRS. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Inter-individual Differences in Exercise-Induced Spatial Working Memory Improvement: A Near-Infrared Spectroscopy Study.

    PubMed

    Yamazaki, Yudai; Sato, Daisuke; Yamashiro, Koya; Tsubaki, Atsuhiro; Yamaguchi, Yui; Takehara, Nana; Maruyama, Atsuo

    2017-01-01

    Acute aerobic exercise at a mild intensity improves cognitive function. However, the response to exercise exhibits inter-individual differences, and the mechanisms underlying these differences remain unclear. The objective of this study was to determine potential factors in the brain that underlie differential responses to exercise in terms of cognitive improvement using functional near-infrared spectroscopy. Fourteen healthy subjects participated in these experiments. Participants performed a low intensity cycling exercise at 30% maximal oxygen uptake (VO 2peak ) for 10 min and performed a spatial memory task before and after exercising (5 and 30 min). The spatial memory task comprised two levels of difficulty (low: 1-dot EXERCISE, high: 3-dot EXERCISE). Cortical oxy-hemoglobin (O 2 Hb) levels were recorded using near-infrared spectroscopy during both the exercise and the spatial memory task phases. Regions of interests included the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar area (FPA). The participants were divided into two groups depending on whether they were responders (improved task reaction time) or non-responders (no improvement). Subsequently, we analyzed the group characteristics and differences in the change in O 2 Hb levels during exercise and spatial working memory tasks. Acute mild exercise significantly improved mean reaction times in the 1-dot memory task but not in the 3-dot task across the participants. In the 1-dot EXERCISE, 10 subjects were responders and four subjects were non-responders, whereas in the 3-dot EXERCISE, seven subjects were non-responders. In responders, during exercise, we found higher O 2 Hb levels in the right VLPFC response for the 1-dot memory task. Acute mild exercise caused inter-individual differences in spatial memory improvement, which were associated with changes in O 2 Hb activity in the prefrontal area during the exercise phase but not during the actual spatial

  15. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  16. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Chu, Laurie; Egami, Eiichi; Hodapp, Klaus W.; Kelly, Douglas M.; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-07-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.02 x 2.02 fields of view that are capable of either imaging or spectroscopic observations. Either of two R ~ 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over λ = 2.4 - 5.0 μm in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 - 2.3 μm) imaging observations of the 2.4 - 5.0 μm spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 - 2.0 μm spectroscopy (simultaneously with 2.4 - 5.0 μm) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.

  17. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    PubMed

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Visible-near infrared spectroscopy as a tool to improve mapping of soil properties

    NASA Astrophysics Data System (ADS)

    Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra

    2017-04-01

    Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (<2 mm) soil samples and values of measured soil properties for gridded samples (n = 174) as calibration and validation sets; (ii) estimate the precision and predictive accuracy of an empirical spectral model using (a) our own spectral library and (b) the global spectral library; (iii) support the global spectral library with obtained vis-NIR spectral data on permafrost-affected soils. The soil samples were collected from three permafrost-affected soil profiles underlain by permafrost at various depths between 23 cm to 57.5 cm below the surface (Cryosols) and one soil profile with no presence of permafrost within the upper 100 cm layer (Cambisol) in order to characterize the spatial distribution and variability of soil properties. The gridded soil samples (n = 174) were collected using an 80 cm wide grid with a mesh size of 10 cm on both axes. In addition, 300 nested soil samples were collected using a grid of 12 cm by 12 cm (25 samples per grid) from a hole of 1 cm in a diameter with a distance from the next sample of 1 cm. Due to a small amount of available soil material (< 1.5 g), 296 nested soil samples were analyzed only using vis-NIR spectroscopy. The air-dried mineral gridded soil samples (n = 174) were sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined

  19. Evaluation and diagnosis of brain death by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Boan; Zhong, Fulin; Huang, Xiaobo; Pan, Lingai; Lu, Sen; Li, Ting

    2017-02-01

    Brain death, the irreversible and permanent loss of the brain and brainstem functions, is hard to be judged precisely for some clinical reasons. The traditional diagnostic methods are time consuming, expensive and some are even dangerous. Functional near infrared spectroscopy (FNIRS), using the good scattering properties of major component of blood to NIR, is capable of noninvasive monitoring cerebral hemodynamic responses. Here, we attempt to use portable FNIRS under patients' natural state for brain death diagnosis. Ten brain death patients and seven normal subjects participated in FNIRS measurements. All of them were provided different fractional concentration of inspired oxygen (FIO2) in different time periods. We found that the concentration variation of deoxyhemoglobin concentration (Δ[Hb]) presents the trend of decrease in the both brain death patients and normal subjects with the raise of the FIO2, however, the data in the normal subjects is more significant. And the concentration variation of oxyhemoglobins concentration (Δ[HbO2]) emerges the opposite trends. Thus Δ[HbO2]/Δ[Hb] in brain death patients is significantly higher than normal subjects, and emerges the rising trend as time went on. The findings indicated the potential of FNIRS-measured hemodynamic index in diagnosing brain death.

