Sample records for chemoreceptor trigger zone

  1. Pericardium-6 Acupressure for the Prevention of Postoperative Nausea and Vomiting

    DTIC Science & Technology

    1999-10-01

    in turn desensitizes the chemoreceptor trigger zone in the brain. This desensitization would prevent PONV caused by intravenous or Pericardium-6...indirect stimulation can occur from another center, the chemoreceptor trigger zone (CTZ) (Haynes & Bailey, 1996). The CTZ is located in the area...of the brain sensing vision and taste (Langer, 1998). For example, distention of the gastrointestinal tract initiates afferent impulses that reach

  2. Cisplatin-Induced Conditioned Taste Aversion: Attenuation by Dexamethasone but not Zacopride or GR38032F

    DTIC Science & Technology

    1992-01-01

    SR2-1 Cisplatin-induced conditioned taste aversion: ateuto by dexamethasone but not zacopride or GR38032F Nm I- Paul C Mele, John R. McDonough, David...to 5-H1’, receptor blockade. 5-HT., receptor antagonists; Zacopridc: GR38032F; Desamethasone: Cisplatin: Taste aversion (conditioned) I. Introductlon...intake) was used as the area known as the chemoreceptor trigger zone (Borri- index of the CTA. son, 1974). Moreover. the findings that rats, ferrets

  3. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  4. Cyclic vomiting associated with excessive dopamine in Riley-day syndrome.

    PubMed

    Norcliffe-Kaufmann, Lucy J; Axelrod, Felicia B; Kaufmann, Horacio

    2013-02-01

    To analyze the neurochemical profile during the recurrent attacks of nausea and vomiting in patients with Riley-day syndrome. One of the most disabling features of patients with Riley-day syndrome are recurrent attacks of severe nausea/retching/vomiting accompanied by hypertension, tachycardia, and skin flushing, usually triggered by emotional or other stresses. We monitored blood pressure and heart rate and measured plasma catecholamines during typical dysautonomic crises triggered by emotionally charged situations. For comparison, measurements were repeated at follow-up after the symptoms had resolved and the patients were feeling calm and well. During a typical attack, patients were hypertensive and tachycardic. In all patients, circulating levels of norepinephrine (P < 0.002) and dopamine (P < 0.007) increased significantly. Activation of dopamine receptors in the chemoreceptor trigger zone may explain the cyclic nausea/retching/vomiting of patients with Riley-day syndrome.

  5. Successful control of intractable nausea and vomiting requiring combined ondansetron and haloperidol in a patient with advanced cancer.

    PubMed

    Cole, R M; Robinson, F; Harvey, L; Trethowan, K; Murdoch, V

    1994-01-01

    Chemically induced nausea and vomiting is a common symptom of advanced cancer effected through stimulation of dopamine (D2) or serotonin (5-HT3) receptors located in the chemoreceptor trigger zone (CTZ). These may be blocked by therapeutic doses of haloperidol and ondansetron, respectively. This case, reporting on a single patient acting as her own control, establishes that combined blockade of these receptors is sometimes required to relieve intractable nausea and vomiting. It also demonstrates the value of clinical review, audit of care, and quality assurance in the palliative care setting.

  6. Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure

    EPA Science Inventory

    The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome ...

  7. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration

    PubMed Central

    Finger, Thomas E.; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T.; Alimohammadi, Hessamedin; Silver, Wayne L.

    2003-01-01

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R “bitter-taste” receptors and α-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates. PMID:12857948

  8. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.

    PubMed

    Finger, Thomas E; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T; Alimohammadi, Hessamedin; Silver, Wayne L

    2003-07-22

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R "bitter-taste" receptors and alpha-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates.

  9. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network.

    PubMed

    Segers, L S; Nuding, S C; Ott, M M; Dean, J B; Bolser, D C; O'Connor, R; Morris, K F; Lindsey, B G

    2015-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons. Copyright © 2015 the American Physiological Society.

  10. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network

    PubMed Central

    Segers, L. S.; Nuding, S. C.; Ott, M. M.; Dean, J. B.; Bolser, D. C.; O'Connor, R.; Morris, K. F.

    2014-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that “tonic” pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons. PMID:25343784

  11. The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): progressive responses to prolonged hypoxia.

    PubMed

    Florindo, Luiz H; Leite, Cléo A C; Kalinin, Ana L; Reid, Stephen G; Milsom, William K; Rantin, F Tadeu

    2006-05-01

    The present study examined the role of branchial and orobranchial O(2) chemoreceptors in the cardiorespiratory responses, aquatic surface respiration (ASR), and the development of inferior lip swelling in tambaqui during prolonged (6 h) exposure to hypoxia. Intact fish (control) and three groups of denervated fish (bilateral denervation of cranial nerves IX+X (to the gills), of cranial nerves V+VII (to the orobranchial cavity) or of cranial nerves V alone), were exposed to severe hypoxia (Pw(O)2=10 mmHg) for 360 min. Respiratory frequency (fr) and heart rate (fh) were recorded simultaneously with ASR. Intact (control) fish increased fr, ventilation amplitude (V(AMP)) and developed hypoxic bradycardia in the first 60 min of hypoxia. The bradycardia, however, abated progressively and had returned to normoxic levels by the last hour of exposure to hypoxia. The changes in respiratory frequency and the hypoxic bradycardia were eliminated by denervation of cranial nerves IX and X but were not affected by denervation of cranial nerves V or V+VII. The V(AMP) was not abolished by the various denervation protocols. The fh in fish with denervation of cranial nerves V or V+VII, however, did not recover to control values as in intact fish. After 360 min of exposure to hypoxia only the intact and IX+X denervated fish performed ASR. Denervation of cranial nerve V abolished the ASR behavior. However, all (control and denervated (IX+X, V and V+VII) fish developed inferior lip swelling. These results indicate that ASR is triggered by O(2) chemoreceptors innervated by cranial nerve V but that other mechanisms, such as a direct effect of hypoxia on the lip tissue, trigger lip swelling.

  12. THE REGULATION ROLE OF CAROTID BODY PERIPHERAL CHEMORECEPTORS IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CONDITIONS.

    PubMed

    Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir

    2016-11-01

    The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.

  13. The neuroanatomy of vomiting in man: association of projectile vomiting with a solitary metastasis in the lateral tegmentum of the pons and the middle cerebellar peduncle.

    PubMed Central

    Baker, P C; Bernat, J L

    1985-01-01

    Animal studies have indicated a "vomiting center" situated in the dorsal portion of the lateral reticular formation of the medulla at the level of the dorsal nucleus of the vagus. There is also a chemoreceptor trigger zone in the floor of the fourth ventricle in the area postrema which influences the vomiting center. A 63 year old man with a three year history of metastatic malignant melanoma presented with nausea, projectile vomiting, gait ataxia and diplopia associated with horizontal and vertical nystagmus. CT scan showed a solitary brainstem metastasis without hydrocephalus and he was treated with radiotherapy with resolution of his vomiting after four weeks. At post mortem three months later a metastasis was found in the right middle cerebellar peduncle and lateral tegmentum of the pons; there was no pathological change in the area of the vomiting center or area postrema. It is postulated that this lesion caused projectile vomiting because of involvement of either afferent projections to the vomiting center. The neuroanatomy of vomiting is discussed. Images PMID:4078583

  14. Effects of droperidol on activity of carotid body chemoreceptors in cat.

    PubMed Central

    Aminoff, M J; Jaffe, R A; Sampson, S R; Vidruk, E H

    1978-01-01

    1 The effect of droperidol on the spontaneous activity of carotid body chemoreceptors and on their response to various stimuli was studied in 21 anaesthetized, paralyzed and artificially ventilated cats. Carotid body blood flow was controlled with a perfusion pump, and drugs were injected into the perfusion circuit. 2 In low doses, droperidol transiently increased the rate of spontaneous chemoreceptor activity, but in higher doses it depressed chemoreceptor activity after an initial stimulation. 3 Droperidol reduced or abolished the normal increase in chemoreceptor activity produced by stagnant asphyxia. This effect did not depend solely on the ability of droperidol to suppress spontaneously occurring impulses. Chemoreceptor responses to sodium cyanide, and to dopamine were also inhibited. 4 Dopamine antagonists other than droperidol were also studied for their effect on chemocreceptor activity. Chlorpromazine depressed spontaneous chemoreceptor activity and also reduced the chemoreceptor responses to sodium cyanide and dopamine, as did pimozide. The effects of these dopamine antagonists were much briefer and less marked than those of droperiodol. 5 Although the influence that we have shown droperidol to have on peripheral chemoreceptor activity has an uncertain basis, it may have important implications in human and veterinary medicine. PMID:667417

  15. Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2009-01-01

    For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562

  16. Control of respiration in fish, amphibians and reptiles.

    PubMed

    Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T

    2010-05-01

    Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  17. Tuning the chemosensory window

    PubMed Central

    Zhou, Shanshan; Mackay, Trudy FC

    2010-01-01

    Accurate perception of chemical signals from the environment is critical for the fitness of most animals. Drosophila melanogaster experiences its chemical environment through families of chemoreceptors that include olfactory receptors, gustatory receptors and odorant binding proteins. Its chemical environment, however, changes during its life cycle and the interpretation of chemical signals is dependent on dynamic social and physical surroundings. Phenotypic plasticity of gene expression of the chemoreceptor repertoire allows flies to adjust the chemosensory window through which they “view” their world and to modify the ensemble of expressed chemoreceptor proteins in line with their developmental and physiological state and according to their needs to locate food and oviposition sites under different social and physical environmental conditions. Furthermore, males and females differ in their expression profiles of chemoreceptor genes. Thus, each sex experiences its chemical environment via combinatorial activation of distinct chemoreceptor ensembles. The remarkable phenotypic plasticity of the chemoreceptor repertoire raises several fundamental questions. What are the mechanisms that translate environmental cues into regulation of chemoreceptor gene expression? How are gustatory and olfactory cues integrated perceptually? What is the relationship between ensembles of odorant binding proteins and odorant receptors? And, what is the significance of co-regulated chemoreceptor transcriptional networks? PMID:20305396

  18. The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors in the nasal mucosa affecting respiration and pulse interval in the dog

    PubMed Central

    Angell-James, Jennifer E.; Daly, M. de Burgh

    1973-01-01

    1. The effects on respiration and pulse interval of stimulation of the carotid body chemoreceptors before, during and after stimulation of receptors in the nose have been studied in the anaesthetized dog. 2. Stimulation of a carotid body by infusion of cyanide into the ipsi-lateral common carotid artery causes hyperpnoea and either an increase, decrease or no change in pulse interval. 3. Excitation of receptors in the nasal mucosa leads to reflex apnoea or a reduction in breathing, and an increase in pulse interval. 4. When the carotid bodies are excited by the same dose of cyanide during stimulation of the nasal mucosa, the chemoreceptor-respiratory response is abolished or reduced in size compared with the control effect. On the other hand, the chemoreceptor-cardio-inhibitory response is considerably enhanced. 5. The potentiated cardio-inhibitory response of combined chemoreceptor and nasal stimulation could not be accounted for by the change in pulmonary ventilation, arterial PO2 or PCO2, or mean arterial blood pressure. 6. These results indicate that excitation of the nasal reflex inhibits the chemoreceptor-respiratory reflex response but facilitates the chemoreceptor-cardio-inhibitory reflex response. The possible sites of these interactions between the nasal and chemoreceptor reflexes are discussed. PMID:4689961

  19. Origins of chemoreceptor curvature sorting in Escherichia coli

    PubMed Central

    Draper, Will; Liphardt, Jan

    2017-01-01

    Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223

  20. Phylogenetic and Protein Sequence Analysis of Bacterial Chemoreceptors.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2018-01-01

    Identifying chemoreceptors in sequenced bacterial genomes, revealing their domain architecture, inferring their evolutionary relationships, and comparing them to chemoreceptors of known function become important steps in genome annotation and chemotaxis research. Here, we describe bioinformatics procedures that enable such analyses, using two closely related bacterial genomes as examples.

  1. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  2. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  3. Evaluating the Importance of the Carotid Chemoreceptors in Controlling Breathing during Exercise in Man

    PubMed Central

    Parkes, M. J.

    2013-01-01

    Only the carotid chemoreceptors stimulate breathing during hypoxia in Man. They are also ideally located to warn if the brain's oxygen supply falls, or if hypercapnia occurs. Since their discovery ~80 years ago stimulation, ablation, and recording experiments still leave 3 substantial difficulties in establishing how important the carotid chemoreceptors are in controlling breathing during exercise in Man: (i) they are in the wrong location to measure metabolic rate (but are ideally located to measure any mismatch), (ii) they receive no known signal during exercise linking them with metabolic rate and no overt mismatch signals occur and (iii) their denervation in Man fails to prevent breathing matching metabolic rate in exercise. New research is needed to enable recording from carotid chemoreceptors in Man to establish whether there is any factor that rises with metabolic rate and greatly increases carotid chemoreceptor activity during exercise. Available evidence so far in Man indicates that carotid chemoreceptors are either one of two mechanisms that explain breathing matching metabolic rate or have no importance. We still lack key experimental evidence to distinguish between these two possibilities. PMID:24236297

  4. Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure

    PubMed Central

    Hazari, Mehdi S.; Farraj, Aimen K.

    2016-01-01

    The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro-and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems. PMID:25123706

  5. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity.

    PubMed

    Gomez-Niño, A; Agapito, M T; Obeso, A; Gonzalez, C

    2009-01-01

    Low oxygen sensing in chemoreceptor cells involves the inhibition of specific plasma membrane K(+) channels, suggesting that mitochondria-derived reactive oxygen species (ROS) link hypoxia to K(+) channel inhibition, subsequent cell depolarization and activation of neurotransmitter release. We have used several mitochondrial poisons, alone and in combination with the antioxidant N-acetylcysteine (NAC), and quantify their capacity to alter GSH/GSSG levels and glutathione redox potential (E(GSH)) in rat diaphragm. Selected concentrations of mitochondrial poisons with or without NAC were tested for their capacity to activate neurotransmitter release in chemoreceptor cells and to alter ATP levels in intact rat carotid body (CB). We found that rotenone (1 microM), antimycin A (0.2 microg/ml) and sodium azide (5mM) decreased E(GSH); NAC restored E(GSH) to control values. At those concentrations mitochondrial poisons activated neurotransmitter release from CB chemoreceptor cells and decreased CB ATP levels, NAC being ineffective to modify these responses. Additional experiments with 3-nitroprionate (5mM), lower concentrations of rotenone and dinitrophenol revealed variable relationships between E(GSH) and chemoreceptor cell neurotransmitter release responses and ATP levels. These findings indicate a lack of correlation between mitochondrial-generated modifications of E(GSH) and chemoreceptor cells activity. This lack of correlation renders unlikely that alteration of mitochondrial production of ROS is the physiological pathway chemoreceptor cells use to signal hypoxia.

  6. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity.

    PubMed

    Janes, Tara A; Xu, Fenglian; Syed, Naweed I

    2015-07-01

    Respiratory behaviour relies critically upon sensory feedback from peripheral oxygen chemoreceptors. During environmental or systemic hypoxia, chemoreceptor input modulates respiratory central pattern generator activity to produce reflex-based increases in respiration and also shapes respiratory plasticity over longer timescales. The best-studied oxygen chemoreceptors are undoubtedly the mammalian carotid bodies; however, questions remain regarding this complex organ's role in shaping respiration in response to varying oxygen levels. Furthermore, many taxa possess distinct oxygen chemoreceptors located within the lungs, airways and cardiovasculature, but the functional advantage of multiple chemoreceptor sites is unclear. In this study, it is demonstrated that a distributed network of peripheral oxygen chemoreceptors exists in Lymnaea stagnalis and significantly modulates aerial respiration. Specifically, Lymnaea breath frequency and duration represent parameters that are shaped by interactions between hypoxic severity and its time-course. Using a combination of behaviour and electrophysiology approaches, the chemosensory pathways underlying hypoxia-induced changes in breath frequency/duration were explored. The current findings demonstrate that breath frequency is uniquely modulated by the known osphradial ganglion oxygen chemoreceptors during moderate hypoxia, while a newly discovered area of pneumostome oxygen chemoreception serves a similar function specifically during more severe hypoxia. Together, these findings suggest that multiple oxygen chemosensory sites, each with their own sensory and modulatory properties, act synergistically to form a functionally distributed network that dynamically shapes respiration in response to changing systemic or environmental oxygen levels. These distributed networks may represent an evolutionarily conserved strategy vis-à-vis respiratory adaptability and have significant implications for the understanding of fundamental respiratory control systems. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Membrane curvature and the Tol-Pal complex determine polar localization of the chemoreceptor Tar in E. coli.

    PubMed

    Saaki, Terrens N V; Strahl, Henrik; Hamoen, Leendert W

    2018-02-20

    Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years different mechanisms have been put forward to explain this polar localization; from stochastic clustering, membrane curvature driven localization, interactions with the Tol-Pal complex, to nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterised by strong membrane curvature. Chemoreceptors, like Tar, form trimer-of-dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favourable as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or cell poles. These findings favour a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex. Importance Bacteria have exquisite mechanisms to sense and to adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli , and found that membrane curvature at cell division sites and the Tol-Pal protein complex, localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell. Copyright © 2018 American Society for Microbiology.

  8. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia

    PubMed Central

    Powell, Frank L.; Bisgard, Gerald E.; Blain, Gregory M.; Poulin, Marc J.; Smith, Curtis A.

    2013-01-01

    During sojourn to high altitudes, progressive time-dependent increases occur in ventilation and in sympathetic nerve activity over several days, and these increases persist upon acute restoration of normoxia. We discuss evidence concerning potential mediators of these changes, including the following: 1) correction of alkalinity in cerebrospinal fluid; 2) increased sensitivity of carotid chemoreceptors; and 3) augmented translation of carotid chemoreceptor input (at the level of the central nervous system) into increased respiratory motor output via sensitization of hypoxic sensitive neurons in the central nervous system and/or an interdependence of central chemoreceptor responsiveness on peripheral chemoreceptor sensory input. The pros and cons of chemoreceptor sensitization and cardiorespiratory acclimatization to hypoxia and intermittent hypoxemia are also discussed in terms of their influences on arterial oxygenation, the work of breathing, sympathoexcitation, systemic blood pressure, and exercise performance. We propose that these adaptive processes may have negative implications for the cardiovascular health of patients with sleep apnea and perhaps even for athletes undergoing regimens of “sleep high-train low”! PMID:24371017

  9. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia.

    PubMed

    Dempsey, Jerome A; Powell, Frank L; Bisgard, Gerald E; Blain, Gregory M; Poulin, Marc J; Smith, Curtis A

    2014-04-01

    During sojourn to high altitudes, progressive time-dependent increases occur in ventilation and in sympathetic nerve activity over several days, and these increases persist upon acute restoration of normoxia. We discuss evidence concerning potential mediators of these changes, including the following: 1) correction of alkalinity in cerebrospinal fluid; 2) increased sensitivity of carotid chemoreceptors; and 3) augmented translation of carotid chemoreceptor input (at the level of the central nervous system) into increased respiratory motor output via sensitization of hypoxic sensitive neurons in the central nervous system and/or an interdependence of central chemoreceptor responsiveness on peripheral chemoreceptor sensory input. The pros and cons of chemoreceptor sensitization and cardiorespiratory acclimatization to hypoxia and intermittent hypoxemia are also discussed in terms of their influences on arterial oxygenation, the work of breathing, sympathoexcitation, systemic blood pressure, and exercise performance. We propose that these adaptive processes may have negative implications for the cardiovascular health of patients with sleep apnea and perhaps even for athletes undergoing regimens of "sleep high-train low"!

  10. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  11. Role of the carotid body chemoreceptors in baroreflex control of blood pressure during hypoglycaemia in humans

    PubMed Central

    Limberg, Jacqueline K; Taylor, Jennifer L; Dube, Simmi; Basu, Rita; Basu, Ananda; Joyner, Michael J; Wehrwein, Erica A

    2014-01-01

    Activation of the carotid body chemoreceptors with hypoxia alters baroreceptor mediated responses. We aimed to examine whether this relationship can be translated to other chemoreceptor stimuli (i.e. hypoglycaemia) and hypothesized: 1) activation of the carotid body chemoreceptors with hypoglycaemia would reduce spontaneous cardiac baroreflex sensitivity (sCBRS) in healthy humans and, 2) desensitization of the carotid chemoreceptors with hyperoxia would restore sCBRS to baseline levels during hypoglycaemia. Ten young healthy adults completed two 180-min hyperinsulinaemic (2 mU.kg FFM−1.min−1), hypoglycaemic (~3.2 µmol.mL−1) clamps, separated by at least one week and randomized to normoxia (PaO2 122±10 mmHg) or hyperoxia (PaO2 424±123 mmHg; to blunt activation of the carotid body glomus cells). Changes in heart rate, blood pressure, plasma catecholamines, heart rate variability (HRV), and sCBRS were assessed. During hypoglycaemia, HRV and sCBRS were reduced (p<0.05) and the baroreflex working range was shifted to higher heart rates. When hyperoxia was superimposed on hypoglycaemia, there was a greater reduction in blood pressure and a blunted rise in heart rate when compared to normoxic conditions (p<0.05); however, there was no detectable effect of hyperoxia on sCBRS or HRV during hypoglycaemia (p>0.05). In summary, hypoglycaemia-mediated changes in HRV and sCBRS cannot be exclusively attributed to the carotid chemoreceptors; however, the chemoreceptors appear to play a role in resetting the baroreflex working range during hypoglycaemia. PMID:24414173

  12. Hypothalamic modulation of the arterial chemoreceptor reflex in the anaesthetized cat: role of the nucleus tractus solitarii.

    PubMed Central

    Silva-Carvalho, L; Dawid-Milner, M S; Goldsmith, G E; Spyer, K M

    1995-01-01

    1. There is evidence in the literature of a mutual facilitatory interaction between the arterial chemoreceptor reflex and the alerting stage of the defence reaction, particularly in relation to the patterning of cardiorespiratory activity. The present study has been designed to test the hypothesis that a portion of this interaction involves synaptic interactions within the nucleus tractus solitarii (NTS). 2. The study has involved an analysis of the effective interactions between the stimulation of the arterial chemoreceptors and the hypothalamic defence area (HDA) on the activity of NTS neurones recorded in anaesthetized, paralysed and artificially ventilated cats. 3. A group of eighteen NTS neurones was classified as chemosensitive, on the basis of displaying EPSPs on sinus nerve stimulation (SN) and their failure to show an excitatory response to baroreceptor stimulation. Thirteen of these neurones displayed pronounced excitatory responses to chemoreceptor stimulation. In sixteen of these neurones HDA stimulation elicited an EPSP; in four of these sixteen neurones this early EPSP was followed by an IPSP. In the remaining two (of 18) neurones HDA stimulation provoked no obvious synaptic response but facilitated the efficacy of both chemoreceptor inputs and SN stimulation. 4. Neurones shown to receive convergent inputs from the arterial chemoreceptors (and SN stimulation) and HDA, often displayed excitatory responses to stimulation of other peripheral inputs. Vagally evoked EPSPs were observed in nine neurones, SLN-evoked responses in seven neurones and aortic nerve-evoked EPSPs in three neurones. 5. The organization of these synaptic interactions is discussed and these data are used to explain the pattern of interaction between chemoreceptor, baroreceptor and HDA inputs within the NTS. Conclusions are drawn regarding the functional role of different classes of NTS neurone, based on the findings in this and the accompanying two papers. PMID:8544136

  13. Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli

    PubMed Central

    Sampson, S. R.

    1971-01-01

    1. Effects of mecamylamine on the spontaneous discharge rate of afferent fibres of carotid body chemoreceptors in vivo and their responses to ACh, NaCN, HCl and hypoxia were studied in sixteen cats. 2. Cats were anaesthetized with sodium pentobarbitone, paralysed with gallamine triethiodide and artificially ventilated. Chemoreceptor excitants were injected into the common carotid artery; mecamylamine was given intravenously. 3. Mecamylamine, 230 μg/kg or greater, failed to diminish either the rate of spontaneous discharge of carotid body chemoreceptors at high arterial oxygen tensions (greater than 130 mm Hg), or the responses of these receptors to NaCN (0·5-25 μg), HCl or hypoxic blood. 4. Responses of chemoreceptor afferent fibres to ACh (1·0-50 μg) in the same preparations were either completely abolished or considerably reduced by mecamylamine. 5. These data do not support the hypothesis of a cholinergic mechanism for the initiation of chemosensory discharges in the carotid body, either at rest or in response to stimuli such as NaCN, acid or hypoxia. PMID:5557066

  14. Conformational suppression of inter-receptor signaling defects

    PubMed Central

    Ames, Peter; Parkinson, John S.

    2006-01-01

    Motile bacteria follow gradients of attractant and repellent chemicals with high sensitivity. Their chemoreceptors are physically clustered, which may enable them to function as a cooperative array. Although native chemoreceptor molecules are typically transmembrane homodimers, they appear to associate through their cytoplasmic tips to form trimers of dimers, which may be an important architectural element in the assembly and operation of receptor clusters. The five receptors of Escherichia coli that mediate most of its chemotactic and aerotactic behaviors have identical trimer contact residues and have been shown by in vivo crosslinking methods to form mixed trimers of dimers. Mutations at the trimer contact sites of Tsr, the serine chemoreceptor, invariably abrogate Tsr function, but some of those lesions (designated Tsr*) are epistatic and block the function of heterologous chemoreceptors. We isolated and characterized mutations (designated Tar⋀) in the aspartate chemoreceptor that restored function to Tsr* receptors. The suppressors arose at or near the Tar trimer contact sites and acted in an allele-specific fashion on Tsr* partners. Alone, many Tar⋀ receptors were unable to mediate chemotactic responses to aspartate, but all formed clusters with varying efficiencies. Most of those Tar⋀ receptors were epistatic to WT Tsr, but some regained Tar function in combination with a suppressible Tsr* partner. Tar⋀–Tsr* suppression most likely occurs through compensatory changes in the conformation or dynamics of a mixed receptor signaling complex, presumably based on trimer-of-dimer interactions. These collaborative teams may be responsible for the high-gain signaling properties of bacterial chemoreceptors. PMID:16751275

  15. Perception of noxious compounds by contact chemoreceptors of the blowfly, Phormia regina: putative role of an odorant-bindingpProtein.

    PubMed

    Ozaki, Mamiko; Takahara, Teruhiko; Kawahara, Yasuhiro; Wada-Katsumata, Ayako; Seno, Keiji; Amakawa, Taisaku; Yamaoka, Ryohei; Nakamura, Tadashi

    2003-05-01

    The blowfly, Phormia regina, has sensilla with four contact-chemoreceptor cells and one mechanoreceptor cell on its labellum. Three of the four chemoreceptor cells are called the sugar, the salt and the water receptor cells, respectively. However, the specificity of the remaining chemoreceptor cell, traditionally called the "fifth cell", has not yet been clarified. Referring to behavioral evaluation of the oral toxicity of monoterpenes, we measured the electrophysiological response of the "fifth cell" to these compounds. Of all the monoterpenes examined, D-limonene exhibited the strongest oral toxicity and induced the severest aversive behavior with vomiting and/or excretion in the fly. D-Limonene, when dispersed in an aqueous stimulus solution including dimethyl sulfoxide or an odorant-binding protein (OBP) found in the contact-chemoreceptor sensillum, the chemical sense-related lipophilic ligand-binding protein (CRLBP), evoked impulses from the "fifth cell". Considering the relationship between the aversive effects of monoterpenes and the response of the "fifth cell" to these effects, we propose that the "fifth cell" is a warning cell that has been differentiated as a taste system for detecting and avoiding dangerous foods. Here we suggest that in the insect contact-chemoreceptor sensillum, CRLBP carries lipophilic members of the noxious taste substances to the "fifth cell" through the aqueous sensillum lymph. This insect OBP may functionally be analogous to the von Ebner's grand protein in taste organs of mammals.

  16. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  17. Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM.

    PubMed

    Briegel, Ariane; Ortega, Davi R; Mann, Petra; Kjær, Andreas; Ringgaard, Simon; Jensen, Grant J

    2016-09-13

    Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array.

  18. The Caenorhabditis chemoreceptor gene families.

    PubMed

    Thomas, James H; Robertson, Hugh M

    2008-10-06

    Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  19. The Caenorhabditis chemoreceptor gene families

    PubMed Central

    Thomas, James H; Robertson, Hugh M

    2008-01-01

    Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space. PMID:18837995

  20. The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex

    PubMed Central

    Ginzel, K. H.

    1958-01-01

    In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain. LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex. Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection. PMID:13584725

  1. The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex.

    PubMed

    GINZEL, K H

    1958-09-01

    In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain.LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex.Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection.

  2. Electron Microscopic Observations of the Carotid Body of the Cat

    PubMed Central

    Ross, Leonard L.

    1959-01-01

    Carotid bodies were removed from cats, fixed in buffered 1 per cent osmic acid, embedded in deaerated, nitrogenated methacrylate, and cut into thin sections for electron microscopic study. The carotid body is seen to be composed of islands of chemoreceptor and sustentacular cells surrounded by wide irregular sinusoids. These cells are separated from the sinusoids by relatively broad interstitial spaces which are filled with collagen, fibroblasts, and many unmyelinated nerve fibers with their Schwann cell sheaths. The chemoreceptor cells are surrounded by the flattened, multiprocessed sustentacular cells which serve to convey the axons from an interstitial to a pericellular location. These sustentacular cells are assumed to be lemmoblastic in origin. Relatively few axons are seen to abut on the chemoreceptor cells. The cytoplasm of the chemoreceptor cell is characterized by numerous small mitochondria, units of granular endoplasmic reticulum, a small Golgi complex, and a variety of vesicles. There are many small vesicles diffusely scattered throughout the cytoplasm. In addition, there is a small number of dark-cored vesicles of the type which has been previously described in the adrenal medulla. These are usually associated with the Golgi complex. These findings are discussed in relation to the concepts of the origin of the chemoreceptor cell and the nature of the synapse. PMID:14439171

  3. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors

    PubMed Central

    Flegel, Caroline; Schöbel, Nicole; Altmüller, Janine; Becker, Christian; Tannapfel, Andrea; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues. PMID:26070209

  4. A Family of Chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera)

    PubMed Central

    Abdel-latief, Mohatmed

    2007-01-01

    Chemoperception in invertebrates is mediated by a family of G-protein-coupled receptors (GPCR). To date nothing is known about the molecular mechanisms of chemoperception in coleopteran species. Recently the genome of Tribolium castaneum was sequenced for use as a model species for the Coleoptera. Using blast searches analyses of the T. castaneum genome with previously predicted amino acid sequences of insect chemoreceptor genes, a putative chemoreceptor family consisting of 62 gustatory receptors (Grs) and 26 olfactory receptors (Ors) was identified. The receptors have seven transmembrane domains (7TMs) and all belong to the GPCR receptor family. The expression of the T. castaneum chemoreceptor genes was investigated using quantification real- time RT-PCR and in situ whole mount RT-PCR analysis in the antennae, mouth parts, and prolegs of the adults and larvae. All of the predicted TcasGrs were expressed in the labium, maxillae, and prolegs of the adults but TcasGr13, 19, 28, 47, 62, 98, and 61 were not expressed in the prolegs. The TcasOrs were localized only in the antennae and not in any of the beetles gustatory organs with one exception; the TcasOr16 (like DmelOr83b), which was localized in the antennae, labium, and prolegs of the beetles. A group of six TcasGrs that presents a lineage with the sugar receptors subfamily in Drosophila melanogaster were localized in the lacinia of the Tribolium larvae. TcasGr1, 3, and 39, presented an ortholog to CO2 receptors in D. melanogaster and Anopheles gambiae was recorded. Low expression of almost all of the predicted chemoreceptor genes was observed in the head tissues that contain the brains and suboesophageal ganglion (SOG). These findings demonstrate the identification of a chemoreceptor family in Tribolium, which is evolutionarily related to other insect species. PMID:18091992

  5. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    PubMed Central

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  6. The effect of hexamethonium on the carotid chemoreceptor response to nicotine and cyanide

    PubMed Central

    Byck, R.

    1961-01-01

    The literature concerning the effects of ganglionic blocking agents on the chemoreceptors is reviewed. Hexamethonium blocks the respiratory response to intracarotid injections of small doses of nicotine in dogs anaesthetized with chloralose, but it does not block the response to sodium cyanide. PMID:13689559

  7. Bacterial chemoreceptors: high-performance signaling in networked arrays.

    PubMed

    Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S

    2008-01-01

    Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.

  8. Bacterial chemoreceptors: high-performance signaling in networked arrays

    PubMed Central

    Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.

    2010-01-01

    Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013

  9. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells.

    PubMed

    Ohmoto, Makoto; Matsumoto, Ichiro; Yasuoka, Akihito; Yoshihara, Yoshihiro; Abe, Keiko

    2008-08-01

    We established transgenic mouse lines expressing a transneuronal tracer, wheat germ agglutinin (WGA), under the control of mouse T1R3 gene promoter/enhancer. In the taste buds, WGA transgene was faithfully expressed in T1R3-positive sweet/umami taste receptor cells. WGA protein was transferred not laterally to the synapse-bearing, sour-responsive type III cells in the taste buds but directly to a subset of neurons in the geniculate and nodose/petrosal ganglia, and further conveyed to a rostro-central region of the nucleus of solitary tract. In addition, WGA was expressed in solitary chemoreceptor cells in the nasal epithelium and transferred along the trigeminal sensory pathway to the brainstem neurons. The solitary chemoreceptor cells endogenously expressed T1R3 together with bitter taste receptors T2Rs. This result shows an exceptional signature of receptor expression. Thus, the t1r3-WGA transgenic mice revealed the sweet/umami gustatory pathways from taste receptor cells and the trigeminal neural pathway from solitary chemoreceptor cells.

  10. The chemosensitivity of labellar sugar receptor in female Phormia regina is paralleled with ovary maturation: Effects of serotonin.

    PubMed

    Solari, Paolo; Stoffolano, John G; De Rose, Francescaelena; Barbarossa, Iole Tomassini; Liscia, Anna

    2015-11-01

    Oogenesis in most adult insects is a nutrient-dependent process involving ingestion of both proteins and carbohydrates that ultimately depends on peripheral input from chemoreceptors. The main goal of this study was to characterize, in the female blowfly Phormia regina, the responsive changes of the labellar chemoreceptors to carbohydrates and proteins in relation to four different stages along the ovarian cycle: (1) immature ovaries, (2) mid-mature ovaries, (3) mature ovaries and ready for egg-laying and (4) post egg-laying ovaries. Then, the possible effects exerted by exogenous serotonin on the chemoreceptor sensitivity profiles were investigated. Our results show that ovary length, width and contraction rate progressively increase from stage 1 to 3, when all these parameters reach their maximum values, before declining in the next stage 4. The sensitivity of the labellar "sugar" chemoreceptors to both sucrose and proteins varies during the ovarian maturation stages, reaching a minimum for sucrose in stage 3, while that to proteins begins. Exogenous 5-HT supply specifically increases the chemoreceptor sensitivity to sugar at the stages 3 and 4, while it does not affect that to proteins. In conclusion, our results provide evidence that in female blowflies the cyclic variations in the sensitivity of the labellar chemosensilla to sugars and proteins are time-related to ovarian development and that during the stages 3 and 4 the responsiveness of the sugar cell to sucrose is under serotonergic control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors.

    PubMed

    de Lima Boijink, Cheila; Florindo, Luiz Henrique; Leite, Cleo A Costa; Kalinin, Ana Lúcia; Milsom, William K; Rantin, Francisco Tadeu

    2010-08-15

    The aim of the present study was to determine the roles that externally versus internally oriented CO(2)/H(+)-sensitive chemoreceptors might play in promoting cardiorespiratory responses to environmental hypercarbia in the air-breathing fish, Hoplerythrinus unitaeniatus (jeju). Fish were exposed to graded hypercarbia (1, 2.5, 5, 10 and 20% CO(2)) and also to graded levels of environmental acidosis (pH approximately 7.0, 6.0, 5.8, 5.6, 5.3 and 4.7) equal to the pH levels of the hypercarbic water to distinguish the relative roles of CO(2) versus H(+). We also injected boluses of CO(2)-equilibrated solutions (5, 10 and 20% CO(2)) and acid solutions equilibrated to the same pH as the CO(2) boluses into the caudal vein (internal) and buccal cavity (external) to distinguish between internal and external stimuli. The putative location of the chemoreceptors was determined by bilateral denervation of branches of cranial nerves IX (glossopharyngeal) and X (vagus) to the gills. The data indicate that the chemoreceptors eliciting bradycardia, hypertension and gill ventilatory responses (increased frequency and amplitude) to hypercarbia are exclusively branchial, externally oriented and respond specifically to changes in CO(2) and not H(+). Those involved in producing the cardiovascular responses appeared to be distributed across all gill arches while those involved in the gill ventilatory responses were located primarily on the first gill arch. Higher levels of aquatic CO(2) depressed gill ventilation and stimulated air breathing. The chemoreceptors involved in producing air breathing in response to hypercarbia also appeared to be branchial, distributed across all gill arches and responded specifically to changes in aquatic CO(2). This would suggest that chemoreceptor groups with different orientations (blood versus water) are involved in eliciting air-breathing responses to hypercarbia in jeju.

  12. Effects of substance P on carotid chemoreceptor activity in the cat.

    PubMed Central

    McQueen, D S

    1980-01-01

    1. The influence of substance P (SP) on spontaneous chemosensory discharge and on responses of the carotid chemoreceptors to various drugs has been investigated in pentobarbitone anaesthetized casts in which chemoreceptor activity was recorded from the peripheral end of a sectioned sinus nerve. 2. After an initial slight inhibition during the first 5--15 sec following the injection, SP (0.1--100 microgram I.A.) caused a dose-related increase in discharge which lasted for 45--300 sec in artificially ventilated cats, discharge being increased by about 50% on average. The increase was of shorter duration when the animals were allowed to breathe spontaneously. 3. The delayed increase in discharge was not secondary to the hypotension caused by SP, nor was it entirely due to changes in bronchomotor tone resulting from direct or indirect actions of SP, although such changes contributed to the response. It was not possible to determine whether the excitation was due to a direct effect of SP on the chemoreceptors. 4. Chemosensory excitation evoked by NaCN (5 microgram I.A.) was potentiated during I.A. infusions of SP and also 10--20 min after SP (10 microgram I.A.) had been injected. In contrast, responses to ACh (50 microgram I.A.) were inhibited. These effects may be due to a nicotinic-blocking action of SP on the carotid chemoreceptors. It was also found that the inhibitory action of dopamine (5 microgram I.A.) was reduced during SP infusion whereas that of 5-HT (10 microgram I.A.) was potentiated. 5. A sample of crude SP had effects on spontaneous chemoreceptor discharge and responses to NaCN and ACh which were qualitatively similar to those obtained using synthetic SP. 6. The physiological significance of the results is discussed and it is concluded that the interpretation depends upon whether or not SP is present in the cat's carotid body. PMID:6157809

  13. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update

    PubMed Central

    Parkinson, John S.; Hazelbauer, Gerald L.; Falke, Joseph J.

    2015-01-01

    Motile Escherichia coli cells track gradients of attractant and repellent chemicals in their environment with transmembrane chemoreceptor proteins. These receptors operate in cooperative arrays to produce large changes in the activity of a signaling kinase CheA in response to small changes in chemoeffector concentration. Recent research has provided much deeper understanding of the structure and function of core receptor signaling complexes and the architecture of higher-order receptor arrays, which in turn has led to new insights into the molecular signaling mechanisms of chemoreceptor networks. Current evidence supports a new view of receptor signaling in which stimulus information travels within receptor molecules through shifts in the dynamic properties of adjoining structural elements rather than through a few discrete conformational states. PMID:25834953

  14. The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors

    PubMed Central

    Peñalva-Arana, D Carolina; Lynch, Michael; Robertson, Hugh M

    2009-01-01

    Background Chemoreception is vitally important for all animals, yet little is known about the genetics of chemoreception in aquatic organisms. The keystone species Daphnia pulex, a well known crustacean, is the first aquatic invertebrate to have its genome sequenced. This has allowed us the initial investigation of chemoreceptor genes in an aquatic invertebrate, and to begin the study of chemoreceptor evolution across the arthropod phylum. Results We describe 58 Grs (gustatory receptors), belonging to the insect chemoreceptor superfamily, which were identified bioinformatically in the draft genome of the crustacean waterflea Daphnia pulex. No genes encoding proteins similar to the insect odorant receptors (Ors) were identified. These 58 Grs form 3 distinctive subfamilies of 37, 12, and 5 genes, as well as a highly divergent singleton (Gr58). In addition, Grs55–57 share distinctive amino acid motifs and cluster with the sugar receptors of insects, and may illuminate the origin of this distinctive subfamily. ESTs, tiling array, and PCR amplification results support 34 predicted gene models, and preliminary expression data comparing the sexes indicates potential female-biased expression for some genes. Conclusion This repertoire of 58 chemoreceptors presumably mediates the many chemoperception abilities of waterfleas. While it is always possible that the entire Or gene lineage was lost at some point in the history of Daphnia pulex, we think it more likely that the insect Or lineage is indeed a relatively recently expanded gene lineage concomitant with the evolution of terrestriality in the insects or their hexapod ancestors. PMID:19383158

  15. Inhibitory actions of methionine-enkephalin and morphine on the cat carotid chemoreceptors.

    PubMed

    McQueen, D S; Ribeiro, J A

    1980-01-01

    1 The effects of intracarotid injections of methionine-enkephalin (Met-enkephalin) and morphine on chemoreceptor activity recorded from the peripheral end of a sectioned carotid sinus nerve have been studied in cats anaesthetized with pentobarbitone. 2 Met-enkephalin caused a rapid, powerful, inhibition of spontaneous chemoreceptor discharge, the intensity and duration of which was dose-dependent. 3 Morphine was a less potent inhibitor of spontaneous chemoreceptor discharge, and the inhibition it evoked was rather variable and tended to be biphasic. Low doses of morphine caused a slight increase in discharge. 4 Naloxone (0.2 mg i.c.) slightly increased spontaneous discharge, greatly reduced the chemo-inhibition caused by morphine, and reduced the inhibitory effect of Met-enkephalin. A higher dose of naloxone (0.8 mg) caused a substantial reduction of the Met-enkephalin effect. 5 Chemo-excitation evoked by intracarotid injections of acetylcholine, CO2-saturated Locke solution, and sodium cyanide were only slightly and somewhat variably reduced following injections of Met-enkephalin, whereas the inhibitory effect of dopamine was potentiated. Following morphine administration, response to acetylcholine and sodium cyanide were reduced slightly, whereas those to CO2 and dopamine were potentiated. 6 Responses to acetylcholine and CO2 were slightly potentiated during infusion of Met-enkephalin (50 micrograms/min, i.c.) and the response to sodium cyanide was slightly reduced. 7 It is concluded that naloxone-sensitive opiate receptors are present in the cat carotid body; when activated they cause inhibition of spontaneous chemoreceptor discharge. The physiological role of these receptors and the identity of any endogenous ligand remains to be established.

  16. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus

    PubMed Central

    Kuo, Fu-Shan; Falquetto, Bárbara; Chen, Dawei; Oliveira, Luiz M.; Takakura, Ana C.

    2016-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H+ changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H+ but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs. PMID:27306669

  17. Chemoreceptor Tumors Diagnosed at the Western College of Veterinary Medicine 1967-1979

    PubMed Central

    Yates, W. D. G.; Lester, S. J.; Mills, J. H. L.

    1980-01-01

    Twenty-nine chemoreceptor tumors submitted to the Western College of Veterinary Medicine, Saskatoon, Saskatchewan between 1967 and 1979 were compared with those previously reported. The prevalence was low, with 28 cases occurring in dogs while only one was diagnosed in a cat. Old male dogs and the Boxer, Boston bull terrier and Collie breeds were affected most commonly. The prevalence in Collies (five of 28 dogs) was unexpected but may have been coincidental in this size of sample. The chemoreceptor tumor was often of clinical significance because in two-thirds of the cases it was either the presenting complaint or considered at necropsy to have caused illness or death. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:6249479

  18. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.

    PubMed

    Zatakia, Hardik M; Arapov, Timofey D; Meier, Veronika M; Scharf, Birgit E

    2018-03-15

    The chemosensory system in Sinorhizobium meliloti has several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA in S. meliloti Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell in S. meliloti The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen in Bacillus subtilis (23:1) and about 10 times higher than that in Escherichia coli (3.4:1). Different from E. coli , the high-abundance receptors in S. meliloti are lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptional lacZ fusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system in S. meliloti deviates significantly from the established enterobacterial paradigm but shares some similarities with B. subtilis IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti is of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better understanding of the role of chemotaxis in these processes, detailed knowledge on the regulation and composition of the chemosensory machinery is essential. Here, we show that chemoreceptor gene expression in S. meliloti is controlled through the main transcriptional regulators of motility. Chemoreceptor abundance is much lower in S. meliloti than in Escherichia coli and Bacillus subtilis Moreover, the chemoreceptor-to-kinase CheA ratio is different from that of E. coli but similar to that of B. subtilis . Copyright © 2018 American Society for Microbiology.

  19. Respiration of Chemodenervated Goats in Acute Metabolic Acidosis,

    DTIC Science & Technology

    1983-08-02

    higher after CBx. We conclude that a respiratory adaptation to AMA does occur in goats deprived of peripheral chemoreceptors, and is probably mediated... respiratory adaptation to AMA does occur in goats deprived of peripheral chemoreceptors, and is probably mediated by the central chemo- receptors. Key...words: carotid bodies, CO2 rebreathing, CSF r’ INTRODUCTION Acid-base disturbances of primarily "metabolic" origin elicit respiratory compensation

  20. Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations.

    PubMed

    Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G

    2018-02-01

    We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the frequency and depth of breathing through parallel circuit operations targeting the ventral respiratory column. Responses to stimulation of the chemoreceptors and identified functional connectivity support differential tuning of inspiratory neuron burst duration and firing rate and a model of brain stem network architecture incorporating tonic expiratory "hub" neurons regulated by convergent neuronal chains and loops through rostral lateral tegmental field neurons with quasi-periodic discharge patterns.

  1. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor.

    PubMed

    Kitanovic, Smiljka; Ames, Peter; Parkinson, John S

    2015-08-01

    The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control domain through piston displacements of a membrane-spanning helix and an adjoining five-residue control cable segment. We characterized the signaling properties of Tsr variants to elucidate the transmembrane signaling role of the control cable, an element present in many microbial sensory proteins. Both the kinase-on and kinase-off output states of Tsr depended on control cable helicity, but only one residue, I214, was critical for triggering responses to attractant inputs. These findings suggest that signal transmission in Tsr involves modulation of control cable helicity through interaction of the I214 side chain with the cytoplasmic membrane. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor

    PubMed Central

    Kitanovic, Smiljka; Ames, Peter

    2015-01-01

    ABSTRACT The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCE The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control domain through piston displacements of a membrane-spanning helix and an adjoining five-residue control cable segment. We characterized the signaling properties of Tsr variants to elucidate the transmembrane signaling role of the control cable, an element present in many microbial sensory proteins. Both the kinase-on and kinase-off output states of Tsr depended on control cable helicity, but only one residue, I214, was critical for triggering responses to attractant inputs. These findings suggest that signal transmission in Tsr involves modulation of control cable helicity through interaction of the I214 side chain with the cytoplasmic membrane. PMID:26013490

  3. Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs

    PubMed Central

    Gruner, Matthew; Nelson, Dru; Winbush, Ari; Hintz, Rebecca; Ryu, Leesun; Chung, Samuel H.; Kim, Kyuhyung; Gabel, Chrisopher V.; van der Linden, Alexander M.

    2014-01-01

    Feeding state and food availability can dramatically alter an animals' sensory response to chemicals in its environment. Dynamic changes in the expression of chemoreceptor genes may underlie some of these food and state-dependent changes in chemosensory behavior, but the mechanisms underlying these expression changes are unknown. Here, we identified a KIN-29 (SIK)-dependent chemoreceptor, srh-234, in C. elegans whose expression in the ADL sensory neuron type is regulated by integration of sensory and internal feeding state signals. We show that in addition to KIN-29, signaling is mediated by the DAF-2 insulin-like receptor, OCR-2 TRPV channel, and NPR-1 neuropeptide receptor. Cell-specific rescue experiments suggest that DAF-2 and OCR-2 act in ADL, while NPR-1 acts in the RMG interneurons. NPR-1-mediated regulation of srh-234 is dependent on gap-junctions, implying that circuit inputs regulate the expression of chemoreceptor genes in sensory neurons. Using physical and genetic manipulation of ADL neurons, we show that sensory inputs from food presence and ADL neural output regulate srh-234 expression. While KIN-29 and DAF-2 act primarily via the MEF-2 (MEF2) and DAF-16 (FOXO) transcription factors to regulate srh-234 expression in ADL neurons, OCR-2 and NPR-1 likely act via a calcium-dependent but MEF-2- and DAF-16-independent pathway. Together, our results suggest that sensory- and circuit-mediated regulation of chemoreceptor genes via multiple pathways may allow animals to precisely regulate and fine-tune their chemosensory responses as a function of internal and external conditions. PMID:25357003

  4. Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension.

    PubMed

    Lohmeier, Thomas E; Iliescu, Radu; Tudorancea, Ionut; Cazan, Radu; Cates, Adam W; Georgakopoulos, Dimitrios; Irwin, Eric D

    2016-07-01

    Carotid bodies play a critical role in protecting against hypoxemia, and their activation increases sympathetic activity, arterial pressure, and ventilation, responses opposed by acute stimulation of the baroreflex. Although chemoreceptor hypersensitivity is associated with sympathetically mediated hypertension, the mechanisms involved and their significance in the pathogenesis of hypertension remain unclear. We investigated the chronic interactions of these reflexes in dogs with sympathetically mediated, obesity-induced hypertension based on the hypothesis that hypoxemia and tonic activation of carotid chemoreceptors may be associated with obesity. After 5 weeks on a high-fat diet, the animals experienced a 35% to 40% weight gain and increases in arterial pressure from 106±3 to 123±3 mm Hg and respiratory rate from 8±1 to 12±1 breaths/min along with hypoxemia (arterial partial pressure of oxygen=81±3 mm Hg) but eucapnia. During 7 days of carotid baroreflex activation by electric stimulation of the carotid sinus, tachypnea was attenuated, and hypertension was abolished before these variables returned to prestimulation values during a recovery period. After subsequent denervation of the carotid sinus region, respiratory rate decreased transiently in association with further sustained reductions in arterial partial pressure of oxygen (to 65±2 mm Hg) and substantial hypercapnia. Moreover, the severity of hypertension was attenuated from 125±2 to 116±3 mm Hg (45%-50% reduction). These findings suggest that hypoxemia may account for sustained stimulation of peripheral chemoreceptors in obesity and that this activation leads to compensatory increases in ventilation and central sympathetic outflow that contributes to neurogenically mediated hypertension. Furthermore, the excitatory effects of chemoreceptor hyperactivity are abolished by chronic activation of the carotid baroreflex. © 2016 American Heart Association, Inc.

  5. Tremor, remote triggering and earthquake cycle

    NASA Astrophysics Data System (ADS)

    Peng, Z.

    2012-12-01

    Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.

  6. Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1.

    PubMed

    Vangnai, Alisa S; Takeuchi, Kazuki; Oku, Shota; Kataoka, Naoya; Nitisakulkan, Tisana; Tajima, Takahisa; Kato, Junichi

    2013-12-01

    Bacterial chemotaxis influences the ability of bacteria to survive and thrive in most environments, including polluted ones. Despite numerous reports of the phenotypic characterization of chemotactic bacteria, only a few molecular details of chemoreceptors for aromatic pollutants have been described. In this study, the molecular basis of chemotaxis toward an environmentally toxic chlorinated aromatic pollutant, 4-chloroaniline (4CA), was evaluated. Among the three Pseudomonas spp. tested, Pseudomonas aeruginosa PAO1 exhibited positive chemotaxis both to the nonmetabolizable 4CA, where 4-chloroacetanilide was formed as a dead-end transformation product, and to the metabolizable catechol. Molecular analysis of all 26 mutants with a disrupted methyl-accepting chemotaxis gene revealed that CtpL, a chromosomally encoded chemoreceptor, was responsible for the positive chemotactic response toward 4CA. Since CtpL has previously been described to be a major chemoreceptor for inorganic phosphate at low concentrations in PAO1, this report describes a fortuitous ability of CtpL to function toward aromatic pollutants. In addition, its regulation not only was dependent on the presence of the chemoattractant inducer but also was regulated by conditions of phosphate starvation. These results expand the range of known chemotactic transducers and their function in the environmental bacterium PAO1.

  7. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    PubMed Central

    Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  8. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  9. Pharmacology of pH effects on carotid body chemoreceptors in vitro.

    PubMed

    Eyzaguirre, C; Zapata, P

    1968-04-01

    1. The carotid body and the carotid nerve were removed from anaesthetized cats and placed in a small Perspex channel through which Locke solution (at various pH values and usually equilibrated with 50% O(2) in N(2)) was allowed to flow. The glomus was immersed in the flowing solution while the nerve was lifted into oil covering the saline. Sensory discharges were recorded from the nerve and their frequency was used as an index of receptor activity. At times, a small segment of carotid artery, containing pressoreceptor endings, was removed together with the glomus. In this case, pressoreceptor discharges were recorded from the nerve.2. The amplitude of either chemo- or pressoreceptor discharges was not changed by strong acid solutions. Acid decreased the frequency of the baroreceptor discharges only when pH fell to less than 4.0. Solutions at low pH increased the chemosensory discharge, but acid depressed the increased chemoreceptor discharge elicited by KCl. These experiments indicated that H(+) ions probably acted as membrane ;stabilizers' without depolarizing either the nerve fibres or endings.3. Acid solutions increased the action of acetylcholine chloride (AChCl) (100-200 mug) on chemoreceptors. This effect probably was due either to inactivation of tissue cholinesterase or to enhanced sensitivity of the sensory endings to ACh.4. Choline chloride (10(-3)M), which favours ACh synthesis, protected the preparation against decay during prolonged experimentation. Hemicholinium-3 (HC-3), which blocks ACh synthesis in low concentrations (10(-5)M), depressed the chemosensory response to acid and to hypoxia when such stimuli were applied repeatedly. This concentration of HC-3 did not change effects of applied ACh.5. Substances which affect ACh release markedly changed the chemoreceptor discharge increase induced by acidity and other forms of stimulation. In the absence of Ca(2+), acid, anoxia, and interruption of flow provoked receptor depression while receptor excitation induced by ACh and KCl persisted. All stimuli excited and showed increased effectiveness as the Ca(2+) concentration was raised, but their effects declined as Ca(2+) was increased above normal values. Mg(2+) ions depressed the chemoreceptor effects induced by all these stimuli. The action of Mg(2+) was not due entirely to nerve ending block. Morphine sulphate (which decreases ACh release in other structures) also depressed the receptor response to acid and flow interruption.6. Cholinergic blocking agents such as mecamylamine, hexamethonium, atropine, dihydro-beta-erithroidine (DHE), HC-3 (10(-4)M), choline and acetylcholine (in combination with choline) depressed the effects of acid and ACh on the chemoreceptors. The effect induced by interruption of flow was depressed only by mecamylamine and DHE.7. Agents which affect the fate of released ACh, such as acetylcholinesterase and eserine salicylate, did not affect clearly the response of chemoreceptors to acid.8. The results suggest that acid stimulates chemoreceptor fibres through an indirect mechanism, viz. through increased release and/or decreased destruction of a presynaptic transmitter from the glomus cell. This transmitter is probably ACh (see following paper, Eyzaguirre & Zapata, 1968).

  10. Pharmacology of pH effects on carotid body chemoreceptors in vitro

    PubMed Central

    Eyzaguirre, C.; Zapata, P.

    1968-01-01

    1. The carotid body and the carotid nerve were removed from anaesthetized cats and placed in a small Perspex channel through which Locke solution (at various pH values and usually equilibrated with 50% O2 in N2) was allowed to flow. The glomus was immersed in the flowing solution while the nerve was lifted into oil covering the saline. Sensory discharges were recorded from the nerve and their frequency was used as an index of receptor activity. At times, a small segment of carotid artery, containing pressoreceptor endings, was removed together with the glomus. In this case, pressoreceptor discharges were recorded from the nerve. 2. The amplitude of either chemo- or pressoreceptor discharges was not changed by strong acid solutions. Acid decreased the frequency of the baroreceptor discharges only when pH fell to less than 4·0. Solutions at low pH increased the chemosensory discharge, but acid depressed the increased chemoreceptor discharge elicited by KCl. These experiments indicated that H+ ions probably acted as membrane `stabilizers' without depolarizing either the nerve fibres or endings. 3. Acid solutions increased the action of acetylcholine chloride (AChCl) (100-200 μg) on chemoreceptors. This effect probably was due either to inactivation of tissue cholinesterase or to enhanced sensitivity of the sensory endings to ACh. 4. Choline chloride (10-3 M), which favours ACh synthesis, protected the preparation against decay during prolonged experimentation. Hemicholinium-3 (HC-3), which blocks ACh synthesis in low concentrations (10-5 M), depressed the chemosensory response to acid and to hypoxia when such stimuli were applied repeatedly. This concentration of HC-3 did not change effects of applied ACh. 5. Substances which affect ACh release markedly changed the chemoreceptor discharge increase induced by acidity and other forms of stimulation. In the absence of Ca2+, acid, anoxia, and interruption of flow provoked receptor depression while receptor excitation induced by ACh and KCl persisted. All stimuli excited and showed increased effectiveness as the Ca2+ concentration was raised, but their effects declined as Ca2+ was increased above normal values. Mg2+ ions depressed the chemoreceptor effects induced by all these stimuli. The action of Mg2+ was not due entirely to nerve ending block. Morphine sulphate (which decreases ACh release in other structures) also depressed the receptor response to acid and flow interruption. 6. Cholinergic blocking agents such as mecamylamine, hexamethonium, atropine, dihydro-β-erithroidine (DHE), HC-3 (10-4 M), choline and acetylcholine (in combination with choline) depressed the effects of acid and ACh on the chemoreceptors. The effect induced by interruption of flow was depressed only by mecamylamine and DHE. 7. Agents which affect the fate of released ACh, such as acetylcholinesterase and eserine salicylate, did not affect clearly the response of chemoreceptors to acid. 8. The results suggest that acid stimulates chemoreceptor fibres through an indirect mechanism, viz. through increased release and/or decreased destruction of a presynaptic transmitter from the glomus cell. This transmitter is probably ACh (see following paper, Eyzaguirre & Zapata, 1968). PMID:4296975

  11. Annual Progress Report, Fiscal Year 1978 (U.S. Army Research Institute of Environmental Medicine, Natick, MA)

    DTIC Science & Technology

    1978-10-01

    pulmonary ventilation via the " central chemoreceptors" (6.8) and to regulate cerebral blood flow (8,12). The " central chemoreceptors" for respiration are...decreases in illumination. Progress: The Hidden Shapes Test (I), the Maudsley Personality Inventory (2) and a personal history questionnaire were...hypoglycemia has been encountered occasionally in heatstroke but its pathogenesis is still uncertain. The contribution of central glucopenia to heatstroke coma

  12. Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity.

    PubMed

    Gonzalez, Constancio; Vaquero, Luis M; López-López, José Ramón; Pérez-García, M Teresa

    2009-10-01

    The characterization of the molecular mechanisms involved in low-oxygen chemotransduction has been an active field of research since the first description of an oxygen-sensitive K(+) channel in rabbit carotid body (CB) chemoreceptor cells. As a result, a large number of components of the transduction cascade, from O(2) sensors to O(2)-sensitive ion channels, have been found. Although the endpoints of the process are analogous, the heterogeneity of the elements involved in the different chemoreceptor tissues precludes a unifying theory of hypoxic signaling, and it has been a source of controversy. However, when these molecular constituents of the hypoxic cascade are brought back to their physiological context, it becomes clear that the diversity of mechanisms is necessary to build up an integrated cellular response that demands the concerted action of several O(2) sensors and several effectors.

  13. Chemoreception and asphyxia-induced arousal

    PubMed Central

    Guyenet, Patrice G.; Abbott, Stephen B.G.

    2013-01-01

    Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal. PMID:23608705

  14. Chemoreception and asphyxia-induced arousal.

    PubMed

    Guyenet, Patrice G; Abbott, Stephen B G

    2013-09-15

    Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Crosslinking Evidence for Motional Constraints within Chemoreceptor Trimers of Dimers

    PubMed Central

    Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2011-01-01

    Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In E. coli, chemoreceptors show higher order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer of dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo crosslinking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed crosslinks, whereas reporters lying at different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernable effect on the crosslinking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced crosslinking at most of the reporter sites, indicating that individual dimers may move closer together under this condition. PMID:21174433

  16. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors

    PubMed Central

    Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P.

    2016-01-01

    ABSTRACT Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. PMID:27899502

  17. Functional Coupling of a Nematode Chemoreceptor to the Yeast Pheromone Response Pathway

    PubMed Central

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors. PMID:25415379

  18. The mechanisms underlying the production of discontinuous gas exchange cycles in insects.

    PubMed

    Matthews, Philip G D

    2018-03-01

    This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

  19. Dynamic Triggering of Seismic Events and Their Relation to Slow Slip in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Sims, N. E.; Holtkamp, S. G.

    2017-12-01

    We conduct a search for dynamically triggered events in the Minto Flats Fault Zone (MFFZ), a left-lateral strike-slip zone expressed as multiple, partially overlapping faults, in central Alaska. We focus on the MFFZ because we have observed slow slip processes (earthquake swarms and Very Low Frequency Earthquakes) and interaction between earthquake swarms and larger main-shock (MS) events in this area before. We utilize the Alaska Earthquake Center catalog to identify potential earthquake swarms and dynamically triggered foreshock and mainshock events along the fault zone. We find 30 swarms occurring in the last two decades, five of which we classify as foreshock (FS) swarms due to their close proximity in both time and space to MS events. Many of the earthquake swarms cluster around 15-20 km depth, which is near the seismic-aseismic transition along this fault zone. Additionally, we observe instances of large teleseismic events such as the M8.6 2012 Sumatra earthquake and M7.4 2012 Guatemala earthquake triggering seismic events within the MFFZ, with the Sumatra earthquake triggering a mainshock event that was preceded by an ongoing earthquake swarm and the Guatemala event triggering earthquake swarms that subsequently transition into a larger mainshock event. In both cases an earthquake swarm transitioned into a mainshock-aftershock event and activity continued for several days after the teleseismic waves had passed, lending some evidence to delayed dynamic triggering of seismic events. We hypothesize that large dynamic transient strain associated with the passage of teleseismic surface waves is triggering slow slip processes near the base of the seismogenic zone. These triggered aseismic transient events result in earthquake swarms, which sometimes lead to the nucleation of larger earthquakes. We utilize network matched filtering to build more robust catalogs of swarm earthquake families in this region to search for additional swarm-like or triggered activity in response to teleseismic surface waves, and to test dynamic triggering hypotheses.

  20. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Remotely triggered earthquakes following moderate main shocks

    USGS Publications Warehouse

    Hough, S.E.

    2007-01-01

    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  2. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  3. A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors

    NASA Astrophysics Data System (ADS)

    Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.

    2013-12-01

    Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396‧ pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.

  4. Microearthquake streaks and seismicity triggered by slow earthquakes on the mobile south flank of Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Wolfe, C.J.; Brooks, B.A.; Foster, J.H.; Okubo, P.G.

    2007-01-01

    We perform waveform cross correlation and high precision relocation of both background seismicity and seismicity triggered by periodic slow earthquakes at Kilauea Volcano's mobile south flank. We demonstrate that the triggered seismicity dominantly occurs on several preexisting fault zones at the Hilina region. Regardless of the velocity model employed, the relocated earthquake epicenters and triggered seismicity localize onto distinct fault zones that form streaks aligned with the slow earthquake surface displacements determined from GPS. Due to the unknown effects of velocity heterogeneity and nonideal station coverage, our relocation analyses cannot distinguish whether some of these fault zones occur within the volcanic crust at shallow depths or whether all occur on the decollement between the volcano and preexisting oceanic crust at depths of ???8 km. Nonetheless, these Hilina fault zones consistently respond to stress perturbations from nearby slow earthquakes. Copyright 2007 by the American Geophysical Union.

  5. Peripheral chemoreceptor activity in sleeping neonates exposed to warm environments.

    PubMed

    Chardon, K; Bach, V; Telliez, F; Tourneux, P; Elabbassi, E B; Cardot, V; Gaultier, C; Libert, J P

    2003-09-01

    In neonates, it is often assumed that ventilatory control and heat stress interact. Thus the two factors have been implicated in various pathologies (apnoea, sudden infant death syndrome). However, little is known about the mechanisms of this interaction, and the influence of sleep is still debated. This study aimed at determining the influence of warm exposure on the decrease in ventilation during a hyperoxic test (HT), which is considered to be a measure of peripheral chemoreceptor activity. The test was performed in active (AS) and quiet sleep (QS) in 12 neonates exposed to thermoneutral or warm environments. The HT consisted of 30 s of inspired, 100% O(2). The ventilatory response was assessed in terms of a response time, defined as the time elapsing between HT onset and the first significant change in V(E). Our results show that, in both thermal conditions, the fall in V(E) was higher in AS than in QS. Warm exposure significantly enhanced the ventilatory response in AS (-27.5 +/- 8.7% vs. -38.3 +/- 8.8%, P < 0.01) but not in QS. A thermometabolic drive or inputs from thermoreceptors could be involved in the reinforcement of peripheral chemoreceptor activity in AS in warmer environments, which could contribute to an increasing risk of apnoea in neonates with altered chemoreceptor function. Since hypothalamic structures are involved in thermoregulatory, sleep processes and (probably) in respiratory control, it could well be the principal site where this interaction occurs.

  6. Pathogenesis of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea: A Hypothesis with Emphasis on the Nucleus Tractus Solitarius

    PubMed Central

    Daulatzai, Mak Adam

    2012-01-01

    OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges. PMID:23470865

  7. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.

    PubMed

    Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P; Beauregard, Pascale B

    2016-11-29

    Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. Bacillus subtilis is a plant growth-promoting rhizobacterium that establishes robust interactions with roots. Many studies have now demonstrated that biofilm formation is required for long-term colonization. However, we observed that motile B. subtilis mediates the first contact with the roots. These cells differentiate into biofilm-producing cells only several hours after the bacteria first contact the root. Our study reveals that intact chemotaxis machinery is required for the bacteria to reach the root. Many, if not all, of the B. subtilis 10 chemoreceptors are involved in the interaction with the plant. These observations stress the importance of root-bacterium interactions in the B. subtilis lifestyle. Copyright © 2016 Allard-Massicotte et al.

  8. Evidence for glutamatergic mechanisms in the vagal sensory pathway initiating cardiorespiratory reflexes in the shorthorn sculpin Myoxocephalus scorpius.

    PubMed

    Sundin, L; Turesson, J; Taylor, E W

    2003-03-01

    Glutamate is a major neurotransmitter of chemoreceptor and baroreceptor afferent pathways in mammals and therefore plays a central role in the development of cardiorespiratory reflexes. In fish, the gills are the major sites of these receptors, and, consequently, the terminal field (sensory area) of their afferents (glossopharyngus and vagus) in the medulla must be an important site for the integration of chemoreceptor and baroreceptor signals. This investigation explored whether fish have glutamatergic mechanisms in the vagal sensory area (Xs) that could be involved in the generation of cardiorespiratory reflexes. The locations of the vagal sensory and motor (Xm) areas in the medulla were established by the orthograde and retrograde axonal transport of the neural tract tracer Fast Blue following its injection into the ganglion nodosum. Glutamate was then microinjected into identified sites within the Xs in an attempt to mimic chemoreceptor- and baroreceptor-induced reflexes commonly observed in fish. By necessity, the brain injections were performed on anaesthetised animals that were fixed by 'eye bars' in a recirculating water system. Blood pressure and heart rate were measured using an arterial cannula positioned in the afferent branchial artery of the 3rd gill arch, and ventilation was measured by impedance probes sutured onto the operculum. Unilateral injection of glutamate (40-100 nl, 10 mmol l(-1)) into the Xs caused marked cardiorespiratory changes. Injection (0.1-0.3 mm deep) in different rostrocaudal, medial-lateral positions induced a bradycardia, either increased or decreased blood pressure, ventilation frequency and amplitude and, sometimes, an initial apnea. Often these responses occurred simultaneously in various different combinations but, occasionally, they appeared singly, suggesting specific projections into the Xs for each cardiorespiratory variable and local determination of the modality of the response. Response patterns related to chemoreceptor reflex activation were predominantly located rostral of obex, whereas patterns related to baroreceptor reflex activation were more caudal, around obex. The glutamate-induced bradycardia was N-methyl-D-aspartate (NMDA) receptor dependent and atropine sensitive. Taken together, our data provide evidence that glutamate is a putative player in the central integration of chemoreceptor and baroreceptor information in fish.

  9. Distribution and innervation of putative peripheral arterial chemoreceptors in the red-eared slider (Trachemys scripta elegans).

    PubMed

    Reyes, Catalina; Fong, Angelina Y; Milsom, William K

    2015-06-15

    Peripheral arterial chemoreceptors have been isolated to the common carotid artery, aorta, and pulmonary artery of turtles. However, the putative neurotransmitters associated with these chemoreceptors have not yet been described. The goal of the present study was to determine the neurochemical content, innervations, and distribution of putative oxygen-sensing cells in the central vasculature of turtles and to derive homologies with peripheral arterial chemoreceptors of other vertebrates. We used tract tracing together with immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamine synthesis), and serotonin (5HT) to identify putative oxygen-sensing cells and to determine their anatomical relation to branches of the vagus nerve (Xth cranial nerve). We found potential oxygen-sensing cells in all three chemosensory areas innervated by branches of the Xth cranial nerve. Cells containing either 5HT or VAChT were found in all three sites. The morphology and size of these cells resemble glomus cells found in amphibians, mammals, tortoises, and lizards. Furthermore, we found populations of cholinergic cells located at the base of the aorta and pulmonary artery that are likely involved in efferent regulation of vessel resistance. Catecholamine-containing cells were not found in any of the putative chemosensitive areas. The presence of 5HT- and VAChT-immunoreactive cells in segments of the common carotid artery, aorta, and pulmonary artery appears to reflect a transition between cells containing the major neurotransmitters seen in fish (5HT) and mammals (ACh and adenosine). © 2015 Wiley Periodicals, Inc.

  10. Regulation of Breathing and Autonomic Outflows by Chemoreceptors

    PubMed Central

    Guyenet, Patrice G.

    2016-01-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853

  11. Stimulation of respiratory changes in alae nasi length by chemoreceptor activation.

    PubMed

    Van Lunteren, E; Haxhiu, M A; Cherniack, N S

    1986-03-01

    Respiratory-related changes in length of the nasal dilator muscle, the alae nasi muscle, were measured using sonomicrometry in ten anesthetized (pentobarbital), tracheostomized, spontaneously breathing dogs. Piezoelectric crystals were inserted 7-25 mm apart along the direction of the alae nasi muscle fibers, and the effects of progressive hyperoxic hypercapnia and a peripheral and central chemoreceptor stimulant, nicotine (10-500 micrograms intravenously), were ascertained. The alae nasi shortened during inspiration in all animals, started to lengthen again towards the end of inspiration, returned to resting length during the first portion of expiration (Te-1), and remained at resting length for the remainder of expiration (Te-2). The amount of alae nasi inspiratory shortening was increased by occluding the airway for a single breath. Progressive hypercapnia caused progressive increases in the amount and velocity of nasal muscle inspiratory shortening during both unoccluded and occluded breaths; similar stimulatory effects on inspiratory shortening were seen following nicotine administration. Furthermore, both chemoreceptor stimulants caused a delay in the return of the muscle to its resting length during expiration, resulting in a significant increase in Te-1 relative to Te (Te-1/Te), and a greater amount of nasal muscle shortening to be present during Te-1. In some animals these agents also caused tonic shortening of the alae nasi, so that the muscle never returned to its resting length. These results suggest that inspiratory shortening of the alae nasi is inhibited by vagal inputs, but that chemoreceptor activation increases the amount of muscle shortening during both inspiration and early expiration.

  12. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors

    PubMed Central

    Nurse, Colin A

    2014-01-01

    Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H+ (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia. PMID:24665097

  13. Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme

    PubMed Central

    Han, Xue-Sheng; Dahlquist, Frederick W.; Parkinson, John S.

    2017-01-01

    A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON–OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands. PMID:28827352

  14. New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish.

    PubMed

    Milsom, William K

    2012-12-01

    The location (gills, oro-branchial cavity or elsewhere) and orientation (external (water) or internal (blood) sensing) of the receptors involved in reflex changes in each of the different components of the cardiorespiratory response (breathing frequency, breath amplitude, heart rate, systemic vascular resistance) to hypoxia and hypercarbia are highly variable between species of water and air breathing fish. Although not universal, the receptors involved in eliciting changes in heart rate and breathing frequency in response to hypoxia and hypercarbia tend to be restricted exclusively to the gills while those producing increases in breath amplitude are more wide spread, frequently also being found at extrabranchial sites. The distribution of the chemoreceptors sensitive to CO(2) in the gills involved in producing ventilatory responses tend to be more restricted than that of the O(2)-sensitive chemoreceptors and the specific location of the receptors involved in the various components of the cardiorespiratory response can vary from those of the O(2)-sensitive chemoreceptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica

    PubMed Central

    Irazoki, Oihane; Mayola, Albert; Campoy, Susana; Barbé, Jordi

    2016-01-01

    Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds. PMID:26784887

  16. SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica.

    PubMed

    Irazoki, Oihane; Mayola, Albert; Campoy, Susana; Barbé, Jordi

    2016-01-01

    Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.

  17. A hypothesis for delayed dynamic earthquake triggering

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.

  18. Triggered Slow Slip and Afterslip on the Southern Hikurangi Subduction Zone Following the Kaikōura Earthquake

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul

    2018-05-01

    The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.

  19. Redox signaling in acute oxygen sensing.

    PubMed

    Gao, Lin; González-Rodríguez, Patricia; Ortega-Sáenz, Patricia; López-Barneo, José

    2017-08-01

    Acute oxygen (O 2 ) sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB) is the main peripheral chemoreceptor, which contains excitable and O 2 -sensitive glomus cells with O 2 -regulated ion channels. Upon exposure to acute hypoxia, inhibition of K + channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O 2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K + channels. We propose that the structural substrates for acute O 2 sensing in CB glomus cells are "O 2 -sensing microdomains" formed by mitochondria and neighboring K + channels in the plasma membrane. Copyright © 2017. Published by Elsevier B.V.

  20. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing

    PubMed Central

    Pérez-García, M Teresa; Colinas, Olaia; Miguel-Velado, Eduardo; Moreno-Domínguez, Alejandro; López-López, José Ramón

    2004-01-01

    As there are wide interspecies variations in the molecular nature of the O2-sensitive Kv channels in arterial chemoreceptors, we have characterized the expression of these channels and their hypoxic sensitivity in the mouse carotid body (CB). CB chemoreceptor cells were obtained from a transgenic mouse expressing green fluorescent protein (GFP) under the control of tyrosine hydroxylase (TH) promoter. Immunocytochemical identification of TH in CB cell cultures reveals a good match with GFP-positive cells. Furthermore, these cells show an increase in [Ca2+]i in response to low PO2, demonstrating their ability to engender a physiological response. Whole-cell experiments demonstrated slow-inactivating K+ currents with activation threshold around −30 mV and a bi-exponential kinetic of deactivation (τ of 6.24 ± 0.52 and 32.85 ± 4.14 ms). TEA sensitivity of the currents identified also two different components (IC50 of 17.8 ± 2.8 and 940.0 ± 14.7 μm). Current amplitude decreased reversibly in response to hypoxia, which selectively affected the fast deactivating component. Hypoxic inhibition was also abolished in the presence of low (10–50 μm) concentrations of TEA, suggesting that O2 interacts with the component of the current most sensitive to TEA. The kinetic and pharmacological profile of the currents suggested the presence of Kv2 and Kv3 channels as their molecular correlates, and we have identified several members of these two subfamilies by single-cell PCR and immunocytochemistry. This report represents the first functional and molecular characterization of Kv channels in mouse CB chemoreceptor cells, and strongly suggests that O2-sensitive Kv channels in this preparation belong to the Kv3 subfamily. PMID:15034123

  1. Hydrogen sulfide activates TRPA1 and releases 5-HT from epithelioid cells of the chicken thoracic aorta.

    PubMed

    Delgermurun, Dugar; Yamaguchi, Soichiro; Ichii, Osamu; Kon, Yasuhiro; Ito, Shigeo; Otsuguro, Ken-Ichi

    2016-09-01

    Epithelioid cells in the chicken thoracic aorta are chemoreceptor cells that release 5-HT in response to hypoxia. It is likely that these cells play a role in chemoreception similar to that of glomus cells in the carotid bodies of mammals. Recently, H2S was reported to be a key mediator of carotid glomus cell responses to hypoxia. The aim of the present study was to reveal the mechanism of action of H2S on 5-HT outflow from chemoreceptor cells in the chicken thoracic aorta. The 5-HT outflow induced by NaHS, an H2S donor, and Na2S3, a polysulfide, was measured by using a HPLC equipped with an electrochemical detector. NaHS (0.3-3mM) caused a concentration-dependent increase in 5-HT outflow, which was significantly inhibited by the removal of extracellular Ca(2+). 5-HT outflow induced by NaHS (0.3mM) was also significantly inhibited by voltage-dependent L- and N-type Ca(2+) channel blockers and a selective TRPA1 channel blocker. Cinnamaldehyde, a TRPA1 agonist, mimicked the secretory response to H2S. 5-HT outflow induced by Na2S3 (10μM) was also inhibited by the TRPA1 channel blocker. Furthermore, the expression of TRPA1 was localized to 5-HT-containing chemoreceptor cells in the aortic wall. These findings suggest that the activation of TRPA1 and voltage-dependent Ca(2+) channels is involved in H2S-evoked 5-HT release from chemoreceptor cells in the chicken aorta. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  3. Influence of hypoxia induced by sleep disordered breathing in case of hypertension and atrial fibrillation.

    PubMed

    Ando, Shin-Ichi

    2018-07-01

    Sleep disordered breathing (SDB) has been recognized as one of the important causes or factors of worsening for various cerebro- and cardiovascular diseases. On the other hand, a recent large randomized study and meta-analysis about the effect of continuous positive airway pressure (CPAP) indicated no or only minor effects to improve the outcome of SDB patients. Accumulating evidence has indicated that the key factor of the link between SDB and cardiovascular diseases might be hypoxia caused during repetitive long apneic episodes. Hypertension and atrial fibrillation (AF) are two important cardiovascular diseases that relate to SDB and the therapeutic consequences by CPAP treatment have been studied. As for the mechanism that elevates blood pressure during night, stimulation of chemoreceptors by hypoxia and the resultant increase in sympathetic nervous activity is the first step and repetitive hypoxic stimulation changes the characteristics of chemoreceptors and baroreceptors resulting in daytime hypertension. Pathological changes in the atrial muscle in SDB patients might be a result of repetitive hypoxia and atrial expansion. As for triggering AF, several animal studies revealed that the changes in autonomic nervous system caused by hypoxia and negative intra-thoracic pressure might be crucial. However, a recent observational study could not show the relation between SDB and AF. The difference between the previous studies and this negative study seems to exist in the difference of the severity of SDB or the degree of hypoxia. Such a difference might be also one of the reasons why a recent randomized trial to prove the effect of CPAP in cardio- or cerebrovascular patients failed to improve the patient prognosis. Hence, in this review, the relationship between hypoxia and onset or continuation of hypertension and AF will be reconsidered to understand the fundamental and robust relationship between SDB and these cardiovascular diseases. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Sensory Innervation of the Gills: O2-Sensitive Chemoreceptors and Mechanoreceptors

    PubMed Central

    Burleson, Mark L.

    2009-01-01

    Summary Physical characteristics of water (O2 solubility and capacitance) dictate that cardiovascular and ventilatory performance be controlled primarily by the need for oxygen uptake rather than carbon dioxide excretion, making O2 receptors more important in fish than in terrestrial vertebrates. An understanding of the anatomy and physiology of mechanoreception and O2 chemoreception in fishes is important, because water breathing is the primitive template upon which the forces of evolution have modified into the various cardioventilatory modalities we see in extant terrestrial species. Key to these changes are the O2-sensitive chemoreceptors and mechanoreceptors, their mechanisms and central pathways. PMID:19193399

  5. Interactions between CO2 chemoreflexes and arterial baroreflexes

    NASA Technical Reports Server (NTRS)

    Henry, R. A.; Lu, I. L.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied interactions between CO2 chemoreflexes and arterial baroreflexes in 10 supine healthy young men and women. We measured vagal carotid baroreceptor-cardiac reflexes and steady-state fast Fourier transform R-R interval and photoplethysmographic arterial pressure power spectra at three arterial pressure levels (nitroprusside, saline, and phenylephrine infusions) and three end-tidal CO2 levels (3, 4, and 5%, fixed-frequency, large-tidal-volume breathing, CO2 plus O2). Our study supports three principal conclusions. First, although low levels of CO2 chemoreceptor stimulation reduce R-R intervals and R-R interval variability, statistical modeling suggests that this effect is indirect rather than direct and is mediated by reductions of arterial pressure. Second, reductions of R-R intervals during hypocapnia reflect simple shifting of vagally mediated carotid baroreflex responses on the R-R interval axis rather than changes of baroreflex gain, range, or operational point. Third, the influence of CO2 chemoreceptor stimulation on arterial pressure (and, derivatively, on R-R intervals and R-R interval variability) depends critically on baseline arterial pressure levels: chemoreceptor effects are smaller when pressure is low and larger when arterial pressure is high.

  6. Solitary chemoreceptor cell proliferation in adult nasal epithelium.

    PubMed

    Gulbransen, Brian D; Finger, Thomas E

    2005-03-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein alpha-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cbeta2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs.

  7. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    PubMed Central

    Gulbransen, Brian D.; Finger, Thomas E.

    2008-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs. PMID:16374713

  8. CHANGES OF ARTERIAL BLOOD PRESSURE IN ACUTE RADIATION DISEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzewski, J.

    1962-12-01

    Acute experiments were done in cats and chronic experiments in dogs. The cats were subjected to whole-body x irradiation with a dose of 1500 r, and were examined on the third day after irradiation, when radiation disease was fully developed. Reflexes from the baro- and chemoreceptors were investigated, and arterial blood pressure was recorded in the irradiated cats after intravenous administration of adrenaline, noradrenaline, serotonin, acetylcholine, histamine, Regitine, atropine, or Pendiomid. Dogs were subjected to whole-body irradiation with 800 r,; changes in arterial blood pressure, which occurred after the administration of neurohormones, were investigated before and after irradiation. Pressor reflexesmore » in irradiated cats, elicited by clamping and unclamping of both common carotid arteries, corresponded to a rise from 129.6 to 141.4 mm Hg, as compared to pressor reflexes in nonirradiated cats from 106.6 to 146. Reflexes from carotid sinus chemoreceptors evoked by 0.5% KCl were also weaker in irradiated cats. The results of both the acute and chronic experiments indicate that circulatory changes occur in radiation disease. The changes mainly involve responses of the circulatory system to neurohormones and stimulation of vascular baro- and chemoreceptors. (TCO)« less

  9. Repeated intravenous doxapram induces phrenic motor facilitation

    PubMed Central

    Sandhu, MS; Lee, KZ; Gonzalez-Rothi, EJ; Fuller, DD

    2013-01-01

    Doxapram is a respiratory stimulant used to treat hypoventilation. Here we investigated whether doxapram could also trigger respiratory neuroplasticity. Specifically, we hypothesized that intermittent delivery of doxapram at low doses would lead to long-lasting increases (i.e., facilitation) of phrenic motor output in anesthetized, vagotomized, and mechanically-ventilated rats. Doxapram was delivered intravenously in a single bolus (2 or 6 mg/kg) or as a series of 3 injections (2 mg/kg) at 5 min intervals. Control groups received pH-matched saline injections (vehicle) or no treatment (anesthesia time control). Doxapram evoked an immediate increase in phrenic output in all groups, but a persistent increase in burst amplitude only occurred after repeated dosing with 2 mg/kg. At 60 min following the last injection, phrenic burst amplitude was 168±24% of baseline (%BL) in the group receiving 3 injections (P < 0.05 vs. controls), but was 103±8%BL and 112±4%BL in the groups receiving a single dose of 2 or 6 mg/kg, respectively. Following bilateral section of the carotid sinus nerves, the acute phrenic response to doxapram (2 mg/kg) was reduced by 68% suggesting that at low doses the drug was acting primarily via the carotid chemoreceptors. We conclude that intermittent application of doxapram can trigger phrenic neuroplasticity, and this approach might be of use in the context of respiratory rehabilitation following neurologic injury. PMID:24013015

  10. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Swiecki, Z.; Schwartz, S. Y.

    2010-12-01

    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another important factor is Costa Rica’s relatively cool subduction zone structure where temperatures required for the fluid generating basalt/ecloginte reaction are not reached until far below tremor producing depths.

  11. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2006-01-01

    The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.

  12. ORAL INSECT REPELLENTS - INSECT TASTE RECEPTORS AND THEIR ACTION,

    DTIC Science & Technology

    CULICIDAE, * CHEMORECEPTORS ), INSECT REPELLENTS, ELECTROPHYSIOLOGY, STIMULATION(PHYSIOLOGY), ELECTROLYTES(PHYSIOLOGY), BLOOD, INGESTION(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), NUTRITION, ENTOMOLOGY, AEDES, MOUTH

  13. Global Examination of Triggered Tectonic Tremor following the 2017 Mw8.1 Tehuantepec Earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Chao, K.; Gonzalez-Huizar, H.; Tang, V.; Klaeser, R. D.; Mattia, M.; Van der Lee, S.

    2017-12-01

    Triggered tremor is one type of slow earthquake that activated by teleseismic surfaces waves of large magnitude earthquake. Observations of triggered tremor can help to evaluate the background ambient tremor rate and slow slip events in the surrounding region. The Mw 8.1 Tehuantepec earthquake in Mexico is an ideal tremor-triggering candidate for a global search for triggered tremor. Here, we examine triggered tremor globally following the M8.1 event and model the tremor-triggering potential. We examine 7,000 seismic traces and found a widely spread triggered tremor along the western coast of the North America occur during the surface waves of the Mw 8.1 event. Triggered tremor appeared in the San Jacinto Fault, San Andreas Fault around Parkfield, and Calaveras Fault in California, in Vancouver Island in Cascadia subduction zone, in Queen Charlotte Margin and Eastern Denali Fault in Canada, and in Alaska and Aleutian Arc. In addition, we observe a newly found triggered tremor source in Mt. Etna in Sicily Island, Italy. However, we do not find clear triggered tremor evidences in the tremor active regions in Japan, Taiwan, and in New Zealand. We model tremor-triggering potential at the triggering earthquake source and triggered tremor sources. Our modeling results suggest the source parameters of the M8.1 triggering events and the stress at the triggered fault zone are two critical factors to control tremor-triggering threshold.

  14. Contribution of peripheral and central chemoreceptors to sympatho‐excitation in heart failure

    PubMed Central

    Toledo, Camilo; Andrade, David C.; Lucero, Claudia; Schultz, Harold D.; Marcus, Noah; Retamal, Mauricio; Madrid, Carlos

    2016-01-01

    Abstract Chronic heart failure (CHF) is a major public health problem. Tonic hyper‐activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho‐excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF. PMID:27218485

  15. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.

    PubMed

    Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K

    2017-11-07

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  16. Effects of adrenergic stimulation on ventilation in man

    PubMed Central

    Heistad, Donald D.; Wheeler, Robert C.; Mark, Allyn L.; Schmid, Phillip G.; Abboud, Francois M.

    1972-01-01

    The mechanism by which catecholamines affect ventilation in man is not known. Ventilatory responses to catecholamines were observed in normal subjects before and after adrenergic receptor blockade. Intravenous infusions of norepinephrine and isoproterenol caused significant increases in minute volume and decreases in end-tidal PCo2 which were blocked by the administration of propranolol, a beta adrenergic receptor blocker. The hyperventilatory response to hypoxia was not altered by propranolol. Intravenous infusion of phenylephrine caused a small but significant decrease in minute volume which was antagonized by phentolamine, an alpha adrenergic receptor blocker. Angiotensin, a nonadrenergic pressor agent, also decreased minute volume significantly. 100% oxygen was administered to suppress arterial chemoreceptors. Increases in minute volume and decreases in arterial PCo2 in response to norepinephrine and isoproterenol were blocked by breathing 100% oxygen. The decrease in minute volume during phenylephrine was not altered by 100% oxygen. The results indicate that: (a) beta adrenergic receptors mediate the hyperventilatory response to norepinephrine and isoproterenol but not to hypoxia. (b) the pressor agents phenylephrine and angiotensin decrease ventilation, and (c) suppression of chemoreceptors blocks the ventilatory response to norepinephrine and isoproterenol but not to phenylephrine. Implications concerning the interaction of adrenergic receptors and chemoreceptors with respect to the hyperventilatory response to catecholamines are discussed. PMID:4336940

  17. Ventilatory effects of substance P, vasoactive intestinal peptide, and nitroprusside in humans.

    PubMed

    Maxwell, D L; Fuller, R W; Dixon, C M; Cuss, F M; Barnes, P J

    1990-01-01

    Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.

  18. Optimization of a simultaneous dual-isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: Are delayed acquisition and scatter correction necessary?

    PubMed

    D'estanque, Emmanuel; Hedon, Christophe; Lattuca, Benoît; Bourdon, Aurélie; Benkiran, Meriem; Verd, Aurélie; Roubille, François; Mariano-Goulart, Denis

    2017-08-01

    Dual-isotope 201 Tl/ 123 I-MIBG SPECT can assess trigger zones (dysfunctions in the autonomic nervous system located in areas of viable myocardium) that are substrate for ventricular arrhythmias after STEMI. This study evaluated the necessity of delayed acquisition and scatter correction for dual-isotope 201 Tl/ 123 I-MIBG SPECT studies with a CZT camera to identify trigger zones after revascularization in patients with STEMI in routine clinical settings. Sixty-nine patients were prospectively enrolled after revascularization to undergo 201 Tl/ 123 I-MIBG SPECT using a CZT camera (Discovery NM 530c, GE). The first acquisition was a single thallium study (before MIBG administration); the second and the third were early and late dual-isotope studies. We compared the scatter-uncorrected and scatter-corrected (TEW method) thallium studies with the results of magnetic resonance imaging or transthoracic echography (reference standard) to diagnose myocardial necrosis. Summed rest scores (SRS) were significantly higher in the delayed MIBG studies than the early MIBG studies. SRS and necrosis surface were significantly higher in the delayed thallium studies with scatter correction than without scatter correction, leading to less trigger zone diagnosis for the scatter-corrected studies. Compared with the scatter-uncorrected studies, the late thallium scatter-corrected studies provided the best diagnostic values for myocardial necrosis assessment. Delayed acquisitions and scatter-corrected dual-isotope 201 Tl/ 123 I-MIBG SPECT acquisitions provide an improved evaluation of trigger zones in routine clinical settings after revascularization for STEMI.

  19. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors. PMID:26709829

  20. Efficacy of bayer suspend poly zone against stable flies and house flies when applied to trigger royal cloth

    USDA-ARS?s Scientific Manuscript database

    METHODS: PolyZone (PZ)(Deltamethrin 4.75% AI) was mixed with water according to label instructions (45.4 ml per 3.79 liters H2O = 0.06% solution) for application to 10 x 10 cm squares of blue Trigger-Royal Box fabric (65% polyester and 35% cotton, Galey & Lord, Inc., New York). PZ was applied to run...