  20. [Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans].

    PubMed

    Gao, Huiyu; Wang, Guodong; Men, Jianhua; Wang, Zhu

    2017-05-01

    To explore the potential of near-infrared reflectance( NIR)spectroscopy to determine macronutrient contents in beans. NIR spectra and analytical measurements of protein, moisture and ash were collected from 70 kinds of beans. Reference methods were used to analyze all the ground beans samples. NIR spectra on intact and ground beans samples were registered. Partial least-squares( PLS)regression models were developed with principal components analysis( PCA) to assign 49 bean accessions to a calibration data set and 21 accessions to an external validation set. For intact beans, the relative predictive determinant( RPD) values for protein and ash( 3. 67 and 3. 97, respectively) were good for screening. RPD value for moisture was only 1. 39, which was not recommended. For ground beans, the RPD values for protein, moisture and ash( 6. 63, 5. 25 and 3. 57, respectively) were good enough for screening. The protein, moisture and ash levels for intact and ground beans were all significantly correlated( P < 0. 001) between the NIR and reference method and there was no statistically significant difference in the mean with these three traits. This research demonstrates that NIR is a promising technique for simultaneous sorting ofmultiple traits in beans with no or easy sample preparation.

  1. Evaluation of cerebral ischemia using near-infrared spectroscopy with oxygen inhalation

    NASA Astrophysics Data System (ADS)

    Ebihara, Akira; Tanaka, Yuichi; Konno, Takehiko; Kawasaki, Shingo; Fujiwara, Michiyuki; Watanabe, Eiju

    2012-09-01

    Conventional methods presently used to evaluate cerebral hemodynamics are invasive, require physical restraint, and employ equipment that is not easily transportable. Therefore, it is difficult to take repeated measurements at the patient's bedside. An alternative method to evaluate cerebral hemodynamics was developed using near-infrared spectroscopy (NIRS) with oxygen inhalation. The bilateral fronto-temporal areas of 30 normal volunteers and 33 patients with cerebral ischemia were evaluated with the NIRS system. The subjects inhaled oxygen through a mask for 2 min at a flow rate of 8 L/min. Principal component analysis (PCA) was applied to the data, and a topogram was drawn using the calculated weights. NIRS findings were compared with those of single-photon-emission computed tomography (SPECT). In normal volunteers, no laterality of the PCA weights was observed in 25 of 30 cases (83%). In patients with cerebral ischemia, PCA weights in ischemic regions were lower than in normal regions. In 28 of 33 patients (85%) with cerebral ischemia, NIRS findings agreed with those of SPECT. The results suggest that transmission of the changes in systemic SpO2 were attenuated in ischemic regions. The method discussed here should be clinically useful because it can be used to measure cerebral ischemia easily, repeatedly, and noninvasively.

  2. Effects of improper source coupling in frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Noponen, T. E. J.; Kotilahti, K.; Nissilä, I.; Kajava, T.; Meriläinen, P. T.

    2010-05-01

    Currently, there is no widely used method to assess the reliability of contact between optodes and tissue in near-infrared spectroscopy (NIRS). In this study we observe a high linear dependence (R2 ~ 0.99) of the logarithmic modulation amplitude (ln(IAC)), average intensity (ln(IDC)) and phase (phi) on the source-detector distance (SDD) ranging from ~20 to 50 mm on human forehead measurements. The regression of phi is clearly reduced in measurements where light leakage occurs, mainly due to insufficient contact between the source optode and tissue. Utilizing this observation, a novel criterion to detect light leakage is developed. The criterion is applied to study the reliability of hemodynamic responses measured on the human forehead when breathing carbon dioxide-enriched air and during hyperventilation. The contrast of the signals is significantly lower in measurements which were adversely affected by light leakage. Furthermore, such unreliable signals at SDDs >= 50 mm correlate significantly (for \\rm [HbO_2] p < 0.01 and for [HbR] p < 0.001) better with the signals measured at SDDs < 20 mm. Using this method, poor contact between the source optode and tissue can be detected and corrected before the actual measurement, which enables us to avoid the acquisition of low contrast cortical signals.