  1. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    PubMed Central

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260

  2. The genetics of chemoreception in the labella and tarsi of Aedes aegypti.

    PubMed

    Sparks, Jackson T; Bohbot, Jonathan D; Dickens, Joseph C

    2014-05-01

    The yellow-fever mosquito Aedes aegypti is a major vector of human diseases, such as dengue, yellow fever, chikungunya and West Nile viruses. Chemoreceptor organs on the labella and tarsi are involved in human host evaluation and thus serve as potential foci for the disruption of blood feeding behavior. In addition to host detection, these contact chemoreceptors mediate feeding, oviposition and conspecific recognition; however, the molecular landscape of chemoreception in these tissues remains mostly uncharacterized. Here we report the expression profile of all putative chemoreception genes in the labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector. Published by Elsevier Ltd.

  3. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    PubMed

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX PR and McpX 34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX PR with dissociation constants (K d ) in the nanomolar range for choline and glycine betaine, micromolar K d for stachydrine and trigonelline and a K d in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding. © 2016 John Wiley & Sons Ltd.

  4. Delicate balance of magmatic-tectonic interaction at Kilauea Volcano, Hawai`i, revealed from slow slip events: Chapter 13

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Poland, Michael; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Eleven slow slip events (SSEs) have occurred on the southern flank of Kilauea Volcano, Hawai’i, since 1997 through 2014. We analyze this series of SSEs in the context of Kilauea’s magma system to assess whether or not there are interactions between these tectonic events and eruptive/intrusive activity. Over time, SSEs have increased in magnitude and become more regular, with interevent times averaging 2.44 ± 0.15 years since 2003. Two notable SSEs that impacted both the flank and the magmatic system occurred in 2007, when an intrusion and small eruption on the East Rift Zone were part of a feedback with a SSE and 2012, when slow slip induced 2.5 cm of East Rift Zone opening (but without any change in eruptive activity). A summit inflation event and surge in East Rift Zone lava effusion was associated with a SSE in 2005, but the inferred triggering relation is not clear due to a poorly constrained slip onset time. Our results demonstrate that slow slip along Kilauea’s décollement has the potential to trigger and be triggered by activity within the volcano’s magma system. Since only three of the SSEs have been associated with changes in magmatic activity within the summit and rift zones, both the décollement and magma system must be close to failure for triggering to occur.

  5. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  6. Seismic link at plate boundary

    NASA Astrophysics Data System (ADS)

    Ramdani, Faical; Kettani, Omar; Tadili, Benaissa

    2015-06-01

    Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  7. Triggering effect of mining at different horizons in the rock mass with excavations. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eremin, M. O.; Makarov, P. V.

    2017-12-01

    On the basis of a quite simple structural model of rock mass, containing coal seams on two horizons, coal mining is numerically modeled. A finite difference numerical technique is applied. At first, mining starts at the upper horizon and then moves to the lower horizon. It is shown that a mining process at the lower horizon has a significant triggering influence on the growth of damage zones in the roof and floor at the upper horizon. The features of spatiotemporal migration of deformation activity are studied numerically. Foci of large-scale fracture are located at the boundary of the seismic silence zone and the zone where the deformation activity migrates. This boundary has an additional characteristic: the maximum gradient of rock pressure is observed in this zone.

  8. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats.

    PubMed

    Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces

    2012-01-01

    Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

  9. A Chemoreceptor That Detects Molecular Carbon Dioxide*

    PubMed Central

    Smith, Ewan St. John; Martinez-Velazquez, Luis; Ringstad, Niels

    2013-01-01

    Animals from diverse phyla possess neurons that are activated by the product of aerobic respiration, CO2. It has long been thought that such neurons primarily detect the CO2 metabolites protons and bicarbonate. We have determined the chemical tuning of isolated CO2 chemosensory BAG neurons of the nematode Caenorhabditis elegans. We show that BAG neurons are principally tuned to detect molecular CO2, although they can be activated by acid stimuli. One component of the BAG transduction pathway, the receptor-type guanylate cyclase GCY-9, suffices to confer cellular sensitivity to both molecular CO2 and acid, indicating that it is a bifunctional chemoreceptor. We speculate that in other animals, receptors similarly capable of detecting molecular CO2 might mediate effects of CO2 on neural circuits and behavior. PMID:24240097

  10. Solitary chemoreceptor cell survival is independent of intact trigeminal innervation.

    PubMed

    Gulbransen, Brian; Silver, Wayne; Finger, Thomas E

    2008-05-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al. [2003] Proc Natl Acad Sci USA 100:8981-8986). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al. [2003]) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. (c) 2008 Wiley-Liss, Inc.

  11. Triggering of destructive earthquakes in El Salvador

    NASA Astrophysics Data System (ADS)

    Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas

    2004-01-01

    We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.

  12. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  13. Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Lupi, Matteo; Miller, Stephen

    2015-04-01

    Nonvolcanic (or tectonic) tremor is a seismic phenomenom which can provide important information about dynamics of plate boundaries but the underlying mechanisms are not well understood. Tectonic tremor is often associated with slow-slip (termed episodic tremor and slip) and understanding the mechanisms driving tremor presents an important challenge because it is likely a dominant aspect of the evolutionary processes leading to tsunamigenic, megathrust subduction zone earthquakes. Tectonic tremor is observed worldwide, mainly along major subduction zones and plate boundaries such as in Alaska/Aleutians, Cascadia, the San Andreas Fault, Japan or Taiwan. We present, for the first time, evidence for triggered tremor beneath the island of Sumbawa, Indonesia. The island of Sumbawa, Indonesia, is part of the Lesser Sunda Group about 250 km north of the Australian/Eurasian plate collision at the Java Trench with a convergence rate of approximately 70 mm/yr. We show surface wave triggered tremor beneath Sumbawa in response to three teleseismic earthquakes: the Mw9.0 2011 Tohoku earthquake and two oceanic strike-slip earthquakes (Mw 8.6 and Mw8.2) offshore of Sumatra in 2012. Tremor amplitudes scale with ground motion and peak at 180 nm/s ground velocity on the horizontal components. A comparison of ground motion of the three triggering events and a similar (nontriggering) Mw7.6 2012 Philippines event constrains an apparent triggering threshold of approximately 1 mm/s ground velocity or 8 kPa dynamic stress. Surface wave periods of 45-65 s appear optimal for triggering tremor at Sumbawa which predominantly correlates with Rayleigh waves, even though the 2012 oceanic events have stronger Love wave amplitudes and triggering potential. Rayleigh wave triggering, low-triggering amplitudes, and the tectonic setting all favor a model of tremor generated by localized fluid transport. We could not locate the tremor because of minimal station coverage, but data indicate several potential source volumes including the Flores Thrust, the Java subduction zone, or Tambora volcano.

  14. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS

    NASA Astrophysics Data System (ADS)

    Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S.

    2015-05-01

    Rainfall-induced shallow landslides are common phenomena in many parts of the world, affecting cultivation and infrastructure and sometimes causing human losses. Assessing the triggering zones of shallow landslides is fundamental for land planning at different scales. This work defines a reliable methodology to extend a slope stability analysis from the site-specific to local scale by using a well-established physically based model (TRIGRS-unsaturated). The model is initially applied to a sample slope and then to the surrounding 13.4 km2 area in Oltrepo Pavese (northern Italy). To obtain more reliable input data for the model, long-term hydro-meteorological monitoring has been carried out at the sample slope, which has been assumed to be representative of the study area. Field measurements identified the triggering mechanism of shallow failures and were used to verify the reliability of the model to obtain pore water pressure trends consistent with those measured during the monitoring activity. In this way, more reliable trends have been modelled for past landslide events, such as the April 2009 event that was assumed as a benchmark. The assessment of shallow landslide triggering zones obtained using TRIGRS-unsaturated for the benchmark event appears good for both the monitored slope and the whole study area, with better results when a pedological instead of geological zoning is considered at the regional scale. The sensitivity analyses of the influence of the soil input data show that the mean values of the soil properties give the best results in terms of the ratio between the true positive and false positive rates. The scheme followed in this work allows us to obtain better results in the assessment of shallow landslide triggering areas in terms of the reduction in the overestimation of unstable zones with respect to other distributed models applied in the past.

  15. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia.

    PubMed

    Leonard, Erin M; Salman, Shaima; Nurse, Colin A

    2018-01-01

    Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O 2 , CO 2 /H + , and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O 2 availability (hypoxia) and elevated CO 2 /H + (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO 2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.

  16. NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,

    DTIC Science & Technology

    TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN

  17. Seismicity Increase in North China After the 2008 Mw7.9 Wenchuan Earthquake.

    NASA Astrophysics Data System (ADS)

    Goldhagen, G.; Li, C.; Peng, Z.; Wu, J.; Zhao, L.

    2016-12-01

    A large mainshock is capable of setting off an increase in seismicity in areas thousands of kilometers away. This phenomenon, known as remote triggering, is more likely to occur along active fault lines, aftershock zones, or regions with anthropogenic activities (e.g., mining, reservoirs, and fluid injections). By studying these susceptible areas, we can gain a better understanding of subsurface stress conditions, and long-range earthquake interactions. In this study we conduct a systematic search for remotely triggered seismicity in North China along two linear dense arrays (net code 1A and Z8) deployed by Chinese Academy of Sciences (CAS) following the 2008 Mw7.9 Wenchuan earthquake. A 5 Hz high pass filter is applied to the broadband seismogram recorded at the 1A array, which is more than 2,000 km away from the mainshock, in order to manually pick local events with double peaks. These local events have higher frequencies than earthquakes in the aftershock zone of the Wenchuan earthquake. An STA/LTA method is then employed as a way to automatically detect microseismicity in a section of the array that showed preliminary evidence of remote triggering. We find a clear increase of small earthquakes, right after the surface waves of the Wenchuan mainshock. These events, were recorded at stations close to the north section of the Tanlu fault and aftershock zones of the 1975, Ms7.3 Haicheng earthquake. This result suggests that remote triggering is more likely near active fault zones or other specific regions, as previous studies have proposed. Future work includes applying a waveform matching method to both arrays and automatically detecting micro-earthquakes missed on the catalog, and using them to better confirm the existence (or lack of) remote triggering following the Wenchuan mainshock. Our finding helps to better classify conditions that lead to the occurrence of remotely triggered earthquakes at intraplate regions.

  18. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats.

    PubMed

    Hanamori, T; Kunitake, T; Kato, K; Kannan, H

    1998-02-23

    Extracellular unit responses to gustatory stimulation of the pharyngolaryngeal region, baroreceptor and chemoreceptor stimulation, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Of the 32 neurons identified, 28 responded to at least one of the nine stimuli used in the present study. Of the 32 neurons, 11 showed an excitatory response to tail pinch, 13 showed an inhibitory response, and the remaining eight had no response. Of the 32 neurons, eight responded to baroreceptor stimulation by an intravenous (i.v.) injection of methoxamine hydrochloride (Mex), four were excitatory and four were inhibitory. Thirteen neurons were excited and six neurons were inhibited by an arterial chemoreceptor stimulation by an i.v. injection of sodium cyanide (NaCN). Twenty-two neurons were responsive to at least one of the gustatory stimuli (deionized water, 1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose); five to 11 excitatory neurons and three to seven inhibitory neurons for each stimulus. A large number of the neurons (25/32) received converging inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (23/32) received converging inputs from different modalities (gustatory, visceral, and tail pinch). The neurons responded were located in the insular cortex between 2.0 mm anterior and 0.2 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.2 mm (n=28) anterior to the AC. This indicates that most of the neurons identified in the present study seem to be located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from gustatory, baroreceptor, chemoreceptor, and nociceptive organs. Copyright 1998 Elsevier Science B.V.

  19. Cardiorespiratory response to cyanide of arterial chemoreceptors in fetal lambs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itskovitz, J.; Rudolph, A.M.

    1987-05-01

    Cardiorespiratory response to the stimulation of the carotid and aortic receptors by sodium cyanide was examined in fetal lambs in utero at 0.8 (120 days) gestation. Injections of 50-400 ..mu..g cyanide into the inferior vena cava or the carotid artery of intact fetuses elicited bradycardia and respiratory responses that varied from a single gasp to rhythmic respiratory movements but no significant change in arterial blood pressure. Carotid sinus denervation eliminated the cardiorespiratory response to intracarotid injection of cyanide and sinoaortic denervation abolished the response to inferior vena caval injection. It is concluded that in fetal lamb in utero the aorticmore » and carotid bodies are active, and hypoxic stimulation of these chemoreceptors results in cardiorespiratory response characterized by slowing of fetal heart rate, respiratory effort, and no consistent change in arterial blood pressure.« less

  20. Effects of hypercapnia and hypoxia on the cardiovascular system: vascular capacitance and aortic chemoreceptors.

    PubMed

    Rothe, C F; Maass-Moreno, R; Flanagan, A D

    1990-09-01

    Aortic chemoreceptor influences on vascular capacitance after changes in blood carbon dioxide and oxygen were studied in mongrel dogs anesthetized with methoxyflurane and nitrous oxide. The mean circulatory filling pressure (Pmcf), measured during transient cardiac fibrillation, provided a measure of capacitance vessel tone. Hypercapnia, hypoxia, and hypoxic hypercapnia significantly increased most variables, except that hypercapnia caused the total peripheral resistance (TPR) to decrease. Hypocapnia caused a significant decrease in mean systemic (Psa) and pulmonary (Ppa) arterial blood pressures, cardiac output (CO), and central blood volume and an increase in TPR and heart rate. The changes in Pmcf on changing blood gas tensions could be described by the equation delta Pmcf = -1.60 + 0.036 (arterial PCO2) + 50.8/arterial PO2. Thus a 10 mmHg increase in arterial PCO2 caused a 0.36 mmHg increase in Pmcf with receptors intact. Cold block (2 degrees C) of the cervical vagosympathetic trunks did not significantly influence the measured variables at control. During severe hypercapnia, vagal cooling caused a small but significant decrease in Pmcf, Psa, Ppa, and CO but not TPR. During hypoxia, vagal cooling caused the Pmcf, Psa, and TPR to decrease. We conclude that although hypercapnia or hypoxia acts reflexly to increase the capacitance vessel tone (an increase in Pmcf), the aortic and cardiopulmonary chemoreceptors with afferents in the vagi have only a small influence on the capacitance system, accounting for only approximately 25% of the total body response.

  1. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans.

    PubMed

    Somers, V K; Mark, A L; Zavala, D C; Abboud, F M

    1989-11-01

    The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.

  2. Effect of waveforms of inspired gas tension on the respiratory oscillations of carotid body discharge.

    PubMed

    Kumar, P; Nye, P C; Torrance, R W

    1991-07-01

    The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.

  3. Triggered earthquakes and the 1811-1812 New Madrid, central United States, earthquake sequence

    USGS Publications Warehouse

    Hough, S.E.

    2001-01-01

    The 1811-1812 New Madrid, central United States, earthquake sequence included at least three events with magnitudes estimated at well above M 7.0. I discuss evidence that the sequence also produced at least three substantial triggered events well outside the New Madrid Seismic Zone, most likely in the vicinity of Cincinnati, Ohio. The largest of these events is estimated to have a magnitude in the low to mid M 5 range. Events of this size are large enough to cause damage, especially in regions with low levels of preparedness. Remotely triggered earthquakes have been observed in tectonically active regions in recent years, but not previously in stable continental regions. The results of this study suggest, however, that potentially damaging triggered earthquakes may be common following large mainshocks in stable continental regions. Thus, in areas of low seismic activity such as central/ eastern North America, the hazard associated with localized source zones might be more far reaching than previously recognized. The results also provide additional evidence that intraplate crust is critically stressed, such that small stress changes are especially effective at triggering earthquakes.

  4. The sense of water in the blowfly Protophormia terraenovae.

    PubMed

    Solari, Paolo; Masala, Carla; Falchi, Angela Maria; Sollai, Giorgia; Liscia, Anna

    2010-12-01

    The gustatory system of the blowfly, Protophormia terraenovae, is a relatively simple biological model for studies on chemosensory input and behavioral output. It appears to have renewed interest as a model for studies on the role of water channels, namely aquaporins or aquaglyceroporins, in water detection. To this end, we investigated the presence of water channels, their role in "water" and "salt" cell responsiveness and the transduction mechanism involved. For the first time our electrophysiological results point to the presence of an aquaglyceroporin in the chemoreceptor membrane of the "water" cell in the blowfly taste chemosensilla whose transduction mechanism ultimately involves an intracellular calcium increase and consequently cell depolarization. This hypothesis is also supported by calcium imaging data following proper stimulation. This mechanism is triggered by "water" cell stimulation with hypotonic solutions and/or solutes such as glycerol which crosses the membrane by way of aquaglyceroporins. Behavioral output indicates that the "sense" of water in blowflies is definitely not dependent on the "water" cell only, but also on the "salt" cell sensitivity. These findings also hypothesize a new role for aquaglyceroporin in spiking cell excitability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  6. The carotid body in Sudden Infant Death Syndrome.

    PubMed

    Porzionato, Andrea; Macchi, Veronica; Stecco, Carla; De Caro, Raffaele

    2013-01-01

    The aim of the present study is to provide a review of cytochemical, clinical and experimental data indicating disruption of perinatal carotid body maturation as one of the possible mechanisms underlying SIDS pathogenesis. SIDS victims have been reported to show alterations in respiratory regulation which may partly be ascribed to peripheral arterial chemoreceptors. Carotid body findings in SIDS victims, although not entirely confirmed by other authors, have included reductions in glomic tissue volume and cytoplamic granules of type I cells, changes in cytological composition (higher percentages of progenitor and type II cells) and increases in dopamine and noradrenaline contents. Prematurity and environmental factors, such as exposure to tobacco smoke, substances of abuse, hyperoxia and continuous or intermittent hypoxia, increase the risk of SIDS and are known to affect carotid body functional and structural maturation adversely, supporting a role for peripheral arterial chemoreceptors in SIDS. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The autonomic nervous system at high altitude

    PubMed Central

    Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976

  8. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  9. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations.

    PubMed

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica L; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A; Moskowitz, Michael A; Lo, Eng H; Dreier, Jens P; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-03-04

    Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes stroke patients to PIDs as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origin of spreading injury depolarizations

    PubMed Central

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A.; Moskowitz, Michael A.; Lo, Eng H.; Dreier, Jens P.; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-01-01

    SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. PMID:25741731

  11. Evidence for a carotid body homolog in the lizard Tupinambis merianae.

    PubMed

    Reichert, Michelle N; Brink, Deidre L; Milsom, William K

    2015-01-15

    The homolog to the mammalian carotid body has not yet been identified in lizards. Observational studies and evolutionary history provide indirect evidence for the existence of a chemoreceptor population at the first major bifurcation of the common carotid artery in lizards, but a chemoreceptive role for this area has not yet been definitively demonstrated. We explored this possibility by measuring changes in cardiorespiratory variables in response to focal arterial injections of the hypoxia mimic sodium cyanide (NaCN) into the carotid artery of 12 unanesthetized specimens of Tupinambis merianae. These injections elicited increases in heart rate (f(H); 101±35% increase) and respiratory rate (f(R); 620±119% increase), but not mean arterial blood pressure (MAP). These responses were eliminated by vagal denervation. Similar responses were elicited by injections of the neurotransmitters acetylcholine (ACh) and serotonin (5-HT) but not norepinephrine. Heart rate and respiratory rate increases in response to NaCN could be blocked or reduced by antagonists to ACh (atropine) and/or 5-HT (methysergide). Finally, using immunohistochemistry, we demonstrate the presence of putative chemoreceptive cells immunopositive for the cholinergic cell marker vesicular ACh transporter (VAChT) and 5-HT on internal lattice-like structures at the carotid bifurcation. These results provide evidence in lizards for the existence of dispersed chemoreceptor cells at the first carotid bifurcation in the central cardiovascular area that have similar properties to known carotid body homologs, adding to the picture of chemoreceptor evolution in vertebrates. © 2015. Published by The Company of Biologists Ltd.

  12. Baroreflex activation therapy lowers arterial pressure without apparent stimulation of the carotid bodies.

    PubMed

    Alnima, Teba; Goedhart, Emilie J B M; Seelen, Randy; van der Grinten, Chris P M; de Leeuw, Peter W; Kroon, Abraham A

    2015-06-01

    Carotid baroreflex activation therapy produces a sustained fall in blood pressure in patients with resistant hypertension. Because the activation electrodes are implanted at the level of the carotid sinus, it is conceivable that the nearby located carotid body chemoreceptors are stimulated as well. Physiological stimulation of the carotid chemoreceptors not only stimulates respiration but also increases sympathetic activity, which may counteract the effects of baroreflex activation. The aim of this exploratory study is to investigate whether there is concomitant carotid chemoreflex activation during baroreflex activation therapy. Fifteen participants with the Rheos system were included in this single-center study. At arrival at the clinic, the device was switched off for 2 hours while patients were at rest. Subsequently, the device was switched on at 6 electric settings of high and low frequencies and amplitudes. Respiration and blood pressure measurements were performed during all device activation settings. Multilevel statistical models were adjusted for age, sex, body mass index, antihypertensive therapeutic index, sleep apnea, coronary artery disease, systolic blood pressure, and heart rate. There was no change in end-tidal carbon dioxide, partial pressure of carbon dioxide, breath duration, and breathing frequency during any of the electric settings with the device. Nevertheless, mean arterial pressure showed a highly significant decrease during electric activation (P<0.001). Carotid baroreflex activation therapy using the Rheos system did not stimulate respiration at several electric device activation energies, which suggests that there is no appreciable coactivation of carotid body chemoreceptors during device therapy. © 2015 American Heart Association, Inc.

  13. Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats.

    PubMed

    Kanbar, Roy; Stornetta, Ruth L; Cash, Devin R; Lewis, Stephen J; Guyenet, Patrice G

    2010-11-01

    Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans.

  14. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

    PubMed

    Robertson, Hugh M; Warr, Coral G; Carlson, John R

    2003-11-25

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.

  15. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    PubMed Central

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  16. Tetrodotoxin as a Tool to Elucidate Sensory Transduction Mechanisms: The Case for the Arterial Chemoreceptors of the Carotid Body

    PubMed Central

    Rocher, Asuncion; Caceres, Ana Isabel; Obeso, Ana; Gonzalez, Constancio

    2011-01-01

    Carotid bodies (CBs) are secondary sensory receptors in which the sensing elements, chemoreceptor cells, are activated by decreases in arterial PO2 (hypoxic hypoxia). Upon activation, chemoreceptor cells (also known as Type I and glomus cells) increase their rate of release of neurotransmitters that drive the sensory activity in the carotid sinus nerve (CSN) which ends in the brain stem where reflex responses are coordinated. When challenged with hypoxic hypoxia, the physiopathologically most relevant stimulus to the CBs, they are activated and initiate ventilatory and cardiocirculatory reflexes. Reflex increase in minute volume ventilation promotes CO2 removal from alveoli and a decrease in alveolar PCO2 ensues. Reduced alveolar PCO2 makes possible alveolar and arterial PO2 to increase minimizing the intensity of hypoxia. The ventilatory effect, in conjunction the cardiocirculatory components of the CB chemoreflex, tend to maintain an adequate supply of oxygen to the tissues. The CB has been the focus of attention since the discovery of its nature as a sensory organ by de Castro (1928) and the discovery of its function as the origin of ventilatory reflexes by Heymans group (1930). A great deal of effort has been focused on the study of the mechanisms involved in O2 detection. This review is devoted to this topic, mechanisms of oxygen sensing. Starting from a summary of the main theories evolving through the years, we will emphasize the nature and significance of the findings obtained with veratridine and tetrodotoxin (TTX) in the genesis of current models of O2-sensing. PMID:22363245

  17. Central Chemoreceptors: Locations and Functions

    PubMed Central

    Nattie, Eugene; Li, Aihua

    2016-01-01

    Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H+ detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H+, serves to detect and integrate information on 1) alveolar ventilation (arterial PCO2), 2) brain blood flow and metabolism and 3) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone) and arousal. In addition, central chemoreception provides a tonic ‘drive’ (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air vs. water breathing, homeothermy, sleep, optimization of the work of breathing with the ‘ideal’ arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function. PMID:23728974

  18. Guinea Pig Oxygen-Sensing and Carotid Body Functional Properties

    PubMed Central

    Gonzalez-Obeso, Elvira; Docio, Inmaculada; Olea, Elena; Cogolludo, Angel; Obeso, Ana; Rocher, Asuncion; Gomez-Niño, Angela

    2017-01-01

    Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K+ currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied. PMID:28533756

  19. Guinea Pig Oxygen-Sensing and Carotid Body Functional Properties.

    PubMed

    Gonzalez-Obeso, Elvira; Docio, Inmaculada; Olea, Elena; Cogolludo, Angel; Obeso, Ana; Rocher, Asuncion; Gomez-Niño, Angela

    2017-01-01

    Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO 2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K + currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca 2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied.

  20. Blood pressure long term regulation: A neural network model of the set point development

    PubMed Central

    2011-01-01

    Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057

  1. The 2009 Samoa-Tonga great earthquake triggered doublet

    USGS Publications Warehouse

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  2. The 2009 Samoa-Tonga great earthquake triggered doublet.

    PubMed

    Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R

    2010-08-19

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

  3. Global Search of Triggered Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.

    2013-05-01

    Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.

  4. Dynamic triggering of deep earthquakes within a fossil slab

    NASA Astrophysics Data System (ADS)

    Cai, Chen; Wiens, Douglas A.

    2016-09-01

    The 9 November 2009 Mw 7.3 Fiji deep earthquake is the largest event in a region west of the Tonga slab defined by scattered seismicity and velocity anomalies. The main shock rupture was compact, but the aftershocks were distributed along a linear feature at distances of up to 126 km. The aftershocks and some background seismicity define a sharp northern boundary to the zone of outboard earthquakes, extending westward toward the Vitiaz deep earthquake cluster. The northern earthquake lineament is geometrically similar to tectonic reconstructions of the relict Vitiaz subduction zone at 8-10 Ma, suggesting the earthquakes are occurring in the final portion of the slab subducted at the now inactive Vitiaz trench. A Coulomb stress change calculation suggests many of the aftershocks were dynamically triggered. We propose that fossil slabs contain material that is too warm for earthquake nucleation but may be near the critical stress susceptible to dynamic triggering.

  5. Development of fluid overpressures in crustal faults and implications for earthquakes mechanics

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier

    2013-04-01

    The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the permeability values of one order of magnitude between host rock and fault zone and a decrease of 50% of the elastic properties between host rock and core zone. The heterogeneity of properties is related to the development of different microstructures across the fault-zone during the tectonic history. From these physical property values and the fault zone architecture, we analyze the effects of sudden mechanical loading on the development of fluid overpressures in fault-zone. To do this, we use a series of 1-D hydromechanical numerical models to show that sudden mechanical stress increase is a viable mechanism for fluid overpressuring in fault-zone with spatially-varying elastic and hydraulic properties. Based on these results, we discuss the implications for earthquake triggering.on crustal-scale faults.

  6. A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels

    PubMed Central

    Colinas, Olaia; Pérez-Carretero, Francisco D.; López-López, José R.; Pérez-García, M. Teresa

    2008-01-01

    Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (ISA), the fast component of ITO current in the heart, and also of the oxygen-sensitive K+ current (KO2) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of ISA and ITO currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to KO2 currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native KO2 currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of KO2 currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers. PMID:18411327

  7. Divergent and Conserved Elements Comprise the Chemoreceptive Repertoire of the Nonblood-Feeding Mosquito Toxorhynchites amboinensis

    PubMed Central

    Zhou, Xiaofan; Rinker, David C.; Pitts, Ronald Jason; Rokas, Antonis; Zwiebel, Laurence J.

    2014-01-01

    Many mosquito species serve as vectors of diseases such as malaria and yellow fever, wherein pathogen transmission is tightly associated with the reproductive requirement of taking vertebrate blood meals. Toxorhynchites is one of only three known mosquito genera that does not host-seek and initiates egg development in the absence of a blood-derived protein bolus. These remarkable differences make Toxorhynchites an attractive comparative reference for understanding mosquito chemosensation as it pertains to host-seeking. We performed deep transcriptome profiling of adult female Toxorhynchites amboinensis bodies, antennae and maxillary palps, and identified 25,084 protein-coding “genes” in the de novo assembly. Phylogenomic analysis of 4,266 single-copy “genes” from T. amboinensis, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus robustly supported Ae. aegypti as the closest relative of T. amboinensis, with the two species diverged approximately 40 Ma. We identified a large number of T. amboinensis chemosensory “genes,” the majority of which have orthologs in other mosquitoes. Finally, cross-species expression analyses indicated that patterns of chemoreceptor transcript abundance were very similar for chemoreceptors that are conserved between T. amboinensis and Ae. aegypti, whereas T. amboinensis appeared deficient in the variety of expressed, lineage-specific chemoreceptors. Our transcriptome assembly of T. amboinensis represents the first comprehensive genomic resource for a nonblood-feeding mosquito and establishes a foundation for future comparative studies of blood-feeding and nonblood-feeding mosquitoes. We hypothesize that chemosensory genes that display discrete patterns of evolution and abundance between T. amboinensis and blood-feeding mosquitoes are likely to play critical roles in host-seeking and hence the vectorial capacity. PMID:25326137

  8. Towards the Sensory Nature of the Carotid Body: Hering, De Castro and Heymans†

    PubMed Central

    de Castro, Fernando

    2009-01-01

    The carotid body or glomus caroticum is a chemosensory organ bilaterally located between the external and internal carotid arteries. Although known by anatomists since the report included by Von Haller and Taube in the mid XVIII century, its detailed study started the first quarter of the XX. The Austro-German physiologist Heinrich E. Hering studied the cardio-respiratory reflexes searched for the anatomical basis of this reflex in the carotid sinus, while the Ghent School leaded by the physio-pharmacologists Jean-François Heymans and his son Corneille focussed in the cardio-aortic reflexogenic region. In 1925, Fernando De Castro, one of the youngest and more brilliant disciples of Santiago Ramón y Cajal at the Laboratorio de Investigaciones Biológicas (Madrid, Spain), profited from some original novelties in histological procedures to study the fine structure and innervation of the carotid body. De Castro unravelled them in a series of scientific papers published between 1926 and 1929, which became the basis to consider the carotid body as a sensory receptor (or chemoreceptor) to detect the chemical changes in the composition of the blood. Indeed, this was the first description of arterial chemoreceptors. Impressed by the novelty and implications of the work of De Castro, Corneille Heymans invited the Spanish neurologist to visit Ghent on two occasions (1929 and 1932), where both performed experiences together. Shortly after, Heymans visited De Castro at the Instituto Cajal (Madrid). From 1932 to 1933, Corneille Heymans focused all his attention on the carotid body his physiological demonstration of De Castro's hypothesis regarding chemoreceptors was awarded with the Nobel Prize in Physiology or Medicine in 1938, just when Spain was immersed in its catastrophic Civil War. PMID:20057927

  9. Regulation of ventral surface chemoreceptors by the central respiratory pattern generator.

    PubMed

    Guyenet, Patrice G; Mulkey, Daniel K; Stornetta, Ruth L; Bayliss, Douglas A

    2005-09-28

    The rat retrotrapezoid nucleus (RTN) contains neurons described as central chemoreceptors in the adult and respiratory rhythm-generating pacemakers in neonates [parafacial respiratory group (pfRG)]. Here we test the hypothesis that both RTN and pfRG neurons are intrinsically chemosensitive and tonically firing neurons whose respiratory rhythmicity is caused by a synaptic feedback from the central respiratory pattern generator (CPG). In halothane-anesthetized adults, RTN neurons were silent below 4.5% end-expiratory (e-exp) CO2. Their activity increased linearly (3.2 Hz/1% CO2) up to 6.5% (CPG threshold) and then more slowly to peak approximately 10 Hz at 10% CO2. Respiratory modulation of RTN neurons was absent below CPG threshold, gradually stronger beyond, and, like pfRG neurons, typically (42%) characterized by twin periods of reduced activity near phrenic inspiration. After CPG inactivation with kynurenate (KYN), RTN neurons discharged linearly as a function of e-exp CO2 (slope, +1.7 Hz/1% CO2) and arterial pH (threshold, 7.48; slope, 39 Hz/pH unit). In coronal brain slices (postnatal days 7-12), RTN chemosensitive neurons were silent at pH 7.55. Their activity increased linearly with acidification up to pH 7.2 (17 Hz/pH unit at 35 degrees C) and was always tonic. In conclusion, consistent with their postulated central chemoreceptor role, RTN/pfRG neurons encode pH linearly and discharge tonically when disconnected from the rest of the respiratory centers in vivo (KYN treatment) and in vitro. In vivo, RTN neurons receive respiratory synchronous inhibitory inputs that may serve as feedback and impart these neurons with their characteristic respiratory modulation.

  10. Photostimulation of Phox2b Medullary Neurons Activates Cardiorespiratory Function in Conscious Rats

    PubMed Central

    Kanbar, Roy; Stornetta, Ruth L.; Cash, Devin R.; Lewis, Stephen J.; Guyenet, Patrice G.

    2010-01-01

    Rationale: Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. Objectives: To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. Methods: A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. Measurements and Main Results: The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). Conclusions: Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans. PMID:20622037

  11. Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

    PubMed Central

    Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.

    2014-01-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863

  12. Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors

    PubMed Central

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo; West, Gavin H; Guyenet, Patrice G

    2007-01-01

    The retrotrapezoid nucleus (RTN) contains CO2-activated interneurons with properties consistent with central respiratory chemoreceptors. These neurons are glutamatergic and express the transcription factor Phox2b. Here we tested whether RTN neurons receive an input from slowly adapting pulmonary stretch receptors (SARs) in halothane-anaesthetized ventilated rats. In vagotomized rats, RTN neurons were inhibited to a variable extent by stimulating myelinated vagal afferents using the lowest intensity needed to inhibit the phrenic nerve discharge (PND). In rats with intact vagus nerves, RTN neurons were inhibited, also to a variable extent, by increasing positive end-expiratory pressure (PEEP; 2–6 cmH2O). The cells most sensitive to PEEP were inhibited during each lung inflation at rest and were instantly activated by stopping ventilation. Muscimol (GABA-A agonist) injection in or next to the solitary tract at area postrema level desynchronized PND from ventilation, eliminated the lung inflation-synchronous inhibition of RTN neurons and their steady inhibition by PEEP but did not change their CO2 sensitivity. Muscimol injection into the rostral ventral respiratory group eliminated PND but did not change RTN neuron response to either lung inflation, PEEP increases, vagal stimulation or CO2. Generalized glutamate receptor blockade with intracerebroventricular (i.c.v.) kynurenate eliminated PND and the response of RTN neurons to lung inflation but did not change their CO2 sensitivity. PEEP-sensitive RTN neurons expressed Phox2b. In conclusion, RTN chemoreceptors receive an inhibitory input from myelinated lung stretch receptors, presumably SARs. The lung input to RTN may be di-synaptic with inhibitory pump cells as sole interneurons. PMID:17255166

  13. Effects of hypercapnia and hypoxia on nasal vasculature and airflow resistance in the anaesthetized dog.

    PubMed Central

    Lung, M A; Wang, J C

    1986-01-01

    The experiments were performed on anaesthetized dogs which breathed spontaneously or were artificially ventilated and paralysed. The spontaneous nasal arterial blood flow was measured on one side of the nose while nasal vascular resistance was determined on the other side simultaneously. Nasal arterial blood flow was measured by means of an electromagnetic flow sensor placed around the terminal branch of the internal maxillary artery, the main arterial supply to the nasal mucosa. Nasal vascular resistance was measured by constant-flow perfusion of the terminal branch of the internal maxillary artery. Nasal airway resistance was assessed by monitoring the transnasal pressure at constant airflow through each side of the nose simultaneously. Hypercapnic gas challenge (8% CO2, 30% O2 in N2) to the lungs increased nasal vascular resistance and decreased nasal airway resistance. Similar gas challenge to the nose did not affect nasal vascular resistance but decreased nasal airway resistance. Hypoxic gas challenge (6% O2 in N2) to the lungs did not affect the nasal vascular resistance but decreased nasal airway resistance only when the nasal vascular bed was under controlled perfusion. Similar gas challenge to the nose did not affect either nasal vascular or airway resistance. Arterial chemoreceptor stimulation by intracarotid injection of sodium cyanide increased nasal vascular resistance and decreased nasal airway resistance. The nasal vascular response to hypercapnia and arterial chemoreceptor stimulation was reflex in nature, being abolished by nasal sympathectomy. The nasal airway response to hypercapnia, hypoxia and arterial chemoreceptor stimulation was reflex in nature, being partially or completely abolished by nasal sympathectomy. Hypercapnia probably induced a local vasodilatatory effect on the capacitance vessels whereas hypoxia had no direct action on the vasculature. PMID:3091811

  14. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves

    PubMed Central

    2017-01-01

    Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890

  15. Upper crustal fault reactivation and the potential of triggered earthquakes on the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken

    2016-04-01

    The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.

  16. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus microplus is considered the most economically important ectoparasite of cattle worldwide. It is known that zebuine breeds of cattle are less susceptible to tick infestation than taurine breeds. Contact chemoreceptors in the cheliceral pit sensilla of ticks respond selectively to phagos...

  17. Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects.

    PubMed

    Getahun, Merid N; Thoma, Michael; Lavista-Llanos, Sofia; Keesey, Ian; Fandino, Richard A; Knaden, Markus; Wicher, Dieter; Olsson, Shannon B; Hansson, Bill S

    2016-11-01

    Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects. © 2016. Published by The Company of Biologists Ltd.

  18. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis.

    PubMed Central

    Liu, J D; Parkinson, J S

    1989-01-01

    Chemotactic behavior in Escherichia coli is mediated by membrane-associated chemoreceptors that transmit sensory signals to the flagellar motors through an intracellular signaling system, which appears to involve a protein phosphorylation cascade. This study concerns the role of CheW, a cytoplasmic protein, in coupling methyl-accepting chemotaxis proteins (MCPs), the major class of membrane receptors, to the intracellular signaling system. Steady-state flagellar rotation behavior was examined in a series of strains with different combinations and relative amounts of CheW, MCPs, and other signaling components. At normal expression levels, CheW stimulated clockwise rotation, and receptors appeared to enhance this stimulatory effect. At high expression levels, MCPs inhibited clockwise rotation, and CheW appeared to augment this inhibitory effect. Since overexpression of CheW or MCP molecules had the same behavioral effect as their absence, chemoreceptors probably use CheW to modulate two distinct signals, one that stimulates and one that inhibits the intracellular phosphorylation cascade. Images PMID:2682657

  19. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  20. Interactive effects of mechano- and chemo-receptor inputs on cardiorespiratory outputs in the toad.

    PubMed

    Wang, T; Taylor, E W; Reid, S G; Milsom, W K

    2004-04-20

    Arterial blood pressure (P(b)), pulmocutaneous blood flow (Q(pc)), heart rate (f(H)), and fictive ventilation (motor activity in the Vth cranial nerve, V(int)), were recorded from decerebrated, paralysed toads receiving unidirectional ventilation with experimental gas mixtures over a range of lung inflation. At the onset of spontaneous bouts of fictive ventilation, (Q(pc)) and P(b) increased immediately, often with changes in heart rate, implying central cardiorespiratory interactions. Inflation of the lungs with different gas mixtures revealed that the effect of hypercarbia on V(int) was reduced by lung inflation and that feedback from pulmonary stretch receptors may summate with central feedforward control of f(H) and (Q(pc)) in an interactive fashion. The results of bolus injections of cyanide into the carotid or the pulmonary circulations suggest there are oxygen sensitive receptors in both circuits that affect the cardiovascular system directly and respiratory activity by complex central interactions with inputs from central chemoreceptors and pulmonary stretch receptors.

  1. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE PAGES

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; ...

    2016-10-20

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  3. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  4. Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Gomberg, J.

    1996-01-01

    Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as aseismic creep events. Variations in the triggering threshold at sites of triggered seismicity may be attributed to variations in gouge zone development and properties. Finally, these interpretations provide ready explanations for the time delays between the Landers earthquake and the triggered events.

  5. Intraplate triggered earthquakes: Observations and interpretation

    USGS Publications Warehouse

    Hough, S.E.; Seeber, L.; Armbruster, J.G.

    2003-01-01

    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of long-lived stress concentration.

  6. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California

    USGS Publications Warehouse

    Smith, E.F.; Gomberg, J.

    2009-01-01

    We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.

  7. The essence of appetite: Does olfactory receptor variation play a role?

    USDA-ARS?s Scientific Manuscript database

    Olfactory receptors are G-protein coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predato...

  8. Microarray analysis of the abscission-related transcriptome in tomato flower abscission zone in response to auxin depletion

    USDA-ARS?s Scientific Manuscript database

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene and may be accelerated by postharvest stresses. Although changes ...

  9. Role of reservoirs in sustained seismicity of Koyna-Warna region—a statistical analysis

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.

    2018-03-01

    Koyna-Warna region in western India is a globally recognized site of reservoir-triggered seismicity near the Koyna and Warna reservoirs. The region has been reported with several M > 5 earthquakes in the last five decades including M6.3 Koyna earthquake which is considered as the largest triggered earthquake worldwide. In the present study, a detailed statistical analysis has been done for long period earthquake catalogues during 1968-2004 of MERI and 2005-2012 of CSIR-NGRI to find out the spatio-temporal influence of the Koyna and Warna reservoirs impoundment on the seismicity of the region. Depending upon the earthquake clusters, we divided the region into three different zones and performed power spectrum and singular spectrum analysis (SSA) on them. For the time period 1983-1995, the earthquake zone near the Warna reservoir; for 1996-2004, the earthquake zone near the Koyna reservoir; and for 2005-2012, the earthquake zone near the Warna reservoir found to be influenced by the annual water level variations in the reservoirs that confirm the continuous role of both the reservoirs in the seismicity of the Koyna-Warna region.

  10. Using the Pathophysiology of Obstructive Sleep Apnea to Teach Cardiopulmonary Integration

    ERIC Educational Resources Information Center

    Levitzky, Michael G.

    2008-01-01

    Obstructive sleep apnea (OSA) is a common disorder of upper airway obstruction during sleep. The effects of intermittent upper airway obstruction include alveolar hypoventilation, altered arterial blood gases and acid-base status, and stimulation of the arterial chemoreceptors, which leads to frequent arousals. These arousals disturb sleep…

  11. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    NASA Astrophysics Data System (ADS)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments creating pathways for free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. Our results imply that free hydrocarbon gas trapped beneath a local gas hydrate seal was mobilized through earthquake-induced mechanical failure and in that way circumvented carbon sequestration within the sediment. These findings lead to conclude that hydrocarbon seepage triggered by earthquakes can play a role for carbon budgets at other seismically active continental margins. The newly identified process presented in our study is conceivable to help interpret data from similar sites. Reference: Fischer, D., Mogollon, J.M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spieß, V. and Kasten, S., 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience 6: 647-651.

  12. New Madrid Seismic Zone: a test case for naturally induced seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nava, S.J.

    1983-09-01

    Induced seismicity caused by man-made events, such as the filling of reservoirs has been well documented. In contrast, naturally induced seismicity has received little attention. It has been shown that a fluctuation of as little as several bars can trigger reservoir induced earthquakes. Naturally occurring phenomena generate similar fluctuations and could trigger earthquakes where the faults in ambient stress field are suitably oriented and close to failure. The New Madrid Seismic Zone (NMSZ) presents an ideal test case for the study of naturally induced seismicity. The ideal data set for a study of triggering effects must contain a statistically significantmore » number of events, a constant accumulated strain, and a limited focal region. New Madrid earthquakes are well documented from 1974 to the present, down to a magnitude approx. 1.8. They lie in a distinct fault pattern and occur as a reaction to the regional stress regime. A statistical correlation was made between the earthquakes and a variety of different types of loads, to see if New Madrid seismicity could be triggered by natural fluctuations. The types of triggers investigated ranged from solid earth tides to variations in barometric pressure, rainfall, and stages of the Mississippi River. This analysis becomes complex because each factor investigated creates individual stresses, as well as having imbedded in it a reaction to other factors.« less

  13. Triggering Factor of Strong Earthquakes and Its Prediction Verification

    NASA Astrophysics Data System (ADS)

    Ren, Z. Q.; Ren, S. H.

    After 30 yearsS research, we have found that great earthquakes are triggered by tide- generation force of the moon. ItSs not the tide-generation force in classical view- points, but is a non-classical viewpoint tide-generation force. We call it as TGFR (Tide-Generation ForcesS Resonance). TGFR strongly depends on the tide-generation force at time of the strange astronomical points (SAP). The SAP mostly are when the moon and another celestial body are arranged with the earth along a straight line (with the same apparent right ascension or 180o difference), the other SAP are the turning points of the moonSs relatively motion to the earth. Moreover, TGFR have four different types effective areas. Our study indicates that a majority of earthquakes are triggering by the rare superimposition of TGFRsS effective areas. In China the great earthquakes in the plain area of Hebei Province, Taiwan, Yunnan Province and Sichuan province are trigger by the decompression TGFR; Other earthquakes are trig- gered by compression TGFR which are in Gansu Province, Ningxia Provinces and northwest direction of Beijing. The great earthquakes in Japan, California, southeast of Europe also are triggered by compression of the TGFR. and in the other part of the world like in Philippines, Central America countries, and West Asia, great earthquakes are triggered by decompression TGFR. We have carried out examinational immediate prediction cooperate TGFR method with other earthquake impending signals such as suggested by Professor Li Junzhi. The successful ratio is about 40%(from our fore- cast reports to the China Seismological Administration). Thus we could say the great earthquake can be predicted (include immediate earthquake prediction). Key words: imminent prediction; triggering factor; TGFR (Tide-Generation ForcesS Resonance); TGFR compression; TGFR compression zone; TGFR decompression; TGFR decom- pression zone

  14. Evidence for earthquake triggering of large landslides in coastal Oregon, USA

    USGS Publications Warehouse

    Schulz, W.H.; Galloway, S.L.; Higgins, J.D.

    2012-01-01

    Landslides are ubiquitous along the Oregon coast. Many are large, deep slides in sedimentary rock and are dormant or active only during the rainy season. Morphology, observed movement rates, and total movement suggest that many are at least several hundreds of years old. The offshore Cascadia subduction zone produces great earthquakes every 300–500 years that generate tsunami that inundate the coast within minutes. Many slides and slide-prone areas underlie tsunami evacuation and emergency response routes. We evaluated the likelihood of existing and future large rockslides being triggered by pore-water pressure increase or earthquake-induced ground motion using field observations and modeling of three typical slides. Monitoring for 2–9 years indicated that the rockslides reactivate when pore pressures exceed readily identifiable levels. Measurements of total movement and observed movement rates suggest that two of the rockslides are 296–336 years old (the third could not be dated). The most recent great Cascadia earthquake was M 9.0 and occurred during January 1700, while regional climatological conditions have been stable for at least the past 600 years. Hence, the estimated ages of the slides support earthquake ground motion as their triggering mechanism. Limit-equilibrium slope-stability modeling suggests that increased pore-water pressures could not trigger formation of the observed slides, even when accompanied by progressive strength loss. Modeling suggests that ground accelerations comparable to those recorded at geologically similar sites during the M 9.0, 11 March 2011 Japan Trench subduction-zone earthquake would trigger formation of the rockslides. Displacement modeling following the Newmark approach suggests that the rockslides would move only centimeters upon coseismic formation; however, coseismic reactivation of existing rockslides would involve meters of displacement. Our findings provide better understanding of the dynamic coastal bluff environment and hazards from future subduction-zone earthquakes.

  15. Glutamatergic Receptor Activation in the Commisural Nucleus Tractus Solitarii (cNTS) Mediates Brain Glucose Retention (BGR) Response to Anoxic Carotid Chemoreceptor (CChr) Stimulation in Rats.

    PubMed

    Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Dobrovinskaya, O; Melnikov, V; Lemus, M; de Álvarez-Buylla, E Roces

    2015-01-01

    Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.

  16. Expression of TASK-1 in brainstem and the occurrence of central sleep apnea in rats.

    PubMed

    Wang, Jing; Zhang, Cheng; Li, Nan; Su, Li; Wang, Guangfa

    2008-03-20

    Recent studies revealed that unstable ventilation control is one of mechanisms underlying the occurrence of sleep apnea. Thus, we investigated whether TASK-1, an acid-sensitive potassium channel, plays a role in the occurrence of sleep apnea. First, the expression of TASK-1 transcriptions on brainstem was checked by in situ hybridization. Then, the correlation between the central apneic episodes and protein contents of TASK-1 measured by western blot was analyzed from 27 male rats. Results showed that TASK-1 mRNAs were widely distributed on the putative central chemoreceptors such as locus coeruleus, nucleus tractus solitarius and medullary raphe, etc. Both the total spontaneous apnea index (TSAI) and spontaneous apnea index in NREM sleep (NSAI) were positively correlated with TASK-1 protein contents (r=0.547 and 0.601, respectively, p<0.01). However, the post-sigh sleep apnea index (PAI) had no relationship with TASK-1 protein. Thus, we concluded that TASK-1 channels may function as central chemoreceptors that play a role in spontaneous sleep apneas in rats.

  17. The physical and functional thermal sensitivity of bacterial chemoreceptors.

    PubMed

    Frank, Vered; Koler, Moriah; Furst, Smadar; Vaknin, Ady

    2011-08-19

    The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Landslides triggered by the 2002 Denali fault, Alaska, earthquake and the inferred nature of the strong shaking

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.

    2004-01-01

    The 2002 M7.9 Denali fault, Alaska, earthquake triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 15 ?? 106 m3. The pattern of landsliding was unusual; the number of slides was less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone 30-km wide that straddled the fault rupture over its entire 300-km length. The large rock avalanches all clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong shaking characteristics drawn from the interpretation of the landslide distribution are consistent with results of recent inversion modeling that indicate high-frequency energy generation was greatest in the western part of the fault rupture zone and decreased markedly to the east. ?? 2004, Earthquake Engineering Research Institute.

  19. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2009-12-01

    A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the second disfavors the investor who loses part of the investment without a reasonable cause. A streamlined and fairly automated methodology has been developed to design parametric triggers that minimize the basis risk while still maintaining their level of relative simplicity. Basis risk is minimized in both, first and second generation, parametric cat bonds through an optimization procedure that aims to find the most appropriate magnitude thresholds, geographic zones, and weight index values. Sensitivity analyses to different design assumptions show that first generation cat bonds are typically affected by a large negative basis risk, namely the risk that the bond will not trigger for events within the risk level transferred, unless a sufficiently small geographic resolution is selected to define the trigger zones. Second generation cat bonds in contrast display a bias towards negative or positive basis risk depending on the degree of the polynomial used as well as on other design parameters. Two examples are presented, the construction of a first generation parametric trigger mechanism for Costa Rica and the design of a second generation parametric index for Japan.

  20. Seismicity patterns of earthquake swarms in the West-Bohemia/Vogtland as a hint to their triggering mechanisms

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Hainzl, S.; Horalek, J.; Michalek, J.

    2009-04-01

    The distribution of West-Bohemia/Vogtland seismicity is clustered both in time and space. The time occurrence is manifested in a variety of forms including both swarms with fast and with slow energy release that last from hours to months and also solitary events. The lateral distribution of seismicity is limited to a small number of focal zones, which have been periodically reactivated during the past 18 years of instrumental observations. We don't observe an apparent migration of seismic activity. Instead, the activity has been switching between the focal zones with its largest part residing in the area of Nový Kostel, which dominates with 85% of energy release. Analysis of the activity in the period 1991-2007 has revealed that the interevent times of the seismic activity measured between events in separated focal zones show increased occurrence for time intervals below 8 hours. This fast switching of activity among focal zones with mutual distances above 10 km shows that the seismicity is correlated in a broader area and points to a common triggering force acting in the whole region of West-Bohemia/Vogtland. This force could be stress changes due to earth tides, barometric pressure disturbances, or an abrupt change of the crustal fluid pore pressure. It would trigger the activity in the focal zones which are close to failure. Depending on the local stress and mechanical conditions in each zone, the activity could either cease or an earthquake swarm could be initiated. To disclose the forces governing the already running swarm activity we investigated the space-time relations between consecutive earthquakes of the 2000 swarm. The swarm lasted four months and consisted of more that 8000 M=3.3 strike-slip microearthquakes, which were located along a fault plane at depths 6.5-10.5 km and showed a common rake angle of 30°. We found that the relative positions of consecutive event pairs showed maximum occurrence in the slip-parallel directions. Comparison with the complete Coulomb stress change upon the fault plane due to a typical rupture showed that the observed elongation of the space-time distribution of the relative positions can be explained by a common effect of both static and dynamic stress changes, which act on different distance and timescale. The relatively small magnitudes of the Coulomb stress changes upon the fault plane in the order of 10 kPa, which are supposed to trigger the swarm events, support the idea that high pressurized crustal fluids increase the pore pressure and bring the fault close to its critical state. This is in accordance with the results of our model of the 2000 swarm which took into account both the fluid diffusion and stress triggering. The model consisted of a planar brittle patch placed in a 3-D elastic half-space divided into the number of cells with variable strength. The individual cells rupture when the Coulomb failure criterion including both shear stress and pore pressure is fulfilled. The initial tectonic loading of the patch is presumed subcritical until the pore pressure of diffused fluids brings it into a critical state. Then the earthquake activity is governed by the stress changes due to the co-seismic and post-seismic slip, so that mutual triggering between ruptured cells occurs. It turns out that once the pressurized crustal fluids bring a fault from a subcritical steady-state into a critical state, the self-organization prevails in governing the swarm activity. This is in accordance with the possible effect of a regionally scaled force bringing one or multiple focal zones to the critical state and trigger seismicity. The recent M=3.7 swarm from October 2008 occurred at the identical fault plane as the 2000 swarm and showed a similar areal extent of the ruptured area. The overall migration of activity with first events at the bottom of the activated fault patch and the last events in the northward tail at its top indicates similar triggering scenario. However, the step-wise monotonous event migration in the first swarm period differs significantly from the complex migration patterns of the 2000 swarm, A further analysis is needed to learn if such a pattern could be due to a fluid or magma propagation along the fault plane.

  1. Fernando de Castro and the discovery of the arterial chemoreceptors

    PubMed Central

    Gonzalez, Constancio; Conde, Silvia V.; Gallego-Martín, Teresa; Olea, Elena; Gonzalez-Obeso, Elvira; Ramirez, Maria; Yubero, Sara; Agapito, Maria T.; Gomez-Niñno, Angela; Obeso, Ana; Rigual, Ricardo; Rocher, Asunción

    2014-01-01

    When de Castro entered the carotid body (CB) field, the organ was considered to be a small autonomic ganglion, a gland, a glomus or glomerulus, or a paraganglion. In his 1928 paper, de Castro concluded: “In sum, the Glomus caroticum is innervated by centripetal fibers, whose trophic centers are located in the sensory ganglia of the glossopharyngeal, and not by centrifugal [efferent] or secretomotor fibers as is the case for glands; these are precisely the facts which lead to suppose that the Glomus caroticum is a sensory organ.” A few pages down, de Castro wrote: “The Glomus represents an organ with multiple receptors furnished with specialized receptor cells like those of other sensory organs [taste buds?]…As a plausible hypothesis we propose that the Glomus caroticum represents a sensory organ, at present the only one in its kind, dedicated to capture certain qualitative variations in the composition of blood, a function that, possibly by a reflex mechanism would have an effect on the functional activity of other organs… Therefore, the sensory fiber would not be directly stimulated by blood, but via the intermediation of the epithelial cells of the organ, which, as their structure suggests, possess a secretory function which would participate in the stimulation of the centripetal fibers.” In our article we will recreate the experiments that allowed Fernando de Castro to reach this first conclusion. Also, we will scrutinize the natural endowments and the scientific knowledge that drove de Castro to make the triple hypotheses: the CB as chemoreceptor (variations in blood composition), as a secondary sensory receptor which functioning involves a chemical synapse, and as a center, origin of systemic reflexes. After a brief account of the systemic reflex effects resulting from the CB stimulation, we will complete our article with a general view of the cellular-molecular mechanisms currently thought to be involved in the functioning of this arterial chemoreceptor. PMID:24860435

  2. Purines and Carotid Body: New Roles in Pathological Conditions

    PubMed Central

    Conde, Silvia V.; Monteiro, Emilia C.; Sacramento, Joana F.

    2017-01-01

    It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction. PMID:29311923

  3. Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves

    USGS Publications Warehouse

    Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.

    2011-01-01

    The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.

  4. The relative roles of external and internal CO(2) versus H(+) in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia.

    PubMed

    Perry, S F; McKendry, J E

    2001-11-01

    Fish breathing hypercarbic water encounter externally elevated P(CO(2)) and proton levels ([H(+)]) and experience an associated internal respiratory acidosis, an elevation of blood P(CO(2)) and [H(+)]. The objective of the present study was to assess the potential relative contributions of CO(2) versus H(+) in promoting the cardiorespiratory responses of dogfish (Squalus acanthias) and Atlantic salmon (Salmo salar) to hypercarbia and to evaluate the relative contributions of externally versus internally oriented receptors in dogfish. In dogfish, the preferential stimulation of externally oriented branchial chemoreceptors using bolus injections (50 ml kg(-1)) of CO(2)-enriched (4 % CO(2)) sea water into the buccal cavity caused marked cardiorespiratory responses including bradycardia (-4.1+/-0.9 min(-1)), a reduction in cardiac output (-3.2+/-0.6 ml min(-1) kg(-1)), an increase in systemic vascular resistance (+0.3+/-0.2 mmHg ml min(-1) kg(-1)), arterial hypotension (-1.6+/-0.2 mmHg) and an increase in breathing amplitude (+0.3+/-0.09 mmHg) (means +/- S.E.M., N=9-11). Similar injections of CO(2)-free sea water acidified to the corresponding pH of the hypercarbic water (pH 6.3) did not significantly affect any of the measured cardiorespiratory variables (when compared with control injections). To preferentially stimulate putative internal CO(2)/H(+) chemoreceptors, hypercarbic saline (4 % CO(2)) was injected (2 ml kg(-1)) into the caudal vein. Apart from an increase in arterial blood pressure caused by volume loading, internally injected CO(2) was without effect on any measured variable. In salmon, injection of hypercarbic water into the buccal cavity caused a bradycardia (-13.9+/-3.8 min(-1)), a decrease in cardiac output (-5.3+/-1.2 ml min(-1) kg(-1)), an increase in systemic resistance (0.33+/-0.08 mmHg ml min(-1) kg(-1)) and increases in breathing frequency (9.7+/-2.2 min(-1)) and amplitude (1.2+/-0.2 mmHg) (means +/- S.E.M., N=8-12). Apart from a small increase in breathing amplitude (0.4+/-0.1 mmHg), these cardiorespiratory responses were not observed after injection of acidified water. These results demonstrate that, in dogfish and salmon, the external chemoreceptors linked to the initiation of cardiorespiratory responses during hypercarbia are predominantly stimulated by the increase in water P(CO(2)) rather than by the accompanying decrease in water pH. Furthermore, in dogfish, the cardiorespiratory responses to hypercarbia are probably exclusively derived from the stimulation of external CO(2) chemoreceptors, with no apparent contribution from internally oriented receptors.

  5. Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter F.

    2006-01-01

    Slow-slip events, or ‘silent earthquakes’, have recently been discovered in a number of subduction zones including the Nankai trough1, 2, 3 in Japan, Cascadia4, 5, and Guerrero6 in Mexico, but the depths of these events have been difficult to determine from surface deformation measurements. Although it is assumed that these silent earthquakes are located along the plate megathrust, this has not been proved. Slow slip in some subduction zones is associated with non-volcanic tremor7, 8, but tremor is difficult to locate and may be distributed over a broad depth range9. Except for some events on the San Andreas fault10, slow-slip events have not yet been associated with high-frequency earthquakes, which are easily located. Here we report on swarms of high-frequency earthquakes that accompany otherwise silent slips on Kīlauea volcano, Hawaii. For the most energetic event, in January 2005, the slow slip began before the increase in seismicity. The temporal evolution of earthquakes is well explained by increased stressing caused by slow slip, implying that the earthquakes are triggered. The earthquakes, located at depths of 7–8 km, constrain the slow slip to be at comparable depths, because they must fall in zones of positive Coulomb stress change. Triggered earthquakes accompanying slow-slip events elsewhere might go undetected if background seismicity rates are low. Detection of such events would help constrain the depth of slow slip, and could lead to a method for quantifying the increased hazard during slow-slip events, because triggered events have the potential to grow into destructive earthquakes.

  6. Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh

    2015-09-01

    Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.

  7. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  8. Diving bradycardia: a mechanism of defence against hypoxic damage.

    PubMed

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  9. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  10. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    PubMed

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  11. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.

    2008-07-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.

  12. Kinematics of Post-Collisional Extensional Tectonics and Exhumation of the Menderes Massif in the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.

    2006-12-01

    The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.

  13. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Crozier, M. J.

    2017-10-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity for many events. The overall ability to predict the impact of these events and consequently the development of effective mitigation measures is limited by the ability to predict the travel path, storm centre, and intensity range within the cell structure of extreme weather systems.

  14. Reprint of "A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping"

    NASA Astrophysics Data System (ADS)

    Crozier, M. J.

    2018-04-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity for many events. The overall ability to predict the impact of these events and consequently the development of effective mitigation measures is limited by the ability to predict the travel path, storm centre, and intensity range within the cell structure of extreme weather systems.

  15. A method for aircraft afterburner combustion without flameholders

    NASA Astrophysics Data System (ADS)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet combustor, turbine stage and afterburner. To model the PAT concept, Jet-A was injected upstream of the simulated turbine stage and a H2 jet was used to trigger the primed Jet-A combustion process downstream of the turbine stage. H2 was used because POx gas was not available for experiments. The second facility, termed the Propane Autoignition Combustor (PAC), was essentially a scaled-down, simplified version of the AF. The PAC experiments focused on the trigger stage of the PAT concept, using H 2 in lieu of POx gas and employing measurement techniques that were in some ways more detailed than in the AF experiments. The developed model simulated the physics of fuel priming in the AF and predicted the Jet-A autoignition location. It was used to predict and interpret the AF results and to study the feasibility of the PAT concept at pressures outside the AF operating range. Finally, the Chemkin simulations were used to examine the effect of several POx gas compositions on the Jet-A/vitiated-air autoignition process; to compare the POx and H2 triggers; and to explore several reasons for why POx gas and H2 are suitable trigger mechanisms. he experimental, theoretical, and numerical results obtained in this investigation indicated that the PAT concept provides a feasible approach to afterburner combustion. The experiments in the AF showed that the ignition delay of Jet-A is sufficiently long to allow fuel injection within turbine stages without significant heat release upstream of the afterburner. In the AF experiments without the H2 trigger, Jet-A combustion was achieved through autoignition; however, the autoignition combustion zone exhibited large axial fluctuations and low combustion efficiency. The H2 trigger was able to shift the combustion zone upstream, make it more compact, reduce fluctuations in its axial position, and raise the combustion efficiency to nearly 100%. The PAC experiments also showed that a H2 trigger can shift the combustion zone upstream, make it more compact, and increase the combustion efficiency. The PAC results were obtained with lower O 2 content and higher equivalence ratios than in the AF. Therefore, the combined AF and PAC results suggested that the PAT concept is feasible over a wide range of operating conditions. The developed model showed good agreement with the AF results. It also predicted that the PAT concept is feasible at bulk flow pressures outside the AF operating range. Finally, the Chemkin results showed that both the H2 and POx gas triggers can significantly reduce the ignition delay time of primed Jet-A/vitiated air mixtures. Thus, POx gas is a suitable trigger for the PAT concept and should be tested in future experimental investigations.

  16. Landslides and liquefaction triggered by the M 7.9 denali fault earthquake of 3 November 2002

    USGS Publications Warehouse

    Harp, E.L.; Jibson, R.W.; Kayen, R.E.; Keefer, D.K.; Sherrod, B.L.; Carver, G.A.; Collins, B.D.; Moss, R.E.S.; Sitar, N.

    2003-01-01

    The moment magnitude (M) 7.9 Denali Fault earthquake in Alaska of 3 November 2002 triggered an unusual pattern of landslides and liquefaction effects. The landslides were primarily rock falls and rock slides that ranged in volume from a few cubic meters to the 40 million-cubic-meter rock avalanche that covered much of the McGinnis Glacier. Landslides were concentrated in a narrow zone ???30 km wide that straddled the fault rupture zone over its entire 300 km length. Large rock avalanches all clustered at the western end of the rupture zone where acceleration levels are reported to have been the highest. Liquefaction effects, consisting of sand blows, lateral spreads, and settlement, were widespread within susceptible alluvial deposits extending from Fairbanks eastward several hundred kilometers. The liquefaction effects displayed a pattern of increasing concentration and severity from west to east and extended well beyond the zone of landslides, which is unusual. The contrasting patterns formed by the distributions of landslides and liquefaction effects initially seemed to be inconsistent; however, preliminary analyses of strong-motion records from the earthquake offer a possible explanation for the unusual ground-failure patterns that are related to three subevents that have been discerned from the earthquake records.

  17. Widespread afterslip and triggered slow slip events following the M7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Wallace, L. M.; Hreinsdottir, S.; Hamling, I. J.; D'Anastasio, E.; Bartlow, N. M.

    2017-12-01

    Just after midnight on 14 Nov 2016 (NZ Local time), the M7.8 Kaikoura earthquake ruptured a complex sequence of strike-slip and reverse faults over an approximately 150 km length in the northeastern South Island of New Zealand (Hamling et al., 2017, Science). In the months following the earthquake, time-dependent inversions of InSAR observations and continuous and semi-continuous GPS measurements reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the region of large coseismic slip on crustal faults in the M7.8 earthquake. The geodetic data also require significant afterslip on a subset of the crustal faults that ruptured in the earthquake, including the Needles, Jordan Thrust, and Kekerengu faults. Our best-fitting models also suggest significant afterslip on an offshore reverse fault, in a similar position to one inferred by Clark et al. (2017, EPSL) from coseismic coastal uplift data. The M7.8 earthquake also triggered widespread slow slip occurring over much of the Hikurangi subduction zone beneath the North Island. Immediately following the earthquake, continuous GPS sites operated by GeoNet (www.geonet.org.nz) along the North Island's east coast (above the Hikurangi subduction zone) detected several to 30 mm of eastward motion over the two-week period immediately following the M7.8 event. These sites are located 350-650 km from the M7.8 earthquake. Such large eastward motion along the North Island's east coast following the earthquake is consistent with the initiation of a large slow slip event along the shallow, offshore portion of the Hikurangi subduction zone. In addition to shallow slow slip (<15 km depth) triggered offshore the east coast, we also observe deeper slow slip (>30 km depth) triggered in the Kapiti region at the southern Hikurangi margin. The Kapiti SSE was still ongoing as of August 2017, although we expect it to finish before the end of 2017. Given the large distance of the shallow east coast SSE from the M7.8 earthquake, we suggest that the shallow SSE was more likely to be triggered by dynamic stress changes, while the deeper SSEs closer to the Mw 7.8 were more likely triggered by static stress changes.

  18. Reflex changes in breathing pattern evoked by inhalation of wood smoke in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Y.R.; Lai, C.J.

    1994-06-01

    The acute ventilatory response to inhalation of wood smoke was studied in 58 anesthetized Sprague-Dawley rats. Wood smoke ([approximately]6 ml) was inhaled spontaneously via a tracheal cannula. Within the first two breaths of smoke inhalation, either a slowing of respiration (SR) (n=39) or an augmented inspiration (AI) (n=19) was elicited consistently in each rat. The SR was primarily due to a prolongation of expiratory duration, whereas the AI was characterized by a two-step inspiratory flow leading to an exceedingly large tidal volume. Both initial responses, usually accompanied by bradycardia and hypotension, were reduced by inhaling smoke at a decreased concentration.more » After these initial responses, a delayed tachypnea developed and reached its peak 6-10 breaths after inhalation of smoke. Both the SR and AI were completely abolished by bilateral cervical vagotomy. In contrast, the delayed tachypneic response was not prevented by vagotomy but was significantly attenuated by denervation of peripheral chemoreceptors. The authors conclude that the initial responses to inhalation of several tidal breaths of wood smoke are mediated through vagal bronchopulmonary afferents, whereas the delayed tachypnea may involve nonvagal mechanisms that include a stimulation of peripheral chemoreceptors.« less

  19. Chemotaxis and flagellar genes of Chromobacterium violaceum.

    PubMed

    Pereira, Maristela; Parente, Juliana Alves; Bataus, Luiz Artur Mendes; Cardoso, Divina das Dores de Paula; Soares, Renata Bastos Ascenço; Soares, Célia Maria de Almeida

    2004-03-31

    The availability of the complete genome of the Gram-negative beta-proteobacterium Chromobacterium violaceum has increasingly impacted our understanding of this microorganism. This review focuses on the genomic organization and structural analysis of the deduced proteins of the chemosensory adaptation system of C. violaceum. C. violaceum has multiple homologues of most chemotaxis genes, organized mostly in clusters in the bacterial genome. We found at least 67 genes, distributed in 10 gene clusters, involved in the chemotaxis of C. violaceum. A close examination of the chemoreceptors methyl-accepting chemotaxis proteins (MCPs), and the deduced sequences of the members of the two-component signaling system revealed canonical motifs, described as essential for the function of the deduced proteins. The chemoreceptors found in C. violaceum include the complete repertoire of such genes described in bacteria, designated as tsr, tar, trg, and tap; 41 MCP loci were found in the C. violaceum genome. Also, the C. violaceum genome includes a large repertoire of the proteins of the chemosensory transducer system. Multiple homologues of bacterial chemotaxis genes, including CheA, CheB, CheD, CheR, CheV, CheY, CheZ, and CheW, were found in the C. violaceum genome.

  20. Perinatal nicotine/smoking exposure and carotid chemoreceptors during development.

    PubMed

    Stéphan-Blanchard, E; Bach, V; Telliez, F; Chardon, K

    2013-01-01

    Tobacco smoking is still a common habit during pregnancy and is the most important preventable cause of many adverse perinatal outcomes. Prenatal smoking exposure can produce direct actions of nicotine in the fetus with the disruption of body and brain development, and actions on the maternal-fetal unit by causing repeated episodes of hypoxia and exposure to many toxic smoke products (such as carbon monoxide). Specifically, nicotine through binding to nicotinic acetylcholine receptors have ubiquitous effects and can affect carotid chemoreception development through structural, functional and neuroregulatory alterations of the neural circuits involved in the chemoafferent pathway, as well as by interfering with the postnatal resetting of the carotid bodies. Reduced carotid body chemosensitivity and tonic activity have thus been reported by the majority of the human and animal studies. This review focuses on the effects of perinatal exposure to tobacco smoke and nicotine on carotid chemoreceptor function during the developmental period. A description of the effects of smoking and nicotine on the control of breathing related to carotid body activity, and of the possible physiopathological mechanisms at the origin of these disturbances is presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29.

    PubMed

    Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi

    2017-08-17

    Chemotaxis enables bacteria to move toward more favorable environmental conditions. We observed chemotaxis toward boric acid by Ralstonia pseudosolanacearum Ps29. At higher concentrations, the chemotactic response of R. pseudosolanacearum toward boric acid was comparable to or higher than that toward L-malate, indicating that boric acid is a strong attractant for R. pseudosolanacearum. Chemotaxis assays under different pH conditions suggested that R. pseudosolanacearum recognizes B(OH) 3 (or B(OH 3 ) + B(OH) 4 - ) but not B(OH) 4 - alone. Our previous study revealed that R. pseudosolanacearum Ps29 harbors homologs of all 22R. pseudosolanacearum GMI1000 mcp genes. Screening of 22 mcp single-deletion mutants identified the RS_RS17100 homolog as the boric acid chemoreceptor, which was designated McpB. The McpB ligand-binding domain (LBD) was purified in order to characterize its binding to boric acid. Using isothermal titration calorimetry, we demonstrated that boric acid binds directly to the McpB LBD with a K D (dissociation constant) of 5.4 µM. Analytical ultracentrifugation studies revealed that the McpB LBD is present as a dimer that recognizes one boric acid molecule.

  2. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats

    PubMed Central

    Fu, Zhenxing; Powell, Frank L.

    2011-01-01

    During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco2 levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO2-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po2 = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH. PMID:21593425

  3. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    USGS Publications Warehouse

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.

  4. Remote Love Wave Triggering of Tremor in the Nankai Subduction Zone: New Observations and Dynamic Stress Modeling

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.

    2013-12-01

    The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface waves of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh waves from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love wave triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love waves. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love waves. The incoming surface waves from this earthquake are almost strike-parallel to the Nankai subduction zone, which corresponds to a higher Love wave triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-wave associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love waves and continues during the latter, larger-amplitude Rayleigh waves. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the case of the 2012 Sumatra earthquake, we found a high correlation between the Love waves dynamic Coulomb stress change at the tremor source and the triggered NVT, for a time period of about 400s, which starts from the first Love wave cycles. Afterwards, the tremor bursts have slightly larger amplitudes and the correlation with the surface waves becomes poor. Preliminary results indicate a shallower location for these later tremors. Our results indicate that the triggering mechanism of NVT in western Shikoku is essentially the same with the one operating (e.g., Hill, 2012) in other subduction regions around the world (e.g., Cascadia). The tremor responds to excitation by both Love and Rayleigh waves according to the Coulomb failure criterion; failure, once underway, might be controlled by other mechanisms (e.g., some form of rate-state friction), which we plan to address in future studies.

  5. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  6. The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.

    PubMed

    Lai, Run-Zhi; Bormans, Arjan F; Draheim, Roger R; Wright, Gus A; Manson, Michael D

    2008-12-16

    The Tar chemoreceptor-CheA-CheW ternary complex of Escherichia coli is a transmembrane allosteric enzyme in which binding of ligands to the periplasmic domain modulates the activity of CheA kinase. Kinase activity is also affected by reversible methylation of four glutamyl residues in the cytoplasmic domain of the receptor. E. coli Tar contains 553 residues. Residues 549-553 comprise the NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. The crystal structure of the similar Tsr chemoreceptor predicts that residues 263-289 and 490-515 of Tar form the most membrane-proximal portion of the extended CD1-CD2 four-helix bundle of the cytoplasmic domain. The last methylation site, Glu-491, is in the C19 heptad, and the N22-19 and C22-19 heptads are present in all classes of bacterial transmembrane chemoreceptors. Residues 516-548 probably serve as a flexible tether for the NWETF pentapeptide. Here, we present a mutational analysis of residues 505-548. The more of this region that is deleted, the less sensitive Tar is to inhibition by aspartate. Tar deleted from residue 505 through the NWETF sequence stimulates CheA in vitro but is not inhibited by aspartate. Thus, interaction of the last two heptads (C21 and C22) of CD2 with the first two heptads (N22 and N21) of CD1 must be important for transmitting an inhibitory signal from the HAMP domain to the four-helix bundle. The R514A, K523A, R529A, R540A, and R542A substitutions, singly or together, increase the level of activation of CheA in vitro, whereas the R505A substitution decreases the level of CheA stimulation by 40% and lowers the aspartate K(i) 7-fold. The R505E substitution completely abolishes stimulation of CheA in vitro. Glu-505 may interact electrostatically with Asp-273 to destabilize the "on" signaling state by loosening the four-helix bundle.

  7. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  8. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.

    PubMed

    Beavan, J; Wang, X; Holden, C; Wilson, K; Power, W; Prasetya, G; Bevis, M; Kautoke, R

    2010-08-19

    The Earth's largest earthquakes and tsunamis are usually caused by thrust-faulting earthquakes on the shallow part of the subduction interface between two tectonic plates, where stored elastic energy due to convergence between the plates is rapidly released. The tsunami that devastated the Samoan and northern Tongan islands on 29 September 2009 was preceded by a globally recorded magnitude-8 normal-faulting earthquake in the outer-rise region, where the Pacific plate bends before entering the subduction zone. Preliminary interpretation suggested that this earthquake was the source of the tsunami. Here we show that the outer-rise earthquake was accompanied by a nearly simultaneous rupture of the shallow subduction interface, equivalent to a magnitude-8 earthquake, that also contributed significantly to the tsunami. The subduction interface event was probably a slow earthquake with a rise time of several minutes that triggered the outer-rise event several minutes later. However, we cannot rule out the possibility that the normal fault ruptured first and dynamically triggered the subduction interface event. Our evidence comes from displacements of Global Positioning System stations and modelling of tsunami waves recorded by ocean-bottom pressure sensors, with support from seismic data and tsunami field observations. Evidence of the subduction earthquake in global seismic data is largely hidden because of the earthquake's slow rise time or because its ground motion is disguised by that of the normal-faulting event. Earthquake doublets where subduction interface events trigger large outer-rise earthquakes have been recorded previously, but this is the first well-documented example where the two events occur so closely in time and the triggering event might be a slow earthquake. As well as providing information on strain release mechanisms at subduction zones, earthquakes such as this provide a possible mechanism for the occasional large tsunamis generated at the Tonga subduction zone, where slip between the plates is predominantly aseismic.

  9. Fluorescence Resonance Energy Transfer-Sensitized Emission of Yellow Cameleon 3.60 Reveals Root Zone-Specific Calcium Signatures in Arabidopsis in Response to Aluminum and Other Trivalent Cations1[W][OA

    PubMed Central

    Rincón-Zachary, Magaly; Teaster, Neal D.; Sparks, J. Alan; Valster, Aline H.; Motes, Christy M.; Blancaflor, Elison B.

    2010-01-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca2+]cyt) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca2+]cyt were observed in response to glutamic acid (Glu), ATP, and aluminum (Al3+). Each chemical induced a [Ca2+]cyt signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca2+]cyt increases that were similar among the different root zones, whereas Al3+ evoked [Ca2+]cyt transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al3+-induced [Ca2+]cyt increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca2+]cyt response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca2+]cyt signature resulting from Al3+ treatment originated mostly from cortical cells located at 300 to 500 μ m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca2+ channel blockers, elicited [Ca2+]cyt responses similar to those induced by Al3+. The trivalent ion-induced [Ca2+]cyt signatures in roots of an Al3+-resistant and an Al3+-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca2+]cyt changes we report here may not be tightly linked to Al3+ toxicity but rather to a general response to trivalent cations. PMID:20053711

  10. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations.

    PubMed

    Rincón-Zachary, Magaly; Teaster, Neal D; Sparks, J Alan; Valster, Aline H; Motes, Christy M; Blancaflor, Elison B

    2010-03-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to glutamic acid (Glu), ATP, and aluminum (Al(3+)). Each chemical induced a [Ca(2+)](cyt) signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca(2+)](cyt) increases that were similar among the different root zones, whereas Al(3+) evoked [Ca(2+)](cyt) transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al(3+)-induced [Ca(2+)](cyt) increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca(2+)](cyt) response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca(2+)](cyt) signature resulting from Al(3+) treatment originated mostly from cortical cells located at 300 to 500 mu m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca(2+) channel blockers, elicited [Ca(2+)](cyt) responses similar to those induced by Al(3+). The trivalent ion-induced [Ca(2+)](cyt) signatures in roots of an Al(3+)-resistant and an Al(3+)-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca(2+)](cyt) changes we report here may not be tightly linked to Al(3+) toxicity but rather to a general response to trivalent cations.

  11. Remote Triggering in the Koyna-Warna Reservoir-Induced Seismic Zone, Western India

    NASA Astrophysics Data System (ADS)

    Bansal, Abhey Ram; Rao, N. Purnachandra; Peng, Zhigang; Shashidhar, D.; Meng, Xiaofeng

    2018-03-01

    Dynamic triggering following large distant earthquakes has been observed in many regions globally. In this study, we present evidence for remote dynamic triggering in the Koyna-Warna region of Western India, which is known to be a premier site of reservoir-induced seismicity. Using data from a closely spaced broadband network of 11 stations operated in the region since 2005, we conduct a systematic search for dynamic triggering following 20 large distant earthquakes with dynamic stresses of at least 1 kPa in the region. We find that the only positive cases of dynamic triggering occurred during 11 April 2012, Mw8.6 Indian Ocean earthquake and its largest aftershock of Mw8.2. In the first case, microearthquakes started to occur in the first few cycles of the Love waves, and the largest event of magnitude 3.3 occurred during the first few cycles of the Rayleigh waves. The increase of microseismicity lasted for up to five days, including a magnitude 4.8 event occurred approximately three days later. Our results suggest that the Koyna-Warna region is stress sensitive and susceptible for remote dynamic triggering, although the apparent triggering threshold appears to be slightly higher than other regions.

  12. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  13. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  14. Delayed seismicity rate changes controlled by static stress transfer

    USGS Publications Warehouse

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.

    2017-01-01

    On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.

  15. Delayed Seismicity Rate Changes Controlled by Static Stress Transfer

    NASA Astrophysics Data System (ADS)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.

    2017-10-01

    On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.

  16. Stress/strain changes and triggered seismicity at The Geysers, California

    USGS Publications Warehouse

    Gomberg, J.; Davis, S.

    1996-01-01

    The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency or equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.

  17. Stress/strain changes and triggered seismicity at The Geysers, California

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Davis, Scott

    1996-01-01

    The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency, or, equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.

  18. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas.

    PubMed

    Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco

    2018-05-01

    Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.

    2010-12-01

    Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.

  20. Dynamic triggering of low magnitude earthquakes in the Middle American Subduction Zone

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Velasco, A. A.

    2010-12-01

    We analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. We use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw >7) earthquakes, we first identify local earthquakes that occurred before and after the mainshocks. We then group the local earthquakes within a cluster radius between 75 to 200 km. We obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as local cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Due to lateral variations of the dip along the subducted oceanic plate, we divide the Mexican subduction zone in four segments. We then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes. We identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. We find no depend of seismicity changes due to focal mainshock mechanism.

  1. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  2. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  3. The Mechanism and Dynamics of N-S Rifting in Southern Tibet: Insight From 3-D Thermomechanical Modeling

    NASA Astrophysics Data System (ADS)

    Pang, Yajin; Zhang, Huai; Gerya, Taras V.; Liao, Jie; Cheng, Huihong; Shi, Yaolin

    2018-01-01

    N-S trending rifts are widely distributed in southern Tibet, suggesting that this region is under E-W extension, behind the N-S collision between the Eurasia and India plates. Geophysical anomalies and Miocene magma extrusions indicate the presence of dispersed weak zones in the middle to lower crust in southern Tibet. These weak zones are partially located underneath the N-S rifting systems. In order to study the formation of rifts in collision zones, we have developed a high-resolution 3-D thermomechanical model of continental lithosphere with bidirectional compressional-extensional deformation, and spatially localized weak and low-density zones in the middle to lower crust. Our numerical experiments systematically reproduce the development of N-S trending rifts. Model results reveal that the weak middle to lower crust triggers the development of normal faults in the upper crust and surface uplift, whereas regions without such weak layer or with small-scale weak zones are characterized by strike-slip faulting. Geodynamic properties (density, depth, and geometry) of the weak middle to lower crust and Moho temperature notably influence the rifting pattern. In addition, rifting formation is critically controlled by large E-W extension, with the ratio of extensional to compressional strain rate larger than 1.5 in the model with continuous weak middle crust. Our simulated rifting patterns correlate well with the observations in southern Tibet; we conclude that a combination of the bidirectional compression-extension and the presence of locally weak middle to lower crust triggered the development of the rifting systems in southern Tibet.

  4. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.

    PubMed

    Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E

    2010-02-16

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.

  5. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals

    PubMed Central

    Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.

    2010-01-01

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764

  6. Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron.

    PubMed

    Bell, Harold J; Inoue, Takuya; Shum, Kelly; Luk, Collin; Syed, Naweed I

    2007-06-01

    Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-à-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.

  7. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green, Harry W., II; Schubnel, Alexandre

    2017-05-01

    Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.

  8. Landslide triggering-thickness susceptibility, a simple proxy for landslide hazard? A test in the Mili catchment (North-Eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Mai, Martin

    2016-04-01

    This study implements a landslide triggering-thickness susceptibility approach in order to investigate the landslide scenario in the catchment of Mili, this being located in the north-easternmost sector of Sicily (Italy). From a detailed geomorphological campaign, thicknesses of mobilised materials at the triggering zone of each mass movement were collected and subsequently used as a dependent variable to be analysed in the framework of spatial predictive models. The adopted modelling methodology consisted of a presence-only learning algorithm which differently from classic presence-absence methods does not rely on stable conditions in order to derive functional relationships between dependent and independent variables. The dependent was pre-processed by reclassifying the crown thickness spectrum into a binary condition expressing thick (values equal or greater than 1m) and thin (values less than 1m) landslide crown classes. The explanatory variables were selected to express triggering-thickness dependency at different scales, these being in close proximity to the triggering point through primary and secondary attributes from a 2m-cell side Lidar HRDEM, at a medium scale through vegetation indexes from multispectral satellite images (ASTER) and a coarser scale through a geological, land use and tectonic maps. The choice of a presence-only approach allowed to effectively discriminate between the two types of landslide thicknesses at the triggering zone, producing excellent prediction skills associated with relatively low variances across a set of 50 randomly generated replicates. In addition, the role of each predictor was assessed for the two considered classes as relevant differences arose in terms of their contribution to the final models. In this regard, predictor importance, Jack-knife tests and response curves were used to assess the reliability of the models together with their geomorphological reasonability. This work attempts to capitalize on fieldwork data in order to produce an example for a landslide triggering-thickness susceptibility which differently from more common approaches, may performs as a better proxy for more complex landslide hazard assessments.

  9. Consequences of peripheral chemoreflex inhibition with low-dose dopamine in humans

    PubMed Central

    Niewinski, Piotr; Tubek, Stanislaw; Banasiak, Waldemar; Paton, Julian F R; Ponikowski, Piotr

    2014-01-01

    Low-dose dopamine inhibits peripheral chemoreceptors and attenuates the hypoxic ventilatory response (HVR) in humans. However, it is unknown: (1) whether it also modulates the haemodynamic reactions to acute hypoxia, (2) whether it also modulates cardiac baroreflex sensitivity (BRS) and (3) if there is any effect of dopamine withdrawal. We performed a double-blind, placebo-controlled study on 11 healthy male volunteers. At sea level over 2 days every subject was administered low-dose dopamine (2 μg kg–1 min–1) or saline infusion, during which we assessed both ventilatory and haemodynamic responses to acute hypoxia. Separately, we evaluated effects of initiation and withdrawal of each infusion and BRS. The initiation of dopamine infusion did not affect minute ventilation (MV) or mean blood pressure (MAP), but increased both heart rate (HR) and cardiac output. Concomitantly, it decreased systemic vascular resistance. Dopamine blunted the ventilatory, MAP and HR reactions (hypertension, tachycardia) to acute hypoxia. Dopamine attenuated cardiac BRS to falling blood pressure. Dopamine withdrawal evoked an increase in MV. The magnitude of the increment in MV due to dopamine withdrawal correlated with the size of the HVR and depended on the duration of dopamine administration. The ventilatory reaction to dopamine withdrawal constitutes a novel index of peripheral chemoreceptor function. PMID:24396060

  10. Mutational Analyses of HAMP Helices Suggest a Dynamic Bundle Model of Input-Output Signaling in Chemoreceptors

    PubMed Central

    Zhou, Qin; Ames, Peter; Parkinson, John S.

    2009-01-01

    SUMMARY To test the gearbox model of HAMP signaling in the E. coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a 4-helix bundle. Suppression patterns of helix lesions conformed to the the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signaling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signaling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294

  11. Obesity hypoventilation syndrome: current theories of pathogenesis.

    PubMed

    Pierce, Aaron M; Brown, Lee K

    2015-11-01

    To summarize recent primary publications and discuss the impact these finding have on current understanding on the development of hypoventilation in obesity hypoventilation syndrome (OHS), also known as Pickwickian syndrome. As a result of the significant morbidity and mortality associated with OHS, evidence is building for pre-OHS intermediate states that can be identified earlier and treated sooner, with the goal of modifying disease course. Findings of alterations in respiratory mechanics with obesity remain unchanged; however, elevated metabolism and CO2 production may be instrumental in OHS-related hypercapnia. Ongoing positive airway pressure trials continue to demonstrate that correction of nocturnal obstructive sleep apnea and hypoventilation improves diurnal respiratory physiology, metabolic profiles, quality of life, and morbidity/mortality. Finally, CNS effects of leptin on respiratory mechanics and chemoreceptor sensitivity are becoming better understood; however, characterization remains incomplete. OHS is a complex multiorgan system disease process that appears to be driven by adaptive changes in respiratory physiology and compensatory changes in metabolic processes, both of which are ultimately counter-productive. The diurnal hypercapnia and hypoxia induce pathologic effects that further worsen sleep-related breathing, resulting in a slowly progressive worsening of disease. In addition, leptin resistance in obesity and OHS likely contributes to blunting of ventilatory drive and inadequate chemoreceptor response to hypercarbia and hypoxemia.

  12. Nitrate-Dependent Activation of the Dif Signaling Pathway of Myxococcus xanthus Mediated by a NarX-DifA Interspecies Chimera

    PubMed Central

    Xu, Qian; Black, Wesley P.; Ward, Scott M.; Yang, Zhaomin

    2005-01-01

    Myxococcus xanthus fibril exopolysaccharide (EPS), essential for the social gliding motility and development of this bacterium, is regulated by the Dif chemotaxis-like pathway. DifA, an MCP homolog, is proposed to mediate signal input to the Dif pathway. However, DifA lacks a prominent periplasmic domain, which in classical chemoreceptors is responsible for signal perception and for initiating transmembrane signaling. To investigate the signaling properties of DifA, we constructed a NarX-DifA (NafA) chimera from the sensory module of Escherichia coli NarX and the signaling module of M. xanthus DifA. We report here the first functional chimeric signal transducer constructed using genes from organisms in two different phylogenetic subdivisions. When expressed in M. xanthus, NafA restored fruiting body formation, EPS production, and S-motility to difA mutants in the presence of nitrate. Studies with various double mutants indicate that NafA requires the downstream Dif proteins to function. We propose that signal inputs to the Dif pathway and transmembrane signaling by DifA are essential for the regulation of EPS production in M. xanthus. Despite the apparent structural differences, DifA appears to share similar transmembrane signaling mechanisms with enteric sensor kinases and chemoreceptors. PMID:16159775

  13. Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle.

    PubMed

    Reyes-Darias, Jose Antonio; García, Vanina; Rico-Jiménez, Miriam; Corral-Lugo, Andrés; Lesouhaitier, Olivier; Juárez-Hernández, Dalia; Yang, Yiling; Bi, Shuangyu; Feuilloley, Marc; Muñoz-Rojas, Jesús; Sourjik, Victor; Krell, Tino

    2015-08-01

    The PctC chemoreceptor of Pseudomonas aeruginosa mediates chemotaxis with high specificity to gamma-aminobutyric acid (GABA). This compound is present everywhere in nature and has multiple functions, including being a human neurotransmitter or plant signaling compound. Because P. aeruginosa is ubiquitously distributed in nature and able to infect and colonize different hosts, the physiological relevance of GABA taxis is unclear, but it has been suggested that bacterial attraction to neurotransmitters may enhance virulence. We report the identification of McpG as a specific GABA chemoreceptor in non-pathogenic Pseudomonas putida KT2440. As with PctC, GABA was found to bind McpG tightly. The analysis of chimeras comprising the PctC and McpG ligand-binding domains fused to the Tar signaling domain showed very high GABA sensitivities. We also show that PctC inactivation does not alter virulence in Caenorhabditis elegans. Significant amounts of GABA were detected in tomato root exudates, and deletion of mcpG reduced root colonization that requires chemotaxis through agar. The C. elegans data and the detection of a GABA receptor in non-pathogenic species indicate that GABA taxis may not be related to virulence in animal systems but may be of importance in the context of colonization and infection of plant roots by soil-dwelling pseudomonads. © 2015 John Wiley & Sons Ltd.

  14. The pace of Holocene vegetation change - testing for synchronous developments

    NASA Astrophysics Data System (ADS)

    Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen

    2011-09-01

    Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.