  3. Continuous correction of differential path length factor in near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Talukdar, Tanveer; Moore, Jason H.; Diamond, Solomon G.

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method.

  4. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  5. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef.

    PubMed

    Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P; O'Donnell, Colm P

    2018-05-01

    This work aims to develop a rapid analytical technique to predict beef sensory attributes using Raman spectroscopy (RS) and to investigate correlations between sensory attributes using chemometric analysis. Beef samples (n = 72) were obtained from young dairy bulls (Holstein-Friesian and Jersey×Holstein-Friesian) slaughtered at 15 and 19 months old. Trained sensory panel evaluation and Raman spectral data acquisition were both carried out on the same longissimus thoracis muscles after ageing for 21 days. The best prediction results were obtained using a Raman frequency range of 1300-2800 cm -1 . Prediction performance of partial least squares regression (PLSR) models developed using all samples were moderate to high for all sensory attributes (R 2 CV values of 0.50-0.84 and RMSECV values of 1.31-9.07) and were particularly high for desirable flavour attributes (R 2 CVs of 0.80-0.84, RMSECVs of 4.21-4.65). For PLSR models developed on subsets of beef samples i.e. beef of an identical age or breed type, significant improvements on prediction performances were achieved for overall sensory attributes (R 2 CVs of 0.63-0.89 and RMSECVs of 0.38-6.88 for each breed type; R 2 CVs of 0.52-0.89 and RMSECVs of 0.96-6.36 for each age group). Chemometric analysis revealed strong correlations between sensory attributes. Raman spectroscopy combined with chemometric analysis was demonstrated to have high potential as a rapid and non-destructive technique to predict the sensory quality traits of young dairy bull beef. Copyright © 2018. Published by Elsevier Ltd.

  6. Nondestructive prediction of the drug content of an aspirin suppository by near-infrared spectroscopy.

    PubMed

    Otsuka, Eri; Abe, Hiroyuki; Aburada, Masaki; Otsuka, Makoto

    2010-07-01

    A suppository dosage form has a rapid effect on therapeutics, because it dissolves in the rectum, is absorbed in the bloodstream, and passes the hepatic metabolism. However, the dosage form is unstable, because a suppository is made in a semisolid form, and so it is not easy to mix the bulk drug powder in the base. This article describes a nondestructive method of determining the drug content of suppositories using near-infrared spectrometry (NIR) combined with chemometrics. Suppositories (aspirin content: 1.8, 2.7, 4.5, 7.3, and 9.1%, w/w) were produced by mixing an aspirin bulk powder with hard fat at 50 degrees C and pouring the melt mixture into a plastic mold (2.25 mL). NIR spectra of 12 calibration and 12 validation sample sets were recorded 5 times. A total of 60 spectral data were used as a calibration set to establish a calibration model to predict drug content with a partial least-squares (PLS) regression analysis. NIR data of the suppository samples were divided into two wave number ranges, 4000-12500 cm(-1) (LR), and 5900-6300 cm(-1) (SR). Calibration models for the aspirin content of the suppositories were calculated based on LR and SR ranges of second-derivative NIR spectra using PLS. The models for LR and SR consisted of five and one principal components (PC), respectively. The plots of predicted values against actual values gave a straight line with regression coefficient constants of 0.9531 and 0.9749, respectively. The mean bias and mean accuracy of the calibration models were calculated based on the SR of variation data sets, and were lower than those of LR, respectively. Limiting the wave number of spectral data sets is useful to help understand the calibration model because of noise cancellation and to measure objective functions.

  7. Does oral care contribute to brain activation?: One case of functional near-infrared spectroscopy study in patients with a persistent disturbance of consciousness

    PubMed Central

    Fujii, Wataru; Kanamori, Daisuke; Nagata, Chisato; Sakaguchi, Kiyomi; Watanabe, Risa

    2014-01-01

    Key Clinical Message We used functional near-infrared spectroscopy (fNIRS) to measure cerebral blood flow during oral care in a patient with persistent disturbance of consciousness. We experienced that cerebral blood flow to frontal area increased during oral care, suggesting that oral care may have a potential role in rehabilitation for the brain. PMID:25356272

  8. Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets Using Transmission Raman and Near-Infrared (NIR) Spectroscopy.