  15. Aftershocks halted by static stress shadows

    USGS Publications Warehouse

    Toda, Shinji; Stein, Ross S.; Beroza, Gregory C.; Marsan, David

    2012-01-01

    Earthquakes impart static and dynamic stress changes to the surrounding crust. Sudden fault slip causes small but permanent—static—stress changes, and passing seismic waves cause large, but brief and oscillatory—dynamic—stress changes. Because both static and dynamic stresses can trigger earthquakes within several rupture dimensions of a mainshock, it has proven difficult to disentangle their contributions to the triggering process1–3. However, only dynamic stress can trigger earthquakes far from the source4,5, and only static stress can create stress shadows, where the stress and thus the seismicity rate in the shadow area drops following an earthquake6–9 . Here we calculate the stress imparted by the magnitude 6.1 Joshua Tree and nearby magnitude 7.3 Landers earthquakes that occurred in California in April and June 1992, respectively, and measure seismicity through time. We show that, where the aftershock zone of the first earthquake was subjected to a static stress increase from the second, the seismicity rate jumped. In contrast, where the aftershock zone of the first earthquake fell under the stress shadow of the second and static stress dropped, seismicity shut down. The arrest of seismicity implies that static stress is a requisite element of spatial clustering of large earthquakes and should be a constituent of hazard assessment.

  16. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50% of the elastic properties between host rock and core zone. Data also show a higher dependence of the permeability on the effective pressure for the host rock compared with the damage zone and core zone. This heterogeneity of properties is related to the development of different microstructures such as microcracks, S-C structures and microbreccia across the fault zone achieved during the tectonic history of the fault. From these physical property values and the fault zone architecture, we then analyzed the effects of sudden mechanical loading approximating to static normal-stress transfer following an earthquake on a neighbouring fault, on the development of fluid overpressures. A series of 1-D hydromechanical numerical models was used to show that sudden normal stress increase is a viable mechanism for fluid overpressuring in the studied fault-zone. The models also showed that fluid overpressures can be temporarily maintained in the studied fault zone and that the maintenance of fluid overpressures is controlled by the structure and fluid-flow properties of the fault zone.

  17. Destabilization of a Clay-Rich Slope by Rainfall : Monitoring of Precursons on an Hectometric Sliding Surface

    NASA Astrophysics Data System (ADS)

    Doan, M. L.; Bièvre, G.; Jongmans, D.; Helmstetter, A.; Radiguet, M.

    2016-12-01

    The Avignonet landslide is an active clay landslide near Grenoble, France, and therefore one of the monitored site of OMIV observatory. Previous geophysical investigation, including borehole drilling and surface geophysics proved that the landslide deformation is accommodated by several localized shear zones. The shallowest shear zone is about 5 m deep and extends over 100 m. Several sensors monitor the landslide. They record several precursors prior to a major disturbance of the landslide in autumn 2012, that affects all sensors in the landslide for several months. After major rainfalls, the two piezometers located near the 5 m deep interface got larger impulsional response to rainfall. The moderate rainfalls of Oct 26th caused the hydraulic head both reached a plateau before experiencing a sudden change, triggered by the small rainfall of Oct 31st. It's not the bigger rainfall that induced the disturbance. It was not the first rainfall neither.Other sensors suggest that the destabilization of the landslide was progressive. Spontaneous potential sensors regularly spaced within the 100 m wide sensors begin to separate after Oct 28th, suggesting a landslide wide precursor. Repeated microseismic events, of high frequency, suggesting a local origin, are more frequent. Their occurrence peaks after the small rainfall of Oct 29th and again on Oct 31st, before the rainfall that triggered the disturbance. They stop at the same time as sudden change in piezometric data. Despite the lack of displacement sensor, it is assumed that the 5 m deep shear zone slipped on Oct 31st, since it affects the piezometer sampling this interface. The data shows a progressive path towards destabilization. Especially, triggering of the landslide disturbances is associated to the cumulative effect of seismic activity and rainfall, even minor. This suggests a hydromechanical process.

  18. Report of the M16 Rifle Review Panel. Volume 10, Appendix 9. Audit Trail of Chief of Staff, Army Actions and Decisions Concerning the M16

    DTIC Science & Technology

    1968-06-01

    CHEMORECEPTORS CHEMOTAXIS CHEMOTHERAPEUTIC AGENTS CHEMOTHERAPY CHERRIES CHESAPEAKE BAY CHI SQUARE TEST CHICKENS CHIKUNGUNYA VIRUS CHILDREN CHILE...METHYL SULFOXIDE METHYLAL METHYLAMINE METHYLATION METHYLENE BLUE METHYLENES METRIC SYSTEM METROLOGY MEXICO MEXICO GULF MICA MICA CAPACITORS...NEUTRON TRANSPORT THEORY NEUTRONS NEVADA NEW BRUNSWICK NEW ENGLAND NEW GUINEA NEW HAMPSHIRE NEW JERSEY NEW MEXICO NEW YORK NEW YORK CITY

  19. Molecular Mechanisms of Olfactory Responses to Stimulus Mixtures

    DTIC Science & Technology

    1991-02-26

    demonstrated that the amino acid chemoreceptors in this organism are function- ally coupled to one or more G-proteins (19). Biochemical studies have also shown...Hwang, P.M. and Pevsner, J. (1989) Molecular mechanisms of olfaction. TINS 12, 35-38. 3. Bruch, R.C. (1990) Signal transduction in olfaction and taste ...amino acid olfactory receptor. Comp. Biochem. Physiol. 91B, 535-540. 17. Caprio, J. (1978) Olfaction and taste in the channel catfish: An

  20. Earthquake triggering in the peri-adriatic regions induced by stress diffusion: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    D'Onza, F.; Viti, M.; Mantovani, E.; Albarello, D.

    2003-04-01

    EARTHQUAKE TRIGGERING IN THE PERI-ADRIATIC REGIONS INDUCED BY STRESS DIFFUSION: INSIGHTS FROM NUMERICAL MODELLING F. D’Onza (1), M. Viti (1), E. Mantovani (1) and D. Albarello (1) (1) Dept. of Earth Sciences, University of Siena - Italy (donza@unisi.it/Fax:+39-0577-233820) Significant evidence suggests that major earthquakes in the peri-Adriatic Balkan zones may influence the seismicity pattern in the Italian area. In particular, a seismic correlation has been recognized between major earthquakes in the southern Dinaric belt and those in southern Italy. It is widely recognized that such kind of regularities may be an effect of postseismic relaxation triggered by strong earthquakes. In this note, we describe an attempt to quantitatively investigate, by numerical modelling, the reliability of the above interpretation. In particular, we have explored the possibility to explain the last example of the presumed correlation (triggering event: April, 1979 Montenegro earthquake, MS=6.7; induced event: November, 1980 Irpinia event, MS=6.9) as an effect of postseismic relaxation through the Adriatic plate. The triggering event is modelled by imposing a sudden dislocation in the Montenegro seismic fault, taking into account the fault parameters (length and average slip) recognized from seismological observations. The perturbation induced by the seismic source in the neighbouring lithosphere is obtained by the Elsasser diffusion equation for an elastic lithosphere coupled with a viscous asthenosphere. The results obtained by numerical experiments indicate that the strain regime induced by the Montenegro event in southern Italy is compatible with the tensional strain field observed in this last zone, that the amplitude of the induced strain is significantly higher than that induced by Earth tides and that this amplitude is comparable with the strain perturbation recognized as responsible for earthquake triggering. The time delay between the triggering and the induced earthquakes (roughly 1.5 years) can be explained by assuming that earthquake triggering is most probable when the maximum value of the strain rate reaches southern Italy and a value of 300-400 m2s-1 is assumed for the diffusivity of the model. This result implies that the possibility to explain the observed correlation as a consequence of stress diffusion depends on the reliability of the above choices. A discussion about this problem is reported. The time evolution of postseismic effects suggests that a significant far-field perturbation of velocity may persist for tens of years since the occurrence of the triggering event. For instance, the present velocity induced by the 1979 Montenegro event is comparable with the geodetic velocities observed in southern Italy.

  1. Isolated cases of remote dynamic triggering in Canada detected using cataloged earthquakes combined with a matched-filter approach

    USGS Publications Warehouse

    Bei, Wang; Harrington, Rebecca M.; Liu, Yajing; Yu, Hongyu; Carey, Alex; van der Elst, Nicholas

    2015-01-01

    Here we search for dynamically triggered earthquakes in Canada following global main shocks between 2004 and 2014 with MS > 6, depth < 100 km, and estimated peak ground velocity > 0.2 cm/s. We use the Natural Resources Canada (NRCan) earthquake catalog to calculate β statistical values in 1° × 1° bins in 10 day windows before and after the main shocks. The statistical analysis suggests that triggering may occur near Vancouver Island, along the border of the Yukon and Northwest Territories, in western Alberta, western Ontario, and the Charlevoix seismic zone. We also search for triggering in Alberta where denser seismic station coverage renders regional earthquake catalogs with lower completeness thresholds. We find remote triggering in Alberta associated with three main shocks using a matched-filter approach on continuous waveform data. The increased number of local earthquakes following the passage of main shock surface waves suggests local faults may be in a critically stressed state.

  2. Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Shelly, David R.; Ellsworth, William L.

    2015-01-01

    Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.

  3. Study on Excitation-triggered Damage Mechanism in Perilous Rock

    NASA Astrophysics Data System (ADS)

    Chen, Hongkai; Wang, Shengjuan

    2017-12-01

    Chain collapse is easy to happen for perilous rock aggregate locating on steep high slope, and one of the key scientific problems is the damage mechanism of perilous rock under excitation action at perilous rock rupture. This paper studies excitation-triggered damage mechanism in perilous rock by wave mechanics, which gives three conclusions. Firstly, when only the normal incidence attenuation spread of excitation wave is considered, while the energy loss is ignored for excitation wave to spread in perilous rock aggregate, the paper establishes one method to calculate peak velocity when excitation wave passes through boundary between any two perilous rock blocks in perilous rock aggregate. Secondly, following by Sweden and Canmet criteria, the paper provides one wave velocity criterion for excitation-triggered damage in the aggregate. Thirdly, assuming double parameters of volume strain of cracks or fissures in rock meet the Weibull distribution, one method to estimate micro-fissure in excitation-triggered damage zone in perilous rock aggregate is established. The studies solve the mechanical description problem for excitation-triggered damage in perilous rock, which is valuable in studies on profoundly rupture mechanism.

  4. Systematic Detection of Remotely Triggered Seismicity in Africa Following Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Ayorinde, A. O.; Peng, Z.; Yao, D.; Bansal, A. R.

    2016-12-01

    It is well known that large distant earthquakes can trigger micro-earthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered earthquakes have been mostly found in active plate boundary regions. It is not clear whether they could occur within stable intraplate regions in Africa as well as the active East African Rift Zone. In this study we conduct a systematic study of remote triggering in Africa following recent large earthquakes, including the 2004 Mw9.1 Sumatra and 2012 Mw8.6 Indian Ocean earthquakes. In particular, the 2012 Indian Ocean earthquake is the largest known strike slip earthquake and has triggered a global increase of magnitude larger than 5.5 earthquakes as well as numerous micro-earthquakes/tectonic tremors around the world. The entire Africa region was examined for possible remotely triggered seismicity using seismic data downloaded from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC) and GFZ German Research Center for Geosciences. We apply a 5-Hz high-pass-filter to the continuous waveforms and visually identify high-frequency signals during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicities and we further confirm them by statistical analysis comparing the high-frequency signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in Botswana and northern Madagascar. This study could help to understand dynamic triggering in diverse tectonic settings of the African continent.

  5. Investigating the effectiveness of using Bluetooth low-energy technology to trigger in-vehicle messages in work zones : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    In order to reduce risky behavior around workzones, this project examines the effectiveness of using in-vehicle : messages to heighten drivers awareness of safety-critical and pertinent workzone information. : This investigation centers around an ...

  6. Role of sudden commencements in triggering magnetospheric substorms. M.S. Thesis; [based on ATS 1 data

    NASA Technical Reports Server (NTRS)

    Newell, R. E.

    1974-01-01

    Sudden commencement events are examined in terms of available auroral-zone and low-latitude magnetic field, data, interplanetary plasma and magnetic field data, and magnetospheric electron flux and magnetic field data from the geostationary satellite ATS 1.

  7. Application of active quenching of second generation wire for current limiting

    DOE PAGES

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  8. The Geometric Characteristics and Initiation Mechanisms of the Earthquake- Triggered Daguangbao Landslide

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Tsao, C. C.; Yang, C. M.; Wu, W. J.; Lee, C. T.; Lin, M. L.; Zhang, W. F.; Pei, X. J.; Wang, G. H.; Huang, R.

    2014-12-01

    Recently, catastrophic landslides are getting considerable attentions not only from natural hazard but also from geo-material science. In the past century, the Daguangbao (DGB) landslide which triggered by the Wenchuan earthquake is one of the largest earthquake- triggered landslides. Our main goal is to characterize the geometry of DGB landslide to better determine the initiation mechanisms. Based on the remote sensing images analysis and field investigation, we proposed an atypical wedge model of DGB landslide compose of a folded strata and a zigzag stepping-out joint system, which outcropped at the south and north of the landslide site, respectively. The intersection line of wedge is curved, counterclockwise rotated and daylighted, which fit the pre- and post- position of the mining tent with 1.9 km displacements. The volume of sliding mass was evaluated to 10.51×108 m3 by the atypical wedge model. The identified slip zone of DGB landslide consists of the breccia and gouge layers in the dolomite strata. The rotary-shear tests were performed with the intact dolomite rocks near the slip zone and the gouges in the slip zone to determine the strength of slip surface. The peak and the steady-state friction coefficient of the tested dry dolomite discontinuities, wet gouges are 0.52~0.96, 0.73~0.86 and 0.1~0.57, 0.16~0.63, respectively. Although the result of static wedge stability analysis shows that the slope is quite stable (F.S. = 4), but the result of pseudo-static wedge stability analysis with seismic coefficient will trigger the gigantic wedge by the Wenchuan earthquake. Moreover, the friction coefficient of the tested gouges after long slip displacements as shear velocity exceeds 1.3 m/s will lower than 0.25 (=tan(14°); the intersection line plunged 14°). Therefore, the gigantic wedge can be accelerated by the inertial force and keep moving rapidly with long run-out. According to the calculations of simple one dimensional particle motion model, DGB landslide traveled 52~68 seconds with a maximum velocity of 58~75 m/sec.

  9. Study of the Triggering Level of Dynamic Stress Induces Non-Volcanic Tremor in Longitudinal Valley in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Sun, W. F.; Chang, W. Y.; Chen, H. Y.

    2015-12-01

    Taiwan is located at the margin of the Eurasian Plate and the Philippine Sea Plate, which is a subduction zone between these two plates and the fault structures are rather complicated and dense seismicity, especially the Longitudinal Valley (LV) in eastern Taiwan. Non-volcanic tremor (NVT) is a seismic signal with low amplitude and long duration. NVT is often occurred below the seismogenic zone, which is between the lower crust and upper mantle, and the arrival time data of the body wave is difficult to be collected. Therefore, this study aims to investigate the physical mechanisms of NVT in several steps. First, in the investigation of the teleseismic earthquake data from the U.S. Geological Survey in 2005 to 2014, thirty-five potential teleseismic earthquakes are selected. Second, the seismograms are collected from the Broadband Array in Taiwan for Seismology (BATS) and Central Weather Bureau Seismic Network (CWBSN) for these thirty-five potential teleseismic earthquakes. Third, the Seismic Analysis Code is used to select the seismograms from seven possible events which satisfied the conditions of triggering tremor during the passage of the surface wave. Forth, a band-pass filter is applied to retain the frequency with the range of 2-8 HZ of the surface waveform. Finally, visually determination for the tremor signals. The experimental results show that five certainly NVT events and two potential triggered events were found in the LV zone of eastern Taiwan. The locations of the hypocenters were then estimated using HYPO71 for these five certain events. According to the estimated hypocenters, the sources of NVT are possibly beneath the southern region of LV, close to the Chih-Shang fault. Moreover, these estimated hypocenters are within the high Vp/Vs ratio region and in depth of 30-40 km. The further analysis found that the amplitude of the surface wave is one of the key factors that when the peak ground velocity > 0.02cm/s, which equivalents to 2-3kPa dynamic stress, might trigger tremors.

  10. Subduction initiation and Obduction: insights from analog models

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Measurements of displacements and internal deformation allow for a very precise and reproducible tracking of deformation. Experiments consistently demonstrate that subduction initiation chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Part of the deformation is transfered to W as soon as the increased coupling across S results in 5-10% of the convergence being transfered to the upper plate. Whether obduction develops further depends on the effective strength of W. Results (1) constrain the range of physical conditions required for subduction initiation and obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction, rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity. [Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  11. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited by externally oriented O2 chemoreceptors; (c) increase in the ventilatory variables (fR and VAMP) stimulated by internally oriented O2 chemoreceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Digital Data for Volcano Hazards of the Three Sisters Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Iverson, R.M.

    2008-01-01

    Three Sisters is one of three active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. The major composite volcanoes of this area are clustered near the center of the region and include South Sister, Middle Sister, and Broken Top. Additionally, hundreds of mafic volcanoes are scattered throughout the Three Sisters area. These range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. Scientists at the Cascades Volcano Observatory created a geographic information system (GIS) data set which depicts proximal and distal lahar hazard zones as well as a regional lava flow hazard zone for Three Sisters (USGS Open-File Report 99-437, Scott and others, 1999). The various distal lahar zones were constructed from LaharZ software using 20, 100, and 500 million cubic meter input flow volumes. Additionally, scientists used the depositional history of past events in the Three Sisters Region as well as experience and judgment derived from the study of volcanoes to help construct the regional hazard zone.

  13. Exploring Interactions Between Subduction Zone Earthquakes and Volcanic Activity in the South Central Alaskan Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lanagan, K. M.; Richardson, E.

    2012-12-01

    Although great earthquakes such as the recent moment-magnitude (M) 9 Tohoku-Oki earthquake have been shown to trigger remote seismicity in volcanoes, the extent to which subduction zone earthquakes can trigger shallow seismic swarms at volcanoes is largely unexplored. Unknowns in this relationship include the upper limit of distance, the lower limit of magnitude, the upper time limit between events, and the effects of rupture directivity. We searched the Advanced National Seismic System earthquake catalog from 1989 - 2011 for correlations in space and time between M > 5.0 earthquakes in the south central Alaskan subduction zone (between 58.5°N and 62.5°N, and 150.7°W and 154.7°W) and volcanic activity at Mt. Redoubt, Mt. Iliamna, and Mt. Spurr volcanoes. There are 48 earthquakes M > 5 in this catalog; five of these are M > 6. The depths of the 48 M>5 events range from 49km to 220km, and they are all between 100km and 350km of the three volcanoes. Preliminary analysis of our catalog shows that four of the five M > 6 earthquakes are followed by a volcanic earthquake swarm at either Redoubt or Spurr within 100 days, and three of them are followed by a volcanic earthquake swarm within a month. None of these events correlated in space and time with swarms at Mt. Iliamna. We are also searching for swarms and moderate earthquakes occurring in time windows far removed from each other. The likeliest case of remotely triggered seismicity in our search area to date occurred on January 24 2009, when a magnitude 5.8 earthquake beneath the Kenai Peninsula at 59.4°N, 152.8°W, and 95km depth was immediately followed by an increase of volcanic activity at Mt. Redoubt approximately 153km away. The first swarm began on Jan 25 2009. On Jan 30 2009, volcanologists at the Alaskan Volcano observatory determined the increased volcanic seismicity was indicative of an impending eruption. Mt. Redoubt erupted on March 15 2009. Proposed mechanisms for triggering of volcanoes by earthquakes include dynamic and static stress changes in the magmatic system, which could affect pressure in the magma chamber and overpressure, or affect phenocryst settling and bubble growth inside the chamber. However, these models have generally not been connected to specific events; expanding our catalog will help to refine these models to describe the mechanics of this relationship.

  14. Impact craters and landslide volume distribution in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio

    2014-05-01

    The landslides in the wide gorge system of Valles Marineris (Mars) exhibit volumes of the or-der of several hundred 1,000 km3 and runouts often in the excess of 80 km. Most landslides have occurred at the borders of the valleys, where the unbalanced weight of the 5-8 km high headwalls has been evidently sufficient to cause instability. Previous analysis has shown that the mechanical conditions of instability would not have been reached without external triggering fac-tors, if the wallslope consisted of intact rock. Among the factors that have likely promoted instability, we are currently analyzing: i) the possibility of rock weakening due to weathering; ii) the alternation of weak layers within more massive rock; weak layers might for example due to evaporites, the possible presence of ice table at some depth, or water; iii) weakening due to impact damage prior to the formation of Valles Marineris; studies of impact craters on Earth show that the volumes of damaged rock extends much deeper than the crater itself; iv) direct triggering of a landslide due to the seismic waves generated by a large meteoroid impact in the vicinity, and v) direct triggering of a landslide con-sequent to impact at the headwall, with impulsive release of momentum and short but intense increase of the triggering force. We gathered a large database for about 3000 Martian landslides that allow us to infer some of their statistical properties supporting our analyses, and especially to discriminate among some of the above listed predisposing and triggering factors. In particular, we analyse in this contribution the frequency distribution of landslide volumes starting from the assumption that these events are controlled by the extent of the shock damage zones. Relative position of the impact point and damage zones with respect to the Valles Marineris slopes could in fact control the released volumes. We perform 3D slope stability analy-sis under different geometrical constraints (e.g. crater size and position, slope angle and height, size of the relative shock damage zone) starting from rock mass properties calibrated in a previous study (Crosta et al., 2014). We report about the synthetic volume frequency distribution gen-erated by considering the most critical failure surfaces for the different geometrical constraints and the frequency distribution of craters on Mars surface (e.g., Hartmann and Neukum, 2001). 1. Crosta, G.B., Utili, S., De Blasio, F.V., Castellanza, R. (2014)Reassessing rock mass properties and slope instability triggering conditions in Valles Marineris, Mars.Earth Planetary Science Letters, 338, 329-343. http://dx.doi.org/10.1016/j.epsl.2013.11.053 2. Hartmann, W., and Neukum, G., (2001). Crater Chronology and the evolution of Mars. Space Science Reviews 96: 165-194.

  15. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    PubMed Central

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green II, Harry W.; Schubnel, Alexandre

    2017-01-01

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement. PMID:28504263

  16. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  17. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE PAGES

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; ...

    2017-05-15

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  18. Triggering processes of microseismic events associated with water injection in Okuaizu Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Okamoto, Kyosuke; Yi, Li; Asanuma, Hiroshi; Okabe, Takashi; Abe, Yasuyuki; Tsuzuki, Masatoshi

    2018-02-01

    A continuous water injection test was conducted to halt the reduction in steam production in the Okuaizu Geothermal Field, Japan. Understanding the factors triggering microseismicity associated with water injection is essential to ensuring effective steam production. We identified possible triggering processes by applying methods based on microseismic monitoring, including a new method to determine the presence of water in local fractures using scattered P-waves. We found that the evolving microseismicity near the injection point could be explained by a diffusion process and/or water migration. We also found that local microseismicity on a remote fault was likely activated by stress fluctuations resulting from changes in the injection rate. A mediator of this fluctuation might be water remaining in the fracture zone. After the injection was terminated, microseismicity possibly associated with the phase transition of the liquid was found. We conclude that a variety of triggering processes associated with water injection may exist.[Figure not available: see fulltext.

  19. Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti

    DTIC Science & Technology

    2009-09-15

    between insect pheromone receptors expressed in Xenopus oocytes and their cognate pheromone ligands [24,43]. The honey bee Apis mellifera OR11 (AmOR11...136–142. 12. Laska M, Galizia CG (2001) Enantioselectivity of odor perception in honeybees ( Apis mellifera carnica). Behav Neurosci 115: 632–639. 13...Culex quinquefasciatus. Insect Biochem Mol Biol 36: 169–176. 23. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis

  20. Disruption of Chemoreceptor Signaling Arrays by High Levels of CheW, the Receptor-Kinase Coupling Protein

    PubMed Central

    Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2017-01-01

    Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303

  1. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    PubMed Central

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  2. Ionotropic but not metabotropic glutamatergic receptors in the locus coeruleus modulate the hypercapnic ventilatory response in unanaesthetized rats.

    PubMed

    Taxini, C L; Puga, C C I; Dias, M B; Bícego, K C; Gargaglioni, L H

    2013-05-01

    Central chemoreceptors are important to detect changes of CO2/H(+), and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. To this end, we determined pulmonary ventilation (V(E)), body temperatures (T(b)), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. Acta Physiologica © 2013 Scandinavian Physiological Society.

  3. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.

    PubMed

    Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C

    2008-06-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.

  4. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    PubMed Central

    2009-01-01

    Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution. PMID:20038498

  5. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells

    DOE PAGES

    Goebel, T. H. W.; Weingarten, M.; Chen, X.; ...

    2017-05-30

    Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibitedmore » few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ~2–2.5km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.« less

  6. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, T. H. W.; Weingarten, M.; Chen, X.

    Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibitedmore » few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ~2–2.5km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.« less

  7. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Weingarten, M.; Chen, X.; Haffener, J.; Brodsky, E. E.

    2017-08-01

    Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibited few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ∼2-2.5 km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1 MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.

  8. Anomalous Streamflow and Groundwater-Level Changes Before the 1999 M7.6 Chi-Chi Earthquake in Taiwan: Possible Mechanisms

    NASA Astrophysics Data System (ADS)

    King, Chi-Yu; Chia, Yeeping

    2017-12-01

    Streamflow recorded by a stream gauge located 4 km from the epicenter of the 1999 M7.6 Chi-Chi earthquake in central Taiwan showed a large and rapid anomalous increase of 124 m3/s starting 4 days before the earthquake. This increase was followed by a comparable co-seismic drop to below the background level for 8 months. In addition, groundwater-levels recorded at a well 1.5 km east of the seismogenic fault showed an anomalous rise 2 days before the earthquake, and then a unique 4-cm drop beginning 3 h before the earthquake. The anomalous streamflow increase is attributed to gravity-driven groundwater discharge into the creek through the openings of existing fractures in the steep creek banks crossed by the upstream Shueilikun fault zone, as a result of pre-earthquake crustal buckling. The continued tectonic movement and buckling, together with the downward flow of water in the crust, may have triggered the occurrence of some shallow slow-slip events in the Shueilikun and other nearby fault zones. When these events propagate down-dip to decollement, where the faults merges with the seismogenic Chelungpu fault, they may have triggered other slow-slip events propagating toward the asperity at the hypocenter and the Chelungpu fault. These events may then have caused the observed groundwater-level anomaly and helped to trigger the earthquake.

  9. MOLECULAR ANALYSIS OF THE INTERACTION OF ETHYLENE AND AUXIN DURING FLOWER ABSCISSION

    USDA-ARS?s Scientific Manuscript database

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many ornamentals and other fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene, and may be accelerated by postharvest stre...

  10. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  11. Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals

    PubMed Central

    Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.

    2011-01-01

    We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687

  12. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  13. Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body.

    PubMed

    Ortega-Sáenz, Patricia; Villadiego, Javier; Pardal, Ricardo; Toledo-Aral, Juan José; López-Barneo, José

    2015-01-01

    The carotid body (CB) is a polymodal chemoreceptor that triggers the hyperventilatory response to hypoxia necessary for the maintenance of O(2) homeostasis essential for the survival of organs such as the brain or heart. Glomus cells, the sensory elements in the CB, are also sensitive to hypercapnia, acidosis and, although less generally accepted, hypoglycemia. Current knowledge on CB function is mainly based on studies performed on lower mammals, but the information on the human CB is scant. Here we describe the structure, neurotrophic properties, and cellular responses to hypoxia and hypoglycemia of CBs dissected from human cadavers. The adult CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. As reported for other mammalian species, glomus cells responded to hypoxia by external Ca(2+)-dependent increase of cytosolic [Ca(2+)] and quantal catecholamine release. Human glomus cells are also responsive to hypoglycemia and together the two stimuli, hypoxia and hypoglycemia, can potentiate each other's effects. The chemo-sensory responses of glomus cells are also preserved at an advanced age. Interestingly, a neurogenic niche similar to that recently described in rodents is also preserved in the adult human CB. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.

  14. A case study of two M~5 mainshocks in Anza, California: Is the footprint of an aftershock sequence larger than we think?

    USGS Publications Warehouse

    Fritts, Karen R.; Kilb, Debi

    2009-01-01

    It has been traditionally held that aftershocks occur within one to two fault lengths of the mainshock. Here we demonstrate that this perception has been shaped by the sensitivity of seismic networks. The 31 October 2001 Mw 5.0 and 12 June 2005 Mw 5.2 Anza mainshocks in southern California occurred in the middle of the densely instrumented ANZA seismic network and thus were unusually well recorded. For the June 2005 event, aftershocks as small as M 0.0 could be observed stretching for at least 50 km along the San Jacinto fault even though the mainshock fault was only ∼4.5 km long. It was hypothesized that an observed aseismic slipping patch produced a spatially extended aftershock-triggering source, presumably slowing the decay of aftershock density with distance and leading to a broader aftershock zone. We find, however, the decay of aftershock density with distance for both Anza sequences to be similar to that observed elsewhere in California. This indicates there is no need for an additional triggering mechanism and suggests that given widespread dense instrumentation, aftershock sequences would routinely have footprints much larger than currently expected. Despite the large 2005 aftershock zone, we find that the probability that the 2005 Anza mainshock triggered the M 4.9 Yucaipa mainshock, which occurred 4.2 days later and 72 km away, to be only 14%±1%. This probability is a strong function of the time delay; had the earthquakes been separated by only an hour, the probability of triggering would have been 89%.

  15. Remotely Triggered Earthquakes Recorded by EarthScope's Transportable Array and Regional Seismic Networks: A Case Study Of Four Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.

    2013-05-01

    Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.

  16. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  17. Radar, an optimum remote-sensing tool for detailed plate tectonic analysis and its application to hydrocarbon exploration (an example in Irian Jaya Indonesia)

    NASA Technical Reports Server (NTRS)

    Froidevaux, C. M.

    1980-01-01

    Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.

  18. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    PubMed

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  19. Boundary conditions traps when modeling interseismic deformation at subduction zones

    NASA Astrophysics Data System (ADS)

    Contreras, Marcelo; Gerbault, Muriel; Tassara, Andres; Bataille, Klaus; Araya, Rodolfo

    2017-04-01

    In order to gain insight on the controling factors for elastic strain build-up in subduction zones, such as those triggering the Mw 8. 2010 Maule earthquake, we published a modeling study to test the influence of the subducting plate thickness, variations in the updip and downdip limit of a 100% locked interplate zone, elastic parameters, and velocity reduction at the base of the subducted slab (Contreras et al., Andean Geology 43(3), 2016). When comparing our modeled predictions with interseismic GPS observations, our results indicated little influence of the subducting plate thickness, but a necessity to reduce the velocity at the corner-base of the subducted slab below the trench region, to 10% of the far-field convergence rate. Complementary numerical models allowed us to link this velocity reduction at the base of subducting slab with a long-term high flexural stress resulting from the mechanical interaction of the slab with the underlying mantle. This study discusses that even if only a small amount of these high deviatoric stresses transfer energy towards the upper portion of the slab, it may participate in triggering large earthquakes such as the Mw8.8 Maule event. The definition of initial and boundary conditions between short-term to long-term models evidence the mechanical inconsistencies that may appear when considering pre-flexed subducting slabs and unloaded underlying asthenosphere, potentially creating mis-balanced large stress discontinuities.

  20. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2007-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  1. Fluid Overpressure and Earthquakes Triggering in the Natural Laboratory of the Northern Apennines: Integration of Field and Laboratory Data

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Faulkner, D.

    2004-12-01

    The integration of seismic reflection profiles with well-located earthquakes show that the mainshocks of the 1997-1998 Colfiorito seismic sequence (Central Italy) nucleated at a depth of ~6 km within the Triassic Evaporites (TE, anhydrites and dolostones), where CO2 at near lithostatic pressure has been encountered in two deep boreholes (4 km). In order to investigate the deformation processes operating at depth in the source region of the Colfiorito earthquakes we have characterized: 1) fault zone structure by studying exhumed outcrops of the temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The architecture of large fault zones within the TE is given by a distinct fault core, where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone. Brittle deformation within the fault core is extremely localized along principal slip surfaces associated with dolomite rich cataclasite seams, running parallel to the fault zone. The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). Static permeability measurements on anhydrite samples show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests the permeability values immediately prior to failure are about three orders of magnitude higher than the initial values. The field data suggests that during the seismic cycle, the permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns. Conversely, the permeability of the anhydrites, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, may be potentially as low as the values measured in the lab experiments (k = 10E-17 - 10E-22 m2). This suggests that fluid overpressure can be maintained in this lithology, within the damage zone, as far as the co-seismic period. Our observations and results can be applied to explain the seismicity of the Northern Apennines and other regions where fluids overpressures play a key role in triggering fault instability and earthquakes.

  2. Where are the opportunities for the Dube Trade Port? : an assessment of the potential demand from some time-sensitive and time-critical sectors

    DOT National Transportation Integrated Search

    2003-02-01

    With the aim of triggering growth, small geographical areas have been identified by the South African authorities where firms will be granted special investment and trade incentives, the Industrial Development Zones (IDZs). The Dube Trade Port (DTP),...

  3. HLB-associated preharvest fruit abscission is mediated by jasmonate/ethylene signaling triggered by secondary fungal infection

    USDA-ARS?s Scientific Manuscript database

    One symptom of citrus huanglongbing (HLB) is excessive pre-harvest fruit drop. Recently, higher incidence of Lasiodiplodia theobromae (Diplodia) was found in HLB-symptomatic orange calyx abscission zones (AZ-C) than in non-symptomatic fruit, and the infection was positively correlated with the reduc...

  4. Use of controlled dynamic impacts on hierarchically structured seismically hazardous faults for seismically safe relaxation of shear stresses

    NASA Astrophysics Data System (ADS)

    Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.

    2017-12-01

    In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.

  5. RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.

    PubMed

    Acuna, Claudio; Liu, Xinran; Gonzalez, Aneysis; Südhof, Thomas C

    2015-09-23

    Ultrafast neurotransmitter release requires tight colocalization of voltage-gated Ca(2+) channels with primed, release-ready synaptic vesicles at the presynaptic active zone. RIM-binding proteins (RIM-BPs) are multidomain active zone proteins that bind to RIMs and to Ca(2+) channels. In Drosophila, deletion of RIM-BPs dramatically reduces neurotransmitter release, but little is known about RIM-BP function in mammalian synapses. Here, we generated double conditional knockout mice for RIM-BP1 and RIM-BP2, and analyzed RIM-BP-deficient synapses in cultured hippocampal neurons and the calyx of Held. Surprisingly, we find that in murine synapses, RIM-BPs are not essential for neurotransmitter release as such, but are selectively required for high-fidelity coupling of action potential-induced Ca(2+) influx to Ca(2+)-stimulated synaptic vesicle exocytosis. Deletion of RIM-BPs decelerated action-potential-triggered neurotransmitter release and rendered it unreliable, thereby impairing the fidelity of synaptic transmission. Thus, RIM-BPs ensure optimal organization of the machinery for fast release in mammalian synapses without being a central component of the machinery itself. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Aftershocks and triggering processes in rock fracture

    NASA Astrophysics Data System (ADS)

    Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.

    2017-12-01

    One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.

  7. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    PubMed Central

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  8. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  9. Oxygen, ecology, and the Cambrian radiation of animals

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.

    2013-08-01

    The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.

  10. `Special agents' trigger social waves in giant honeybees ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Schmelzer, Evelyn; Kastberger, Gerald

    2009-12-01

    Giant honeybees ( Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering.

  11. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs.

    PubMed

    Itskovitz, J; Goetzman, B W; Rudolph, A M

    1982-01-01

    The responses of fetal heart rate and blood pressure to a transient reduction in uterine blood flow were studied in normoxemic and chronically hypoxemic lambs. In normoxemic fetuses, a reduction in uterine blood flow, if prolonged sufficiently, produced reflex bradycardia mediated through chemoreceptors and was associated with a decrease in carotid arterial PO2 to below 20 torr. The bradycardia was associated with a marked decrease in left ventricular output as measured by electromagnetic flowmeter; both were abolished by atropine. In chronically hypoxemic fetuses, a reduction in uterine blood flow produced a delayed deceleration of the heart rate which consisted of three components: reflex bradycardia due to chemoreceptor stimulation; baroreceptor-mediated reflex bradycardia which involved the slow and late recovery of the heart rate; and nonreflex bradycardia which was probably secondary to hypoxic myocardial depression. Quantitative analysis revealed a relationship between the components of delayed deceleration and the status of fetal oxygenation prior to the reduction in uterine blood flow. The lower the carotid arterial PO2, the shorter was the delay in the onset of bradycardia, the greater the decrease in heart rate, and the more prolonged the duration of bradycardia. The conclusion is that the response of fetal heart rate to a transient reduction in uterine blood flow is related to the duration of the reduction and to the status of fetal oxygenation prior to the decrease in uterine blood flow.

  12. Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; de Almeida Colombari, Débora Simões; Menani, José V

    2004-10-29

    The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28+/-3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/100 nl) injected into the NTS reduced MAP (-26+/-8 mm Hg) or produced no effect (2+/-7 mm Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to l-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses.

  13. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro

    PubMed Central

    Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E

    2009-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634

  14. Morphology, Ultrastructure and Possible Functions of Antennal Sensilla of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae)

    PubMed Central

    Wang, Yue; Li, Dan; Liu, Yang; Li, Xue-Jiao; Cheng, Wei-Ning; Zhu-Salzman, Keyan

    2016-01-01

    To better understand the olfactory receptive mechanisms involved in host selection and courtship behavior of Sitodiplosis mosellana (Diptera: Cecidomyiidae), one of the most important pests of wheat, scanning and transmission electron microscopy were used to examine the external morphology and ultrastructure of the antennal sensilla. The moniliform antennae exhibit obvious sexual dimorphism: antennae of the males are markedly longer than those of the females. Furthermore, each male flagellomere consists of two globular nodes, whereas each female flagellomere is cylindrical. Seven types of sensilla were identified in both sexes. Two types of s. chaetica have a lumen without dendrites and thick walls, suggesting that they are mechanoreceptors. S. trichodea and s. circumfila are typical chemoreceptors, possessing thin multiporous walls encircling a lumen with multiple dendrites. There are significantly more s. trichodea in female than in male, which may be related to host plant localization. In contrast, male s. circumfila are highly elongated compared to those of females, perhaps for pheromone detection. Peg-shaped s. coeloconica are innervated with unbranched dendrites extending from the base to the distal tip. Type 1 s. coeloconica, which have deep longitudinal grooves and finger-like projections on the surface, may serve as olfactory or humidity receptors, whereas type 2 s. coeloconica, smooth with a terminal pore, may be contact chemoreceptors. Also, this is the first report of Böhm’ bristles at proximal scape on antennae of Cecidomyiid species potentially functioning as mechanoreceptors. PMID:27623751

  15. Hypoxic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): role of branchial O2 chemoreceptors.

    PubMed

    Lopes, Jane Mello; Boijink, Cheila de Lima; Florindo, Luiz Henrique; Leite, Cleo Alcantara Costa; Kalinin, Ana Lúcia; Milsom, William K; Rantin, Francisco Tadeu

    2010-08-01

    In one series of experiments, heart frequency (f (H)), blood pressure (P (a)), gill ventilation frequency (f ( R )), ventilation amplitude (V (AMP)) and total gill ventilation (V (TOT)) were measured in intact jeju (Hoplerythrinus unitaeniatus) and jeju with progressive denervation of the branchial branches of cranial nerves IX (glossopharyngeal) and X (vagus) without access to air. When these fish were submitted to graded hypoxia (water PO(2) approximately 140, normoxia to 17 mmHg, severe hypoxia), they increased f ( R ), V (AMP), V (TOT) and P (a) and decreased f (H). In a second series of experiments, air-breathing frequency (f (RA)), measured in fish with access to the surface, increased with graded hypoxia. In both series, bilateral denervation of all gill arches eliminated the responses to graded hypoxia. Based on the effects of internal (caudal vein, 150 microg NaCN in 0.2 mL saline) and external (buccal) injections of NaCN (500 microg NaCN in 1.0 mL water) on f (R), V (AMP), V (TOT), P (a) and f (H) we conclude that the O(2) receptors involved in eliciting changes in gill ventilation and associated cardiovascular responses are present on all gill arches and monitor the O(2) levels of both inspired water and blood perfusing the gills. We also conclude that air breathing arises solely from stimulation of branchial chemoreceptors and support the hypothesis that internal hypoxaemia is the primary drive to air breathing.

  16. Impact of changes in inspired oxygen and carbon dioxide on respiratory instability in the lamb.

    PubMed

    Wilkinson, Malcolm H; Sia, Kah-Ling; Skuza, Elizabeth M; Brodecky, Vojta; Berger, Philip J

    2005-02-01

    We examined the effect of hypoxia and hypercapnia administered during deliberately induced periodic breathing (PB) in seven lambs following posthyperventilation apnea. Based on our theoretical analysis, the sensitivity or loop gain (LG) of the respiratory control system of the lamb is directly proportional to the difference between alveolar PO2 and inspired PO2. This analysis indicates that during PB, when by necessity LG is >1, replacement of the inspired gas with one of reduced PO2 lowers LG; if we made inspired PO2 approximate alveolar PO2, we predict that LG would be approximately zero and breathing would promptly stabilize. In six lambs, we switched the inspired gas from an inspiratory oxygen fraction of 0.4 to one of 0.12 during an epoch of PB; PB was immediately suppressed, supporting the view that the peripheral chemoreceptors play a pivotal role in the genesis and control of unstable breathing in the lamb. In the six lambs in which we administered hypercapnic gas during PB, breathing instability was also suppressed, but only after a considerable time lag, indicating the CO2 effect is likely to have been mediated through the central chemoreceptors. When we simulated both interventions in a published model of the adult respiratory controller, PB was immediately suppressed by CO2 inhalation and exacerbated by inhalation of hypoxic gas. These fundamentally different responses in lambs and adult humans demonstrate that PB has differing underlying mechanisms in the two species.

  17. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Meng, Haoran; Ben-Zion, Yehuda

    2018-01-01

    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  18. Respiratory modulation of human autonomic function on Earth.

    PubMed

    Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel? Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Respiratory modulation of human autonomic function on Earth

    PubMed Central

    Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R‐R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R‐R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long‐term neuroplasticity in serial measurements made over 20 days during and following space travel? PMID:27028958

  20. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  1. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  2. The global aftershock zone

    USGS Publications Warehouse

    Parsons, Thomas E.; Margaret Segou,; Warner Marzocchi,

    2014-01-01

    The aftershock zone of each large (M ≥ 7) earthquake extends throughout the shallows of planet Earth. Most aftershocks cluster near the mainshock rupture, but earthquakes send out shivers in the form of seismic waves, and these temporary distortions are large enough to trigger other earthquakes at global range. The aftershocks that happen at great distance from their mainshock are often superposed onto already seismically active regions, making them difficult to detect and understand. From a hazard perspective we are concerned that this dynamic process might encourage other high magnitude earthquakes, and wonder if a global alarm state is warranted after every large mainshock. From an earthquake process perspective we are curious about the physics of earthquake triggering across the magnitude spectrum. In this review we build upon past studies that examined the combined global response to mainshocks. Such compilations demonstrate significant rate increases during, and immediately after (~ 45 min) M > 7.0 mainshocks in all tectonic settings and ranges. However, it is difficult to find strong evidence for M > 5 rate increases during the passage of surface waves in combined global catalogs. On the other hand, recently published studies of individual large mainshocks associate M > 5 triggering at global range that is delayed by hours to days after surface wave arrivals. The longer the delay between mainshock and global aftershock, the more difficult it is to establish causation. To address these questions, we review the response to 260 M ≥ 7.0 shallow (Z ≤ 50 km) mainshocks in 21 global regions with local seismograph networks. In this way we can examine the detailed temporal and spatial response, or lack thereof, during passing seismic waves, and over the 24 h period after their passing. We see an array of responses that can involve immediate and widespread seismicity outbreaks, delayed and localized earthquake clusters, to no response at all. About 50% of the catalogs that we studied showed possible (localized delayed) remote triggering, and ~ 20% showed probable (instantaneous broadly distributed) remote triggering. However, in any given region, at most only about 2–3% of global mainshocks caused significant local earthquake rate increases. These rate increases are mostly composed of small magnitude events, and we do not find significant evidence of dynamically triggered M > 5 earthquakes. If we assume that the few observed M > 5 events are triggered, we find that they are not directly associated with surface wave passage, with first incidences being 9–10 h later. We note that mainshock magnitude, relative proximity, amplitude spectra, peak ground motion, and mainshock focal mechanisms are not reliable determining factors as to whether a mainshock will cause remote triggering. By elimination, azimuth, and polarization of surface waves with respect to receiver faults may be more important factors.

  3. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase.

    PubMed

    Qin, Qining; Downey, James M; Cohen, Michael V

    2003-02-01

    Adenosine and acetylcholine (ACh) trigger preconditioning by different signaling pathways. The involvement of phosphatidylinositol 3-kinase (PI3-kinase), a protein tyrosine kinase, and Src family tyrosine kinase in preconditioning was evaluated in isolated rabbit hearts. Either wortmannin (PI3-kinase blocker), genistein (tyrosine kinase blocker), lavendustin A (tyrosine kinase blocker), or 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2; Src family tyrosine kinase blocker) was given for 15 min to bracket a 5-min infusion of either adenosine or ACh (trigger phase). The hearts then underwent 30 min of regional ischemia. Infarct size for ACh alone was 9.3 +/- 3.5% of the risk zone versus 34.3 +/- 4.1% in controls. All four inhibitors blocked ACh-induced protection. When wortmannin or PP2 was infused only during the 30-min ischemic period (mediator phase), ACh-induced protection was not affected (7.4 +/- 2.1% and 9.7 +/- 1.7% infarction, respectively). Adenosine-triggered protection was not blocked by any of the inhibitors. Therefore, PI3-kinase and at least one protein tyrosine kinase, probably Src kinase, are involved in the trigger phase of ACh-induced, but not adenosine-induced, preconditioning. Neither PI3-kinase nor Src kinase is a mediator of the protection of ACh.

  4. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  5. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  6. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  7. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    PubMed

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  8. Observing earthquakes triggered in the near field by dynamic deformations

    USGS Publications Warehouse

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  9. Complex Non-volcanic Tremor in Guerrero Mexico Triggered by the 2010 Mw 8.8 Chilean Earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Campillo, M.; Husker, A. L.; Kostoglodov, V.; Payero, J. S.; Frank, W.; Shapiro, N. M.; Voisin, C.; Cougoulat, G.; Cotte, N.

    2010-12-01

    In this study we analyze the tremors triggered in Guerrero region (Mexico) by the 2010 magnitude 8.8 Chilean Earthquake using mini-seismic array data from the French-Mexican G-GAP project and broadband data from the Servicio Sismologico Nacional of Mexico. The strong dynamic shaking by the earthquake produced the first observed triggered non-volcanic tremors (NVT) in Mexico so far with at least 3 different types of tremors at different time scales. There was a slow slip event (SSE) occurring at the time of the earthquake, which may have increased the probability of tremor triggering in the region. The first type of observed triggered tremors occurred during the S waves, Love waves and Rayleigh waves as already reported in other subductions zones and continental faults (Miyazawa and Mori, 2005, 2006; Rubinstein et al., 2007; Gomberg et al., 2008; Peng et al, 2009…). The greatest amount of energy and duration accompanies the long-period Rayleigh waves, with smaller bursts during the S and Love waves. For this particular tremor we observed the dispersion of Rayleigh waves in the envelopes of triggered tremors, which indicates a very strong modulation of the source by the passing surface wave. An unexpected short-term tremor occurred approximately one hour later of the arrival of the surface waves on the coastal stations. The NVT has only been previously observed at distances > 100 km inland. It also has a shorter frequency range (3-6 Hz) than other NVT (1-10 Hz) observed in the region. Finally, we observed a significant increase of so-called ambient tremor activity with higher intensity than all triggered NVT during the days after the earthquake. This study adds new types of tremors to the lexicon of triggered NVT observed in the world.

  10. [High Resolution Remote Sensing Monitoring and Assessment of Secondary Geological Disasters Triggered by the Lushan Earthquake].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei

    2016-01-01

    The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.

  11. Management of sizeable carotid body tumor: Case report and review of literature.

    PubMed

    Elsharawy, Mohamed A; Alsaif, Hind; Elsaid, Aymen; Kredees, Ali

    2013-10-01

    Carotid body tumor is a paraganglioma derived from the neural crest. It arises from the carotid body which acts as a vascular chemoreceptors and is usually located at the carotid bifurcation. Sizeable (Shamblin III, >5 cm size) tumors are large and typically encase the carotid artery requiring vessel resection and replacement. Management of such tumors carries a high risk of postoperative mortality and morbidity rates specially with regards to neurovascular complications. We report a case of sizeable tumor which was surgically removed with minimal complications.

  12. Management of sizeable carotid body tumor: Case report and review of literature

    PubMed Central

    Elsharawy, Mohamed A; Alsaif, Hind; Elsaid, Aymen; Kredees, Ali

    2013-01-01

    Carotid body tumor is a paraganglioma derived from the neural crest. It arises from the carotid body which acts as a vascular chemoreceptors and is usually located at the carotid bifurcation. Sizeable (Shamblin III, >5 cm size) tumors are large and typically encase the carotid artery requiring vessel resection and replacement. Management of such tumors carries a high risk of postoperative mortality and morbidity rates specially with regards to neurovascular complications. We report a case of sizeable tumor which was surgically removed with minimal complications. PMID:24327970

  13. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.

    2012-09-01

    We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.

  14. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat

    PubMed Central

    Jones, Sarah E.

    2016-01-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. PMID:26888109

  15. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat.

    PubMed

    Jones, Sarah E; Dutschmann, Mathias

    2016-05-01

    Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. Copyright © 2016 the American Physiological Society.

  16. Chemohypersensitivity and autonomic modulation of venous capacitance in the pathophysiology of acute decompensated heart failure.

    PubMed

    Burchell, Amy E; Sobotka, Paul A; Hart, Emma C; Nightingale, Angus K; Dunlap, Mark E

    2013-06-01

    Heart failure is increasing in prevalence around the world, with hospitalization and re-hospitalization as a result of acute decompensated heart failure (ADHF) presenting a huge social and economic burden. The mechanism for this decompensation is not clear. Whilst in some cases it is due to volume expansion, over half of patients with an acute admission for ADHF did not experience an increase in total body weight. This calls into question the current treatment strategy of targeting salt and water retention in ADHF. An alternative hypothesis proposed by Fallick et al. is that an endogenous fluid shift from the splanchnic bed is implicated in ADHF, rather than an exogenous fluid gain. The hypothesis states further that this shift is triggered by an increase in sympathetic tone causing vasoconstriction in the splanchnic bed, a mechanism that can translocate blood rapidly into the effective circulating volume, generating the raised venous pressure and congestion seen in ADHF. This hypothesis encourages a new clinical paradigm which focuses on the underlying mechanisms of congestion, and highlights the importance of fluid redistribution and neurohormonal activation in its pathophysiology. In this article, we consider the concept that ADHF is attributable to episodic sympathetic hyperactivity, resulting in fluid shifts from the splanchnic bed. Chemosensitivity is a pathologic autonomic mechanism associated with mortality in patients with systolic heart failure. Tonic and episodic activity of the peripheral chemoreceptors may underlie the syndrome of acute decompensation without total body salt and water expansion. We suggest in this manuscript that chemosensitivity in response to intermittent hypoxia, such as experienced in sleep disordered breathing, may explain the intermittent sympathetic hyperactivity underlying renal sodium retention and acute volume redistribution from venous storage sites. This hypothesis provides an alternative structure to guide novel diagnostic and treatment strategies for ADHF.

  17. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway

    NASA Astrophysics Data System (ADS)

    Sandøy, Gro; Oppikofer, Thierry; Nilsen, Bjørn

    2017-07-01

    On 22 February 1756 the largest historically recorded rockslide in Norway took place at Tjelle in the Langfjord (Western Norway). The rockslide created three displacement waves of up to 50 m in height that caused 32 casualties and destroyed most houses and boats along the shores of the Langfjord. The trigger and contributing factors leading to the Tjellefonna rockslide are largely unknown and even seismic triggering has previously been suggested. This study provides a thorough back-analysis of the Tjellefonna rockslide using detailed geomorphological, engineering geological and tectonic field mapping in combination with topographic reconstructions, bathymetry analysis, volume estimations and numerical slope stability analysis. The back-scarp and eastern flank of the Tjellefonna scar form several tens of meter high rock walls, while the basal failure surface and other parts of the scar are covered by rock avalanche debris that extend from the back-scarp down to the bottom of the Langfjord. The rockslide occurred in granodioritic gneisses with variably developed metamorphic foliation that is folded and strike parallel to the fjord. Two prominent fault zones are present in close proximity to the Tjellefonna scar; one is steeply SE-dipping (Tjelle fault), while the other one is sub-horizontal to shallow SE-dipping (Ritlehamran fault). Both fault zones are linked to the Møre-Trøndelag Fault Complex, with one of its branches forming the Langfjord lineament and probably also the faults at Tjellefonna. Additionally, there are four persistent joint sets that together with the metamorphic foliation and the Tjelle fault define the back-scarp of the rockslide and give a fracturing of the rock mass corresponding to a Geological Strength Index (GSI) of 45-55. The GSI decreases significantly to 10-20 in the fault zones, which form distinct weakness zones in the rock slope. Volume estimates based on a reconstruction of the ante-rockslide topography range from 9.3 to 10.4 million m3, which is lower than previous volume estimates (12-15 million m3). Large portions of the failed rock mass remained on land and only approximately 3.9 million m3 entered the fjord. The observed discontinuities in the rock mass at Tjellefonna do not allow for a simple kinematic failure mechanism due to the lack of moderately SE-dipping structures. The basal failure surface was most likely not composed of a single structure, but of a complex interplay of fault zones, metamorphic foliation, joints and broken rock bridges. Numerical slope stability modelling highlights that weak fault zones are essential for the development of the failure surface over a long time. This progressive failure was likely aided by low- to medium-magnitude earthquakes that are frequent in the region. Numerical slope stability modelling and historical accounts suggest, however, that heavy, long-lasting rainfall was the triggering factor for the 1756 Tjellefonna rockslide rather than an earthquake.

  18. Analog modelling of obduction processes

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all plates were systematically measured, allowing for a very precise and reproducible tracking of deformation. Experiments demonstrate that obduction chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Conditions favorable to obduction are shown to correspond to a specific range of coupling across (S) and resistance across (W). Our results thereby (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction (rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity). They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process but results from some large scale, normal subduction process that do not require exotic boundary conditions. Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  19. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    PubMed

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  20. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review

    PubMed Central

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Abstract Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain. PMID:24701256

  1. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review.

    PubMed

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.

  2. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  3. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery-Brown, E. K.; Syracuse, E. M.

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  4. Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Syracuse, Ellen M.

    2015-01-01

    Slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kīlauea Volcano, Hawaii, the Boso Peninsula, Japan, near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead, they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor, including slip velocity, pressure, temperature, fluids, and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kīlauea Volcano (∼10−6 m/s) and Boso Peninsula (∼10−7 m/s) are among the fastest SSEs worldwide. Kīlauea Volcano, the Boso Peninsula, and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kīlauea or Boso. We suggest that the relatively faster slip velocities at Kīlauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  5. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE PAGES

    Montgomery-Brown, E. K.; Syracuse, E. M.

    2015-09-17

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  6. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  7. Autonomous stimulus triggered self-healing in smart structural composites

    NASA Astrophysics Data System (ADS)

    Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.

    2012-09-01

    Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.

  8. The 2008 M7.9 Wenchuan earthquake - a human-caused event

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2013-12-01

    A catalog of global human-caused earthquakes shows statistical evidence that the triggering of earthquakes by large-scale geoengineering activities depends on geological and tectonic constrains (in Klose 2013). Such geoengineering activities also include the filling of water reservoirs. This presentation illuminates mechanical and statistical aspects of the 2008 M7.9 Wenchuan earthquake in light of the hypothesis of being NOT human-caused. However, available data suggest that the Wenchuan earthquake was triggered by the filling of the Zipungpu water reservoir 30 months prior to the mainshock. The reservoir spatially extended parallel and near to the main Beichuan fault zone in a highly stressed reverse fault regime. It is mechanically evident that reverse faults tend to be very trigger-sensitive due to mass shifts (static loads) that occur on the surface of the Earth's crust. These circumstances made a triggering of a seismic event of this magnitude at this location possible (in Klose 2008, 2012). The data show that the Wenchuan earthquake is not an outlier. From a statistical view point, the earthquake falls into the upper range of the family of reverse fault earthquakes that were caused by humans worldwide.

  9. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach.

    PubMed

    Huang, Julie Y; Goers Sweeney, Emily; Guillemin, Karen; Amieva, Manuel R

    2017-01-01

    Helicobacter pylori's ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria's response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD's colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium.

  10. Peripheral chemoreceptors and cardiorespiratory coupling: a link to sympatho-excitation.

    PubMed

    Zoccal, Daniel B

    2015-02-01

    What is the topic of this review? Chronic intermittent hypoxia (CIH), as observed in patients with obstructive sleep apnoea, is associated with the development of sympathetically mediated arterial hypertension. Nevertheless, the mechanisms underpinning the augmented sympathetic outflow in CIH still remain under investigation. What advances does it highlight? In this report, I present experimental evidence supporting the hypothesis that changes in the function of the respiratory network and coupling with the sympathetic nervous system may be considered as a novel and relevant mechanism for the increase in baseline sympathetic outflow in animals submitted to CIH. Chronic intermittent hypoxia (CIH) has been identified as a relevant risk factor for the development of enhanced sympathetic outflow and arterial hypertension. Several studies have highlighted the importance of peripheral chemoreceptors for the cardiovascular changes elicited by CIH. However, the effects of CIH on the central mechanisms regulating sympathetic outflow are not fully elucidated. Our research group has explored the hypothesis that the enhanced sympathetic drive following CIH exposure is, at least in part, dependent on alterations in the respiratory network and its interaction with the sympathetic nervous system. In this report, I discuss the changes in the discharge profile of baseline sympathetic activity in rats exposed to CIH, their association with the generation of active expiration and the interactions between expiratory and sympathetic neurones after CIH conditioning. Together, these findings are consistent with the theory that mechanisms of central respiratory-sympathetic coupling are a novel factor in the development of neurogenic hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  11. Response properties of the pharyngeal branch of the glossopharyngeal nerve for umami taste in mice and rats.

    PubMed

    Kitagawa, Junichi; Takahashi, Yoshihiro; Matsumoto, Shigeji; Shingai, Tomio

    2007-04-24

    Many studies have reported the mechanism underlying umami taste. However, there are no investigations of responses to umami stimuli taste originating from chemoreceptors in the pharyngeal region. The pharyngeal branch of the glossopharyngeal nerve (GPN-ph) innervating the pharynx has unique responses to taste stimulation that differs from responses of the chorda tympani nerve and lingual branch of the glossopharyngeal nerve. Water evokes robust response, but NaCl solutions at physiological concentrations do not elicit responses. The present study was designed to examine umami taste (chemosensory) responses in the GPN-ph. Response characteristics to umami taste were compared between mice and rats. In mice, stimulation with compounds eliciting umami taste (0.1M monosodium L-glutamate (MSG), 0.01M inosine monophosphate (IMP) and the mixture of 0.1M MSG+0.01M IMP) evoked higher responses than application of distilled water (DW). However, synergistic response of a mixture of 0.1M MSG+0.01M IMP was not observed. In rats, there is no significant difference between the responses to umami taste (0.1M MSG, 0.01M IMP and the mixture of 0.1M MSG+0.01M IMP) and DW. Monopotassium glutamate (MPG) was used in rats to examine the contribution of the sodium component of MSG on the response. Stimulation with 0.1M MPG evoked a higher response when compared with responses to DW. The present results suggest that umami taste compounds are effective stimuli of the chemoreceptors in the pharynx of both mice and rats.

  12. Carotid body, insulin, and metabolic diseases: unraveling the links

    PubMed Central

    Conde, Sílvia V.; Sacramento, Joana F.; Guarino, Maria P.; Gonzalez, Constancio; Obeso, Ana; Diogo, Lucilia N.; Monteiro, Emilia C.; Ribeiro, Maria J.

    2014-01-01

    The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future. PMID:25400585

  13. KCNQ channels determine serotonergic modulation of ventral surface chemoreceptors and respiratory drive

    PubMed Central

    Hawryluk, Joanna M.; Moreira, Thiago S.; Takakura, Ana C.; Wenker, Ian C.; Tzingounis, Anastasios V.; Mulkey, Daniel K.

    2012-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H+ changes. Their activity is also sensitive to neuromodulatory inputs from multiple respiratory centers, and thus they serve as a key nexus of respiratory control. However, molecular mechanisms that control their activity and susceptibility to neuromodulation are unknown. Here, we show in vitro and in vivo that KCNQ channels are critical determinants of RTN neural activity. In particular, we find that pharmacological block of KCNQ channels (XE991, 10 μM) increased basal activity and CO2-responsivness of RTN neurons in rat brain slices; whereas KCNQ channel activation (retigabine 2–40 μM) silenced these neurons. Interestingly, we also find that KCNQ and apamin sensitive SK channels act synergistically to regulate firing rate of RTN chemoreceptors; simultaneous blockade of both channels led to a increase in CO2-responsivness. Furthermore, we also show that KCNQ channels but not SK channels are downstream effectors of serotonin modulation of RTN activity in vitro. In contrast, inhibition of KCNQ channel did not prevent modulation of RTN activity by Substance P or TRH; previously identified neuromodulators of RTN chemoreception. Importantly, we also show that KCNQ channels are critical for RTN activity in vivo. Inhibition of KCNQ channels lowered the CO2 threshold for phrenic nerve discharge in anesthetized rats and decreased the ventilatory response to serotonin in awake and anesthetized animals. Given that serotonergic dysfunction may contribute to respiratory failure, our findings suggest KCNQ channels as a new therapeutic avenue for respiratory complications associated with multiple neurological disorders. PMID:23175845

  14. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    PubMed

    Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  15. Prospective earthquake forecasts at the Himalayan Front after the 25 April 2015 M 7.8 Gorkha Mainshock

    USGS Publications Warehouse

    Segou, Margaret; Parsons, Thomas E.

    2016-01-01

    When a major earthquake strikes, the resulting devastation can be compounded or even exceeded by the subsequent cascade of triggered seismicity. As the Nepalese recover from the 25 April 2015 shock, knowledge of what comes next is essential. We calculate the redistribution of crustal stresses and implied earthquake probabilities for different periods, from daily to 30 years into the future. An initial forecast was completed before an M 7.3 earthquake struck on 12 May 2015 that enables a preliminary assessment; postforecast seismicity has so far occurred within a zone of fivefold probability gain. Evaluation of the forecast performance, using two months of seismic data, reveals that stress‐based approaches present improved skill in higher‐magnitude triggered seismicity. Our results suggest that considering the total stress field, rather than only the coseismic one, improves the spatial performance of the model based on the estimation of a wide range of potential triggered faults following a mainshock.

  16. Oxygen, ecology, and the Cambrian radiation of animals

    PubMed Central

    Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.

    2013-01-01

    The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator–prey “arms races” can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation. PMID:23898193

  17. No correlation between Anderson Reservoir stage level and underlying Calaveras fault seismicity despite calculated differential stress increases

    USGS Publications Warehouse

    Parsons, T.

    2011-01-01

    Concerns have been raised that stresses from reservoir impoundment may trigger damaging earthquakes because rate changes have been associated with reservoir impoundment or stage-level changes globally. Here, the idea is tested blindly using Anderson Reservoir, which lies atop the seismically active Calaveras fault. The only knowledge held by the author going into the study was the expectation that reservoir levels change cyclically because of seasonal rainfall. Examination of seismicity rates near the reservoir reveals variability, but no correlation with stage-level changes. Three-dimensional fi nite-element modeling shows stress changes suffi cient for earthquake triggering along the Calaveras fault zone. Since many of the reported cases of induced triggering come from low-strain settings, it is speculated that gradual stressing from stage-level changes in high-strain settings may not be signifi cant. From this study, it can be concluded that reservoirs are not necessarily risky in active tectonic settings. ?? 2011 Geological Society of America.

  18. Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?

    USGS Publications Warehouse

    Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G.

    2009-01-01

    The devastating May 2008 Wenchuan earthquake (Mw 7.9) resulted from thrust of the Tibet Plateau on the Longmen Shan fault zone, a consequence of the Indo-Asian continental collision. Many have speculated on the role played by the Zipingpu Reservoir, impounded in 2005 near the epicenter, in triggering the earthquake. This study evaluates the stress changes in response to the impoundment of the Zipingpu Reservoir and assesses their impact on the Wenchuan earthquake. We show that the impoundment could have changed the Coulomb stress by -0.01 to 0.05 MPa at locations and depth consistent with reported hypocenter positions. This level of stress change has been shown to be significant in triggering earthquakes on critically stressed faults. Because the loading rate on the Longmen Shan fault is <0.005 MPa/yr, we thus suggest that the Zipingpu Reservoir potentially hastened the occurrence of the Wenchuan earthquake by tens to hundreds of years. Copyright 2009 by the American Geophysical Union.

  19. Tremors Triggered along the Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Chao, K.

    2012-12-01

    In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.

  20. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    USGS Publications Warehouse

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  1. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    USGS Publications Warehouse

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  2. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  3. Hydrological disposition of flash flood and debris flows events in an Alpine watershed in Austria

    NASA Astrophysics Data System (ADS)

    Prenner, David; Kaitna, Roland; Mostbauer, Karin; Hrachowitz, Markus

    2017-04-01

    Debris flows and flash floods including intensive bedload transport represent severe hazards in the Alpine environment of Austria. For neither of these processes, explicit rainfall thresholds - even for specific regions - are available. This may be due to insufficient data on the temporal and spatial variation of precipitation, but probably also due to variations of the geomorphic and hydrological disposition of a watershed to produce such processes in the course of a rainfall event. In this contribution we investigate the importance of the hydrological system state for triggering debris flows and flash floods in the Ill/Suggadin watershed (500 km2), Austria, by analyzing the effects of dynamics in system state variables such as soil moisture, snow pack, or ground water level. The analysis is based on a semi-distributed conceptual rainfall-runoff model, spatially discretizing the watershed according to the available precipitation observations, elevation, topographic considerations and land cover. Input data are available from six weather stations on a daily basis ranging back to 1947. A Thiessen polygon decomposition results in six individual precipitation zones with a maximum area of about 130 km2. Elevation specific behavior of the quantities temperature and precipitation is covered through an elevation-resolved computation every 200 m. Spatial heterogeneity is considered by distinct hydrological response units for bare rock, forest, grassland, and riparian zone. To reduce numerical smearing on the hydrological results, the Implicit Euler scheme was used to discretize the balance equations. For model calibration we utilized runoff hydrographs, snow cover data as well as prior parameter and process constraints. The obtained hydrological output variables are linked to documented observed flash flood and debris flow events by means of a multivariate logistic regression. We present a summary about the daily hydrological disposition of experiencing a flash flood or debris flow event in each precipitation zone of the Ill/Suggadin region over almost 65 years. Furthermore, we will provide an interpretation of the occurred hydrological trigger patterns and show a frequency ranking. The outcomes of this study shall lead to an improved forecasting and differentiation of trigger conditions leading to debris flows and flash floods.

  4. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults

    NASA Astrophysics Data System (ADS)

    Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro

    2017-02-01

    The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.

  5. ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begelman, Mitchell C.; Armitage, Philip J.; Reynolds, Christopher S., E-mail: mitch@jila.colorado.edu

    2015-08-20

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in themore » presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a “dead zone” where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, “intermediate” and “hard” accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in “soft” states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the “soft” state show no signs of the thermal/viscous instability predicted by standard α-models.« less

  6. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  7. Hydrologic Triggering of Shallow Landslides in a Field-scale Flume

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Iverson, N. R.; Brien, D. L.; Lahusen, R. G.; Logan, M.

    2006-12-01

    Hydrologic Triggering of Shallow Landslides in a Field-scale Flume Mark E. Reid, Richard M. Iverson, Neal R. Iverson, Dianne L. Brien, Richard G. LaHusen, and Mathew Logan Shallow landslides are often triggered by pore-water pressure increases driven by 1) groundwater inflow from underlying bedrock or soil, 2) prolonged moderate-intensity rainfall or snowmelt, or 3) bursts of high-intensity rainfall. These shallow failures are difficult to capture in the field, limiting our understanding of how different water pathways control failure style or timing. We used the field-scale, USGS debris-flow flume for 7 controlled landslide initiation experiments designed to examine the influence of different hydrologic triggers and the role of soil density, relative to critical state, on failure style and timing. Using sprinklers and/or groundwater injectors, we induced failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand on a 31° slope, placed behind a retaining wall. We monitored ~50 sensors to measure soil deformation (tiltmeters & extensometers), pore pressure (tensiometers and transducers), and soil moisture (TDR probes). We also extracted soil samples for laboratory estimates of porosity, shear strength, saturated hydraulic conductivity at differing porosities, unsaturated moisture retention characteristics, and compressibility. Experiments with loose soil all resulted in abrupt failure along the concrete flume bed with rapid mobilization into a debris flow. Each of the 3 water pathways, however, resulted in slightly different pore-pressure fields at failure and different times to failure. For example, groundwater injection at the flume bed led to a saturated zone that advanced upward, wetting over half the soil prism before pressures at the bed were sufficient to provoke collapse. With moderate-intensity surface sprinkling, an unsaturated wetting front propagated downward until reaching the bed, then a saturated zone built upward, with the highest pressures at the bed. With the third trigger, soils were initially wetted (but not saturated) with moderate-intensity sprinkling and then subjected to a high-intensity burst, causing failure without widespread positive pressures. It appears that a small pressure perturbation from the burst traveled rapidly downward through tension-saturated soil and led to positive pressure development at the flume bed resulting in failure. In contrast, failures in experiments with stronger, denser soil were gradual and episodic, requiring both sprinkling and groundwater injection. Numerical simulations of variably saturated groundwater flow mimic the behaviors described above. Simulated rainfall with an intensity greater than soil hydraulic conductivity generates rapid pressure perturbations, whereas lower intensity rainfall leads to wetting front propagation and water table buildup. Our results suggest that transient responses induced by high intensity bursts require relatively high frequency monitoring of unsaturated zone changes; in this case conventional piezometers would be unlikely to detect failure-inducing pore pressure changes. These experiments also indicate that although different water pathways control the timing of failure, initial soil density controls the style of failure.

  8. Fine morphology of frontal filaments in nauplii of cirriped crustaceans.

    PubMed

    Obukhova, A L; Voronezhskaya, E E; Malakhov, V V

    2016-05-01

    Fine morphology of the frontal filaments (FFs) at all nauplius stages of two barnacle species (Verruca stroemia and Hesperibalanus hesperius) has been investigated by scanning electron microscopy. FFs have been detected at the second nauplius stage and persist during all stages. FFs contain a wide proximal and a fine distal parts, but they are not actually separated as segments of the limbs, and the area between them looks like a single cuticular crease. Apical and subapical pores have been found at the top of each FF in the larvae of both species, which may indicate the chemoreceptor function of these organs.

  9. Vomeronasal organ removal before sexual experience impairs male hamster mating behavior.

    PubMed

    Meredith, M

    1986-01-01

    Removal of vomeronasal chemoreceptors before sexual experience in male hamsters resulted in complete failure to mate in some animals but removal of these receptors after sexual experience had no effect. Animals were tested for mating behavior with intact behaviorally receptive females and also with anesthetized males scented with vaginal fluid. The two tests produced essentially the same result. Histological analysis of the lesions and radioimmunoassay of androgen levels showed no group differences, other than vomeronasal organ removal, that could account for the results. The behavioral data suggest that the vomeronasal system may be concerned with the production of preprogrammed behavior.

  10. Conservative management of partial extensor tendon lacerations greater than half the width of the tendon in manual workers.

    PubMed

    Al-Qattan, Mohammad M

    2015-04-01

    Conservative management (without suturing or splints) of partial extensor tendon lacerations greater than half the width of the tendon has not been previously investigated. In this prospective study, a total of 45 injured tendons (with lacerations involving 55%-90% of the width of the tendon) in 39 patients were treated conservatively. Injury zones I, III, and V of the fingers; and zones I and III of the thumb were excluded. Immediate non-resistive active mobilization was initiated and continued for 4 weeks, followed by resistive exercises. Patients were allowed to go back to work after 6 weeks. There were no cases of ruptures, triggering, infection, or complex regional pain syndrome. At final follow-up (8-9 months after injury), all patients obtained full range of motion with no extension lags. All patients were able to go back to normal duties. We conclude that early active motion without the use of splints or sutures in major extensor tendon lacerations in zones II, IV, VI-VIII of the fingers; and zones II, IV, and V of the thumb is safe.

  11. A Strategy for a Parametric Flood Insurance Using Proxies

    NASA Astrophysics Data System (ADS)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  12. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, Tom

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ∼39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ∼7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  13. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change |Δ| 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  14. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    NASA Astrophysics Data System (ADS)

    Parsons, Tom

    2002-09-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  15. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model.

    PubMed

    Nishida, Kunihiro; Qi, Xiao Yan; Wakili, Reza; Comtois, Philippe; Chartier, Denis; Harada, Masahide; Iwasaki, Yu-ki; Romeo, Philippe; Maguy, Ange; Dobrev, Dobromir; Michael, Georghia; Talajic, Mario; Nattel, Stanley

    2011-01-18

    Coronary artery disease predisposes to atrial fibrillation (AF), but the effects of chronic atrial ischemia/infarction on AF-related substrates are unknown. Regional right atrial myocardial infarction (MI) was created in 40 dogs by ligating an artery that supplies the right atrial free wall and not the ventricles; 35 sham dogs with the same artery isolated but not ligated were controls. Dogs were observed 8 days after MI and subjected to open-chest study, in vitro optical mapping, and/or cell isolation for patch-clamp and Ca(2+) imaging on day 8. Holter ECGs showed more spontaneous atrial ectopy in MI dogs (eg, 662±281 on day 7 versus 34±25 ectopic complexes per day at baseline; 52±21 versus 1±1 atrial tachycardia episodes per day). Triggered activity was increased in MI border zone cells, which had faster decay of caffeine-evoked Ca(2+) transients and enhanced (by ≈73%) Na(+)-Ca(2+) exchange current. Spontaneous Ca(2+) sparks (confocal microscopy) occurred under β-adrenergic stimulation in more MI dog cells (66±9%) than in control cells (29±4%; P<0.01). Burst pacing induced long-lasting AF in MI dogs (1146±259 versus 30±14 seconds in shams). Increased border zone conduction heterogeneity was confirmed by both bipolar electrode mapping in vivo and optical mapping. Optical mapping demonstrated stable border zone reentry in all 9 MI preparations but in none of 6 shams. Border zone tissue showed increased fibrous tissue content. Chronic atrial ischemia/infarction creates substrates for both spontaneous ectopy (Ca(2+)-release events, increased Na(+)-Ca(2+) exchange current) and sustained reentry (conduction abnormalities that anchor reentry). Thus, chronic atrial infarction in dogs promotes both AF triggers and the substrate for AF maintenance. These results provide novel insights into potential AF mechanisms in patients with coronary artery disease.

  16. Repeating and triggered slow slip events in the near-trench region of the Nankai Trough detected by borehole observatories

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Araki, E.; Kopf, A.; Toczko, S.; Wallace, L. M.; Davis, E. E.; Roesner, A.

    2016-12-01

    Slow slip events (SSE), non-volcanic tremor, and very low-frequency earthquakes (VLFE) are well documented down-dip of the seismogenic zone of major faults, yet similar observations for the shallowest reaches of subduction megathrusts are rare. Here, we document a family of repeating strain transients in the outermost Nankai subduction zone, updip of the region that ruptures in great (M8-class) earthquakes. We report on data from two borehole observatories: IODP Site C0002, which penetrates the accretionary prism and monitors a zone 931-980 m below seafloor (mbsf) at a location 36 km landward of the trench; and Site C0010, 25 km landward, which monitors a zone spanning 389-407 mbsf. We focus on a time window from Dec. 2010 - Apr. 2016, for which we recovered records of formation pore pressure at both sites. After filtering oceanographic noise using a local hydrostatic reference at each site, the pressure records reveal seven transient signals that are synchronous at the two holes. Of these, five arise spontaneously, and occur at 1 yr intervals with durations of 7-21 days. All are positive in sign at C0010, with magnitudes of 0.3-0.9 kPa; at Site C0002 three are negative in sign and two are positive, with magnitudes of 0.3-0.7 kPa. The remaining two events are larger (1.7-2.7 kPa), exhibit a negative sign at both sites, and immediately follow: (1) the Mar. 2011 M9 Tohoku earthquake; and (2) a sequence including an Apr. 1 M6 thrust event on the plate interface nearby and the Apr. 16 M7 Kumamoto event. In most cases, the pressure transients are accompanied by swarms of VLFE on the shallow plate interface. We interpret the pressure signals to reflect volumetric strain in response to SSEs. Simple dislocation models illustrate that the data at both sites are well fit by slip of 1-2 cm on a patch at the plate interface that extends 20-40 km in the down-dip direction, and is centered beneath Site C0002 (spontaneous events) or slightly updip (triggered events). This coincides with a region of the megathrust characterized in previous studies by anomalously low Vp, and elevated pore fluid pressure. The repeating nature of the events, taken together with apparent triggering by regional earthquakes, indicates that the outermost reaches of the subduction megathrust are highly sensitive to perturbation and are perched near a state of failure.

  17. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

    NASA Astrophysics Data System (ADS)

    Madhnure, Pandith; Peddi, Nageshwar Rao; Allani, Damodar Rao

    2016-03-01

    The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30-85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 - concentration is high in shallow irrigation wells, and F- is high in deeper wells. Positive correlation is observed between F- and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

  18. Search for hydraulic connectivity between surface reservoirs and surrounding aquifers in the reservoir-triggered seismic environment (Koyna region, India) using hydrochemical and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Nagabhushanam, P.

    2016-01-01

    Triggered seismicity is an accepted hypothesis in the present days. However, detailed hydrogeological investigations are lacking in the well-known reservoir-triggered seismic (RTS) zones. Here, we made an attempt to understand the direct linkage between the well-known Koyna-Warna reservoirs believed to be under the RTS zone (situated in the Deccan volcanic province (DVP), India) and the surrounding groundwater system up to 250 m deep from the ground surface. Seismic activity in the region started soon after the impoundment of water in the Koyna reservoir and being continued over the last four and a half decades. Though researchers have carried out numerous studies on the Koyna seismicity, no hydrogeological investigations were attempted. Hence, hydrogeological, hydrochemical, and isotopic investigations were carried out for 7 years on groundwaters from 15 deep bore wells (up to 250 m) and two surface reservoir waters to elucidate the direct hydraulic connectivity between them. No appreciable seasonal change was observed in piezometric heads of the artesian wells, but the semi-artesian wells did show fluctuation of ~2 to 12 m during different years, which did not have any relation with the reservoir water levels. No considerable seasonal change in hydrochemistry was observed in individual wells due to the confined nature of the aquifers. The hydrochemical and δ18O data of the studied deep groundwaters and reservoir waters, being different from each other, rule out the possibility of direct hydraulic connectivity between them and surrounding groundwater (up to 250 m), even though favorable topographic conditions exist for linkage. The radiocarbon ages, being incomparable between different well waters, support the inference drawn from hydrochemistry and stable isotope data.

  19. Helium shell flashes and evolution of accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Fujimoto, M. Y.; Sugimoto, D.

    1982-06-01

    The evolution of accreting white dwarfs is investigated from the onset of accretion through the helium shell flash. Properties of the helium shell flashes are studied by means of a generalized theory of shell flash and by numerical computations, and it is found that the shell flash grows up to the strength of a supernova explosion when the mass of the helium zone is large enough on a massive white dwarf. Although accretion onto a hot white dwarf causes a weaker shell flash than those onto cool ones, a strong tendency exists for the strength to be determined mainly by the accretion rate. For fast accretion, the shell flashes are weak and triggered recurrently, while for slow accretion the helium shell flash, once triggered, develops into a detonation supernova.

  20. Influences of unconscious priming on voluntary actions: Role of the rostral cingulate zone.

    PubMed

    Teuchies, Martyn; Demanet, Jelle; Sidarus, Nura; Haggard, Patrick; Stevens, Michaël A; Brass, Marcel

    2016-07-15

    The ability to make voluntary, free choices is fundamental to what it means to be human. A key brain region that is involved in free choices is the rostral cingulate zone (RCZ), which is part of the medial frontal cortex. Previous research has shown that activity in this brain region can be modulated by bottom-up information while making free choices. The current study extends those findings, and shows, for the first time, that activation in the RCZ can also be modulated by subliminal information. We used a subliminal response priming paradigm to bias free and cued choices. We observed more activation in the RCZ when participants made a choice that went against the prime's suggestion, compared to when they chose according to the prime. This shows that the RCZ plays an important role in overcoming externally-triggered conflict between different response options, even when the stimuli triggering this conflict are not consciously perceived. Our results suggest that an important mechanism of endogenous action in the RCZ may therefore involve exerting an internally-generated action choice against conflicting influences, such as external sensory evidence. We further found that subliminal information also modulated activity in the anterior insula and the supramarginal gyrus. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Rethinking turbidite paleoseismology along the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie

    2014-01-01

    A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.

  2. Identifying a large landslide with small displacements in a zone of coseismic tectonic deformation; the Villa Del Monte landslide triggered by the 1989 Loma Prieta, California, earthquake

    USGS Publications Warehouse

    Keefer, David K.; Harp, Edwin L.; Griggs, Gary B.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    The Villa Del Monte landslide was one of 20 large and complex landslides triggered by the 1989 LomaPrieta, California, earthquake in a zone of pervasive coseismicground cracking near the fault rupture. The landslide was approximately 980 m long, 870 m wide, and encompassed an area of approximately 68 ha. Drilling data suggested that movement may have extended to depths as great as 85 m below the ground surface. Even though the landslide moved <1 m, it caused substantial damage to numerous dwellings and other structures, primarily as a result of differential displacements and internal Assuring. Surface cracks, scarps, and compression features delineating the Villa Del Monte landslide were discontinuous, probably because coseismic displacements were small; such discontinuous features were also characteristic of the other large, coseismic landslides in the area, which also moved only short distances during the earthquake. Because features marking landslide boundaries were discontinuous and because other types of coseismic ground cracks were widespread in the area, identification of the landslides required detailed mapping and analysis. Recognition that landslides such as that at Villa Del Monte may occur near earthquake-generating fault ruptures should aid in future hazard evaluations of areas along active faults.

  3. Dynamic Models Applied to Landslides: Study Case Angangueo, MICHOACÁN, MÉXICO.

    NASA Astrophysics Data System (ADS)

    Torres Fernandez, L.; Hernández Madrigal, V. M., , Dr; Capra, L.; Domínguez Mota, F. J., , Dr

    2017-12-01

    Most existing models for landslide zonification are static type, do not consider the dynamic behavior of the trigger factor. This results in a limited representation of the actual zonation of slope instability, present a short-term validity, cańt be applied for the design of early warning systems, etc. Particularly in Mexico, these models are static because they do not consider triggering factor such as precipitation. In this work, we present a numerical evaluation to know the landslide susceptibility, based on probabilistic methods. Which are based on the generation of time series, which are generated from the meteorological stations, having limited information an interpolation is made to generate the simulation of the precipitation in the zone. The obtained information is integrated in PCRaster and in conjunction with the conditioning factors it is possible to generate a dynamic model. This model will be applied for landslide zoning in the municipality of Angangueo, characterized by frequent logging of debris and mud flow, translational and rotational landslides, detonated by atypical precipitations, such as those recorded in 2010. These caused economic losses and humans. With these models, it would be possible to generate probable scenarios that help the Angangueo's population to reduce the risks and to carry out actions of constant resilience activities.

  4. Different seismic signatures of fractures slip and their correlations with fluid pressures in in-situ rupture experiments

    NASA Astrophysics Data System (ADS)

    Derode, B.; Cappa, F.; Guglielmi, Y.

    2012-04-01

    The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.

  5. Seismicity around Parkfield correlates with static shear stress changes following the 2003 Mw6.5 San Simeon earthquake

    USGS Publications Warehouse

    Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.

    2013-01-01

    Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.

  6. Sediment gravity flows triggered by remotely generated earthquake waves

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  7. Sediment gravity flows triggered by remotely generated earthquake waves

    USGS Publications Warehouse

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie

    2017-01-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  8. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  9. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  10. Abrupt tectonics and rapid slab detachment with grain damage

    PubMed Central

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-01-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  11. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-03

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.

  12. Slope failures evaluation and landslides investigation using 2-D resistivity method

    NASA Astrophysics Data System (ADS)

    Nordiana, M. M.; Azwin, I. N.; Nawawi, M. N. M.; Khalil, A. E.

    2018-06-01

    Slope failure is a complex phenomenon that may caused to landslides. Buildings and infrastructure such as transportation facilities and pipelines located within the boundaries of a landslide can be damaged or destroyed. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. Six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed. The data were processed using Res2Dinv and surfer10 software to evaluate the subsurface characteristics. The 2-D resistivity results show that the subsurface consist of two main zones. The first zone was alluvium or highly weathered with resistivity value of 100-1000 Ω m and depth of >30 m. This zone consists of saturated area with resistivity value of 1-100 Ω m and boulders with resistivity value of 1200-7000 Ω m. The second zone with resistivity value of >7000 Ω m was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. This will cause to low strength of soil, debris flow and movement of earth. On the basis of the case examples described, 2-D resistivity method is categorized into desirable and useful method in determination of slope failure and future assessments.

  13. The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep

    PubMed Central

    Dempsey, Jerome A; Smith, Curtis A; Przybylowski, Tadeuez; Chenuel, Bruno; Xie, Ailiang; Nakayama, Hideaki; Skatrud, James B

    2004-01-01

    Sleep unmasks a highly sensitive hypocapnia-induced apnoeic threshold, whereby apnoea is initiated by small transient reductions in arterial CO2 pressure (PaCO2) below eupnoea and respiratory rhythm is not restored until PaCO2 has risen significantly above eupnoeic levels. We propose that the ‘CO2 reserve’ (i.e. the difference in PaCO2 between eupnoea and the apnoeic threshold (AT)), when combined with ‘plant gain’ (or the ventilatory increase required for a given reduction in PaCO2) and ‘controller gain’ (ventilatory responsiveness to CO2 above eupnoea) are the key determinants of breathing instability in sleep. The CO2 reserve varies inversely with both plant gain and the slope of the ventilatory response to reduced CO2 below eupnoea; it is highly labile in non-random eye movement (NREM) sleep. With many types of increases or decreases in background ventilatory drive and PaCO2, the slope of the ventilatory response to reduced PaCO2 below eupnoea remains unchanged from control. Thus, the CO2 reserve varies inversely with plant gain, i.e. it is widened with hyperventilation and narrowed with hypoventilation, regardless of the stimulus and whether it acts primarily at the peripheral or central chemoreceptors. However, there are notable exceptions, such as hypoxia, heart failure, or increased pulmonary vascular pressures, which all increase the slope of the CO2 response below eupnoea and narrow the CO2 reserve despite an accompanying hyperventilation and reduced plant gain. Finally, we review growing evidence that chemoreceptor-induced instability in respiratory motor output during sleep contributes significantly to the major clinical problem of cyclical obstructive sleep apnoea. PMID:15284345

  14. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells

    PubMed Central

    Buckler, Keith J; Turner, Philip J

    2013-01-01

    The mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.5% O2) on mitochondrial function in neonatal rat type-1 cells. The oxygen sensitivity of mitochondrial [NADH] was assessed by monitoring autofluorescence and increased in hypoxia with a P50 of 15 mm Hg (1 mm Hg = 133.3 Pa) in normal Tyrode or 46 mm Hg in Ca2+-free Tyrode. Hypoxia also depolarised mitochondrial membrane potential (ψm, measured using rhodamine 123) with a P50 of 3.1, 3.3 and 2.8 mm Hg in normal Tyrode, Ca2+-free Tyrode and Tyrode containing the Ca2+ channel antagonist Ni2+, respectively. In the presence of oligomycin and low carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 75 nm) ψm is maintained by electron transport working against an artificial proton leak. Under these conditions hypoxia depolarised ψm/inhibited electron transport with a P50 of 5.4 mm Hg. The effects of hypoxia upon cytochrome oxidase activity were investigated using rotenone, myxothiazol, antimycin A, oligomycin, ascorbate and the electron donor tetramethyl-p-phenylenediamine. Under these conditions ψm is maintained by complex IV activity alone. Hypoxia inhibited cytochrome oxidase activity (depolarised ψm) with a P50 of 2.6 mm Hg. In contrast hypoxia had little or no effect upon NADH (P50= 0.3 mm Hg), electron transport or cytochrome oxidase activity in sympathetic neurons. In summary, type-1 cell mitochondria display extraordinary oxygen sensitivity commensurate with a role in oxygen sensing. The reasons for this highly unusual behaviour are as yet unexplained. PMID:23671162

  15. Temperature effects on CO2-sensitive intrapulmonary chemoreceptors in the lizard, Tupinambis nigropunctatus.

    PubMed

    Douse, M A; Mitchell, G S

    1988-06-01

    Body temperature (Tb) effects on CO2 responses of 17 intrapulmonary chemoreceptors (IPC) were investigated in 9 anesthetized (pentobarbital; 30 mg/kg) and unidirectionally ventilated tegu lizards (Tupinambis nigropunctatus). At 30 degrees C, all IPC (n = 15) had a stable discharge pattern. At 20 degrees C, IPC discharge (n = 14) was stable at high PCO2 but irregular at low PCO2 and often (10/14) consisted of bursts of activity separated by one or more seconds of quiescence. Responses of IPC to static and dynamic changes in PCO2 were quantified at both Tb and the discharge rate vs PCO2 response curves were compared. Static discharge frequency (fSTAT) decreased as PCO2 increased at both Tb. At 20 degrees C: (1) fSTAT was diminished at all PCO2 levels relative to 30 degrees C; and (2) the slope of the fSTAT vs PCO2 relationship was markedly attenuated. The Q10 was 3.7 +/- 0.5 and was independent of PCO2. The peak discharge associated with a step decrease in PCO2 (dynamic response; fDYN) also decreased as PCO2 increased. At 20 degrees C: (1) fDYN was diminished at all PCO2 levels relative to 30 degrees C; but (2) the slope of the fDYN vs PCO2 relationship was similar at both Tb. The Q10 was 2.6 +/- 0.3 and was significantly less than the Q10 of fSTAT (P less than 0.05). Acute changes in Tb exert large effects on the CO2 response and discharge pattern of IPC; these effects on IPC may be important in ventilatory control at different Tb in lizards.

  16. Hypoxia Silences Retrotrapezoid Nucleus Respiratory Chemoreceptors via Alkalosis

    PubMed Central

    Basting, Tyler M.; Burke, Peter G.R.; Kanbar, Roy; Viar, Kenneth E.; Stornetta, Daniel S.; Stornetta, Ruth L.