    PubMed

    Sparén, Anders; Hartman, Madeleine; Fransson, Magnus; Johansson, Jonas; Svensson, Olof

    2015-05-01

    Raman spectroscopy can be an alternative to near-infrared spectroscopy (NIR) for nondestructive quantitative analysis of solid pharmaceutical formulations. Compared with NIR spectra, Raman spectra have much better selectivity, but subsampling was always an issue for quantitative assessment. Raman spectroscopy in transmission mode has reduced this issue, since a large volume of the sample is measured in transmission mode. The sample matrix, such as particle size of the drug substance in a tablet, may affect the Raman signal. In this work, matrix effects in transmission NIR and Raman spectroscopy were systematically investigated for a solid pharmaceutical formulation. Tablets were manufactured according to an experimental design, varying the factors particle size of the drug substance (DS), particle size of the filler, compression force, and content of drug substance. All factors were varied at two levels plus a center point, except the drug substance content, which was varied at five levels. Six tablets from each experimental point were measured with transmission NIR and Raman spectroscopy, and their concentration of DS was determined for a third of those tablets. Principal component analysis of NIR and Raman spectra showed that the drug substance content and particle size, the particle size of the filler, and the compression force affected both NIR and Raman spectra. For quantitative assessment, orthogonal partial least squares regression was applied. All factors varied in the experimental design influenced the prediction of the DS content to some extent, both for NIR and Raman spectroscopy, the particle size of the filler having the largest effect. When all matrix variations were included in the multivariate calibrations, however, good predictions of all types of tablets were obtained, both for NIR and Raman spectroscopy. The prediction error using transmission Raman spectroscopy was about 30% lower than that obtained with transmission NIR spectroscopy.

  9. [Study on the detection of active ingredient contents of Paecilomyces hepiali mycelium via near infrared spectroscopy].

    PubMed

    Teng, Wei-Zhuo; Song, Jia; Meng, Fan-Xin; Meng, Qing-Fan; Lu, Jia-Hui; Hu, Shuang; Teng, Li-Rong; Wang, Di; Xie, Jing

    2014-10-01

    Partial least squares (PLS) and radial basis function neural network (RBFNN) combined with near infrared spectros- copy (NIR) were applied to develop models for cordycepic acid, polysaccharide and adenosine analysis in Paecilomyces hepialid fermentation mycelium. The developed models possess well generalization and predictive ability which can be applied for crude drugs and related productions determination. During the experiment, 214 Paecilomyces hepialid mycelium samples were obtained via chemical mutagenesis combined with submerged fermentation. The contents of cordycepic acid, polysaccharide and adenosine were determined via traditional methods and the near infrared spectroscopy data were collected. The outliers were removed and the numbers of calibration set were confirmed via Monte Carlo partial least square (MCPLS) method. Based on the values of degree of approach (Da), both moving window partial least squares (MWPLS) and moving window radial basis function neural network (MWRBFNN) were applied to optimize characteristic wavelength variables, optimum preprocessing methods and other important variables in the models. After comparison, the RBFNN, RBFNN and PLS models were developed successfully for cordycepic acid, polysaccharide and adenosine detection, and the correlation between reference values and predictive values in both calibration set (R2c) and validation set (R2p) of optimum models was 0.9417 and 0.9663, 0.9803 and 0.9850, and 0.9761 and 0.9728, respectively. All the data suggest that these models possess well fitness and predictive ability.

  10. Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.; Hargens, A. R.

    1997-01-01

    Variations in the levels of muscle hemoglobin and of myoglobin oxygen saturation can be detected non-invasively with near-infrared spectroscopy. This technique could be applied to the diagnosis of chronic compartment syndrome, in which invasive testing has shown increased intramuscular pressure associated with ischemia and pain during exercise. We simulated chronic compartment syndrome in ten healthy subjects (seven men and three women) by applying external compression, through a wide inflatable cuff, to increase the intramuscular pressure in the anterior compartment of the leg. The tissue oxygenation of the tibialis anterior muscle was measured with near-infrared spectroscopy during gradual inflation of the cuff to a pressure of forty millimeters of mercury (5.33 kilopascals) during fourteen minutes of cyclic isokinetic dorsiflexion and plantar flexion of the ankle. The subjects exercised with and without external compression. The data on tissue oxygenation for each subject then were normalized to a scale of 100 per cent (the baseline value, or the value at rest) to 0 per cent (the physiological minimum, or the level of oxygenation achieved by exercise to exhaustion during arterial occlusion of the lower extremity). With external compression, tissue oxygenation declined at a rate of 1.4 +/- 0.3 per cent per minute (mean and standard error) during exercise. After an initial decrease at the onset, tissue oxygenation did not decline during exercise without compression. The recovery of tissue oxygenation after exercise was twice as slow with compression (2.5 +/- 0.6 minutes) than it was without the use of compression (1.3 +/- 0.2 minutes).