    2015-01-01

    In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (ΔfR) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔVT) followed the same trend. The effect of hypoxia on ΔfR was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). ΔfR was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN. PMID:25589748

  17. An Unorthodox Sensory Adaptation Site in the Escherichia coli Serine Chemoreceptor

    PubMed Central

    Han, Xue-Sheng

    2014-01-01

    The serine chemoreceptor of Escherichia coli contains four canonical methylation sites for sensory adaptation that lie near intersubunit helix interfaces of the Tsr homodimer. An unexplored fifth methylation site, E502, lies at an intrasubunit helix interface closest to the HAMP domain that controls input-output signaling in methyl-accepting chemotaxis proteins. We analyzed, with in vivo Förster resonance energy transfer (FRET) kinase assays, the serine thresholds and response cooperativities of Tsr receptors with different mutationally imposed modifications at sites 1 to 4 and/or at site 5. Tsr variants carrying E or Q at residue 502, in combination with unmodifiable D and N replacements at adaptation sites 1 to 4, underwent both methylation and demethylation/deamidation, although detection of the latter modifications required elevated intracellular levels of CheB. These Tsr variants could not mediate a chemotactic response to serine spatial gradients, demonstrating that adaptational modifications at E502 alone are not sufficient for Tsr function. Moreover, E502 is not critical for Tsr function, because only two amino acid replacements at this residue abrogated serine chemotaxis: Tsr-E502P had extreme kinase-off output and Tsr-E502I had extreme kinase-on output. These large threshold shifts are probably due to the unique HAMP-proximal location of methylation site 5. However, a methylation-mimicking glutamine at any Tsr modification site raised the serine response threshold, suggesting that all sites influence signaling by the same general mechanism, presumably through changes in packing stability of the methylation helix bundle. These findings are consistent with control of input-output signaling in Tsr through dynamic interplay of the structural stabilities of the HAMP and methylation bundles. PMID:24272777

  18. The defence-arousal system and its relevance for circulatory and respiratory control.

    PubMed

    Hilton, S M

    1982-10-01

    It was proposed some fifty years ago that the visceral and hormonal changes accompanying fear and rage reactions can best be understood as adaptations which prepare an organism to cope with an emergency and specifically to perform the extreme muscular exertion of flight or attack. This is well exemplified by the pattern of cardiovascular response which is characteristic of the alerting stage of these reactions and consists of an increase in cardiac output directed mainly to the skeletal muscles. This group of behavioural responses has been collectively termed the defence reaction. The regions of the hypothalamus and brainstem which organize it have been mapped. They function as a reflex centre for the visceral components of the altering response as well as initiating the behavioural response. So far as the cardiovascular system is concerned, this is a preparatory reflex and not compatible with short-term homeostasis. Indeed, the baroreceptor reflex, which is homeostatic, is strongly inhibited. By contrast, the chemoreceptor reflex is facilitated. The input from peripheral chemoreceptors is itself an alerting stimulus. The visceral alerting response has been studied in most detail in the cat, but there is evidence for the same cardiovascular pattern and an accompanying group of respiratory changes in other mammalian species (rat, rabbit, dog, monkey and man). On the efferent pathway for the cardiovascular response pattern, there is a group of relay neurones near the ventral surface of the caudal medulla, which seem important for the maintenance of arterial blood pressure. The visceral alerting system may therefore be continually engaged to some extent in the awake state, as well as being acutely activated in response to novel, and especially to noxious, stimuli.

  19. Evolution of taste and solitary chemoreceptor cell systems.

    PubMed

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  20. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body

    PubMed Central

    Kang, Dawon; Wang, Jiaju; Hogan, James O; Vennekens, Rudi; Freichel, Marc; White, Carl; Kim, Donghee

    2014-01-01

    The current model of O2 sensing by carotid body chemoreceptor (glomus) cells is that hypoxia inhibits the outward K+ current and causes cell depolarization, Ca2+ influx via voltage-dependent Ca2+ channels and a rise in intracellular [Ca2+] ([Ca2+]i). Here we show that hypoxia (<5% O2), in addition to inhibiting the two-pore domain K+ channels TASK-1/3 (TASK), indirectly activates an ∼20 pS channel in isolated glomus cells. The 20 pS channel was permeable to K+, Na+ and Cs+ but not to Cl− or Ca2+. The 20 pS channel was not sensitive to voltage. Inhibition of TASK by external acid, depolarization of glomus cells with high external KCl (20 mm) or opening of the Ca2+ channel with FPL64176 activated the 20 pS channel when 1 mm Ca2+ was present in the external solution. Ca2+ (10 μm) applied to the cytosolic side of inside-out patches activated the 20 pS channel. The threshold [Ca2+]i for activation of the 20 pS channel in cell-attached patches was ∼200 nm. The reversal potential of the 20 pS channel was estimated to be −28 mV. Our results reveal a sequential mechanism in which hypoxia (<5% O2) first inhibits the K+ conductance and then activates a Na+-permeable, non-selective cation channel via depolarization-induced rise in [Ca2+]i. Our results suggest that inhibition of K+ efflux and stimulation of Na+ influx both contribute to the depolarization of glomus cells during moderate to severe hypoxia. PMID:24591572

  1. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  2. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation.

    PubMed

    Ferreira, Lorena Lopes; Soares, Sara Fernandes; de Oliveira Filho, Jaires Gomes; Oliveira, Thaynara Tatielly; Pérez de León, Adalberto A; Borges, Lígia Miranda Ferreira

    2015-04-01

    Rhipicephalus microplus is considered the most economically important ectoparasite of cattle worldwide. It is known that zebuine breeds of cattle are less susceptible to tick infestation than taurine breeds. Contact chemoreceptors in the cheliceral pit sensilla of ticks respond selectively to phagostimulant compounds, however their role in blood feeding relative to host susceptibility to infestation remains to be fully understood. We addressed this topic by conducting taste electrophysiology experiments with cheliceral pit sensilla preparations of R. microplus females. Solutions of five known ixodid tick phagostimulants were tested at different concentrations: sodium (NaCl), and potassium chloride (KCl) (10(-3)-10(-1)M); glucose (10(-4)-10(-1)M); adenosine triphosphate (ATP) (10(-6)-10(-2)M); and reduced l-glutathione (GSH) (10(-6)-10(-2)M). Serum samples from six susceptible animals of the Girolando breed (5/8 Bos indicus×3/8 B. taurus) and six resistant Nelore bovines (pure B. indicus) were also tested. A dose-dependent response of gustatory neurons associated with the chelicerae sensillum to NaCl, glucose, GSH, and ATP were observed. Responses by the cheliceral inner digit pit sensilla of R. microplus to KCl and glucose were also observed and they are reported here for the first time. In addition to an electrophysiological response to known phagostimulants, chemoreceptors in the chelicera of R. microplus responded differently to serum from cattle susceptible and resistant to infestation. The cheliceral pit neurons were more responsive to serum of R. microplus resistant bovines with a higher mean spike frequency (53.5±2spikess(-1)) than to serum samples from susceptible cattle (40.3±2spikess(-1)). The implications of chemosensation during tick blood feeding are discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach

    PubMed Central

    Huang, Julie Y.; Goers Sweeney, Emily; Guillemin, Karen

    2017-01-01

    Helicobacter pylori’s ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria’s response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD’s colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium. PMID:28103315

  4. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.

    PubMed

    Basting, Tyler M; Burke, Peter G R; Kanbar, Roy; Viar, Kenneth E; Stornetta, Daniel S; Stornetta, Ruth L; Guyenet, Patrice G

    2015-01-14

    In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (Δf(R)) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔV(T)) followed the same trend. The effect of hypoxia on Δf(R) was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). Δf(R) was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN. Copyright © 2015 the authors 0270-6474/15/350527-17$15.00/0.

  5. Vasopressin V1a receptors are present in the carotid body and contribute to the control of breathing in male Sprague-Dawley rats.

    PubMed

    Żera, Tymoteusz; Przybylski, Jacek; Grygorowicz, Tomasz; Kasarełło, Kaja; Podobińska, Martyna; Mirowska-Guzel, Dagmara; Cudnoch-Jędrzejewska, Agnieszka

    2018-04-01

    Vasopressin (AVP) maintains body homeostasis by regulating water balance, cardiovascular system and stress response. AVP inhibits breathing through central vasopressin 1a receptors (V1aRs). Chemoreceptors within carotid bodies (CBs) detect chemical and hormonal signals in the bloodstream and provide sensory input to respiratory and cardiovascular centers of the brainstem. In the study we investigated if CBs contain V1aRs and how the receptors are involved in the regulation of ventilation by AVP. We first immunostained CBs for V1aRs and tyrosine hydroxylase, a marker of chemoreceptor type I (glomus) cells. In urethane-anesthetized adult Sprague-Dawley male rats, we then measured hemodynamic and respiratory responses to systemic (intravenous) or local (carotid artery) administration of AVP prior and after systemic blockade of V1aRs. Immunostaining of CBs showed colocalization of V1aRs and tyrosine hydroxylase within glomus cells. Systemic administration of AVP increased mean arterial blood pressure (MABP) and decreased respiratory rate (RR) and minute ventilation (MV). Local administration of AVP increased MV and RR without significant changes in MABP or heart rate. Pretreatment with V1aR antagonist abolished responses to local and intravenous AVP administration. Our findings show that chemosensory cells within CBs express V1aRs and that local stimulation of the CB with AVP increases ventilation, which is contrary to systemic effects of AVP manifested by decreased ventilation. The responses are mediated by V1aRs, as blockade of the receptors prevents changes in ventilation. We hypothesize that excitatory effects of AVP within the CB provide a counterbalancing mechanism for the inhibitory effects of systemically acting AVP on the respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Genome-based identification and analysis of ionotropic receptors in Spodoptera litura.

    PubMed

    Zhu, Jia-Ying; Xu, Zhi-Wen; Zhang, Xin-Min; Liu, Nai-Yong

    2018-05-22

    The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.

  7. Genome-based identification and analysis of ionotropic receptors in Spodoptera litura

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Ying; Xu, Zhi-Wen; Zhang, Xin-Min; Liu, Nai-Yong

    2018-06-01

    The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.

  8. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  9. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration

    PubMed Central

    Wei, S. Shawn; Wiens, Douglas A.; van Keken, Peter E.; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting. PMID:28097220

  10. Oesophageal tone and sensation in the transition zone between proximal striated and distal smooth muscle oesophagus.

    PubMed

    Karamanolis, G; Stevens, W; Vos, R; Tack, J; Clave, P; Sifrim, D

    2008-04-01

    Previous studies have shown that the proximal striated muscle oesophagus is less compliant and more sensitive than the distal smooth muscle oesophagus. Conventional and high resolution manometry described a transition zone between striated and smooth muscle oesophagus. We aimed to evaluate oesophageal tone and sensitivity at the transition zone of oesophagus in healthy volunteers. In 18 subjects (seven men, mean age: 28 years) an oesophageal barostat study was performed. Tone and sensitivity were assessed using stepwise isobaric distensions with the balloon located at transition zone and at distal oesophagus in random order. To study the effect induced on transition zone by a previous distension at the distal oesophagus and vice versa, identical protocol was repeated after 7 days with inverted order. Initial distension of a region is referred to as 'naïf' distension and distension of a region following the distension of the other segment as 'primed' distension. Assessment of three oesophageal symptoms (chest pain, heartburn and 'other') was obtained at the end of every distension step. Compliance was significantly higher in the transition zone than in the distal oesophagus (1.47 +/- 0.14 vs 1.09 +/- 0.09 mL mmHg(-1), P = 0.03) after 'naif' distensions. This difference was not observed during 'primed' distensions. Higher sensitivity at transition zone level was found in 11/18 (61%) subjects compared to 6/18 (33%, P < 0.05) at smooth muscle oesophagus. Chest pain and 'other' symptom were more often induced by distention of the transition zone, whereas heartburn was equally triggered by distension of either region. The transition zone is more complaint and more sensitive than smooth muscle oesophagus.

  11. Fire timing in relation to masting: an important determinant of post-fire recruitment success for the obligate-seeding arid zone soft spinifex (Triodia pungens).

    PubMed

    Wright, Boyd R; Fensham, Roderick J

    2018-01-25

    Plant species with fire-triggered germination are common in many fire-prone ecosystems. For such plants, fire timing in relation to the timing of reproduction may strongly influence post-fire population regeneration if: (a) flowering occurs infrequently (e.g. plants are mast seeders); and (b) seed survival rates are low and input from the current year's flowering therefore contributes a large proportion of the viable dormant seedbank. The role of fire timing in relation to masting as a driver of post-fire recruitment has rarely been examined directly, so this study tested the hypothesis that fires shortly after masting trigger increased recruitment of the obligate-seeding arid zone spinifex, Triodia pungens R. Br., an iteroparous masting grass with smoke-cued germination. Phenological monitoring of T. pungens was conducted over 5 years, while a longitudinal seedbank study assessed the influence of seeding events on soil-stored seedbank dynamics. Concurrently, a fire experiment with randomized blocking was undertaken to test whether T. pungens hummocks burnt shortly after masting have greater post-fire recruitment than hummocks burnt when there has not been recent input of seeds. Triodia pungens flowered in all years, though most flowerings were characterized by high rates of flower abortion. A mast flowering with high seed set in 2012 triggered approx. 200-fold increases in seedbank densities, and seedbank densities remained elevated for 24 months after this event. The fire experiment showed significantly higher recruitment around hummocks burnt 6 months after the 2012 mast event than around hummocks that were burnt but prevented from masting by having inflorescences clipped. Fires shortly after masting trigger mass recruitment in T. pungens because such fires synchronize an appropriate germination cue (smoke) with periods when seedbank densities are elevated. Interactions between natural fire regimes, seedbank dynamics and fire management prescriptions must be considered carefully when managing fire-sensitive masting plants such as T. pungens. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Assessment of Debris Flow Potential Hazardous Zones Using Numerical Models in the Mountain Foothills of Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.

    2017-12-01

    Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.

  13. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.

    2016-03-01

    The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.

  14. Moonquakes.

    PubMed

    Latham, G; Ewing, M; Dorman, J; Lammlein, D; Press, F; Toksoz, N; Sutton, G; Duennebier, F; Nakamura, Y

    1971-11-12

    Although the average rate of seismic energy release within the moon appears to be far below that of the earth, over 100 events believed to be moonquakes have been recorded by the two seismic stations installed on the lunar surface during Apollo missions 12 and 14. With few exceptions, the moonquakes occur at monthly intervals near times of perigee and apogee and show correlations with the longer-term (7-month) lunar gravity variations. The repeating moonquakes are believed to occur at not less than 10 different locations. However, a single focal zone accounts for 80 percent of the total seismic energy detected. This active zone appears to be 600 kilometers south-southwest of the Apollo 12 and 14 sites and deep within the moon. Each focal zone must be small (less than 10 kilometers in linear dimension) and fixed in location over a 14-month period. Cumulative strain at each location is inferred. Thus, the moonquakes appear to be releasing internal strain of unknown origin, the release being triggered by tidal stresses.

  15. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  16. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.; Michael, John A.

    2009-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =~300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazard zones were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  17. Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, Julia; Dietze, Heiner; Oschlies, Andreas

    2016-01-01

    A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the Southern Hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.

  18. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    PubMed

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  19. Presence-only approach to assess landslide triggering-thickness susceptibility. A test for the Mili catchment (North-Eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Hochschild, Volker; Rotigliano, Edoardo

    2015-04-01

    This study aims at comparing the performances of a presence only approach, namely Maximum Entropy, in assessing landslide triggering-thickness susceptibility within the Mili catchment, located in the north-eastern Sicily, Italy. This catchment has been recently exposed to three main meteorological extreme events, resulting in the activation of multiple fast landslides, which occurred on the 1st October 2009, 10th March 2010 and 1st March 2011. Differently from the 2009 event, which only marginally hit the catchment, the 2010 and 2011 storms fully involved the area of the Mili catchment. Detailed field data was collected to associate the thickness of mobilised materials at the triggering zone to each mass movement within the catchment. This information has been used to model the landslide susceptibility for two classes of processes clustered into shallow failures for maximum depths of 0.5m and deep ones in case of values equal or greater than 0.5m. As the authors believed that the peculiar geomorphometry of this narrow and steep catchment played a fundamental role in generating two distinct patterns of landslide thicknesses during the initiation phase, a HRDEM was used to extract topographic attributes to express near-triggering geomorphological conditions. On the other hand, medium resolution vegetation indexes derived from ASTER scenes were used as explanatory variables pertaining to a wider spatial neighbourhood, whilst a revised geological map, the land use from CORINE and a tectonic map were used to convey an even wider area connected to the slope instability. The choice of a presence-only approach allowed to effectively discriminate between the two types of landslide thicknesses at the triggering zone, producing outstanding prediction skills associated with relatively low variances across a set of 20 randomly generated replicates. The validation phase produced indeed average AUC values of 0.91 with a standard deviation of 0.03 for both the modelled landslide thicknesses. In addition, the role of each predictor within the whole modelling procedure was assessed by applying Jackknife tests. These analyses focussed on evaluating the variation of AUC values across replicates comparing single variable models with models based on the full set of predictors iteratively deprived of one covariate. As a result, relevant differences among main contributors between the two considered classes were also quantitatively derived and geomorphologically interpreted. This work can be considered as an example for creating specific landslide susceptibility maps to be used in master planning in order to establish proportional countermeasures to different activation mechanisms. Keywords: statistical analysis, shallow landslide, landslide susceptibility, triggering factors, presence-only approach

  20. Lack of Dependence of Dynamic Triggering on the Timing within the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Cattania, C.; McGuire, J. J.; Collins, J. A.

    2009-12-01

    Numerical models predict that dynamic triggering of earthquakes is more likely when faults are close to failure (e.g. late in their earthquake cycle), and laboratory experiments have supported this hypothesis. We attempted to test this idea by analysing data on three adjacent transform faults of the East Pacific Rise which have a relatively well defined, quasiperiodic seismic cycle with a median repeat time of 5 years. Moreover, the Gofar, Discovery and Quebrada transform faults share several seismicity properties with continental geothermal areas, including high geothermal gradients, high seismicity rates, and frequent earthquake swarms, that suggest they may be prone to dynamic triggering. We analyze an earthquake catalog of over 100,000 events recorded in 2008 by a network of 38 Ocean Bottom Seismometers. We extract Mw>6.3 mainshocks from the Global CMT catalog, and perform the β test for an array of time intervals covering from 5 hours before to 10 hours after the low-frequency Rayleigh wave arrival. To verify the presence of common seismicity patterns, β plots are also stacked for multiple earthquakes. We observe triggering after the May 12th Wenchuan earthquake. On the Quebrada transform a burst of seismicity starts during the wavetrain; in Gofar there is no response during the wave, but an increase in seismicity (β=5.08) starts about 2 h later; no triggering is visible on the Discovery fault. A Mw=6.0 earthquake ruptured the Gofar transform on September 18th, and triggered seismicity on Discovery: ~60 earthquakes (β=15.3), starting 1h after the wave arrival. We have no data from Quebrada for this period. Other instances of triggering are dubious. Stacked β plots suggest delayed triggering (Δt>1h) in Gofar and Discovery, but the statistical significance of these results is unclear. From a comparison of different fault segments, triggering does not appear to be more common at late stages in the seismic cycle. Instead, the events triggered by the largest dynamic stresses concentrate in the regions between rupture zones. This suggests that changes in rock composition or fluid content may make these areas act as barriers to rupture propagation as well as facilitating dynamic triggering. Using the Rate-and-State seismicity model, we estimate that the effective normal stress where triggering occurs: is extremely low (σ<0.1MPa in Quebrada and σ<0.5MPa on Discovery), implying a nearly lithostatic pore pressure.

  1. Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits

    PubMed Central

    Villanueva, Roger; Perricone, Valentina; Fiorito, Graziano

    2017-01-01

    The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research. PMID:28861006

  2. Management of Combined Natural Risks - A New Approach: Keynote Address

    NASA Astrophysics Data System (ADS)

    Hanisch, Jörg

    A new attempt is made to illustrate and to quantify the relationships of individual natural hazards, their combinations and the human vulnerability to natural hazards. During many catastrophic events, combinations of different natural events aggravate their occurrence substantially. Earthquakes are frequently associated with heavy landsliding (El Salvador 2001) and heavy rainstorms are able to trigger fast running debris flows and not only floods (like during the Mitch disaster in Central America in 1998). That signifies that natural hazard maps should show the combinations of different hazards and their genetic relationships. To put into effect this, first, the individual hazards have to be assessed and presented in hazard zones (0 to 3). Then these hazards zones will be overlain using GIS techniques. In this way, e.g., an earthquake-prone area which coincides with an area susceptible to landslides (ranking 0 to 3 as well) can show hazard concentrations of up to a value of 6, simply adding the individual hazard zones. To get the result of the corresponding risk zones, the vulnerability maps of human settlements and infra-structure have to be overlain on the maps of these combinations of natural hazards.

  3. Fault activation by hydraulic fracturing in western Canada.

    PubMed

    Bao, Xuewei; Eaton, David W

    2016-12-16

    Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.

  4. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  5. Geophysical and Geochemical Signatures Associated with Mantle Fluids Beneath an Active Shear Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Umeda, K.; Asamori, K.; Sueoka, S.; Tamura, H.; Shimizu, M.

    2014-12-01

    In 1997, the Kagoshima earthquake doublet, consisting of two closely associated Mw ~ 6 strike-slip events, five km and 48 days apart, has occurred in southwest Japan. The location is where an E-W trending discontinuity along 32°N latitude on southern Kyushu Island is clearly defined in GPS velocities, indicating the presence of a highly active left-lateral shear zone. However, there have not been any obvious indications of active faulting at the surface prior to the earthquake doublet, which could be associated with this shear zone. Three-dimensional inversion of magnetotelluric sounding data obtained in the source region of the earthquake doublet reveals a near-vertical conductive zone with a width of 20 km, extending down to the base of the crust and perhaps into the upper mantle toward the Okinawa trough. The prominent conductor corresponds to the western part of the active shear zone. Elevated 3He/4He ratios in groundwaters sampled from hot spring and drinking water wells suggest the emission of mantle-derived helium from the seismic source region. The geophysical and geochemical observations are significant indications that the invasion of mantle fluids into the crust, driven by upwelling asthenosphere from the Okinawa trough, triggers the notable left-lateral shearing in the zone in the present-day subduction system. In addition, the existence of aqueous fluids in and below the seismogenic layer could change the strength of the zones, and alter the local stress regime, resulting in the occurrence of the 1997 earthquake doublet.

  6. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  7. Biostratigraphy and paleoecology of the Burdigalian-Serravallian sediments in Wadi Sudr (Gulf of Suez, Egypt): comparison with the Central Paratethys evolution

    NASA Astrophysics Data System (ADS)

    Ied, Ibrahim M.; Holcová, Katarína; Abd-Elshafy, Ezzat

    2011-06-01

    Two main Miocene facies were recorded in the Gulf of Suez area: a deep marine and a coastal facies. The analysed sections in the Wadi Sudr area belong to the marine facies. The Lower Miocene (Burdigalian) is represented by coastal, shallow marine sediments, rich in coral, algae, gastropods and large pectinids followed by Langhian open marine sediments and Serravallian lagoonal carbonates. The open marine sediments contain well preserved planktonic and benthic foraminifers and abundant ostracods. The parts of the sections containing foraminifers have been correlated with three planktonic foraminiferal zones (Praeorbulina glomerosa Zone, Orbulina Zone and Globorotalia praemenardii-Globorotalia peripheroronda Zone). Two benthic ecozones were defined (Heterolepa dutemplei-Laevidentalina elegans Zone and Bolivina compressa-Elphidium spp. Zone). Two cycles of sea-level changes can be distinguished and correlated with global sea-level cycles Bur5/Lan1 and Ser1. The first (Langhian) cycle culminated in open marine sublittoral to upper bathyal well aerated sediments. The second (Serravallian) cycle was shallower, littoral suboxic sediments were overlaid by euryhaline carbonates. The studied foraminifera-bearing sediments can be correlated with the lower and Middle Badenian of the Central Paratethys. Though the area of the Gulf of Suez and the Central Paratethys were situated in different climatic zones, and influenced by different tectonic events, the main paleoenvironmental events (sea-level changes, oxygen decrease, salinity changes) are comparable. This correspondence shows that the decisive factors triggering these events were global climatic events.

  8. Deep Tectonic Tremor in Haiti triggered by the 2010/02/27 Mw8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Douilly, R.; Calais, E.; Deschamps, A.; Haase, J. S.

    2013-05-01

    Tectonic tremors have been observed along major plate-boundary faults around the world. In most of these regions, tremors occur spontaneously (i.e. ambient) or as a result of small stress perturbations from passing surface waves (i.e. triggered). Because tremors are located below the seismogenic zone, a detailed study of their behavior could help to better understand how tectonic movement is accommodated in the deep root of major faults, and the relationship with large earthquakes. Here, we present evidence of triggered tremor in southern Haiti around the aftershock zone of the 2010/01/12 Mw7.0 Haiti earthquake. Following the January mainshock, several groups have installed land and ocean bottom seismometers to record aftershock activity (e.g., De Lepinay et al., 2011). In the following month, the 2010/02/27 Mw8.8 Maule, Chile earthquake occurred and was recorded in the southern Haiti region by these seismic stations. We apply a 5-15 Hz band-pass filter to all seismograms to identify local high-frequency signals during the Chile teleseismic waves. Tremor is identified as non-impulsive bursts with 10-20 s durations that is coherent among different stations and is modulated by surface waves. We also convert the seismic data into audible sounds and use them to distinguish between local aftershocks and deep tremor. We locate the source of the tremor bursts using an envelope cross-correlation method based on travel time differences. Because tremor depth is not well constrained with this method, we set it to 20 km, close to the recent estimate of Moho depth in this region (McNamara et al., 2012). Most tremors are located south of the surface expression of the Enriquillo-Plantain Garden Fault (EPGF), a high-angle southward dipping left-lateral strike-slip fault that marks the boundary between the Gonave microplate and the Caribbean plate, although the location errors are large. Tremor peaks are mostly modulated by Love wave velocity, which is consistent with left-lateral shear motion induced by the normal incidence of Love wave on a near-vertical strike-slip fault. Our ongoing efforts include comparing tremor and aftershock locations with the same envelope techniques, and identifying tremor at other times. If the tremor locations are reliable, the results pose interesting questions about stress changes following the Haiti mainshock that lead to triggered seismicity on the shallow south dipping Trois Baies fault (De Lepinay et al., 2011, Douilly et al, 2013), and triggered tremor on the EPGF, where no aftershocks were recorded.

  9. Geological Deformations and Potential Hazards Triggered by the 01-12-2010 Haiti Earthquake: Insights from Google Earth Imagery

    NASA Astrophysics Data System (ADS)

    Doblas, M.; Benito, B.; Torres, Y.; Belizaire, D.; Dorfeuille, J.; Aretxabala, A.

    2013-05-01

    In this study we compare the different Google Earth imagery (GEI) available before and after the 01-12-2010 earthquake of Haiti and carry out a detailed analysis of the superficial seismic-related geological deformations in the following sites: 1) the capital Port-Au-Prince and other cities (Carrefour and Gresslier); 2) the mountainous area of the Massif de la Selle which is transected by the "Enriquillo-Plaintain-Garden" (EPG) interplate boundary-fault (that supposedly triggered the seism); 3) some of the most important river channels and their corresponding deltas (Momanche, Grise and Frorse). The initial results of our researches were published in March 2010 in a special web page created by the scientific community to try to mitigate the devastating effects of this catastrophe (http://supersites.earthobservations.org/haiti.php). Six types of superficial geological deformations triggered by the seismic event have been identified with the GEI: liquefaction structures, chaotic rupture zones, coastal and domal uplifts, river-delta turnovers, faults/ruptures and landslides. Potential geological hazards triggered by the Haiti earthquake include landslides, inundations, reactivation of active tectonic elements (e.g., fractures), river-delta turnovers, etc. We analyzed again the GEI after the rain period and, as expected, most of the geological deformations that we initially identified had been erased and/or modified by the water washout or buried by the sediments. In this sense the GEI constitutes an invaluable instrument in the analysis of seismic geological hazards: we still have the possibility to compare all the images before and after the seism that are recorded in its useful "time tool". These are in fact the only witnesses of most of the geological deformations triggered by the Haiti earthquake that remain stored in the virtual archives of the GEI. In fact a field trip to the area today would be useless as most of these structures have disappeared. We will show that this type of seismic-related geological deformations may be useful in hazard-planning strategies aiming at the urbanistic reconstruction of Port-Au-Prince. Some inferences will be make regarding the spectacular scarp of the EPG fault zone dipping as a nearly perfect plane to the S, probably reflecting extensional paleo-movements (even if this major interplate fault is essentially sinistral). Finally, we will analyze the results published in Nature Geosciences (November 2010) that question the role of the EPG fault in the Haiti seism, and that highlight the fact that seismology is still unable to unravel most of the keys of this major earthquake.

  10. Intractable Electrical Storm After Coronary Artery Bypass Grafting Originating in Abnormal Purkinje Fibers.

    PubMed

    Tokunaga, Chiho; Tsukada, Toru; Sakamoto, Hiroaki; Naruse, Yoshihisa; Yoshida, Kentaro; Sekiguchi, Yukio; Imai, Akito; Aonuma, Kazutaka; Hiramatsu, Yuji

    2016-01-01

    Electrical storm is a rare but critical complication following revascularization in patients with ischemic heart disease. We report the case of a 67-year-old man who developed drug refractory intractable electrical storm after emergent coronary artery bypass grafting for ischemic cardiomyopathy. The electrical storm was successfully eliminated by percutaneous endocardial radiofrequency catheter ablation targeting the abnormal Purkinje-related triggering ventricular premature contractions in a low-voltage zone. © 2015 Wiley Periodicals, Inc.

  11. Controls on Earthquake Rupture and Triggering Mechanisms in Subduction Zones

    DTIC Science & Technology

    2010-06-01

    weaken the fault [Wibber- ley and Shimamoto, 2005]. Song and Simons [2003] infer that strongly negative TPGA values correlate with increases in the...and Y. Hu (2006), Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, J. Geophys. Res., 111, B06410, doi:10.1029...modified Coulomb stress function, γ is a state variable, and A is a fault constitutive parameter. We assume that the normal stress σ remains constant, and

  12. Stress change and fault interaction from a two century-long earthquake sequence in the central Tell Atlas (Algeria)

    NASA Astrophysics Data System (ADS)

    Kariche, Jughurta; Meghraoui, Mustapha; Ayadi, Abdelhakim; Salah Boughacha, Mohamed

    2017-04-01

    We study the role and distribution of stress transfer that may trigger destructive earthquakes in the Central Tell Atlas (Algeria). A sequence of historical events reaching Ms 7.3 and related stress tensors with thrust faulting mechanisms allows the modeling of the Coulomb Failure Function (deltaCFF). We explore here the physical parameters for a stress transfer along the Tell thrust-and-fold belt taking into account an eastward trending earthquake migration from 1891 to 2003. The Computation integrated the seismicity rate in the deltaCFF computation, which is in good agreement with the migration seismicity. The stress transfer progression and increase of 0.1 to 0.8 bar are obtained on fault planes at 7-km-depth with a friction coefficient µ' 0.4 showing stress loading lobes on targeted coseismic fault zone and location of stress shadow across other thrust-and-fold regions. The Coulomb modeling suggests a distinction in earthquake triggering between zones with moderate-sized and large earthquake ruptures. Recent InSAR and levelling studies and aftershocks that document postseismic deformation of major earthquakes are integrated into the static stress change calculations. The presence of fluid and related poroelastic deformation can be considered as an open question with regards to their contribution to major earthquakes and their implications in the seismic hazard assessment of northern Algeria.

  13. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells.

    PubMed Central

    Leite, M F; Dranoff, J A; Gao, L; Nathanson, M H

    1999-01-01

    The ryanodine receptor (RyR) is the principal Ca2+-release channel in excitable cells, whereas the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is primarily responsible for Ca2+ release in non-excitable cells, including epithelia. RyR also is expressed in a number of non-excitable cell types, but is thought to serve as an auxiliary or alternative Ca2+-release pathway in those cells. Here we use reverse transcription PCR to show that a polarized epithelium, the pancreatic acinar cell, expresses the type 2, but not the type 1 or 3, isoform of RyR. We furthermore use immunochemistry to demonstrate that the type 2 RyR is distributed throughout the basolateral and, to a lesser extent, the apical region of the acinar cell, but is excluded from the trigger zone, where cytosolic Ca2+ signals originate in this cell type. Since propagation of Ca2+ waves in acinar cells is sensitive to ryanodine, caffeine and Ca2+, these findings suggest that Ca2+ waves in this cell type result from the co-ordinated release of Ca2+, first from InsP3Rs in the trigger zone, then from RyRs elsewhere in the cell. RyR may play a fundamental role in Ca2+ signalling in polarized epithelia, including for Ca2+ signals initiated by InsP3. PMID:9882629

  14. Triggered aseismic slip adjacent to the 6 February 2013 Mw 8.0 Santa Cruz Islands megathrust earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.; Herman, Matthew W.

    2014-01-01

    Aseismic or slow slip events have been observed in many subduction zones, but whether they affect the occurrence of earthquakes or result from stress changes caused by nearby events is unclear. In an area lacking direct geodetic observations, inferences can be made from seismological studies of co-seismic slip, associated stress changes and the spatiotemporal nature of aftershocks. These observations indicate that the February 2013 Mw 8.0 Santa Cruz Islands earthquake may have triggered slow or aseismic slip on an adjacent section of the subduction thrust over the following hours to days. This aseismic event was equivalent to Mw 7.6, significantly larger than any earthquakes in the aftershock sequence. The aseismic slip was situated within the seismogenic portion of the subduction interface, and must have occurred to the south of the main seismic slip and most aftershocks in order to promote right-lateral faulting in the upper plate, the dominant deformation style of the aftershock sequence. This plate boundary segment can support either stable sliding (aseismic) or stick-slip (seismic) deformation in response to different driving conditions. The complete lack of aftershocks on the thrust interface implies this pair of megathrust slip episodes (seismic and aseismic) released a substantial portion of the stored strain on the northernmost section of the Vanuatu subduction zone.

  15. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  16. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear induced dilation and acoustic compaction. We discuss the implications of our results on dynamic triggering, quiescence and strength evolution in gouge filled fault zones.

  17. Investigation of giant mass movements in the Lesser Caucasus and assessment of the spatial relationship between landslides and major fault zones and volcanoes

    NASA Astrophysics Data System (ADS)

    Ofélia Matossian, Alice; Mreyen, Anne-Sophie; Karakhanian, Arkady; Havenith, Hans-Balder

    2017-04-01

    Two landslides of assumed seismic origin in the vicinity of Garni, Armenia, were investigated during a geophysical field campaign in September 2016. On the basis of geophysical prospecting (microseismic ambient noise measurements, i.e. H/V method), the thickness of the landslide deposits has been estimated and a trigger scenario model was developed. The original trigger of those landslides is not known - but one major reactivation by an earthquake in 1679 has been proved (see below). Additionally, the spatial distribution of landslides was analysed with respect to the location of major fault zones and volcanic areas. For that, a spatial analysis with GIS has been carried out on the basis of two landslide catalogues. The catalogue that was generated during this work covers the areas of including the Pambak-Sevan-Syunik and the Garni Faults as well as several volcanic areas. These NW-SE faults are mainly marked dextral strike-slip movements locally combined with reverse mechanisms. Along these fault zones strong historical earthquakes occurred, as for example one major event in 1139 (M 7.5 - 7.7). The 1679 Garni earthquake caused widespread destruction and also reactivated landslides located near the Garni Fault, including the two investigated landslides. According to historical sources, the event reached a magnitude of M=5.5-7 with an intensity between VIII and X. The volcanic areas on the other hand include the NNW-SSE-oriented Ghegham and the NW-SE Vardeniss ridges. Some of the ridges' volcanoes erupted during the Holocene, i.e. 2090 ± 70 BP for the Ghegham ridge. Nowadays, more than 80% of Armenia is covered by Quaternary volcanic formations or friable deposits which are favourable to the formation of landslides. Nevertheless, our first analysis showed that the faults have a stronger influence on landslide distribution than the volcanoes. This is also due to the indirect fact that many volcanic areas are marked by more gentle slopes than the valleys hosting the fault zones.

  18. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    USGS Publications Warehouse

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.

  19. The twilight zone: ambient light levels trigger activity in primitive ants.

    PubMed

    Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M

    2010-05-22

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.

  20. The twilight zone: ambient light levels trigger activity in primitive ants

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.

    2010-01-01

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978

  1. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    USGS Publications Warehouse

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  2. Landslides triggered by the 8 October 2005 Kashmir earthquake

    USGS Publications Warehouse

    Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.

    2008-01-01

    The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.

  3. INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.

    PubMed

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-12

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. Copyright © 2015, American Association for the Advancement of Science.

  4. Spatial signals link exit from mitosis to spindle position.

    PubMed

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  5. Earthquake Simulator Finds Tremor Triggers

    ScienceCinema

    Johnson, Paul

    2018-01-16

    Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

  6. [Advances in the research of molecular mechanism of negative pressure wound therapy in improving wound healing].

    PubMed

    Liu, Y; Hu, D H

    2017-11-20

    Recently, negative pressure wound therapy (NPWT) is a rising technology to improve wound healing. In clinical application, it benefits fast debridement and wound close, limits infection, and promotes wound healing. It is an effective therapy for all kinds of acute or chronic wound. Currently, researches demonstrate that NPWT promotes angiogenesis, granulation tissue growth, and extracellular matrix remodeling through regulating the signaling of anti-inflammatory cytokines, mechanicalreceptor and chemoreceptor, which is related to several growth factors and inflammatory factors. Here we focus on the recent advances in the mechanism of NPWT in promoting wound healing, looking forward to providing a review of NPWT and related researches.

  7. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for exposure to Considerable hazard. While the absolute values for triggering probability cannot be compared to the 2009 study because of different definitions of exposure, our preliminary results suggest that with skilled route selection the triggering probability is similar all hazard levels, except for extreme for which there are few exposures. This means that the guiding teams of backcountry skiing operations effectively control the hazard from triggering avalanches with skilled route selection. Groups were exposed relatively evenly to Low hazard (1275 times or 29% of total exposure), Moderate hazard (1450 times or 33 %) and Considerable hazard (1215 times or 28 %). At higher levels, the exposure reduced to roughly 380 times (9 % of total exposure) to High hazard, and only 13 times (0.3 %) to Extreme hazard. We assess the sensitivity of the results to some of our key assumptions.

  8. Friction-Induced Changes in the Surface Structure of Basalt and Granite

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Arora, K.; Ponomarev, A. V.; Mamalimov, R. I.; Shcherbakov, I. P.; Kulik, V. B.

    2018-05-01

    Friction-induced changes in the structure of the surface layer of basalt and granite samples extracted from a well in the triggered seismicity zone in the Koyna-Warna region, India, have been studied by infrared, Raman, and photoluminescence spectroscopy. It has been found that friction leads to a partial degradation of quartz, albite, and clinopyroxenes crystals. Instead of these crystals, a thin layer of a mineral with a low coefficient of friction—kaolinite—is formed on the surface.

  9. Terrain-Induced Midtropospheric Frontogenesis and Jet Streak Development During Storm-Fest IOP-17, 8 & 9 March 1992.

    DTIC Science & Technology

    1997-01-09

    is characterized by an elevated pool of cool-dry air positioned out ahead of the surface frontal zone (Hobbs et al . 1990). Though this feature is not...in destabilizing the atmosphere to generate strong thunderstorm and tornado activity over the central Plains. More recently, Hobbs et al . (1990) and...Locatelli et al . (1995) point out that the CFA acts as an effective lifting mechanism in the triggering of severe convection as the capping inversion

  10. Modeling the effects of hydraulic stimulation on geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Vilarrasa, Victor; Carrera, Jesús; Alcolea, Andrés; Meier, Peter

    2013-04-01

    Geothermal energy represents a huge power source that can provide clean energy in potentially unlimited supply. When designing geothermal energy production from deep hot rocks, permeability is considered to control the economic efficiency of the heat extraction operations. In fact, a high permeability heat exchanger is required to achieve a cost-competitive power generation. The typical procedure entails intercepting naturally fractured rocks and enhancing their permeability by means of stimulation. Hydraulic stimulation is the most widely used method. It involves the massive injection of a large volume of water at high flow rates to increase the downhole pore pressure. This overpressure reduces the effective stresses, which tends to induce shearing along the fracture planes. In this way permeability is enhanced due to dilatancy, especially in the direction perpendicular to shear. These processes usually trigger microseismic events, which are sometimes of sufficient magnitude to be felt by the local population. This causes a negative impact on the local population and may compromise the continuation of the project. Hence, understanding the mechanisms triggering these induced micro-earthquakes is important to properly design and manage geothermal stimulation and operations so as to prevent them. We analyzed the thermo-hydro-mechanical response of a fractured deep rock mass subjected to hydraulic stimulation. Considering that seismicity is triggered when failure condition are reached, we studied the variation of the stress regime due to the hydraulic and thermal perturbations during fluid injection. Starting with a simplified model with constant permeability fault zones, more sophisticated schemes are considered to simulate the behavior of the discontinuity zones, including permeability variation associated to temperature, pressure and stress regime changes. Numerical simulations are performed using the finite element numerical code CODE_BRIGHT, which allows to solve fully coupled thermo-hydro-mechanical problems. Results allowed to estimate the impact of the hydraulic stimulation on the overall behavior.

  11. Depilatory laser: a potential causative factor for inguinal hyperhidrosis: report of three cases.

    PubMed

    Obeid, Grace; Helou, Josiane; Maatouk, Ismael; Moutran, Roy; Tomb, Roland

    2013-10-01

    Hyperhidrosis has recently been described as a novel adverse effect of laser-assisted hair removal in the axillary area. Inguinal Hyperhidrosis (IH) is a localized and, typically, a primary form of hyperhidrosis affecting the groin area in individuals before age 25. IH has been reported in the literature after traumas and as a dysfunction of the central sympathetic nervous system. To the best of our knowledge, IH has never been reported as secondary to laser-assisted hair removal. Herein, we report three cases of IH following depilatory laser of the inguinal zone. Three female patients with no relevant medical history presented with the complaint of excessive sweating in the inguinal area after undergoing full bikini depilatory laser sessions. Although never described before, depilatory laser seems to trigger the occurrence of hyperhidrosis in the inguinal zone.

  12. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  13. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  14. Simple Physical Model for the Probability of a Subduction- Zone Earthquake Following Slow Slip Events and Earthquakes: Application to the Hikurangi Megathrust, New Zealand

    NASA Astrophysics Data System (ADS)

    Kaneko, Yoshihiro; Wallace, Laura M.; Hamling, Ian J.; Gerstenberger, Matthew C.

    2018-05-01

    Slow slip events (SSEs) have been documented in subduction zones worldwide, yet their implications for future earthquake occurrence are not well understood. Here we develop a relatively simple, simulation-based method for estimating the probability of megathrust earthquakes following tectonic events that induce any transient stress perturbations. This method has been applied to the locked Hikurangi megathrust (New Zealand) surrounded on all sides by the 2016 Kaikoura earthquake and SSEs. Our models indicate the annual probability of a M≥7.8 earthquake over 1 year after the Kaikoura earthquake increases by 1.3-18 times relative to the pre-Kaikoura probability, and the absolute probability is in the range of 0.6-7%. We find that probabilities of a large earthquake are mainly controlled by the ratio of the total stressing rate induced by all nearby tectonic sources to the mean stress drop of earthquakes. Our method can be applied to evaluate the potential for triggering a megathrust earthquake following SSEs in other subduction zones.

  15. Fluid-driven seismicity in a stable tectonic context: The Remiremont fault zone, Vosges, France

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Avouac, Jean-Philippe; Flouzat, Mireille; Plantet, Jean-Louis

    2002-03-01

    Some relocated seismic events, which have small magnitudes (ML < 4.8), are found to align along a 40 km-long fault zone flanking the southern Vosges Massif to the west. It joins to the south with the epicentral area of the historical 1682 earthquake (Io = VIII MSK). The Remiremont cluster was preceded by a period of seismic coalescence and triggered outward of bilateral seismic migration. The 1984 seismic crisis developed along a well defined 3 km-long vertical plane. In both cases, migration rates of the order of 5-10 km/yr over 30 km-long distances are determined. This pattern requires some mechanism of stress interaction which must act over distances of the order of 1 to 20 km within years. Given the low tectonic activity and the magnitudes of the events the stress transfer cannot result from co-seismic elastic loading or from transient strain at depth. We suggest that the seismic activity reflect rupture of asperities driven by fluid-flow in a zone of relatively high permeability.

  16. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less

  17. Oceanic broad multifault transform plate boundaries

    NASA Astrophysics Data System (ADS)

    Ligi, Marco; Bonatti, Enrico; Gasperini, Luca; Poliakov, Alexei N. B.

    2002-01-01

    Oceanic transform plate boundaries consist of a single, narrow (a few kilometers wide) strike-slip seismic zone offsetting two mid-ocean ridge segments. However, we define here a new class of oceanic transform boundaries, with broad complex multifault zones of deformation, similar to some continental strike-slip systems. Examples are the 750-km- long, 120-km-wide Andrew Bain transform on the Southwest Indian Ridge, and the Romanche transform, where the Mid-Atlantic Ridge is offset by a lens-shaped, ˜900-km- long, ˜100-km-wide sliver of deformed lithosphere bound by two major transform valleys. One of the valleys is seismically highly active and constitutes the present-day principal transform boundary. However, strike-slip seismic events also occur in the second valley and elsewhere in the deformed zone. Some of these events may be triggered by earthquakes from the principal boundary. Numerical modeling predicts the development of wide multiple transform boundaries when the age offset is above a threshold value of ˜30 m.y., i.e., in extra-long (>500 km) slow-slip transforms. Multiple boundaries develop so that strike-slip ruptures avoid very thick and strong lithosphere.

  18. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust.

    PubMed

    Zhang, Junfeng; Green, Harry W; Bozhilov, Krassimir; Jin, Zhenmin

    2004-04-08

    Dehydration embrittlement has been proposed to explain both intermediate- and deep-focus earthquakes in subduction zones. Because such earthquakes primarily occur at shallow depths or within the core of the subducting plate, dehydration at relatively low temperatures has been emphasized. However, recent careful relocation of subduction-zone earthquakes shows that at depths of 100-250 km, earthquakes continue in the uppermost part of the slab (probably the former oceanic crust that has been converted to eclogite) where temperatures are higher. Here we show that at such pressures and temperatures, eclogite lacking hydrous phases but with significant hydroxyl incorporated as defects in pyroxene and garnet develops a faulting instability associated with precipitation of water at grain boundaries and the production of very small amounts of melt. This new faulting mechanism satisfactorily explains high-temperature earthquakes in subducting oceanic crust and could potentially be involved in much deeper earthquakes in connection with similar precipitation of water in the mantle transition zone (400-700 km depth). Of potential importance for all proposed high-pressure earthquake mechanisms is the very small amount of fluid required to trigger this instability.