  11. A modern approach to the authentication and quality assessment of thyme using UV spectroscopy and chemometric analysis.

    PubMed

    Gad, Haidy A; El-Ahmady, Sherweit H; Abou-Shoer, Mohamed I; Al-Azizi, Mohamed M

    2013-01-01

    Recently, the fields of chemometrics and multivariate analysis have been widely implemented in the quality control of herbal drugs to produce precise results, which is crucial in the field of medicine. Thyme represents an essential medicinal herb that is constantly adulterated due to its resemblance to many other plants with similar organoleptic properties. To establish a simple model for the quality assessment of Thymus species using UV spectroscopy together with known chemometric techniques. The success of this model may also serve as a technique for the quality control of other herbal drugs. The model was constructed using 30 samples of authenticated Thymus vulgaris and challenged with 20 samples of different botanical origins. The methanolic extracts of all samples were assessed using UV spectroscopy together with chemometric techniques: principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and hierarchical cluster analysis (HCA). The model was able to discriminate T. vulgaris from other Thymus, Satureja, Origanum, Plectranthus and Eriocephalus species, all traded in the Egyptian market as different types of thyme. The model was also able to classify closely related species in clusters using PCA and HCA. The model was finally used to classify 12 commercial thyme varieties into clusters of species incorporated in the model as thyme or non-thyme. The model constructed is highly recommended as a simple and efficient method for distinguishing T. vulgaris from other related species as well as the classification of marketed herbs as thyme or non-thyme. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Ogura, Takashi; Shinzawa, Hideyuki; Nishida, Masakazu; Kanematsu, Wataru

    2016-11-01

    In order to improve the mechanical properties of Polyhydroxyalkanoate (PHA), the polycaprolactone (PCL) pellet was blended with a PHA-based pellet. The effects of the mixing ratio on the tensile properties, Young's modulus, tensile strength and elongation at break, were examined using a universal testing machine. When the mixing ration of PCL increased to 50%, the elongation at break of the polymer blend increased and the gauge area of tensile test specimens whitened and became porous. In order to understand this behavior, a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy was applied to the mechanical deformation of the polymer blends during static tensile tests. Two-dimensional (2D) correlation of NIR spectra was then examined. It was found from peaks of ethyl group or methyl group that PCL was preferentially deformed. The difference in the deformation behavior is thought to be the cause of the porous structure.

  13. Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ting; Gong, Hui; Luo, Qingming

    2011-04-01

    Using the visible Chinese human data set, which faithfully represents human anatomy, we visualize the light propagation in the head in detail based on Monte Carlo simulation. The simulation is verified to agree with published experimental results in terms of a differential path-length factor. The spatial sensitivity profile turns out to seem like a fat tropical fish with strong distortion along the folding cerebral surface. The sensitive brain region covers the gray matter and extends to the superficial white matter, leading to a large penetration depth (>3 cm). Finally, the optimal source-detector separation is suggested to be narrowed down to 3-3.5 cm, while the sensitivity of the detected signal to brain activation reaches the peak of 8%. These results indicate that the cerebral cortex folding geometry actually has substantial effects on light propagation, which should be necessarily considered for applications of functional near-infrared spectroscopy.

  14. Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics.

    PubMed

    Zhang, Chu; Shen, Tingting; Liu, Fei; He, Yong

    2017-12-31

    We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied.

  15. Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics

    PubMed Central

    Zhang, Chu; Shen, Tingting

    2017-01-01

    We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied. PMID:29301228

  16. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    PubMed

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.

    PubMed

    Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C

    2007-03-28

    In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.

  18. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals.

    PubMed

    Fox, Glen; Manley, Marena

    2014-01-30

    Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.

  19. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    USDA-ARS?s Scientific Manuscript database

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  20. Different hemodynamic response of prefontal area for men and women to mental arithmetic: a near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Yang, Hongyu; Zhou, Zhenyu; Liu, Yun; Ruan, Zongcai; Gong, Hui; Luo, Qingming; Lu, Zuhong

    2007-05-01

    A 16-channel near-infrared spectroscopy (NIRS) was used to measure concentration changes of oxygenated and deoxygenated hemoglobin (oxy-HB and deoxy-HB) in prefrontal area while the subjects were performing mental works. Thirty healthy college participants were administered two mental arithmetic tasks while the changes of concentration on oxy-HB and deoxy-HB were measured. Oxy-HB increased during the mental works, and the increases of oxy-HB were greater in male subjects than in female subjects during the difficult task. These results suggest that NIRS is sensitive to evaluate the oxy-HB activity of prefrontal cortex during mental works.