  19. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald L.; Goering, Timothy James; Miller, Mark Laverne

    2005-11-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations whenmore » data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. At least one-hundred realizations were simulated for each scenario defined in the performance assessment. Conservative values and assumptions were used to define values and distributions of uncertain input parameters when site data were not available. Results showed that exposure to tritium via the air pathway exceeded the regulatory metric of 10 mrem/year in about 2% of the simulated realizations when the receptor was located at the MWL (continuously exposed to the air directly above the MWL). Simulations showed that peak radon gas fluxes exceeded the design standard of 20 pCi/m{sup 2}/s in about 3% of the realizations if up to 1% of the containers of sealed radium-226 sources were assumed to completely degrade in the future. If up to 100% of the containers of radium-226 sources were assumed to completely degrade, 30% of the realizations yielded radon surface fluxes that exceeded the design standard. For the groundwater pathway, simulations showed that none of the radionuclides or heavy metals (lead and cadmium) reached the groundwater during the 1,000-year evaluation period. Tetrachloroethylene (PCE) was used as a proxy for other VOCs because of its mobility and potential to exceed maximum contaminant levels in the groundwater relative to other VOCs. Simulations showed that PCE reached the groundwater, but only 1% of the realizations yielded aquifer concentrations that exceeded the regulatory metric of 5 {micro}g/L. Based on these results, monitoring triggers have been proposed for the air, surface soil, vadose zone, and groundwater at the MWL. Specific triggers include numerical thresholds for radon concentrations in the air, tritium concentrations in surface soil, infiltration through the vadose zone, and uranium and select VOC concentrations in groundwater. The proposed triggers are based on U.S. Environmental Protection Agency and Department of Energy regulatory standards. If a trigger is exceeded, then a trigger evaluation process will be initiated which will allow sufficient data to be collected to assess trends and recommend corrective actions, if necessary.« less

  20. Rift Zone Abandonment and Reconfiguration in Hawaii: Evidence from Mauna Loa’s Ninole Rift Zone

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Park, J.; Zelt, C. A.

    2009-12-01

    Large oceanic volcanoes commonly develop elongate rift zones that disperse viscous magmas to the distal reaches of the edifice. Intrusion and dike propagation occur under tension perpendicular to the rift zone, controlled by topography, magmatic pressures, and deformation of the edifice. However, as volcanoes grow and interact, the controlling stress fields can change, potentially altering the orientations and activities of rift zones. This phenomenon is probably common, and can produce complex internal structures that influence the evolution of a volcano and its neighbors. However, little direct evidence for such rift zone reconfiguration exists, primarily due to poor preservation or recognition of earlier volcanic configurations. A new onshore-offshore 3-D seismic velocity model for the Island of Hawaii, derived from a joint tomographic inversion of an offshore airgun shot - onshore receiver geometry and earthquake sources beneath the island, demonstrates a complicated history of rift zone reconfiguration on Mauna Loa volcano, Hawaii, including wholesale rift zone abandonment. Mauna Loa’s southeast flank contains a massive high velocity intrusive complex, now buried beneath flows derived from Mauna Loa’s active southwest rift zone (SWRZ). Introduced here as the Ninole Rift Zone, this feature extends more than 60 km south of Mauna Loa’s summit, spans a depth range of ~2-14 km below sea level, and is the probable source of the 100-200 ka Ninole volcanics in several prominent erosional hills. A lack of high velocities beneath the upper SWRZ and its separate zone of high velocities on the submarine flank, indicate that the younger rift zone was built upon a pre-existing edifice that emanated from the Ninole rift zone. The ancient Ninole rift zone may stabilize Mauna Loa’s southeast flank, focusing recent volcanic activity and deformation onto the unbuttressed west flank. The upper portion of the Ninole rift zone appears to have migrated westward over time, possibly triggered by landsliding, causing its eventual abandonment in preference to Mauna Loa’s present-day SWRZ. Subsequently, the lower SWRZ broke away, tracking rift intrusions along the trace of the Kahuku detachment fault. Similar rift zone migration is thought to be underway at Kilauea volcano, and may one-day lead to the abandonment of the east rift zone. Such rift zone reconfiguration is a reflection of changing stress conditions within growing volcanoes. It is probably much more common than previously assumed, and may enable the growth of very large volcanic edifices such as Mauna Loa.

  1. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  2. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    NASA Astrophysics Data System (ADS)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  3. Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team

    2013-05-01

    Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec earthquake apparently had no any observable influence on the NVT occurrence, furthermore some NVT activity observed before this event has not persisted after it. Further study should reveal the role of different factors on the NVT triggering and activation such as: the type of the seismic event, its magnitude, depth, and the distance from the NVT zone.

  4. Tsunami waves generated by dynamically triggered aftershocks of the 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Wei, Y.; Fan, W.; Miller, N. C.; Granja, J. L.

    2017-12-01

    Dynamically-triggered aftershocks, thought to be set off by the passage of surface waves, are currently not considered in tsunami warnings, yet may produce enough seafloor deformation to generate tsunamis on their own, as judged from new findings about the January 12, 2010 Haiti earthquake tsunami in the Caribbean Sea. This tsunami followed the Mw7.0 Haiti mainshock, which resulted from a complex rupture along the north shore of Tiburon Peninsula, not beneath the Caribbean Sea. The mainshock, moreover, had a mixed strike-slip and thrust focal mechanism. There were no recorded aftershocks in the Caribbean Sea, only small coastal landslides and rock falls on the south shore of Tiburon Peninsula. Nevertheless, a tsunami was recorded on deep-sea DART buoy 42407 south of the Dominican Republic and on the Santo Domingo tide gauge, and run-ups of ≤3 m were observed along a 90-km-long stretch of the SE Haiti coast. Three dynamically-triggered aftershocks south of Haiti have been recently identified within the coda of the mainshock (<200 s) by analyzing P wave arrivals recorded by dense seismic arrays, parsing the arrivals into 20-s-long stacks, and back-projecting the arrivals to the vicinity of the main shock (50-300 km). Two of the aftershocks, coming 20-40 s and 40-60 s after the mainshock, plot along NW-SE-trending submarine ridges in the Caribbean Sea south of Haiti. The third event, 120-140 s was located along the steep eastern slope of Bahoruco Peninsula, which is delineated by a normal fault. Forward tsunami models show that the arrival times of the DART buoy and tide gauge times are best fit by the earliest of the three aftershocks, with a Caribbean source 60 km SW of the mainshock rupture zone. Preliminary inversion of the DART buoy time series for fault locations and orientations confirms the location of the first source, but requires an additional unidentified source closer to shore 40 km SW of the mainshock rupture zone. This overall agreement between earthquake and tsunami analyses suggests that land-based earthquake ruptures and/or non-thrust main shocks can generate tsunamis by means of dynamically-triggered aftershocks. It also provides an independent verification to the back-projection seismic method, and it indicates that the active NE-SW shortening of Hispaniola extends southward into the Caribbean Sea.

  5. Study of Tectonic Tremor in Depth: Triggering Stress Observation and Model of the Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Tien-Huei

    Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events including NVT occur on these sections have slower slip rates than that of the general earthquakes (Rubin, 2008; Ide, 2008). In Azna region, we use envelope and waveform cross-correlation to detect tremor. We investigate the stress required to trigger tremor and tremor spectrum using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011, in addition to one regional earthquake of smaller-magnitude, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strain at Anza. The result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremor near Anza. In addition, we find that the transient-shear stress (17--35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied SAF (Gulihem et al. 2010). We model slip initiation using the analytical solution of rate-and-state friction. We verify the correctness of this method by comparing the results with that from the dynamic model, implemented using the Multi-Dimensional Spectral Boundary Integral Code (MDSBI) written by Eric M. Dunham from Sanford University. We find that the analytical result is consistent with that of the dynamic model. We set up a patch model with which the source stress and frictional conditions best resemble the current estimates of the tremor source. The frictional regime of this patch is rate-weakening. The initial normal and shear stress, and friction parameters are suggested by previous observations of tectonic tremors both in this and other studies (Brown et al., 2005; Shelly et al., 2006; Miyazawa, 2008; Ben-Zion, 2012). Our dynamic loading first consists of simple harmonic stress change with fixed periods, simplifying the transient stress history to resemble teleseismic earthquakes. We tested the period and amplitude of such periodic loading. We find that the period of the transient shear stress is less important relative to the amplitude. The triggering depends mainly on the ratio between amplitude of the shear stress loading and the background normal stress. We define a range of ratio indicative of the occurrence of the triggering. We later test the triggering of the instability using the shear stress history from 44 large teleseismic earthquakes (data equivalent to those used in Chapter 1). With the constraints of these observations, we find that the background normal stress should be in the range of ˜400-700 kPa. The background normal stress suggested agrees with the common hypothesis that the tremor source is under low normal stress. In addition, our results provide a first estimation of the background normal stress with numerical method. We also demonstrate how our model find constrains on the background physical stress or frictional conditions, with several true incidences that transient shear stress triggers or not-triggers tremor. (Abstract shortened by UMI.).

  6. Seismic gaps and source zones of recent large earthquakes in coastal Peru

    USGS Publications Warehouse

    Dewey, J.W.; Spence, W.

    1979-01-01

    The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station adjustments computed by the method of joint hypocenter determination. ?? 1979 Birkha??user Verlag.

  7. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.

  8. TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons

    PubMed Central

    Wang, Sheng; Benamer, Najate; Zanella, Sébastien; Kumar, Natasha N.; Shi, Yingtang; Bévengut, Michelle; Penton, David; Guyenet, Patrice G.; Lesage, Florian

    2013-01-01

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H+ via an unidentified pH-sensitive background K+ channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K+ channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2−/− mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2−/− mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K+ currents were reduced in amplitude in RTN neurons from TASK-2−/− mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart–brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2−/− mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold. PMID:24107938

  9. Characteristics of 5-HT-containing chemoreceptor cells of the chicken aortic body

    PubMed Central

    Ito, Shigeo; Ohta, Toshio; Nakazato, Yoshikazu

    1999-01-01

    Voltage-dependent and oxygen-sensitive currents in 5-HT-containing epithelioid cells isolated from chicken thoracic aorta were examined using the whole-cell patch clamp technique. 5-HT immunoreactive cells were identified with Neutral Red. The release of 5-HT from chicken thoracic aorta in the presence of excess KCl and veratridine was also examined using HPLC. At a holding potential of −70 mV with CsCl pipette solution, depolarizing steps between −30 and +60 mV produced inward currents that were blocked by tetrodotoxin (0.2 μm). In the presence of tetrodotoxin and BaCl2 (5 mm), depolarizing steps evoked slow inward currents that were sensitive to CoCl2 (2 mm). Nifedipine (1 μm) decreased the currents to 79.4 ± 1.7%, and ω-conotoxin GVIA (1 μm) to 20.2 ± 3.8%. When KCl pipette solution was used, depolarizing potentials positive to −40 mV caused outward currents that were inhibited by tetraethylammonium chloride. The K+ currents evoked by depolarizing steps to +20 mV were reduced to 90.3 ± 0.8% by hypoxia in five out of seven cells. Two cells failed to respond to hypoxia. The K+ current response was partly decreased by Neutral Red (20 μm). Excess KCl (60 mm) and veratridine (30 μm) both caused the release of 5-HT from aortic strips. 5-HT outputs induced by both stimuli were partly inhibited by nifedipine (1 μm) and by ω-conotoxin GVIA (1 μm), and were abolished by these drugs in combination and by extracellular Ca2+ removal. These results suggest that epithelioid cells containing 5-HT act as chemoreceptor cells in the chicken aortic body, having voltage-dependent Na+, K+, and L- and N-type Ca2+ channels, and oxygen-sensitive K+ channels. PMID:9925877

  10. α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats.

    PubMed

    Oliveira, Luiz M; Moreira, Thiago S; Kuo, Fu-Shan; Mulkey, Daniel K; Takakura, Ana C

    2016-09-01

    Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (β-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and β-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or β-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats. Copyright © 2016 the American Physiological Society.

  11. Effects of fenoterol on ventilatory response to hypercapnia and hypoxia in patients with chronic obstructive pulmonary disease

    PubMed Central

    Suzuki, S.; Watanuki, Y.; Yoshiike, Y.; Okubo, T.

    1997-01-01

    BACKGROUND: It has previously been shown that fenoterol, a beta 2 adrenergic agonist, increases the ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) in normal subjects. The effects of beta 2 adrenergic agonists on chemoreceptors in patients with chronic obstructive pulmonary disease (COPD) remain controversial. This study was designed to examine whether fenoterol increases the HVR and HCVR in patients with COPD. METHODS: The HCVR was tested in 20 patients using a rebreathing method and the HVR was examined using a progressive isocapnic hypoxic method. The HCVR and HVR were assessed by calculating the slopes of plots of occlusion pressure (P0.1) and ventilation (VE) against end tidal carbon dioxide pressure (PETCO2) and arterial oxygen saturation (SaO2), respectively. Spirometric values, lung volumes, and respiratory muscle strength were also measured. The HCVR and HVR were examined after the oral administration of fenoterol (15 mg/day) or placebo for seven days. RESULTS: Fenoterol treatment increased the forced expiratory volume in one second (FEV1) and inspiratory muscle strength. In the HCVR the slope of P0.1 versus PETCO2 was increased by fenoterol from 0.35 (0.23) to 0.43 (0.24) (p < 0.01). Moreover, the P0.1 at PETCO2 of 8 kPa was higher on fenoterol than on placebo (p < 0.05) and the VE was also greater (p < 0.01). In the HVR fenoterol treatment increased the P0.1 at 80% SaO2 from 0.90 (0.72) to 0.97 (0.55) kPa (p < 0.05) while the slopes of the response of P0.1 and VE were not changed. CONCLUSIONS: Fenoterol increases the ventilatory response to hypercapnia in patients with COPD, presumably by stimulation of the central chemoreceptor. The hypoxic ventilatory response is only slightly affected by fenoterol. 


 PMID:9059471

  12. Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel.

    PubMed

    Webb, Cheryl L; Milsom, William K

    2017-07-01

    During entrance into hibernation in golden-mantled ground squirrels (Callospermophilus lateralis), ventilation decreases as metabolic rate and body temperature fall. Two patterns of respiration occur during deep hibernation. At 7 °C body temperature (T b ), a breathing pattern characterized by episodes of multiple breaths (20.6 ± 1.9 breaths/episode) separated by long apneas or nonventilatory periods (T nvp ) (mean = 11.1 ± 1.2 min) occurs, while at 4 °C T b , a pattern in which breaths are evenly distributed and separated by a relatively short T nvp (0.5 ± 0.05 min) occurs. Squirrels exhibiting each pattern have similar metabolic rates and levels of total ventilation (0.2 and 0.23 ml O 2 /hr/kg and 0.11 and 0.16 ml air/min/kg, respectively). Squirrels at 7 °C T b exhibit a significant hypoxic ventilatory response, while squirrels at 4 °C T b do not respond to hypoxia at any level of O 2 tested. Squirrels at both temperatures exhibit a significant hypercapnic ventilatory response, but the response is significantly reduced in the 4 °C T b squirrels. Carotid body denervation has little effect on the breathing patterns or on the hypercapnic ventilatory responses. It does reduce the magnitude and threshold for the hypoxic ventilatory response. Taken together the data suggest that (1) the fundamental rhythm generator remains functional at low temperatures; (2) the hypercapnic ventilatory response arises from central chemoreceptors that remain functional at very low temperatures; (3) the hypoxic ventilatory response arises from both carotid body and aortic chemoreceptors that are silenced at lower temperatures; and (4) there is a strong correlation between breathing pattern and chemosensitivity.

  13. Influence of inspired oxygen concentration on the dynamics of the exercise hyperpnoea in man.

    PubMed Central

    Griffiths, T L; Henson, L C; Whipp, B J

    1986-01-01

    In order to determine the role of the carotid bodies on the ventilatory control characteristics during the non-steady-state phase of exercise in man, six normal males performed cycle ergometry with four repetitions of a 6 min, constant-load work bout at inspired O2 fractions (FI,O2) of 0.12, 0.15, 0.21, 0.30 and 1.00. Each test began with unloaded pedalling; this was followed by a constant load which was 90% of the subject's anaerobic threshold at FI,O2 = 0.12. Ventilation (VE), CO2 output (VCO2) and O2 uptake (VO2) were determined breath-by-breath during the test and the time constants of response (tau VE, tau VCO2 and tau VO2) were established by least-squares techniques, following interpolation (1 s), temporal alignment and averaging of the four responses. In each subject, tau VE and tau VCO2 increased as functions of increasing FI,O2, and were inverse functions of the proportional contribution to VE of peripheral chemoreceptor drive (as estimated from hyperoxic-transition or 'Dejours' tests). tau VE averaged 40 s at FI,O2 = 0.12 and 112 s at FI,O2 = 1.00, each response being well fitted by a single exponential. However, tau VO2 was not significantly affected by the alterations in FI,O2. Although there was no discernible peripheral chemosensitivity at FI,O2 = 0.30 or 1.00, the tau VE increased appreciably between these inspirates. We therefore conclude that the peripheral chemoreceptors are important, but not exclusive determinants of the exponential response characteristics during the non-steady-state phase of the exercise hyperpnoea in man. This supports the contention of a component of the control being humorally mediated even during moderate exercise. PMID:3612567

  14. Sensory receptors of the larynx.

    PubMed

    Bradley, R M

    2000-03-06

    The larynx is a highly reflexogenic area, and stimulation with mechanical and chemical stimuli results in a number of protective reflexes. Investigators have used anatomical, behavioral, and neurophysiological techniques to examine the receptors responsible for initiating these reflex responses. Histologic examination has revealed the presence of free nerve endings, Merkel cells, Meissner corpuscles, and taste buds. Mechanoreceptors have been classified in several different ways and are located either in the superficial mucosa or in muscles and laryngeal joints. Recordings from afferent fibers innervating laryngeal mechanoreceptors have revealed that some of them are spontaneously active whereas others are silent until stimulated. Laryngeal mechanoreceptors respond to stimulation with either a rapidly adapting or a slowly adapting response pattern. Often the mechanoreceptors respond to respiratory movement of the larynx, giving bursts of action potentials during inspiration. A large number of taste buds that are anatomically similar to lingual taste buds populates the laryngeal surface of the epiglottis. Taste buds of the larynx respond to a number of chemical stimuli and to water. They do not respond to NaCl solutions close to physiological concentrations (0.154 M) but do respond at both a lower and higher concentration. When water is the solvent for the chemical stimuli, most chemicals initiate a response in laryngeal taste buds. However, when 0.154 M saline is used as a solvent, chemicals that taste bitter or sweet when applied to the tongue are ineffective stimuli. Taste buds of the larynx tend to be stimulated by the pH and tonicity of the stimulating solution and not by the gustatory properties. These results reveal a fundamental difference between the chemoreceptors of the oral cavity and larynx and result in the conclusion that chemoreceptors of the larynx do not play a role in gustation but are adapted to detect chemicals that are not saline-like in composition.

  15. Substance P–saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity

    PubMed Central

    Nattie, Eugene E; Li, Aihua

    2002-01-01

    All medullary central chemoreceptor sites contain neurokinin-1 receptor immunoreactivity (NK1R-ir). We ask if NK1R-ir neurons and processes are involved in chemoreception. At one site, the retrotrapezoid nucleus/parapyramidal region (RTN/Ppy), we injected a substance P–saporin conjugate (SP-SAP; 0.1 pmol in 100 nl) to kill NK1R-ir neurons specifically, or SAP alone as a control. We made measurements for 15 days after the injections in two groups of rats. In group 1, with unilateral injections made in the awake state via a pre-implanted guide cannula, we compared responses within rats using initial baseline data. In group 2, with bilateral injections made under anaesthesia at surgery, we compared responses between SP-SAP- and SAP-treated rats. SP-SAP treatment reduced the volume of the RTN/Ppy region that contained NK1R-ir neuronal somata and processes by 44 % (group 1) and by 47 and 40 % on each side, respectively (group 2). Ventilation () and tidal volume (VT) were decreased during air breathing in sleep and wakefulness (group 2; P < 0.001; two-way ANOVA) and Pa,CO2 was increased (group 2; P < 0.05; Student's t test). When rats breathed an air mixture containing 7 % CO2 during sleep and wakefulness, and VT were lower (groups 1 and 2; P < 0.001; ANOVA) and the Δ in air containing 7 % CO2 compared to air was decreased by 28-30 % (group 1) and 17-22 % (group 2). SP-SAP-treated rats also slept less during air breathing. We conclude that neurons with NK1R-ir somata or processes in the RTN/Ppy region are either chemosensitive or they modulate chemosensitivity. They also provide a tonic drive to breathe and may affect arousal. PMID:12381830

  16. Phox2b-expressing retrotrapezoid neurons and the integration of central and peripheral chemosensory control of breathing in conscious rats.

    PubMed

    Takakura, Ana C; Barna, Bárbara F; Cruz, Josiane C; Colombari, Eduardo; Moreira, Thiago S

    2014-03-01

    Chemoreception is the classic mechanism by which the brain regulates breathing in response to changes in tissue CO2/H(+). A brainstem region called the retrotrapezoid nucleus (RTN) contains a population of Phox2b-expressing glutamatergic neurons that appear to function as important chemoreceptors. In the present study, we ask whether the destruction of a type of pH-sensitive interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b(+)TH(-)) could affect breathing in conscious adult rats. The injection of substance P (1 nmol in a volume of 50 nl) into the RTN increased respiratory frequency, tidal volume, minute ventilation and mean arterial pressure. Bilateral injections of the toxin substance P conjugated with saporin (SSP-SAP) into the RTN destroyed Phox2b(+)TH(-) neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Bilateral inhibition of RTN neurons with SSP-SAP (0.6 ng in 30 nl) reduced resting ventilation and the increase in ventilation produced by hypercapnia (7% CO2) in conscious rats with or without peripheral chemoreceptors. In anaesthetized rats with bilateral lesions of around 90% of the Phox2b(+)TH(-) neurons, acute activation of the Bötzinger complex, the pre-Bötzinger complex or the rostral ventral respiratory group with NMDA (5 pmol in 50 nl) elicited normal cardiorespiratory output. In conclusion, the destruction of the Phox2b(+)TH(-) neurons is a plausible cause of the respiratory deficits observed after injection of SSP-SAP into the RTN. Our results also suggest that RTN neurons activate facilitatory mechanisms important to the control of breathing in resting or hypercapnic conditions in conscious adult rats.

  17. Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity.

    PubMed

    Nattie, Eugene E; Li, Aihua

    2002-10-15

    All medullary central chemoreceptor sites contain neurokinin-1 receptor immunoreactivity (NK1R-ir). We ask if NK1R-ir neurons and processes are involved in chemoreception. At one site, the retrotrapezoid nucleus/parapyramidal region (RTN/Ppy), we injected a substance P-saporin conjugate (SP-SAP; 0.1 pmol in 100 nl) to kill NK1R-ir neurons specifically, or SAP alone as a control. We made measurements for 15 days after the injections in two groups of rats. In group 1, with unilateral injections made in the awake state via a pre-implanted guide cannula, we compared responses within rats using initial baseline data. In group 2, with bilateral injections made under anaesthesia at surgery, we compared responses between SP-SAP- and SAP-treated rats. SP-SAP treatment reduced the volume of the RTN/Ppy region that contained NK1R-ir neuronal somata and processes by 44 % (group 1) and by 47 and 40 % on each side, respectively (group 2). Ventilation (.V(E)) and tidal volume (V(T)) were decreased during air breathing in sleep and wakefulness (group 2; P < 0.001; two-way ANOVA) and P(a,CO2) was increased (group 2; P < 0.05; Student's t test). When rats breathed an air mixture containing 7 % CO(2) during sleep and wakefulness, .V(E) and V(T) were lower (groups 1 and 2; P < 0.001; ANOVA) and the Delta.V(E) in air containing 7 % CO(2) compared to air was decreased by 28-30 % (group 1) and 17-22 % (group 2). SP-SAP-treated rats also slept less during air breathing. We conclude that neurons with NK1R-ir somata or processes in the RTN/Ppy region are either chemosensitive or they modulate chemosensitivity. They also provide a tonic drive to breathe and may affect arousal.

  18. Deformation and stabilisation mechanisms of slow rock slides in crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Zangerl, C.; Prager, C.

    2009-04-01

    Deep-seated rock slides are slope instabilities which are characterised by deformation along one or several shear zones where most of the measured total slope displacement localizes. Generally, a high danger potential is given when rock slides fail in a rapid manner characterised by very high sliding velocities and/or when they develop into long run-out rock avalanches. However several field surveys and deformation monitoring data show that numerous deep-seated rock slides do not fail in a high velocity regime. In fact, many slides creep downwards at rates of some centimetres per year or even less and do not show any evidence for non-reversible acceleration in the past or in the future. Furthermore some of these slope instabilities are actually inactive (dormant) or have even reached a stabilised final state. Deformation monitoring on active rock slides show that acceleration phases characterised by velocities up to meters per day can occur. The trigger for these phases can be manifold and include heavy rainfall, snow melt, water level fluctuations of reservoirs at the slope foot, changes in the slope's equilibrium state due to antecedent slow creeping processes, changes in the material behaviour within the sliding zone, erosion along the foot of the slope, etc. Whereas the role of these triggers in promoting phases of acceleration are generally understood, the same can not be said regarding the kinematics and dynamic processes/mechanisms by which rock slide masses re-stabilise once the trigger impetus has been removed. In the context of this study the term "stabilisation" is used for rock slides which decelerate from high velocities to slow base activities or even stop moving after a certain amount of displacement. Given that reliable rock slide forecasts require the fundamental understanding of possible slope stabilisation mechanisms this study focuses on field-based and numerically obtained key-properties which influence the long-term slope deformation behaviour. On a regional scale several valleys located in amphibolites, ortho- and paragneisses of the Ötztal-Stubai crystalline basement (i.e. Kaunertal, Pitztal, Ötztal, Lüsenstal, all located in North Tyrol, Austria) were investigated. Therefore geological and morphological basis data were compiled and re-evaluated, remote sensing methods (i.e. airborne laser scanning terrain models and orthofotos) applied and field mapping campaigns performed. On a local scale several rock slides were investigated and analysed in high detail with regard to their lithological and structural inventory, geometry of sliding masses and -zones, failure mechanisms, kinematics and temporal deformation characteristics. Field data clearly show that competent rock masses, e.g. orthogneisses and amphibolites, are affected by rapid failure events and therefore are characterised by "brittle" rock mass behaviour. In contrast, the majority of the slowly moving and "self-stabilising" rock slides are located totally or partly in mica-rich incompetent crystalline rock masses, e.g. paragneisses and micaschists, and are characterised by moderately dipping sliding zones. Apart from a causal lithological influence, numerous field observations demonstrate a major influence of pre-existing geological structures on the formation and deformation behaviour of these rock slides. The nature of rock slides implies that the temporal deformation behaviour is primarily dominated by two key-features of the sliding zone i.e. the mechanical properties (shear strain strengthening or weakening) and the effective in-situ stresses. The in-situ stresses along a sliding zone are influenced by the geometry of both the sliding mass and sliding zone, the internal deformation of the sliding mass and the pore pressures. All these properties can vary during progressive shear displacements. Especially large shear displacements in the range of tens to hundreds of metres along a distinct sliding zone can cause significant in-situ stress changes which in turn may influence the slope deformation behaviour and stabilisation mechanisms. In order to study these processes for selected case studies in paragneissic rock masses the impact of the sliding mass geometry and sliding zone shape on the in-situ stresses has been investigated by applying the discrete element method. This numerical approach enables the simulation of large shear displacements and complex block assembly interactions. Results show that slope stabilisation can be achieved when the dip angle of the sliding zone flattens downslope. In this case and after a certain amount of displacement the lower part of the rock slide mass reaches stable slope conditions (shear strength of the sliding zone material exceeds the shear stress acting on the sliding zone) and acts as a resisting mass for the still unstable upper part of the slope. Furthermore numerical models show that secondary slides at the lower part of the slope have a similar effect. In both case cases the observed slope stabilisation can be clearly attributed to the formation of natural buttressing masses at the toe.

  19. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  20. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zellmer, Georg; Sakamoto, Naoya; Hwang, Shyh-Lung; Matsuda, Nozomi; Iizuka, Yoshiyuki; Moebis, Anja; Yurimoto, Hisayoshi

    2016-09-01

    Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs) of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.

  1. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Carrasco, Jorge F.; Bromwich, David H.

    1993-07-01

    Previous work has shown that frequent mesoscale cyclogenesis adjacent to Franklin Island is linked to the strong and persistent katabatic winds from East Antarctica which funnel into Terra Nova Bay and then blow out over the southwestern Ross Sea. Four mesoscale cyclones that formed near Terra Nova Bay between February 16 and 20, 1988 are examined to more clearly define the governing mechanisms. These events are investigated using all available observations, including automatic weather station data, high-resolution satellite images, satellite soundings, and hemispheric synoptic analyses. The first two cyclones formed on low-level baroclinic zones established by the synoptic scale advection of warm moist air toward the cold continental air blowing gently from East Antarctica. In the second case, baroclinic instability of this small-scale cold front was apparently triggered by the enhanced upward vertical motion associated with the approach of a midtropospheric trough. The third mesocyclone formed shortly after on a baroclinic zone over the polar plateau; the second vortex completely disrupted the usual katabatic drainage over the plateau and forced warm moist air over the coastal slopes. All three cyclones moved to the north in the prevailing cyclonic flow, but the plateau vortex lasted for only 6 hours. The fourth mesoscale low formed in conjunction with an abrupt and intense surge of katabatic air from Terra Nova Bay which resharpened the coastal baroclinic zone. At the same time a transiting midtropospheric trough probably associated with lower tropospheric upward vertical motion apparently accelerated the katabatic winds and triggered the vortex formation. A similar katabatic wind-forced mesocyclone formed near Byrd Glacier. The two vortices moved to the east-southeast and northeast, respectively, apparently being steered by the generating katabatic airstreams, and merged just to the north of the Ross Ice Shelf. The combined vortex reintensified as another trough passed overhead and moved eastward to West Antarctica where it dissipated two days later.

  2. The Characteristics and triggering Factors of the October 2013 Obudu International Tourist Centre catastrophic Landslide South-East Nigeria

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Igwe, Ogbonnaya

    2015-04-01

    The October 2013 catastrophic landslides at the Obudu international tourist zone south-east Nigeria destroyed resources worth several millions of dollars and trapped international tourist who were later rescued by a helicopter. Intense rainfall caused several slope failures on the steep slopes of the hills. These landslides occurred after several days of heavy rain (> 600 mm) and were the first reported slope failures in this region. The failures were on a predominantly metamorphic terrain and only on slopes adjacent to the main road. They occurred as slides, not debris flow, but produced a wide range of casualties. The failures were of residual materials (about 1 m thick) obtained from weathering of schist. One of the landslides involved the movement of about 70,000 m3 debris for 8.6 m with depth of slip surface of 6 m. Another, which produced the most fatality initiated on a slope greater than 40o and displaced about 77, 000 m3. It had a runout length of 60 m, width of 98 m, depth to slip surface of 8 m and depositional area of about 2,500 m2. Had the opposite slope bounding the other side of the road not hindered the movement of debris, the runout distance could have been larger. The research found that all the landslides occurred on slope-portions composed of schist rather than gneiss or granite. Slip surfaces developed within the regolith and the shear zone was characterized by the presence of silty materials supported by clayey matrix. Field observations indicated that the failures generally developed as localized translational slides within the semi-consolidated, cohesive soil units (with high plasticity and low strength) within the upper to middle weathered zone of the schist. The increase in pore pressure arising from elevated water table during rainfall created instability by weakening the shear strength along the failure plane. However, differences in permeability favored the formation of perched water table which eventually triggered sliding.

  3. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  4. Exploring the blazar zone in high-energy flares of FSRQs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacciani, L.; Donnarumma, I.; Tavecchio, F.

    2014-07-20

    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SEDmore » of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.« less

  5. Late Frasnian mass extinction: Conodont event stratigraphy, global changes, and possible causes

    NASA Technical Reports Server (NTRS)

    Sandberg, Charles A.; Ziegler, Willi; Dreesen, Roland; Butler, Jamie L.

    1988-01-01

    Several abrupt changes in conodont biofacies are documented to occur synchronously at six primary control sections across the Frasnian-Famennian boundary in Euramerica. These changes occurred within a time-span of only about 100,000 years near the end of the latest Frasnian linguiformis Zone, which is formally named to replace the Uppermost gigas Zone. The conodont-biofacies changes are interpreted to reflect a eustatic rise followed by an abrupt eustatic fall immediately preceding the late Frasnian mass extinction. Two new conodont species are named and described. Ancyrognathus ubiquitus n.sp. is recorded only just below and above the level of late Frasnian extinction and hence is a global marker for that event. Palmatolepispraetriangularis n.sp. is the long-sought Frasnian ancestor of the formerly cryptogenic species, Pa. triangularis, indicator of the earliest Famennian Lower triangularis Zone. The actual extinction event occurred entirely within the Frasnian and is interpreted to have been of brief duration-from as long as 20,000 years to as short as several days. The eustatic rise-and-fall couplet associated with the late Frasnian mass extinction is similar to eustatic couplets associated with the demise of most Frasnian (F2h) reefs worldwide about 1 m.y. earlier and with a latest Famennian mass extinction about 9.5 m.y. later. All these events may be directly or indirectly attributable to extraterrestrial triggering mechanisms. An impact of a small bolide or a near miss of a larger bolide may have caused the earlier demise of Frasnian reefs. An impact of possibly the same larger bolide in the Southern Hemisphere would explain the late Frasnian mass extinction. Global regression during the Famennian probably resulted from Southern-Hemisphere glaciation triggered by the latest Frasnian impact. Glaciation probably was the indirect cause of the latest Famennian mass extinction.

  6. Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Elez, Javier; Silva, Pablo G.; Huerta, Pedro; Perucha, M. Ángeles; Civis, Jorge; Roquero, Elvira; Rodríguez-Pascua, Miguel A.; Bardají, Teresa; Giner-Robles, Jorge L.; Martínez-Graña, Antonio

    2016-12-01

    The Malaga basin contains an important geological record documenting the complex paleogeographic evolution of the Gibraltar Arc before, during and after the closure and desiccation of the Mediterranean Sea triggered by the "Messinian Salinity crisis" (MSC). Proxy paleo-elevation data, estimated from the stratigraphic and geomorphological records, allow the building of quantitative paleogeoid, paleotopographic and paleogeographic models for the three main paleogeographic stages: pre-MSC (Tortonian-early Messinian), syn-MSC (late Messinian) and post-MSC (early Pliocene). The methodological workflow combines classical contouring procedures used in geology and isobase map models from geomorphometric analyses and proxy data overprinted on present Digital Terrain Models. The resulting terrain quantitative models have been arranged, managed and computed in a GIS environment. The computed terrain models enable the exploration of past landscapes usually beyond the reach of classical geomorphological analyses and strongly improve the paleogeographic and paleotopographic knowledge of the study area. The resulting models suggest the occurrence of a set of uplifted littoral erosive and paleokarstic landforms that evolved during pre-MSC times. These uplifted landform assemblages can explain the origin of key elements of the present landscape, such as the Torcal de Antequera and the large amount of mogote-like relict hills present in the zone, in terms of ancient uplifted tropical islands. The most prominent landform is the extensive erosional platform dominating the Betic frontal zone that represents the relic Atlantic wave cut platform elaborated during late-Tortonian to early Messinian times. The amount of uplift derived from paleogeoid models suggests that the area rose by about 340 m during the MSC. This points to isostatic uplift triggered by differential erosional unloading (towards the Mediterranean) as the main factor controlling landscape evolution in the area during and after the MSC. Former littoral landscapes in the old emergent axis of the Gibraltar Arc were uplifted to form the main water-divide of the present Betic Cordillera in the zone.

  7. Global search of triggered non-volcanic tremor

    NASA Astrophysics Data System (ADS)

    Chao, Tzu-Kai Kevin

    Deep non-volcanic tremor is a newly discovered seismic phenomenon with low amplitude, long duration, and no clear P- and S-waves as compared with regular earthquake. Tremor has been observed at many major plate-boundary faults, providing new information about fault slip behaviors below the seismogenic zone. While tremor mostly occurs spontaneously (ambient tremor) or during episodic slow-slip events (SSEs), sometimes tremor can also be triggered during teleseismic waves of distance earthquakes, which is known as "triggered tremor". The primary focus of my Ph.D. work is to understand the physical mechanisms and necessary conditions of triggered tremor by systematic investigations in different tectonic regions. In the first chapter of my dissertation, I conduct a systematic survey of triggered tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5. Triggered tremors are visually identified as bursts of high-frequency (2-8 Hz), non-impulsive, and long-duration seismic energy that are coherent among many seismic stations and modulated by the teleseismic surface waves. A total of 9 teleseismic earthquakes has triggered clear tremor in Taiwan. The peak ground velocity (PGV) of teleseismic surface waves is the most important factor in determining tremor triggering potential, with an apparent threshold of ˜0.1 cm/s, or 7-8 kPa. However, such threshold is partially controlled by the background noise level, preventing triggered tremor with weaker amplitude from being observed. In addition, I find a positive correlation between the PGV and the triggered tremor amplitude, which is consistent with the prediction of the 'clock-advance' model. This suggests that triggered tremor can be considered as a sped-up occurrence of ambient tremor under fast loading from the passing surface waves. Finally, the incident angles of surface waves also play an important rule in controlling the tremor triggering potential. The next chapter focuses on a systematic comparison of triggered tremor around the Calaveras Fault (CF) in northern California (NC), the Parkfield-Cholame section of the San Andreas Fault (SAF) in central California (CC), and the San Jacinto Fault (SJF) in southern California (SC). Out of 42 large (Mw ≥7.5) earthquakes between 2001 and 2010, only the 2002 Mw 7.9 Denali fault earthquake triggered clear tremor in NC and SC. In comparison, abundant triggered and ambient tremor has been observed in CC. Further analysis reveal that the lack of triggered tremor observations in SC and NC is not simply a consequence of their different background noise levels as compared to CC, but rather reflects different background tremor rates in these regions. In the final chapter, I systematically search for triggered tremor following the 2011 Mw9.0 Tohoku-Oki earthquake in the regions where ambient or triggered tremor has been found before. The main purpose is to check whether triggered tremor is observed in regions when certain conditions (e.g., surface wave amplitudes) are met. Triggered tremor is observed in southwest Japan, Taiwan, the Aleutian Arc, south-central Alaska, northern Vancouver Island, the Parkfield-Cholame section of the SAF in CC and the SJF in SC, and the North Island of New Zealand. Such a widespread triggering of tremor is not too surprising because of the large amplitude surface waves (minimum peak value of ˜0.1 cm/s) and the associated dynamic stresses (at least ˜7-8 kPa), which is one of the most important factors in controlling the triggering threshold. The triggered tremor in different region is located close to or nearby the ambient tremor active area. In addition, the amplitudes of triggered tremor have positive correlations with the amplitudes of teleseismic surface waves among many regions. Moreover, both Love and Rayleigh waves participate in triggering tremor in different regions, and their triggering potential is somewhat controlled by the incident angles. In summary, systematically surveys of triggered tremor in different tectonic regions reveal that triggered tremor shares similar physical mechanism (shear failure on the fault interface) as ambient tremor but with different loading conditions. The amplitude of the teleseismic surface wave is one of the most important factors in controlling the tremor triggering threshold. In addition, the frequency contents and incident angles of the triggering waves, and local fault geometry and ambient conditions also play certain roles in determining the triggering potential. On the other hand, the background noise level and seismic network coverage and station quality also could affect the apparent triggering threshold. (Abstract shortened by UMI.).

  8. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    NASA Astrophysics Data System (ADS)

    Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.

    2018-03-01

    The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.

  9. Neoarchean ductile deformation of the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei, North China

    NASA Astrophysics Data System (ADS)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue

    2017-05-01

    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was thus developed in accommodation of the upward and downward movements. It is possible that such a tectonic model also applies to many Archean granite-greenstone terrains.

  10. A Danger-Theory-Based Immune Network Optimization Algorithm

    PubMed Central

    Li, Tao; Xiao, Xin; Shi, Yuanquan

    2013-01-01

    Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853

  11. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  12. Decreased adult neurogenesis in hibernating Syrian hamster.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; Gómez-Pinedo, Ulises; Hernández, Félix; DeFelipe, Javier; Ávila, Jesús

    2016-10-01

    Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    PubMed Central

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-01-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746

  14. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    NASA Astrophysics Data System (ADS)

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-09-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.

  15. Quake clamps down on slow slip

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Bartlow, Noel; Hamling, Ian; Fry, Bill

    2014-12-01

    Using continuous GPS (cGPS) data from the Hikurangi subduction zone in New Zealand, we show for the first time that stress changes induced by a local earthquake can arrest an ongoing slow slip event (SSE). The cGPS data show that the slip rate in the northern portion of the 2013/2014 Kapiti SSE decreased abruptly following a nearby intraslab earthquake. We suggest that deceleration of the Kapiti SSE in early 2014 occurred due to a tenfold increase in the normal stress relative to shear stress in the SSE source, induced by the nearby Mw 6.3 earthquake, consistent with expectations of rate and state friction. Our observation of an abrupt halting/slowing of the SSE in response to stress changes imposed by a local earthquake has implications for the strength of fault zones hosting SSEs and supports the premise that static stress changes are an important ingredient in triggering (or delaying) fault slip.

  16. Moon Connection with MEGA and Giant Earthquakes in Subduction Zones during One Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hagen, M. T.; Azevedo, A. T.

    2016-12-01

    We investigated in this paper the possible influences of the moon on earthquakes during one Solar cycle. The Earth - Moon gravitational force produces a variation in the perigee force that may trigger seismological events. The oscillation force creates a wave that is generated by the moon rotation around the earth, which takes a month. The wave complete a cycle after 13- 14 months in average and the period is roughly 5400 hours as calculated. The major moon phases which are New and Full Moon is when the perigee force is stronger. The Solar Wind charges the Moon during the New phases. The plasmasphere charges the satellite during the Full Moon. Both create the Spring Tides what affects mostly the subduction zones connected with the Mega and Giant events in Pacific areas. Moon - Earth connections are resilient in locations with convergent tectonic plates. Inserted:

  17. Neuropeptides and breathing in health and disease.

    PubMed

    Kaczyńska, Katarzyna; Zając, Dominika; Wojciechowski, Piotr; Kogut, Ewelina; Szereda-Przestaszewska, Małgorzata

    2018-02-01

    Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Ferrand, T. P.; Schubnel, A.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green, H. W., II

    2016-12-01

    Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs but their physical mechanisms remain enigmatic. Earthquakes occur both in the upper and lower Wadati-Benioff planes of seismicity (UBP and LBP). The LBP is located in the mantle of the subducted oceanic lithosphere, 20-40 km below the plate interface. Several mechanisms have been proposed: dehydration embrittlement of antigorite, shear heating instabilities, and the reactivation of pre-existing shear zones. We dehydrated synthetic antigorite-olivine aggregates, a proxy for serpentinized mantle, during deformation at upper mantle conditions. Acoustic emissions (AEs) were recorded during dehydration of samples with antigorite contents as low as 5 vol.% and with up to 50 vol.%, deformed at pressures of 1.1 GPa and 3.5 GPa, respectively. Source characteristics of these AEs are compatible with faults sealed by fluid-bearing micro-pseudotachylytes in recovered samples, demonstrating that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These intermediate-depth earthquake analogs reconcile the apparent contradictions of previous laboratory studies and confirm that little mantle hydration, as suggested by seismic imaging, may suffice to generate LBP seismicity. We propose an alternative model to dehydration-embrittlement in which dehydration-induced stress transfer, rather than fluid overpressure, is the trigger of mantle rocks embrittlement.

  19. Determination of slope failure using 2-D resistivity method

    NASA Astrophysics Data System (ADS)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  20. Assessing Landslide Mobility Using GIS: Application to Kosrae, Micronesia

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.; Godt, J.; Schmitt, R. G.; Harp, E. L.

    2015-12-01

    Deadly landslides are often mobile landslides, as exemplified by the disastrous landslide that occurred near Oso, Washington in 2014 killing 43. Despite this association, many landslide susceptibility maps do not identify runout areas. We developed a simple, GIS-based method for identifying areas potentially overrun by mobile slides and debris flows. Our method links three processes within a DEM landscape: landslide initiation, transport, and debris-flow inundation (from very mobile slides). Given spatially distributed shear strengths, we first identify initiation areas using an infinite-slope stability analysis. We then delineate transport zones, or regions of potential entrainment and/or deposition, using a height/length runout envelope. Finally, where these transport zones intersect the channel network, we start debris-flow inundation zones. The extent of inundation is computed using the USGS model Laharz, modified to include many debris-flow locations throughout a DEM. Potential debris-flow volumes are computed from upslope initiation areas and typical slide thicknesses. We applied this approach to the main island of Kosrae State, Federated States of Micronesia (FSM). In 2002, typhoon Chata'an triggered numerous landslides on the neighboring islands of Chuuk State, FSM, resulting in 43 fatalities. Using an infinite-slope stability model calibrated to the Chuuk event, we identified potential landslide initiation areas on Kosrae. We then delineated potential transport zones using a 20º runout envelope, based on runout observations from Chuuk. Potential debris-flow inundation zones were then determined using Laharz. Field inspections on Kosrae revealed that our resulting susceptibility map correctly classified areas covered by previous debris-flow deposits and did not include areas covered by fluvial deposits. Our map has the advantage of providing a visual tool to portray initiation, transport, and runout zones from mobile landslides.

Top